Bill Bruce 60 and Terry Wall 75

An international workshop in Singularity

Theory, its Applications and Future Prospects

 Liverpool, 18-22 June 2012Symmetry properties of the roots of Bernstein-Sato polynomials and duality of D-modules

Luis Narváez Macarro
Departamento de Álgebra \& Instituto de Matemáticas, Universidad de Sevilla

http://personal.us.es/narvaez/
Partially supported by MTM2010-19298 and FEDER.

Contents

A mini-course on Bernstein-Sato polynomials (or b-functions)

Free divisors
Symmetry of b-functions and duality
Further symmetry properties of the roots of b-functions: a conjecture

A mini-course on Bernstein-Sato polynomials (or b-functions)

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:
$\mathcal{O}:=\mathcal{O}_{\mathbb{C}^{d}, 0}$ the ring of germs of holomorphic functions.

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:
$\mathcal{O}:=\mathcal{O}_{\mathbb{C}^{d}, 0}$ the ring of germs of holomorphic functions.
$\mathscr{D}:=\mathscr{D}_{\mathbb{C}^{d}, 0}$ the ring of germs of linear differential operators, i.e. $\mathscr{D}=\mathcal{O}\left[\partial_{1}, \ldots, \partial_{d}\right]$ (NON COMMUTATIVE!)

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:
$\mathcal{O}:=\mathcal{O}_{\mathbb{C}^{d}, 0}$ the ring of germs of holomorphic functions.
$\mathscr{D}:=\mathscr{D}_{\mathbb{C}^{d}, 0}$ the ring of germs of linear differential operators, i.e. $\mathscr{D}=\mathcal{O}\left[\partial_{1}, \ldots, \partial_{d}\right]$ (NON COMMUTATIVE!)

Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a germ of analytic funcion (or a polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$).

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:
$\mathcal{O}:=\mathcal{O}_{\mathbb{C}^{d}, 0}$ the ring of germs of holomorphic functions.
$\mathscr{D}:=\mathscr{D}_{\mathbb{C}^{d}, 0}$ the ring of germs of linear differential operators, i.e. $\mathscr{D}=\mathcal{O}\left[\partial_{1}, \ldots, \partial_{d}\right]$ (NON COMMUTATIVE!)
Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a germ of analytic funcion (or a polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$).

Theorem (Bernstein, Björk): There is a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in$ $\mathscr{D}[s]$ such that

$$
b(k) h^{k}=P(k)\left(h^{k+1}\right) \quad \forall k \in \mathbb{Z}
$$

A mini-course on Bernstein-Sato polynomials (or b-functions)

Some notations:
$\mathcal{O}:=\mathcal{O}_{\mathbb{C}^{d}, 0}$ the ring of germs of holomorphic functions.
$\mathscr{D}:=\mathscr{D}_{\mathbb{C}^{d}, 0}$ the ring of germs of linear differential operators, i.e. $\mathscr{D}=\mathcal{O}\left[\partial_{1}, \ldots, \partial_{d}\right]$ (NON COMMUTATIVE!)
Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a germ of analytic funcion (or a polynomial $h \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$).

Theorem (Bernstein, Björk): There is a non-zero polynomial $b(s) \in \mathbb{C}[s]$ and a differential operator $P(s) \in$ $\mathscr{D}[s]$ such that

$$
b(k) h^{k}=P(k)\left(h^{k+1}\right) \quad \forall k \in \mathbb{Z}
$$

The monic generator of the ideal of $\mathbb{C}[s]$ of such $b(s)$ is called the Bernstein-Sato polynomial, or the b-function of h, and it is denoted by $b_{h}(s)$.

Key points on the existence of b-functions

Key points on the existence of b-functions

The Bernstein module: Consider the $\mathcal{O}[s, 1 / h]$-free module generated by the symbol h^{s} with the left action of $\mathscr{D}[s]$ determined by:

$$
\partial_{i}\left(h^{s}\right)=s h_{x_{i}}^{\prime} h^{-1} h^{s} .
$$

Key points on the existence of b-functions

The Bernstein module: Consider the $\mathcal{O}[s, 1 / h]$-free module generated by the symbol h^{s} with the left action of $\mathscr{D}[s]$ determined by:

$$
\partial_{i}\left(h^{s}\right)=s h_{x_{i}}^{\prime} h^{-1} h^{s} .
$$

\mathscr{D}-module theory provides finiteness properties (holonomy) and tools to prove the existence of a formal functional equation:

$$
b(s) h^{s}=P(s)\left(h h^{s}\right)
$$

for some non-zero $b(s) \in \mathbb{C}[s]$ and $P(s) \in \mathscr{D}[s]$.

