Quantitative two-scale stabilization on the Poisson space

Joint work with R. Lachièze-Rey and G. Peccati.

Xiaochuan Yang (University of Bath)

Feb 19th, Stochastic Seminar, Liverpool

Fluctuation of Poisson functionals

Let η be a Poisson point process on \mathbb{R}^{d} with intensity $\lambda(d x)$. The fluctuation of a generic functional F is governed by some principles

- Poincaré inequality

$$
\operatorname{Var}[F] \leq \int \mathbb{E}\left[\left|D_{x} F\right|^{2}\right] \lambda(d x)
$$

where $D_{x} F=F\left(\eta+\delta_{x}\right)-F(\eta)$ is the "add-one-cost".

- Second-order Poincaré inequality

$$
d_{\mathrm{W}}(F, N) \lesssim \text { integrated moments of } D_{x, y}^{2} F
$$

where $D^{2}=D D$ is the iterated add-one-cost, cf. Chatterjee ('09), Nourdin, Peccati et Reinert ('09), Last, Schulte et Peccati ('16), Schulte et Yukich ('19) ...

- The add-one-cost controls the variance, the iterated add-one-cost gives gaussianity.

Fluctuation of Poisson functionals

- Applications: Spatial networks, coverage processes, tessellations etc. useful objects in telecommunication, topological/geometrical data analysis, machine learning...
- This talk is concerned with a principle alternative to $2 n d$ order Poincaré. What happens if the iterated add-one-cost is not tractable?
- We address this problem with a two-scale stabilisation theory, which is a quantified version of the stabilisation theory of Penrose ('01), Penrose and Yukich ('01), Penrose ('05).
- This work is along the line of Malliavin-Stein methodology for normal approximation, combined with ideas from a quantitative CLT for the MST by Chatterjee and Sen ('17)

The iterated add-one-cost is not always tractable

Figure 1: Right: MST. Left: MST after adding a point to the origin.

Setting

- Let η be a Poisson process with unit intensity on \mathbb{R}^{d}, identified with its support \mathcal{P}.
- For a Poisson functional $F=F(\eta)$ and $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, define the add-one-cost

$$
D_{x} F(\mathrm{~B})=F\left(\left(\eta+\delta_{x}\right) \mid \mathrm{B}\right)-F\left(\left.\eta\right|_{\mathrm{B}}\right)
$$

and the two-scale discrepancy

$$
\psi:=\sup _{x \in \mathrm{~B}} \mathbb{E}\left[\left|D_{x} F(\mathrm{~B})-D_{x} F\left(\mathrm{~A}_{x}\right)\right|\right]
$$

- The set B represents the observation window growing to \mathbb{R}^{d} and A_{x} is a local window of x with $\operatorname{Leb}\left(A_{x}\right) \ll \operatorname{Leb}(B)$.
- In practice, $\mathrm{B}=\mathrm{B}_{n}, \mathrm{~A}_{x}=\mathrm{B}_{b_{n}}(x) \cap \mathrm{B}$ with $b_{n}=o(n)$. In such case, the two-scale discrepancy is denoted by ψ_{n}. Define also

$$
\psi_{n}^{\prime}=\sup _{x \in \mathrm{~B}_{\left(n-b_{n}\right)}} \mathbb{E}\left[\left|D_{x} F\left(\mathrm{~B}_{n}\right)-D_{x} F\left(\mathrm{~A}_{x}\right)\right|\right]
$$

Main (user friendly) result

Theorem (Lachièze-Rey, Peccati and Y. ('20+))

Suppose that the following holds:

- there exists $p>4$ and $C<\infty$ such that for all $n \in \mathbb{N}$

$$
\sup _{x \in \mathrm{~B}_{n}} \mathbb{E}\left[\left|D_{x} F\left(\mathrm{~B}_{n}\right)\right|^{p}\right]+\mathbb{E}\left[\left|D_{x} F\left(\mathrm{~A}_{x}\right)\right|^{p}\right] \leq C^{p}
$$

- there exists $c>0$ such that

$$
\operatorname{Var}\left[F\left(\mathrm{~B}_{n}\right)\right] \geq c \cdot \operatorname{Leb}\left(\mathrm{~B}_{n}\right)=c n^{d} .
$$

