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EMERGENCY SLIDE

I (ξt, t ≥ 0) is a Lévy process if it has stationary and independents with RCLL paths.
I Process is entirely characterised by its one-dimensional transitions, which are

coded by the Lévy–Khinchine formula

E[eiθ·ξt ] = e−Ψ(θ)t, θ ∈ Rd,

where,

Ψ(θ) = ia · θ +
1
2
θ · Aθ +

∫
Rd

(1− eiθ·x + i(θ · x)1(|x|<1))Π(dx),

where a ∈ R, A is a d× d Gaussian covariance matrix and Π is a measure
satisfying

∫
Rd (1 ∧ |x|2)Π(dx) <∞. Think of Π as the intensity of jumps in the

sense of
P(X has jump at time t of size dx) = Π(dx)dt + o(dt).

I Stationary and independent increments gives the Strong Markov Property and the
probabilities Px(·) = P(·|X0 = x) such that (X,Px) is equal in law to (x + X,P).
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LÉVY PROCESSES CONDITIONED TO STAY NON-NEGATIVE1

I Suppose that (ξt, t ≥ 0) is a one dimensional Lévy process without monotone
paths.

I Excluding the cases that ξ has monotone paths and assuming that ξ oscillates so
that ξ fluctuates upwards and downwards and visits (−∞, 0) with probability 1:

P↑x (A) = lim
s→∞

Px(A | ξ
t+s
≥ 0)

= lim
s→∞

Ex

[
1(A, ξ

t
≥0)

Pξt (ξs
≥ 0)

Px(ξ
t+s
≥ 0)

]

= Ex

[
1(A, ξ

t
≥0)

h↑(ξt)

h↑(x)

]
A ∈ σ(ξu : u ≤ t)

I Boils down to understanding: Py(ξ
t
≥ 0) ∼ h↑(y)f (t) as s→∞

I As it happens, h↑(x) is the descending ladder potential and has the harmonic
property that

h↑(ξt)1(ξ
t
≥0)

is a martingale.

I Under additional assumptions, can demonstrate ∃ limx↓0 P↑x =: P↑0 on the
Skorokhod space.

1Bertoin 1993, Chaumont 1996, Chaumont-Doney 2005
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LÉVY PROCESSES CONDITIONED TO STAY NON-NEGATIVE2
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LÉVY PROCESSES CONDITIONED TO APPROACH THE ORIGIN

CONTINUOUSLY FROM ABOVE3

I A different type of conditioning, needs the introduction of a death time ζ at which
paths go to a cemetery state

P↓x (A, t < ζ) = lim
β→0

lim
ε→0

Px(A, ξ
t
> β | ξ∞ ∈ [0, ε])

= lim
β→0

lim
ε→0

Ex

[
1(A, ξ

t
≥β)

Pξt (ξ∞ ∈ [0, ε])

Px(ξ∞ ∈ [0, ε])

]

= Ex

[
1(A, ξ

t
≥0)

h↓(ξt)

h↓(x)

]
A ∈ σ(ξu : u ≤ t),

I It turns out that

h↓(x) =
d

dx
h↑(x), x ≥ 0.

and is superharmonic, i.e. h↓(ξt)1(ξ
t
≥0) is a supermartingale.

3Chaumont 1996
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WILLIAMS TYPE DECOMPOSITION4 FOR (ξ,P↑x)
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ISOTROPIC α-STABLE PROCESS IN DIMENSION d ≥ 2

For d ≥ 2, let X := (Xt : t ≥ 0) be a d-dimensional isotropic stable process.
I X has stationary and independent increments (it is a Lévy process)
I Characteristic exponent Ψ(θ) = − logE0(eiθ·X1 ) satisfies

Ψ(θ) = |θ|α, θ ∈ R.

I Necessarily, α ∈ (0, 2], we exclude 2 as it pertains to the setting of a Brownian
motion.

I Associated Lévy measure satisfies, for B ∈ B(Rd),

Π(B) =
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|

∫
B

1
|y|α+d dy.

I X is Markovian with probabilities denoted by Px, x ∈ Rd
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SAMPLE PATH, α = 1.2
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SAMPLE PATH, α = 0.9
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CONDITIONING TO HIT A PATCH ON A UNIT SPHERE FROM OUTSIDE
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM OUTSIDE

I Recall d ≥ 2, the process (X,P) is transient in the sense that limt→∞ |Xt| =∞
almost surely.