Key points on the existence of b-functions

The Bernstein module: Consider the $\mathcal{O}[s, 1 / h]$-free module generated by the symbol h^{s} with the left action of $\mathscr{D}[s]$ determined by:

$$
\partial_{i}\left(h^{s}\right)=s h_{x_{i}}^{\prime} h^{-1} h^{s} .
$$

\mathscr{D}-module theory provides finiteness properties (holonomy) and tools to prove the existence of a formal functional equation:

$$
b(s) h^{s}=P(s)\left(h h^{s}\right)
$$

for some non-zero $b(s) \in \mathbb{C}[s]$ and $P(s) \in \mathscr{D}[s]$.
The variable s in a formal functional equations can take integers values producing "real" functional equations.

Key points on the existence of b-functions

The Bernstein module: Consider the $\mathcal{O}[s, 1 / h]$-free module generated by the symbol h^{s} with the left action of $\mathscr{D}[s]$ determined by:

$$
\partial_{i}\left(h^{s}\right)=s h_{x_{i}}^{\prime} h^{-1} h^{s} .
$$

\mathscr{D}-module theory provides finiteness properties (holonomy) and tools to prove the existence of a formal functional equation:

$$
b(s) h^{s}=P(s)\left(h h^{s}\right)
$$

for some non-zero $b(s) \in \mathbb{C}[s]$ and $P(s) \in \mathscr{D}[s]$.
The variable s in a formal functional equations can take integers values producing "real" functional equations.

The b-function of h appears as the minimal polynomial of the action of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] h h^{s}$.

Examples of b-functions

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1 .
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1 .
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1 .
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

(3) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}$ (normal crossings germs):

$$
\partial_{1} \cdots \partial_{d}\left(h^{k+1}\right)=(k+1)^{d} h^{k} \stackrel{(*)}{\rightsquigarrow} b_{h}(s)=(s+1)^{d} .
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1 .
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

(3) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}$ (normal crossings germs):

$$
\partial_{1} \cdots \partial_{d}\left(h^{k+1}\right)=(k+1)^{d} h^{k} \stackrel{(*)}{\rightsquigarrow} b_{h}(s)=(s+1)^{d} .
$$

(4) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+\cdots+x_{d}^{2}$:

$$
\begin{gathered}
\left(\partial_{1}^{2}+\cdots+\partial_{d}^{2}\right)\left(h^{k+1}\right)=\cdots=2(k+1)(2 k+d) h^{k} \\
\stackrel{(*)}{\rightsquigarrow} \quad b_{h}(s)=(s+1)(s+d / 2) .
\end{gathered}
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

(3) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}$ (normal crossings germs):

$$
\partial_{1} \cdots \partial_{d}\left(h^{k+1}\right)=(k+1)^{d} h^{k} \stackrel{(*)}{\rightsquigarrow} b_{h}(s)=(s+1)^{d} .
$$

(4) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+\cdots+x_{d}^{2}$:

$$
\left(\partial_{1}^{2}+\cdots+\partial_{d}^{2}\right)\left(h^{k+1}\right)=\cdots=2(k+1)(2 k+d) h^{k}
$$

$$
\stackrel{(*)}{\sim} \quad b_{h}(s)=(s+1)(s+d / 2)
$$

(5) $h\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{3}$:

$$
\stackrel{(* *)}{\leadsto} \quad b_{h}(s)=(s+1)(s+5 / 6)(s+7 / 6) .
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

(3) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}$ (normal crossings germs):

$$
\partial_{1} \cdots \partial_{d}\left(h^{k+1}\right)=(k+1)^{d} h^{k} \stackrel{(*)}{\rightsquigarrow} b_{h}(s)=(s+1)^{d} .
$$

(4) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+\cdots+x_{d}^{2}$:
$\left(\partial_{1}^{2}+\cdots+\partial_{d}^{2}\right)\left(h^{k+1}\right)=\cdots=2(k+1)(2 k+d) h^{k}$

$$
\stackrel{(*)}{\rightsquigarrow} \quad b_{h}(s)=(s+1)(s+d / 2) .
$$

(5) $h\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{3}$:

$$
\stackrel{(* *)}{\rightsquigarrow} \quad b_{h}(s)=(s+1)(s+5 / 6)(s+7 / 6) .
$$