Then there exists $c \in(0, \infty)$ such that

$$
\frac{1}{c} d_{\mathrm{W}}\left(\frac{F\left(\mathrm{~B}_{n}\right)-\mathbb{E}\left[F\left(\mathrm{~B}_{n}\right)\right.}{\operatorname{Var}\left[F\left(\mathrm{~B}_{n}\right)\right]^{1 / 2}}, N(0,1)\right) \leq\left\{\begin{array}{l}
\psi_{n}^{\frac{1}{2}\left(1-\frac{4}{p}\right)}+\left(\frac{b_{n}}{n}\right)^{d / 2} \\
\psi_{n}^{\prime \frac{1}{2}\left(1-\frac{4}{p}\right)}+\left(\frac{b_{n}}{n}\right)^{1 / 2}
\end{array}\right.
$$

N.B. The choice of b_{n} is done by optimizing the final bound.

Stabilization theory: where it all began

THE CENTRAL LIMIT THEOREM FOR WEIGHTED MINIMAL SPANNING TREES ON RANDOM POINTS

By Harry Kesten and Sungchul Lee

Cornell University and National University of Singapore
Let $\left\{X_{i}, 1 \leq i<\infty\right\}$ be i.i.d. with uniform distribution on $[0,1]^{d}$ and let $M\left(X_{1}, \ldots, X_{n} ; \alpha\right)$ be $\min \left\{\sum_{e \in T^{v}}|e|^{\alpha} ; T^{v}\right.$ a spanning tree on $\left.\left\{X_{1}, \ldots, X_{n}\right\}\right\}$. Then we show that for $\alpha>0$,

$$
\frac{M\left(X_{1}, \ldots, X_{n} ; \alpha\right)-E M\left(X_{1}, \ldots, X_{n} ; \alpha\right)}{n^{(d-2 \alpha) / 2 d}} \rightarrow N\left(0, \sigma_{\alpha, d}^{2}\right)
$$

in distribution for some $\sigma_{\alpha, d}^{2}>0$.

- Strong stabilization: \exists a.s. finite random variable R_{0} such that

$$
D_{0} F\left(\mathcal{P} \cap \mathrm{~B}_{R_{0}}\right)=D_{0} F\left(\left(\mathcal{P} \cap \mathrm{~B}_{R_{0}}\right) \cup \mathcal{U}\right)
$$

for any finite $\mathcal{U} \subset\left(\mathrm{B}_{R_{0}}\right)^{c}$.

- Weak stabilization: for any $\left(\mathrm{E}_{n}\right)$ with $\liminf \mathrm{E}_{n}=\mathbb{R}^{d}$, we have

$$
D_{0} F\left(\mathrm{E}_{n}\right) \rightarrow \delta_{0}(\infty) \text { a.s. }
$$

for some random variable $\delta_{0}(\infty)$.

Theorem (Penrose and Yukich ('01))

Assume i) uniform 4th-moment condition; ii) weak stabilization at
o. Then

$$
\frac{\operatorname{Var}\left[F\left(B_{n}\right)\right]}{n^{d}} \rightarrow \sigma^{2} \in[0, \infty) \quad \text { and } \quad \frac{F\left(\mathrm{~B}_{n}\right)-\mathbb{E}\left[F\left(\mathrm{~B}_{n}\right)\right.}{n^{d / 2}} \stackrel{\mathcal{L}}{\rightarrow} N\left(0, \sigma^{2}\right) \text {. }
$$

If $\delta_{0}(\infty)$ is non-degenerate, then $\sigma^{2}>0$.

Relation with our bounds

- Corollary of our bound:

$$
\begin{aligned}
& d_{\mathrm{W}}\left(\frac{F\left(\mathrm{~B}_{n}\right)-\mathbb{E}[}{\operatorname{Var}\left[F\left(\mathrm{~B}_{n}\right)\right.}, N(0,1)\right) \\
& \leq c\left[\sup _{x \in \mathrm{~B}_{n}} \mathbb{P}\left[R_{x} \geq b_{n}\right]^{\frac{1}{2}\left(1-\frac{1}{p}\right)\left(1-\frac{4}{p}\right)}+\left(\frac{b_{n}}{n}\right)^{d / 2}\right]
\end{aligned}
$$

where R_{x} the radius of strong stabilization at x.