I Define
G(t) := sup{s ≤ t : |Xs| = inf

u≤s
|Xu|}, t ≥ 0,

I Transience of (X,P) means G(∞) := limt→∞ G(t) describes the point of closest
reach to the origin in the range of X.

I Aε = {rθ : r ∈ (1, 1 + ε), θ ∈ S} and Bε = {rθ : r ∈ (1− ε, 1), θ ∈ S}, for 0 < ε < 1
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM OUTSIDE

I We are interested in the asymptotic conditioning

PS
x(A, t < ζ) = lim

ε→0
Px(A, t < τ⊕1 |C

S
ε), A ∈ σ(ξu : u ≤ t),

where τ⊕1 = inf{t > 0 : |Xt| < 1} and CS
ε := {XG(∞) ∈ Aε}.
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I Works equally well if we replace CS
ε := {XG(∞) ∈ Aε} by CS

ε = {X
τ⊕1
∈ Bε}, or

indeed CS
ε = {X

τ⊕1 −
∈ Aε}
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POINT OF CLOSEST REACH5
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Recent work: For |x| > |z| > 0,

Px(XG(∞) ∈ d z) = π−d/2 Γ (d/2)2

Γ ((d− α)/2) Γ (α/2)

(|x|2 − |z|2)α/2

|z|α
|x− z|−d d z,

5K. Rivero, Satitkanitkul 2020
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM OUTSIDE

I Remember CS
ε := {XG(∞) ∈ Aε}, switch to generalised polar coordinates and

estimate
lim
ε→0

εα−dPx(CS
ε) = cα,d

∫
S
(|x|2 − 1)α/2|x− θ|−dσ1(d θ),

where cα,d does not depend on x or S and σ1 is the unit surface measure on Sd−1.
I Use

Px(A, t < τ⊕β |C
S
ε) = Ex

[
1{A,t<τ⊕

β
}
PXt (CS

ε)

Px(CS
ε)

]
, A ∈ σ(ξu : u ≤ t),

pass the limit through the expectation on the RHS (carefully with DCT!) to get

dPS
x

dPx

∣∣∣∣
Ft

= 1
(t<τ⊕1 )

MS(Xt)

MS(x)
, if x ∈ B̄c

d

with

MS(x) =


∫

S |θ − x|−d||x|2 − 1|α/2σ1(dθ) if σ1(S) > 0

|ϑ− x|−d||x|2 − 1|α/2 if S = {ϑ},

which is a superharmonic function.
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WILLIAMS TYPE DECOMPOSITION
I Suppose ζ is the lifetime of (X,PS). Let S′ be an open subset of S. Then for any

x ∈ Rd \ B̄d, we have

PS
x(Xζ− ∈ S′) =

∫
S′ |θ − x|−dσ1(dθ)∫
S |θ − x|−dσ1(dθ)

,

I Hence, for θ ∈ S,

PS
x(A|Xζ− = θ) = ES

x

[
1ε

PS
Xt

(Xζ− = θ)

PS
x(Xζ− = θ)

]

= Ex

[
1
(A, t<τ⊕1 )

MS(Xt)

MS(x)

M{θ}(Xt)

MS(Xt)

MS(x)

M{θ}(x)

]

= Ex

[
1
(A, t<τ⊕1 )

M{θ}(Xt)

M{θ}(x)

]
= P{θ}x (A), A ∈ σ(ξu : u ≤ t)

I So

PS
x(A) =

∫
S
P{θ}x (A)

|θ − x|−dσ1(dθ)∫
S |ϑ− x|−dσ1(dϑ)

.

"pick a target uniformly in S with the terminal strike distribution and condition to
hit it."
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM EITHER SIDE
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I Now define
PS

x(A, t < ζ) = lim
ε→0

Px
(
A
∣∣ τSε <∞

)
,

where
τSε = inf{t > 0 : Xt ∈ Sε} and Sε := Aε ∪ Bε.

I Note: need to insist on α ∈ (0, 1] because Px(τS <∞) = 1 if α ∈ (1, 2).
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM EITHER SIDE

Theorem
Suppose that α ∈ (0, 1] and the closed set S ⊆ Sd−1 is such that σ1(S) > 0. For α ∈ (0, 1],
the process (X,PS) is well defined such that

dPS
x

dPx

∣∣∣∣
Ft

=
HS(Xt)

HS(x)
, t ≥ 0, x 6∈ S, (1)

where
HS(x) =

∫
S
|x− θ|α−dσ1(d θ), x 6∈ S.