(6) $h\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2} x_{3}\right)$:

$$
\stackrel{(* *)}{\sim} \quad b_{h}(s)=(s+1)^{3}(s+1 / 2)(s+3 / 4)(s+5 / 4) \text {. }
$$

Examples of b-functions

(1) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}$ (smooth germs):

$$
\partial_{1}\left(x_{1}^{k+1}\right)=(k+1) x_{1}^{k} \rightsquigarrow b_{h}(s)=s+1
$$

(2) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{N}$:

$$
\begin{gathered}
\partial_{1}^{N}\left(h^{k+1}\right)=(N k+N)(N k+N-1) \cdots(N k+1) h^{k} \\
\rightsquigarrow b_{h}(s)=\left(s+\frac{N}{N}\right)\left(s+\frac{N-1}{N}\right) \cdots\left(s+\frac{1}{N}\right) .
\end{gathered}
$$

(3) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1} \cdots x_{d}$ (normal crossings germs):

$$
\partial_{1} \cdots \partial_{d}\left(h^{k+1}\right)=(k+1)^{d} h^{k} \stackrel{(*)}{\rightsquigarrow} b_{h}(s)=(s+1)^{d} .
$$

(4) $h\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+\cdots+x_{d}^{2}$:
$\left(\partial_{1}^{2}+\cdots+\partial_{d}^{2}\right)\left(h^{k+1}\right)=\cdots=2(k+1)(2 k+d) h^{k}$
$\stackrel{*}{\sim} \quad b_{h}(s)=(s+1)(s+d / 2)$.
(5) $h\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{3}$:

$$
\stackrel{(* *)}{\rightsquigarrow} \quad b_{h}(s)=(s+1)(s+5 / 6)(s+7 / 6) .
$$

(6) $h\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2} x_{3}\right)$:

$$
\stackrel{(* *)}{\rightsquigarrow} \quad b_{h}(s)=(s+1)^{3}(s+1 / 2)(s+3 / 4)(s+5 / 4) .
$$

$(* *)$ But the operator $P(s)$ in the Bernstein relation $b(k) h^{k}=P(k)\left(h^{k+1}\right)$ becomes highly complicated!

Basic facts on b-functions

Basic facts on b-functions

Malgrange (1975): Assume that the germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ has an isolated singularity at 0 . The map $\alpha \mapsto$ $e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on the top cohomology $H^{d-1}(F, \mathbb{C})$ of the Milnor fiber F of h.

Basic facts on b-functions

Malgrange (1975): Assume that the germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ has an isolated singularity at 0 . The map $\alpha \mapsto$ $e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on the top cohomology $H^{d-1}(F, \mathbb{C})$ of the Milnor fiber F of h.

KASHIWARA (1976): The roots of the b-function of any analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ are rational strictly negative numbers.

Basic facts on b-functions

Malgrange (1975): Assume that the germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ has an isolated singularity at 0 . The map $\alpha \mapsto$ $e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on the top cohomology $H^{d-1}(F, \mathbb{C})$ of the Milnor fiber F of h.

KASHIWARA (1976): The roots of the b-function of any analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ are rational strictly negative numbers.

Malgrange, Kashiwara (1983): For an arbitrary analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$, the map $\alpha \mapsto e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on some of the cohomology espaces $H^{i}(F, \mathbb{C})$ of the Milnor fiber F of h.

Basic facts on b-functions

Malgrange (1975): Assume that the germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ has an isolated singularity at 0 . The map $\alpha \mapsto$ $e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on the top cohomology $H^{d-1}(F, \mathbb{C})$ of the Milnor fiber F of h.

KASHIWARA (1976): The roots of the b-function of any analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ are rational strictly negative numbers.

Malgrange, Kashiwara (1983): For an arbitrary analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$, the map $\alpha \mapsto e^{2 \pi i \alpha}$ defines a surjection from the set of roots of $b_{h}(s)$ and the set of eigenvalues of the local monodromy on some of the cohomology espaces $H^{i}(F, \mathbb{C})$ of the Milnor fiber F of h.
M. Saito (1994): The roots of the b-function of any analytic germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ are contained in the interval $]-d, 0[$.