- Assume $F\left(\tau_{x} \mathcal{P} \cap \tau_{x} \mathrm{~B}\right)=F(\mathcal{P} \cap \mathrm{~B})$ and weak stabilization \Rightarrow

$$
D_{x} F\left(\mathrm{E}_{n}\right) \rightarrow \delta_{x}(\infty) \quad \text { a.s. }
$$

for any $\left(E_{n}\right) \uparrow \mathbb{R}^{d}$. Therefore, the required condition

$$
\psi_{n}^{\prime}=\sup _{x \in \mathbf{B}_{n-b_{n}}} \mathbb{E}\left[\left|D_{x} F\left(\mathrm{~B}_{n}\right)-\delta_{x}(\infty)+\delta_{x}(\infty)-D_{x} F\left(\mathrm{~A}_{x}\right)\right|\right] \rightarrow 0
$$

is a uniform strengthening of weak stabilization. Note however that we do not require the existence of $\delta_{0}(\infty)$.

Far reach of the Penrose-Yukich theory (thus ours)

Weights, subgraph counts, components counts of

- k-nearest neighbor graphs
- sphere of influence graphs
- Voronoi tessellations
- minimal spanning trees

PY: (Multivariate) Gaussian approximation holds if strong/weak stabilisation holds for the functional of interest.

LrPY: To obtain rates, if suffices to compute $\psi_{n}\left(\right.$ or $\left.\psi_{n}^{\prime}\right)$, or $\mathbb{P}\left[R_{x} \geq b_{n}\right]$.
Not always easy, here is an open problem
The optimal travelling salesman tour on Poisson points is believed to be stabilizing (implying CLT if proved).

Applications (in our paper)

- Online NNG (S): Mark $\mathcal{P} \cap \mathrm{B}_{n}$ with iid uniform $[0,1]$ representing the arrival time, each point is attached to its nearest neighbour prior to its arrival. We obtain n^{-c} for the rate of normal approximation of the weighted edge length.
- Boolean model (S): The number of connected components of the Boolean model

$$
\mathrm{O}_{u}\left(\mathcal{P} \cap \mathrm{~B}_{n}\right)=\bigcup_{x \in \mathcal{P} \cap \mathrm{~B}_{n}} \mathrm{~S}_{u}(x)
$$

approaches normal with rate n^{-c} in $d=2$ and $\log (n)^{-c}$ in $d \geq 3$.

- Minimal spanning tree (\mathbf{W}): The total weighted edge length of MST approaches normal distribution with the same rate as the percolation example. In both cases, ψ_{n}^{\prime} is bounded by the two arm events.
- Excursion of heavy tail shot noise fields (W): The intrinsic volumes of excursion sets $E_{u}=\left\{t \in \mathrm{~B}_{n}: X(t) \geq u\right\}$ of heavy tail shot noise field X approaches normal with rate n^{-c}.

Component counts for the Boolean model

Figure 2: $R_{x}:=\inf \left\{r>u\right.$: at most $1 \operatorname{arm}$ in $\left.\mathrm{B}_{r}(x) \backslash \mathrm{B}_{u}(x)\right\}$ where 1 arm means that the Boolean model contains a path connecting the boundary of two boxes.

$$
\left\{R_{x}>b_{n}\right\} \subset\left\{\text { at least } 2 \text { arms at distance } b_{n}\right\} .
$$

Phase transition of occupied and vacant regions

$$
\begin{aligned}
& u_{c}:=\inf \left\{u: \mathbb{P}\left[0 \leftrightarrow \infty \text { in } O_{u}\right]>0\right\} \in(0, \infty), \\
& u_{c}^{*}:=\sup \left\{u: \mathbb{P}\left[0 \leftrightarrow \infty \text { in } V_{u}\right]>0\right\} \in(0, \infty),
\end{aligned}
$$

and $u_{c}=u_{c}^{*}$ in dimension 2 by Roy ('90), $u_{c}<u_{c}^{*}$ in dimension $d \geq 3$ by Penrose ('96), Sarkar ('97).

