
REST server (Python)MySQL (BLED)

Client (Excel)

IOC

dlloader-procServ

ssh,scp

json

device support modules
signal generator, PLC, power
supply, camera, detector, etc.

Abstract

CAoPAC, GSI, Darmstadt, Germany © 2015 Cosylab

DCDB architecture

Software

Back-end

Front-end

Device Control Database Tool (DCDB)

In a physics facility containing numerous instruments, it is advantageous to
reduce the amount of effort and repetitive work needed for changing the
control system (CS) configuration: adding new devices, moving instruments from
beamline to beamline, etc. We have developed a CS configuration tool, which
provides an easy-to-use interface for quick configuration of the entire facility. It
uses Microsoft Excel as the front-end application and allows the user to quickly
generate and deploy IOC configuration (EPICS start-up scripts, alarms and archive
configuration) onto IOCs; start, stop and restart IOCs, alarm servers and archive
engines, etc. The DCDB tool utilizes a relational database, which stores information
about all the elements of the accelerator. The communication between the
client, database and IOCs is realized by a REST server written in Python. The key
feature of the DCDB tool is that the user does not need to recompile the source
code. It is achieved by using a dynamic library loader, which automatically loads
and links device support libraries. The DCDB tool is compliant with CODAC
(used at ITER and ESS), but can also be used in any other EPICS environment.

oPAC - optimization of Particle ACcelerators. This project has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under grant agreement no 289485.

• REST server written in Python
• Uses JSON as the data exchange format
• Uses SSH to deploy configuration onto IOCs
• Deployed as CODAC-service:

• Supports logging

restart IOCs, Alarm
and Archive servers
in 1 click

• m-common (complemented with dlloader support)
• m-maven-iter-plugin (complemented with dlloader support)
• m-codac-unit-api (complemented with dlloader support)
• m-epics-dlloader (IOC, library, EPICS templates, stcmdsaver service)
• m-python-modules (vendor python packages)
• m-python-bled-rest (REST server, import tool)
• m-dotnet-bled-ribbon (client in the form of a MS Excel add-on)

Pavel Maslov (oPAC* fellow at Cosylab, Ljubljana, Slovenia),
Matej Komel, Klemen Žagar (Cosylab)

• MySQL database (BLED)
• Python back-end (flask-restful, sqlalchemy, paramiko)
• Microsoft Excel front-end (C# .NET)
• ESS CODAC v.4.1
• procServ (developed by Ralph Lange)
• dlloader (Dirk Zimoch, PSI)

• Create a support module (using dlloader epics template):

• Register support module with BLED database using bled import tool:

• Files to deploy:

*Acknowledgement

bled@bled:~$ mvn newunit -Dunit=m-BeamPositionMonitor
bled@bled:~$ cd m-BeamPositionMonitor
bled@bled:~$ mvn newdlloader
bled@bled:~$ mvn clean compile test package

bled@bled:~$ bled
Usage: bled [--pom=] [--pre=] [--db=] [-v] [--help] [--version] [[--delete]]

bled@bled:~$ bled-server
Usage: bled-server {start|stop|status|restart|fg} [--port=]

• Modules list:

• Module instances (fields correspond to the ones configured in init-pre.cmd):

• Archive configuration:

• Servers configuration:

• is an EPICS-based tool (in the form of IOC or shared library)
• load device support libraries “on the fly“ (no need to recompile IOCs)
• just issue require <lib_name> in the EPICS iocshell
• uses procServ for attaching the terminal to the IOC shell
• integrated in CODAC v.4

.
├── db
│ └── BeamPositionMonitor.db
├── dbd
│ └── BeamPositionMonitor.dbd
├── init.cmd
├── init-post.cmd
├── init-pre.cmd
└── lib
 └── linux-x86_64
 ├── libBeamPositionMonitor.a
 └── libBeamPositionMonitor.so

RPM packages

Dynamic library loader

Device support modules