Free divisors

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

- Normal crossing divisors.

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

- Normal crossing divisors.
- Plane curves.

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

- Normal crossing divisors.
- Plane curves.
- Discriminants (Arnold, Zakalyukin, Saito, Terao) and bifurcation sets (Bruce) of versal unfoldings of germs of holomorphic functions with an isolated critical point (and some generalizations by Buchweitz, Ebeling, Graf von Bothmer, Looijenga, Damon,...).

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

- Normal crossing divisors.
- Plane curves.
- Discriminants (Arnold, Zakalyukin, Saito, Terao) and bifurcation sets (Bruce) of versal unfoldings of germs of holomorphic functions with an isolated critical point (and some generalizations by Buchweitz, Ebeling, Graf von Bothmer, Looijenga, Damon,...).
- Linear free divisors (Buchweitz, Mond, Granger, Nieto, Schulze, de Gregorio, Damon, Pike).

Free divisors

Definition: We say that a germ of divisor (= hypersurface) $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ given by a reduced equation $h=$ 0 is free if the module of tangent vector fields (or logarithmic derivations) $\operatorname{Der}(-\log D)$ is a free \mathcal{O}-module (of rank d).

EXAMPLES OF FREE DIVISORS:

- Normal crossing divisors.
- Plane curves.
- Discriminants (Arnold, Zakalyukin, Saito, Terao) and bifurcation sets (Bruce) of versal unfoldings of germs of holomorphic functions with an isolated critical point (and some generalizations by Buchweitz, Ebeling, Graf von Bothmer, Looijenga, Damon,...).
- Linear free divisors (Buchweitz, Mond, Granger, Nieto, Schulze, de Gregorio, Damon, Pike).
- New examples by adding "adjoint divisors" (Mond, Schulze).

Some properties of free divisors

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\mathrm{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\operatorname{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\operatorname{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\mathrm{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\mathrm{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.
(c) We say that D is of linear Jacobian type if the Jacobian ideal is of linear type.

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\mathrm{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\mathrm{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.
(c) We say that D is of linear Jacobian type if the Jacobian ideal is of linear type.

Results:

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\operatorname{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\operatorname{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.
(c) We say that D is of linear Jacobian type if the Jacobian ideal is of linear type.

Results:
(1) Any plane curve is a Koszul free divisor.

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\operatorname{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\operatorname{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.
(c) We say that D is of linear Jacobian type if the Jacobian ideal is of linear type.

Results:
(1) Any plane curve is a Koszul free divisor.
(2) (Calderón-Moreno, N-M) Any locally quasi-homogeneous free divisor is Koszul and of linear Jacobian type (e.g. free hyperplanes arrangements; discriminants of stable maps in Mather's "nice dimensions").

Some properties of free divisors

Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a free germ given by a reduced equation $h=0$, a let $\delta_{1}, \ldots, \delta_{d}$ be a basis of the logarithmic vector fields: $\delta_{i}(h)=\alpha_{i} h$. The Jacobian ideal of h (or of D) is $J_{h}:=\left\langle h, h_{x_{1}}^{\prime}, \ldots, h_{x_{d}}^{\prime}\right\rangle$.

Definition: (a) We say that D is Koszul if the symbols $\sigma\left(\delta_{1}\right), \ldots, \sigma\left(\delta_{d}\right)$ form a regular sequence in $\operatorname{gr} \mathscr{D}=$ $\mathcal{O}\left[\xi_{1}, \ldots, \xi_{d}\right]$.
(b) We say that D is strongly Koszul if

$$
\sigma\left(\delta_{1}\right)-\alpha_{1} s, \ldots, \sigma\left(\delta_{d}\right)-\alpha_{d} s, h
$$

form a regular sequence in $\operatorname{gr}_{T} \mathscr{D}[s]=\mathscr{O}\left[\xi_{1}, \ldots, \xi_{d}, s\right]$.
(c) We say that D is of linear Jacobian type if the Jacobian ideal is of linear type.

Results:
(1) Any plane curve is a Koszul free divisor.
(2) (Calderón-Moreno, N-M) Any locally quasi-homogeneous free divisor is Koszul and of linear Jacobian type (e.g. free hyperplanes arrangements; discriminants of stable maps in Mather's "nice dimensions").
(3) (N-M) For a free divisor: linear Jacobian type \Leftrightarrow strongly Koszul \Rightarrow Koszul.