Note, if S = {θ} then it was previously understood6 that

HS(x) = |x− θ|α−d, x 6∈ S.

So it is still the case for a genera S that

PS
x(A) =

∫
S
P{θ}x (A)

|x− θ|α−dσ1(d θ)∫
S |x− ϑ|α−dσ1(dϑ)

.

"pick a target uniformly in S with the terminal strike distribution and condition to hit
it."

6K. Rivero, Statitkanitkul 2019
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CONDITIONING TO CONTINUOUSLY HIT S ⊆ Sd−1 FROM EITHER SIDE

Theorem
Let S ⊆ Sd−1 be a closed subset such that σ1(S) > 0.

(i) Suppose α ∈ (0, 1). For x 6∈ S,

lim
ε→0

εα−1Px(τSε <∞) = 21−2α Γ((d + α− 2)/2)

πd/2Γ(1− α)

Γ((2− α)/2)

Γ(2− α)
HS(x).

(ii) When α = 1, we have that, for x 6∈ S,

lim
ε→0

| log ε| Px(τSε <∞) =
Γ((d− 1)/2)

π(d−1)/2
HS(x).
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HEURISTIC FOR PROOF OF THEOREM 2
I The potential of the isotropic stable process satisfies E

[∫∞
0 1(Xt∈d y) d t

]
= |y|α−d.

I Let µε be a finite measure supported on Sε, which is absolutely continuous with
respect to Lebesgue measure `d with density mε and define its potential by

Uµε(x) :=

∫
A
|x− y|α−dµε(d y) =

∫
Sε
|x− y|α−dmε(y)`d(d y) x ∈ Rd,

I As mε(y) = 0 for all y /∈ A. As such, the Strong Markov Property tells us that

Uµε(x) = Ex

[
1{τSε<∞}

∫ ∞
τSε

mε(Xt) d t

]
= Ex

[
Uµε(Xτε )1{τSε<∞}

]
, x /∈ Sε.

(2)
Note, the above equality is also true when x ∈ Sε as, in that case, τSε = 0.

I Let us now suppose that µε can be chosen in such a away that, for all x ∈ A,
Uµ(x) = 1. Then

Px(τε <∞) = Uµε(x), x 6∈ Sε.

I Strategy: ‘guess’ the measure, µε, by verifying

Uµε(x) = 1 + o(1), x ∈ Sε as ε→ 0,

so that
(1 + o(1))Px(τSε <∞) = Uµε(x), x 6∈ Sε,

I Draw out the the leading order decay in ε from Uµε(x).
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HEURISTIC FOR PROOF OF THEOREM 2: FLAT EARTH THEORY
I Believing in a flat Earth is helpful
I In one dimension, it is known7 that for a one-dimensional symmetric stable

process, ∫ 1

−1
|x− y|α−1(1− y)−α/2(1 + y)−α/2 d y = 1, x ∈ [−1, 1].

I Writing X = |X| arg(X), when X begins in the neighbourhood of S, then |X| begins
in the neighbourhood of 1 and arg(X), essentially, from within S.

I Flat earth theory would imply

µε(d y) = mε(y)`d(d y)1(y∈Sε),

with mε(y) = cα,d,ε(|y| − (1− ε))−α/2(1 + ε− |y|)−α/2

where `d is d-dimensional Lebesgue measure and cα,d,ε is a constant to be
determined so that

Uµε(x) = 1 + o(1) x ∈ Sε

E¥#⇐#E#E####*#¥.EE#E*E*EYtf
S

7Profeta and Simon 2016
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THE ASYMPTOTIC DOES NOT DEPEND ON S

I So far we are guessing:

µε(d y) = mε(y)`d(d y)1(y∈Sε),

with mε(y) = cα,d,ε(|y| − (1− ε))−α/2(1 + ε− |y|)−α/2

where `d is d-dimensional Lebesgue measure and cα,d,ε is a constant to be
determined so that

Uµε(x) = 1 + o(1) x ∈ Sε
I We don’t think that the restriction to Sε is important so we are going to write

µε(d y) = µ
(1)
ε (d y)− µ(2)