- Subcritical phase $u<u_{c}$

$$
\left.\mathbb{P}\left[R_{x}>b_{n}\right] \leq \mathbb{P} \text { [at least } 1 \text { arm at distance } b_{n}\right] \leq e^{-c b_{n}} .
$$

- Supercritical phase $u>u_{c}^{*}$

$$
\mathbb{P}\left[R_{x}>b_{n}\right] \leq \mathbb{P}\left[\text { at least } 1 \text { vacant arm at distance } b_{n}\right] \leq e^{-c b_{n}} .
$$

- Critical phase $u \in\left[u_{c}, u_{c}^{*}\right]$ Two-arm event decays as b_{n}^{-c} in $2 D$ and $\left[\log \left(b_{n}\right)\right]^{-c}$ in $d \geq 3$ by a quantitative Burton-Keane argument of Chatterjee-Sen ('17).

Minimal spanning tree

- Minimal spanning tree over a finite point set \mathcal{U}

$$
\operatorname{MST}(\mathcal{U})=\operatorname{Argmin}\left\{\sum_{e \in T}|e|, T \text { connected with } \mathbb{V}(T)=\mathcal{U}\right\}
$$

- Functional of interest $M\left(B_{n}\right) \in \mathbb{R}^{m}$ given by

$$
M\left(\varphi_{i} ; \mathrm{B}_{n}\right):=\sum_{e \in \operatorname{MST}\left(\mathcal{P} \mid \mathrm{B}_{n}\right)} \varphi_{i}(|e|), \quad 1 \leq i \leq m .
$$

- Suppose φ is given by $\varphi(x)=\psi(x) \mathbb{1}(x \leq r)$ for some non-decreasing function ψ and some truncation level $r \in(0, \infty]$. If (and only if) $r=\infty$, suppose

$$
\exists k \in \mathbb{N}, \quad \psi(x) \leq(1+x)^{k} \text { and } \int_{0}^{\infty} e^{-c u^{d}} d \psi(\sqrt{d} u)<\infty .
$$

- Examples: power-weighted edge length $\varphi(x)=x^{\alpha}$ or empirical process $\varphi(x)=\mathbb{1}(x \leq r)$.

Theorem (LrPY '20+)

Let $N=N(n)$ be a centered Gaussian vector with the same covariance matrix as

$$
n^{-d / 2} \mathrm{M}\left(\mathrm{~B}_{n}\right)
$$

Then, one has that

$$
d_{3}\left(n^{-d / 2}\left(M\left(B_{n}\right)-\mathbb{E}\left[M\left(B_{n}\right)\right]\right), N\right) \leq \begin{cases}c n^{-\theta} & \text { if } d=2 \\ c \exp (-c \log \log (n)) & \text { if } d \geq 3\end{cases}
$$

for some $0<\theta<1$. The above bound continues to hold for the distances d_{2}, d_{c}, if $\operatorname{Cov}\left[n^{-d / 2} \mathrm{M}\left(\mathrm{B}_{n}\right)\right] \rightarrow \Sigma_{\infty}>0$.

- Two vertices $x, y \in \mathcal{P}$ form an edge of MST if and only if x and y belong to different component of $0_{\frac{|x-y|}{2}}(\mathcal{P})$.
- In $d=2$, consider $(\log (n))^{a}$ Boolean models with random radius and relate ψ_{n}^{\prime} to the 2 -arm estimates.

Proof of the general bound (i) Stein's bound ('72, '86)

- Stein's lemma

$$
\mathbb{E}\left[f^{\prime}(N)\right]=\mathbb{E}[N f(N)] .
$$

if and only if $N \sim N(0,1)$.