Linear free divisors

Linear free divisors

Definition (Buchweitz-Mond): A reduced hypersurface $D \subset \mathbb{C}^{d}$ is a linear free divisor (LFD) if the (coherent) sheaf of logarithmic vector fields with respect to $D, \operatorname{Der}(-\log D)$, has a global basis of homogeneous vector fields of degree 0 , i.e. linear combination of the partial derivatives with coefficient linear forms.

Linear free divisors

Definition (Buchweitz-Mond): A reduced hypersurface $D \subset \mathbb{C}^{d}$ is a linear free divisor (LFD) if the (coherent) sheaf of logarithmic vector fields with respect to D, $\operatorname{Der}(-\log D)$, has a global basis of homogeneous vector fields of degree 0 , i.e. linear combination of the partial derivatives with coefficient linear forms.

Discriminants of quiver representations produce many interesting examples of LFD.

Linear free divisors

Definition (Buchweitz-Mond): A reduced hypersurface $D \subset \mathbb{C}^{d}$ is a linear free divisor ($L F D$) if the (coherent) sheaf of logarithmic vector fields with respect to $D, \operatorname{Der}(-\log D)$, has a global basis of homogeneous vector fields of degree 0 , i.e. linear combination of the partial derivatives with coefficient linear forms.

Discriminants of quiver representations produce many interesting examples of LFD.

Any LFD $D \subset \mathbb{C}^{d}$ determines an algebraic group $G \subset$ $\mathrm{GL}(d, \mathbb{C})$ in such a way that LFD are special cases of discriminant of prehomogeneous vector spaces (PHVS) (Sato).

Linear free divisors

Definition (Buchweitz-Mond): A reduced hypersurface $D \subset \mathbb{C}^{d}$ is a linear free divisor ($L F D$) if the (coherent) sheaf of logarithmic vector fields with respect to $D, \operatorname{Der}(-\log D)$, has a global basis of homogeneous vector fields of degree 0 , i.e. linear combination of the partial derivatives with coefficient linear forms.

Discriminants of quiver representations produce many interesting examples of LFD.

Any LFD $D \subset \mathbb{C}^{d}$ determines an algebraic group $G \subset$ $\operatorname{GL}(d, \mathbb{C})$ in such a way that LFD are special cases of discriminant of prehomogeneous vector spaces (PHVS) (Sato).

Granger and Schulze (2010) have defined a generalization of LFD which are certain non-reduced discriminants of PHVS: the prehomogeneous determinants.

Linear free divisors

Definition (Buchweitz-Mond): A reduced hypersurface $D \subset \mathbb{C}^{d}$ is a linear free divisor (LFD) if the (coherent) sheaf of logarithmic vector fields with respect to $D, \operatorname{Der}(-\log D)$, has a global basis of homogeneous vector fields of degree 0 , i.e. linear combination of the partial derivatives with coefficient linear forms.

Discriminants of quiver representations produce many interesting examples of LFD.

Any LFD $D \subset \mathbb{C}^{d}$ determines an algebraic group $G \subset$ $\operatorname{GL}(d, \mathbb{C})$ in such a way that LFD are special cases of discriminant of prehomogeneous vector spaces (PHVS) (Sato).

Granger and Schulze (2010) have defined a generalization of LFD which are certain non-reduced discriminants of PHVS: the prehomogeneous determinants.

Theorem (Granger-Schulze, 2010): The b-function of any reductive prehomogeneous determinant or of any regular special LFD satisfies the symmetry property

$$
b(-s-2)= \pm b(s) .
$$

Symmetry of b-functions and duality

Symmetry of b-functions and duality

OUR MOTIVATION: the symmetry property

$$
b(-s-2)= \pm b(s)
$$

has been observed for other free divisors, linear (Sevenheck) and non linear (Sekiguchi). Is there a common explanation for all the observed symmetry properties?

Symmetry of b-functions and duality

OUR MOTIVATION: the symmetry property

$$
b(-s-2)= \pm b(s)
$$

has been observed for other free divisors, linear (Sevenheck) and non linear (Sekiguchi). Is there a common explanation for all the observed symmetry properties?

We have found the following result (see http://arxiv.org/abs/1201.3594):

Symmetry of b-functions and duality

OUR MOTIVATION: the symmetry property

$$
b(-s-2)= \pm b(s)
$$

has been observed for other free divisors, linear (Sevenheck) and non linear (Sekiguchi). Is there a common explanation for all the observed symmetry properties?