ε (d y)

with µ(1)(d y) = mε(y)`d(d y) and µ
(2)
ε (d y) = 1

(y∈Sd−1
ε \Sε)

mε(y)`d(d y)

where Sd−1
ε = {x ∈ Rd : 1− ε ≤ |x| ≤ 1 + ε}.
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NASTY CALCULATIONS: α ∈ (0, 1)
For x ∈ Sd−1

ε ,

Uµ(1)
ε (x)

= cα,d

∫
Sd−1
ε

|x− y|α−d
(|y| − (1− ε))−α/2

(1 + ε− |y|)−α/2
`d(d y)

=
2cα,dπ

(d−1)/2

Γ((d− 1)/2)

∫ 1+ε

1−ε

rd−1

(r− (1− ε))α/2(1 + ε− r)α/2
d r
∫ π

0

sind−2 θ d θ

(|x|2 − 2|x|r cos θ + r2)(d−α)/2

=
2cα,dπ

d/2

Γ(d/2)
|x|α−d

∫ |x|
1−ε

2F1

(
d−α

2 , 1− α
2 ; d

2 ; (r/|x|)2
)

rd−1

(r− (1− ε))α/2(1 + ε− r)α/2
d r

+
2cα,dπ

d/2

Γ(d/2)

∫ 1+ε

|x|

2F1

(
d−α

2 , 1− α
2 ; d

2 ; (|x|/r)2
)

rα−1

(r− (1− ε))α/2(1 + ε− r)α/2
d r.

=
2cα,dπ

d/2

Γ(d/2)

∫ 1

1−ε
|x|

2F1

(
d−α

2 , 1− α
2 ; d

2 ; r2
)

rd−1(
r− 1−ε

|x|

)α/2( 1+ε
|x| − r

)α/2
d r

+
2cα,dπ

d/2

Γ(d/2)

∫ 1+ε
|x|

1

2F1

(
d−α

2 , 1− α
2 ; d

2 ; r−2
)

rα−1(
r− 1−ε

|x|

)α/2( 1+ε
|x| − r

)α/2
d r

= · · · · · · · · ·

Turns out

2αcα,dεπ
d/2Γ(1− α)Γ((2− α)/2)

Γ((d + α− 2)/2)
= 1
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THE SAME CONCEPT WORKS WITH A PLANE÷
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""" 'ilTheorem
Suppose that α ∈ (0, 1] and the closed and bounded set S ⊆ Hd−1 is such that 0 < `d−1(S) <∞, where we recall that
`d−1 is (d− 1)-dimensional Lebesgue measure.

(i) Suppose α ∈ (0, 1). For x 6∈ S,

lim
ε→0

ε
α−1Px(τSε <∞) = 21−α

π
−(d−2)/2 Γ( d−2

2 )Γ( d−α
2 )Γ( 2−α

2 )2

Γ( 1−α
2 )Γ( d−1

2 )Γ(2− α)
KS(x), (3)

where
KS(x) =

∫
S
|x− y|α−d

`d−1(d y), x 6∈ S.

(ii) Suppose α = 1. For x 6∈ S,

lim
ε→0

| log ε| Px(τSε <∞) =
Γ( d−2

2 )

π(d−2)/2
KS(x), (4)

(iii) The process (X, PS) is well defined such that

d PS
x

d Px

∣∣∣∣∣
Ft

=
KS(Xt)

KS(x)
, t ≥ 0, x 6∈ S. (5)
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FLAT EARTH VS ROUND EARTH THEORY

I Consider the case α ∈ (0, 1).
I Recall for conditioning a continuous approach to the patch on the sphere from

outside we had a scaling with index α− d:

lim
ε→0

εα−dPx(XG(∞) ∈ Aε) = cα,d

∫
S
(|x|2 − 1)α/2|x− θ|−dσ1(d θ),

I Where conditioning a continuous approach to the patch from either side, we had
scaling index α− 1:

lim
ε→0

εα−1Px(τSε <∞) = 21−2α Γ((d + α− 2)/2)

πd/2Γ(1− α)

Γ((2− α)/2)

Γ(2− α)
HS(x).

I In the first case, the conditioned path needs to be observant of the entire sphere. In
the second case the conditioned path needs only a localised consideration of S,
which appears flat in close proximity.



25/ 29



26/ 29

Thank you!


