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Let h : (Cd, 0) → (C, 0) be a germ of analytic funcion
(or a polynomial h ∈ C[x1, . . . , xd]).

THEOREM (BERNSTEIN, BJÖRK): There is a non-zero
polynomial b(s) ∈ C[s] and a differential operator P (s) ∈
D[s] such that

b(k)hk = P (k)(hk+1) ∀k ∈ Z.

The monic generator of the ideal of C[s] of such b(s) is
called the Bernstein-Sato polynomial, or the b-function

of h, and it is denoted by bh(s).



Key points on the existence of b-functions



Key points on the existence of b-functions

THE BERNSTEIN MODULE: Consider the O[s, 1/h]-free
module generated by the symbol hs with the left action
of D[s] determined by:

∂i(h
s) = sh′

xi
h−1hs.



Key points on the existence of b-functions

THE BERNSTEIN MODULE: Consider the O[s, 1/h]-free
module generated by the symbol hs with the left action
of D[s] determined by:

∂i(h
s) = sh′

xi
h−1hs.

D-module theory provides finiteness properties (holon-
omy) and tools to prove the existence of a formal func-
tional equation:

b(s)hs = P (s)(hhs)

for some non-zero b(s) ∈ C[s] and P (s) ∈ D[s].



Key points on the existence of b-functions

THE BERNSTEIN MODULE: Consider the O[s, 1/h]-free
module generated by the symbol hs with the left action
of D[s] determined by:

∂i(h
s) = sh′

xi
h−1hs.

D-module theory provides finiteness properties (holon-
omy) and tools to prove the existence of a formal func-
tional equation:

b(s)hs = P (s)(hhs)

for some non-zero b(s) ∈ C[s] and P (s) ∈ D[s].

The variable s in a formal functional equations can take
integers values producing “real” functional equations.



Key points on the existence of b-functions

THE BERNSTEIN MODULE: Consider the O[s, 1/h]-free
module generated by the symbol hs with the left action
of D[s] determined by:

∂i(h
s) = sh′

xi
h−1hs.

D-module theory provides finiteness properties (holon-
omy) and tools to prove the existence of a formal func-
tional equation:

b(s)hs = P (s)(hhs)

for some non-zero b(s) ∈ C[s] and P (s) ∈ D[s].

The variable s in a formal functional equations can take
integers values producing “real” functional equations.

The b-function of h appears as the minimal polynomial
of the action of s on D[s]hs/D[s]hhs.
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(∗∗)
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(6) h(x1, x2, x3) = x1x2(x1 + x2)(x1 + x2x3):
(∗∗)
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(∗∗) But the operator P (s) in the Bernstein relation
b(k)hk = P (k)(hk+1) becomes highly complicated!
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MALGRANGE, KASHIWARA (1983): For an arbitrary
analytic germ h : (Cd, 0) → (C, 0), the map α 7→ e2πiα

defines a surjection from the set of roots of bh(s) and the
set of eigenvalues of the local monodromy on some of
the cohomology espaces Hi(F,C) of the Milnor fiber F
of h.

M. SAITO (1994): The roots of the b-function of any
analytic germ h : (Cd, 0) → (C, 0) are contained in the
interval ]− d, 0[.
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and bifurcation sets (Bruce) of versal unfoldings
of germs of holomorphic functions with an
isolated critical point (and some generalizations
by Buchweitz, Ebeling, Graf von Bothmer,
Looijenga, Damon,. . . ).

• Linear free divisors (Buchweitz, Mond, Granger,
Nieto, Schulze, de Gregorio, Damon, Pike).

• New examples by adding “adjoint divisors” (Mond,
Schulze).
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bian ideal is of linear type.

RESULTS:
(1) Any plane curve is a Koszul free divisor.

(2) (Calderón-Moreno, N-M) Any locally quasi-homogeneous
free divisor is Koszul and of linear Jacobian type (e.g.
free hyperplanes arrangements; discriminants of stable
maps in Mather’s “nice dimensions”).

(3) (N-M) For a free divisor: linear Jacobian type ⇔
strongly Koszul⇒ Koszul.
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We have found the following result
(see http://arxiv.org/abs/1201.3594 ):

THEOREM: Let (D, 0) ⊂ (Cd, 0) be a germ of free di-
visor with reduced equation h = 0. Assume that the
following hypothesis holds:

(⋆) The D[s]-module D[s]hs admits a Spencer logarith-

mic free resolution.

Then, the b-function of h satisfies the symmetry

bh(−s− 2) = ±bh(s).

Hypothesis (⋆) is rather technical. But free divisors of
linear Jacobian type (in particular, locally quasi-homogeneous
free divisors) satisfy (⋆).
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L
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and so DualD[s] (D[s]hs) ≃ D[s]h−s−1.

We take D[s]-duals on the exact sequence

0→ D[s]hs+1 → D[s]hs → Q(s) := D[s]hs/D[s]hs+1 → 0

and obtain

0← Q(−s− 2)← D[s]h−s−2 ← D[s]h−s−1 ← 0.
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(Cd, 0) → (C, 0) is a reduced equation of a free divisor

of linear Jacobian type, then b̃h(−s− 2) = ±b̃h(s).

REMARK: Both cases seem to be the extremal cases of
the same phenomenon.

CONJECTURE: Let h : (Cd, 0) → (C, 0) be an analytic
germ with O/Jh Cohen-Macaulay of dimension m and

Jh of linear type, then b̃h(−s− d+m) = ±b̃(s).

The conjecture is true for m = 0 and m = d− 2.

By means of the Thom-Sebastiani join, it is possible to
construct non-trivial examples where the conjecture is
true with singular locus of arbitrary codimension.



Happy birthday for
Terry and Bill, and

thank you!