We have found the following result (see http://arxiv.org/abs/1201.3594):

THEOREM: Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a germ of free divisor with reduced equation $h=0$. Assume that the following hypothesis holds:
(\star) The $\mathscr{D}[s]$-module $\mathscr{D}[s] h^{s}$ admits a Spencer logarithmic free resolution.
Then, the b-function of h satisfies the symmetry

$$
b_{h}(-s-2)= \pm b_{h}(s)
$$

Symmetry of b-functions and duality

OUR MOTIVATION: the symmetry property

$$
b(-s-2)= \pm b(s)
$$

has been observed for other free divisors, linear (Sevenheck) and non linear (Sekiguchi). Is there a common explanation for all the observed symmetry properties?

We have found the following result (see http://arxiv.org/abs/1201.3594):

THEOREM: Let $(D, 0) \subset\left(\mathbb{C}^{d}, 0\right)$ be a germ of free divisor with reduced equation $h=0$. Assume that the following hypothesis holds:
(*) The $\mathscr{D}[s]$-module $\mathscr{D}[s] h^{s}$ admits a Spencer logarithmic free resolution.
Then, the b-function of h satisfies the symmetry

$$
b_{h}(-s-2)= \pm b_{h}(s)
$$

Hypothesis (\star) is rather technical. But free divisors of linear Jacobian type (in particular, locally quasi-homogeneous free divisors) satisfy (\star).

Idea of the proof

Idea of the proof

The existence of a Spencer logarithmic free resolution of $\mathscr{D}[s] h^{s}$ exactly means that:

$$
\mathscr{D}[s] h^{s} \simeq \mathscr{D}[s] \stackrel{L}{\otimes}_{\mathscr{V}[s]} \mathcal{O}[s] h^{s}
$$

where \mathscr{V} is the ring of germs of logarithmic differential operators.

Idea of the proof

The existence of a Spencer logarithmic free resolution of $\mathscr{D}[s] h^{s}$ exactly means that:

$$
\mathscr{D}[s] h^{s} \simeq \mathscr{D}[s] \stackrel{L}{\otimes}{ }_{\mathscr{V}[s]} \mathcal{O}[s] h^{s}
$$

where \mathscr{V} is the ring of germs of logarithmic differential operators.

Now we can apply a duality formula of Calderón-Moreno, $\mathrm{N}-\mathrm{M}$ to obtain that:
$\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] \stackrel{L}{\otimes}_{\mathscr{V}[s]}^{L} \mathcal{O}[s] h^{s}\right) \simeq \mathscr{D}[s] \stackrel{L}{\otimes_{\mathscr{V}}[s]} \mathcal{O}[s] h^{-s-1}$ and so $\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] h^{s}\right) \simeq \mathscr{D}[s] h^{-s-1}$.

Idea of the proof

The existence of a Spencer logarithmic free resolution of $\mathscr{D}[s] h^{s}$ exactly means that:

$$
\mathscr{D}[s] h^{s} \simeq \mathscr{D}[s] \stackrel{L}{\mathscr{V}}[s]^{L}[s] h^{s}
$$

where \mathscr{V} is the ring of germs of logarithmic differential operators.

Now we can apply a duality formula of Calderón-Moreno, $\mathrm{N}-\mathrm{M}$ to obtain that:
$\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] \stackrel{L}{\otimes}_{\mathscr{V}[s]}^{L} \mathcal{O}[s] h^{s}\right) \simeq \mathscr{D}[s] \stackrel{L}{\otimes_{\mathscr{V}}[s]} \mathcal{O}[s] h^{-s-1}$ and so $\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] h^{s}\right) \simeq \mathscr{D}[s] h^{-s-1}$.

We take $\mathscr{D}[s]$-duals on the exact sequence

$$
0 \rightarrow \mathscr{D}[s] h^{s+1} \rightarrow \mathscr{D}[s] h^{s} \rightarrow Q(s):=\mathscr{D}[s] h^{s} / \mathscr{D}[s] h^{s+1} \rightarrow 0
$$

Idea of the proof

The existence of a Spencer logarithmic free resolution of $\mathscr{D}[s] h^{s}$ exactly means that:

$$
\mathscr{D}[s] h^{s} \simeq \mathscr{D}[s] \stackrel{L}{\mathscr{V}}[s]^{L}[s] h^{s}
$$

where \mathscr{V} is the ring of germs of logarithmic differential operators.