- Heuristic: $F \approx N$ if and only if

$$
\mathbb{E}\left[f^{\prime}(F)\right] \approx \mathbb{E}[F f(F)]
$$

- Stein's equation

$$
f^{\prime}(x)-x f(x)=h(x)-\mathbb{E}[h(N)]
$$

with $h \in \operatorname{Lip}_{1}$. Evaluate the expectation wrt $\mathbb{P} \circ F^{-1}$, then take sup over h gives

$$
\begin{aligned}
d_{\mathrm{W}}(F, N) & :=\sup _{h \in \operatorname{Lip}_{1}}|\mathbb{E} h(F)-\mathbb{E} h(N)| \\
& \leq \sup _{\left\|g^{\prime}\right\|,\left\|g^{\prime \prime}\right\| \leq 1}\left|\mathbb{E}[F g(F)]-\mathbb{E}\left[g^{\prime}(F)\right]\right|
\end{aligned}
$$

Proof of the general bound (ii) Integration by parts ('05 on-

 wards)- For $F=F(B)$ with $\mathbb{E}[F]=0, \mathbb{E}\left[F^{2}\right]=1$, we integrate by parts

$$
\begin{aligned}
\mathbb{E}[F g(F)] & =\mathbb{E}\left[\int_{\mathrm{B}} D_{x}(g(F))\left(-D_{x} L^{-1} F\right) d x\right] \\
& \approx \mathbb{E}\left[g^{\prime}(F) \int_{\mathrm{B}} D_{x} F\left(-D_{x} L^{-1} F\right) d x\right]
\end{aligned}
$$

where L^{-1} involves thinning and (independent) superposition.

- Proof of IBP by (birth and death) semigroup interpolation: in 1 dimension, $(\Omega, \mathcal{F}, \mathbb{P})=\left(\mathbb{N}_{0}, \operatorname{Po}(1)\right)$,

$$
P_{t} f(k)=\mathbb{E}\left[f\left(\operatorname{Bin}\left(k, e^{-t}\right)+\operatorname{Po}\left(1-e^{-t}\right)\right)\right]
$$

and

$$
L f(k)=1(f(k+1)-f(k))-k(f(k)-f(k-1)) .
$$

satisfying $-\mathbb{E}[f L g]=\mathbb{E}[D f D g]$ with $D f(k)=f(k+1)-f(k)$.

- Thus, interpolation and $-\mathbb{E}[F L G]=\mathbb{E}[\langle D F, D G\rangle]$ gives

$$
\begin{aligned}
\mathbb{E}[F g(F)] & =\mathbb{E}\left[\left(P_{0} F-P_{\infty} F\right) g(F)\right] \\
& =-\int_{0}^{\infty} \mathbb{E}\left[\left(L P_{t} F\right) g(F)\right] d t \\
& =\int_{0}^{\infty} \mathbb{E}\left[\int_{B} D_{x}(g(F)) D_{x} P_{t} F d x\right] d t \\
& =\mathbb{E}\left[\int_{B} D_{x}(g(F))\left(-D_{x} L^{-1} F\right) d x\right]
\end{aligned}
$$

by setting

$$
-L^{-1}:=\int_{0}^{\infty} P_{t} d t
$$

- Combining Stein's bound, integration by parts, and Cauchy-Schwarz

$$
\begin{aligned}
d_{\mathrm{W}}(F, N) & \lesssim \operatorname{Var}\left[\int_{\mathrm{B}} D_{x} F\left(-D_{x} L^{-1} F\right) d x\right]^{1 / 2} \\
& =\left(\iint_{\mathrm{B}^{2}} \operatorname{Cov}\left[D_{x} F D_{x} L^{-1} F, D_{y} F D_{y} L^{-1} F\right] d x d y\right)^{1 / 2} .
\end{aligned}
$$

Proof of the general bound (iii) two-scale stabilization

- When x and y are close i.e. $A_{x} \cap A_{y} \neq \emptyset$, bound the covariance by

$$
\mathbb{E}\left[\left|D_{x} L^{-1} F(\mathrm{~B})\right|^{p}\right] \leq \mathbb{E}\left[\left|D_{x} F(\mathrm{~B})\right|^{p}\right] \leq C,
$$

yielding a term $\left(\frac{b_{n}}{n}\right)^{d / 2}$.

