Microbial Induced Electrochemistry at the Local Site and Single Cell Level

3.5 year PhD Position available Oct 2024

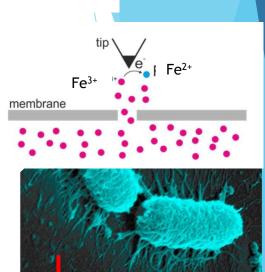
Microbial induced corrosion via local electrochemical processes initiated by bacteria is a serious economic problem that costs an estimated \$113 Bn p.a worldwide.

Local electrochemical processes drive such corrosion via direct metal-to-bioorganism charge transfer, electron shuttle phenomena, or electrochemical processes mediated by chemicals produced by bacteria. The project will adopt a combined surface spectroscopy, scanning probe microscopy, local electrochemistry and bio-imaging approach to understand the origin and mechanism of microbial corrosion.

The PhD will include:

- interdisciplinary science
- advanced nano-fabrication, nano-imaging and spectroscopic techniques

The student will register at the University of Liverpool and enrol in NBIC's Doctoral Training Centre which trains inter-disciplinary PhD researchers at the Interface of Physical and Life Sciences.


- Provide high level training and mentorship in research and entrepreneurship
- Join a National Network of leading Research Groups in the UK
- Join a community of leading companies in the UK

OPEN INNOVATION HUB For Antimicrobial Surfaces

National Biofilms Innovation Centre

Combining advanced fabrication and probing techniques to track electrochemistry at the local level.

Supervisory team:

Professor R Raval, Dr A Vezzoli, Department of Chemistry, University of Liverpool. Professor Pat Unwin

Department of Chemistry, University of Warwick.