Now we can apply a duality formula of Calderón-Moreno, $\mathrm{N}-\mathrm{M}$ to obtain that:
$\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] \stackrel{\Delta}{\otimes}_{\otimes_{\mathscr{C}}[s]}^{L} \mathcal{O}[s] h^{s}\right) \simeq \mathscr{D}[s] \stackrel{L}{\otimes_{\mathscr{V}}[s]} \mathcal{O}[s] h^{-s-1}$ and so $\operatorname{Dual}_{\mathscr{D}[s]}\left(\mathscr{D}[s] h^{s}\right) \simeq \mathscr{D}[s] h^{-s-1}$.

We take $\mathscr{D}[s]$-duals on the exact sequence

$$
0 \rightarrow \mathscr{D}[s] h^{s+1} \rightarrow \mathscr{D}[s] h^{s} \rightarrow Q(s):=\mathscr{D}[s] h^{s} / \mathscr{D}[s] h^{s+1} \rightarrow 0
$$

and obtain

$$
0 \leftarrow Q(-s-2) \leftarrow \mathscr{D}[s] h^{-s-2} \leftarrow \mathscr{D}[s] h^{-s-1} \leftarrow 0 .
$$

Further symmetry properties of the roots of b-functions: a conjecture

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.
Free divisors of linear Jacobian type: If h : $\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a reduced equation of a free divisor of linear Jacobian type, then $\widetilde{b}_{h}(-s-2)= \pm \widetilde{b}_{h}(s)$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.
Free divisors of Linear Jacobian type: If h : $\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a reduced equation of a free divisor of linear Jacobian type, then $\widetilde{b}_{h}(-s-2)= \pm \widetilde{b}_{h}(s)$.
REmark: Both cases seem to be the extremal cases of the same phenomenon.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.
Free divisors of Linear Jacobian type: If h : $\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a reduced equation of a free divisor of linear Jacobian type, then $\widetilde{b}_{h}(-s-2)= \pm \widetilde{b}_{h}(s)$.
REmARK: Both cases seem to be the extremal cases of the same phenomenon.

Conjecture: Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic germ with \mathcal{O} / J_{h} Cohen-Macaulay of dimension m and J_{h} of linear type, then $\widetilde{b}_{h}(-s-d+m)= \pm \widetilde{b}(s)$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.
Free divisors of Linear Jacobian type: If h : $\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a reduced equation of a free divisor of linear Jacobian type, then $\widetilde{b}_{h}(-s-2)= \pm \widetilde{b}_{h}(s)$.
REmARK: Both cases seem to be the extremal cases of the same phenomenon.

Conjecture: Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic germ with \mathcal{O} / J_{h} Cohen-Macaulay of dimension m and J_{h} of linear type, then $\widetilde{b}_{h}(-s-d+m)= \pm \widetilde{b}(s)$.

The conjecture is true for $m=0$ and $m=d-2$.

Further symmetry properties of the roots of b-functions: a conjecture

Definition: The reduced b-function of a germ $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is $\widetilde{b}_{h}(s):=\frac{b_{h}(s)}{s+1}$.
It is the minimal polynomial of s on $\mathscr{D}[s] h^{s} / \mathscr{D}[s] J_{h} h^{s}$.
Q-H isolated singularites (Yano): If $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ is quasi-homogeneous with an isolated singularity, then $\widetilde{b}_{h}(-s-d)= \pm \widetilde{b}_{h}(s)$.
Free divisors of Linear Jacobian type: If h : $\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ is a reduced equation of a free divisor of linear Jacobian type, then $\widetilde{b}_{h}(-s-2)= \pm \widetilde{b}_{h}(s)$.
REmARK: Both cases seem to be the extremal cases of the same phenomenon.

Conjecture: Let $h:\left(\mathbb{C}^{d}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic germ with \mathcal{O} / J_{h} Cohen-Macaulay of dimension m and J_{h} of linear type, then $\widetilde{b}_{h}(-s-d+m)= \pm \widetilde{b}(s)$.

The conjecture is true for $m=0$ and $m=d-2$.
By means of the Thom-Sebastiani join, it is possible to construct non-trivial examples where the conjecture is true with singular locus of arbitrary codimension.

Happy birthday for Terry and Bill, and thank you!