- When they are far apart i.e. $A_{x} \cap A_{y}=\emptyset$, we replace everything by its local version

$$
\begin{equation*}
\operatorname{Cov}\left[D_{x} F\left(\mathrm{~A}_{x}\right) D_{x} L^{-1} F\left(\mathrm{~A}_{x}\right), D_{y} F\left(\mathrm{~A}_{y}\right) D_{y} L^{-1} F\left(\mathrm{~A}_{y}\right)\right] \tag{1}
\end{equation*}
$$

with 4 error terms like

$$
\begin{equation*}
\operatorname{Cov}\left[\left(D_{x} F(\mathrm{~B})-D_{x} F\left(\mathrm{~A}_{x}\right)\right) D_{x} L^{-1} F, D_{y} F D_{y} L^{-1} F\right] . \tag{2}
\end{equation*}
$$

- By independence of Poisson points over non-overlapping regions, $(1)=0$, we bound (2) by

$$
\mathbb{E}\left[\left|D_{x} F(B)-D_{x} F\left(A_{x}\right) \| D_{x} L^{-1} F D_{y} F D_{y} L^{-1} F\right|\right] .
$$

- Applying Hölder's inequality and bounding the moments $\mathbb{E}\left[\left|D_{x} L^{-1} F\left(\mathrm{~A}_{x}\right)\right|^{p}\right] \leq \mathbb{E}\left[\left|D_{x} F\left(\mathrm{~A}_{x}\right)\right|^{p}\right] \leq C$ leads to the two-scale discrepancy ψ_{n}, ending the proof.

Extensions

Two-scale bounds of the type

$$
\left(\psi_{n}\right)^{\frac{1}{2}\left(1-\frac{4}{p}\right)}+\left(\frac{b_{n}}{n}\right)^{d / 2}
$$

holds for

- Kolmogorov distance

$$
d_{\mathrm{K}}(F, N)=\sup _{x \in \mathbb{R}}|\mathbb{P}[F \leq x]-\mathbb{P}[N \leq x]|,
$$

- probability metrics for multivariate normal approximation, including smooth ones d_{2}, d_{3} (generalizing d_{W}), and the non-smooth convex distance (generalizing d_{K})

$$
d_{c}\left(F, N_{\Sigma}\right)=\sup _{E \text { convex }}\left|\mathbb{P}[F \in E]-\mathbb{P}\left[N_{\Sigma} \in E\right]\right|
$$

possibly subject to stronger moment conditions ($p>6$).

Behind the scenes: a new Kolmogorov bound

Theorem (LrPY '20+)

$$
\text { Let } \widehat{F}=(F-\mathbb{E}[F]) / \sigma \text {. }
$$

$$
\begin{aligned}
& d_{\mathrm{K}}(\widehat{F}, N) \leq\left|1-\frac{\operatorname{Var}[F]}{\sigma^{2}}\right|+\frac{1}{\sigma^{2}} \mathbb{E} {\left[\left|\operatorname{Var}[F]-\left\langle D F,-D L^{-1} F\right\rangle\right|\right] } \\
&+\frac{2}{\sigma^{2}} \mathbb{E}\left[\left|\delta\left(D F\left|D L^{-1} F\right|\right)\right|\right],
\end{aligned}
$$

where δ is the Kabanov-Skorohod integral.

- Starting point of the two-scale bound in d_{K}.
- Two redundant terms in Schulte ('16) and Eichelsbacher and Thäle ('14) are removed.
- A good place to start if the 4th-moment assumption is not verified.

Final remarks

- Our theorem gives almost optimal rates $\log (n)^{c} n^{-d / 2}$ in the case of exponential stabilization $\mathbb{P}[R(x)>t] \leq c e^{-c^{\prime} t}$.
- The second-order Poincaré estimates of Last, Peccati and Schulte ('16), Lachièze-Rey, Schulte and Yukich ('19) and Schulte and Yukich ('19) is concerned with

$$
\mathbb{P}\left[D_{x, y}^{2} F \neq 0\right],
$$

yielding Berry-Esseen bounds $n^{-d / 2}$ for exponential stabilization.

- The upshot of our theorem is that we do not require knowledge on the iterated add-one-cost operators, which can be very hard to access quantitatively for not necessarily exponentially stabilizing functionals such as critical percolation models.

Thanks!

