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The standard CLT

The standard central limit Theorem:

Q (Q,F,P) a probability space,
@ (ak)k>1 independent and identically distributed random
variables,

Q E(a?) =1, E(al) =0,
Z dlstrlbutlon ./\/(0, 1).
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A general formulation of the problem

We add two new ingredients:

Q@ (RY, B(RY), 1) where j is a probability measure on RY,
@ (®x),>1 2 sequence of bounded functions from RY to R.

We are interested in proving (under some assumptions):

Pas 5 Zakd)k M)N(OO’)

that is to say:

P(V¢ecb(R,R),/ 6 (Sn(x)) dpu(x %/d) Ve )
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@ intuitive interpretation: if the coefficients (ax)x are chosen
generically as the realization of an i.i.d. sequence, we have a
CLT under the sole randomness of the evaluation point x
according to the measure p.

@ if the coefficients are frozen, under the sole randomness of x,
it is not anymore a sum of independent r.v,

© Some conditions need to be imposed on the (¢)k>1 since if
we chose ¢1 = ¢p = - -+ = ¢, = 1 the conclusion fails!
Indeed by the law of the iterated logarithm,

lim sup

n—00 \/2n|og Iog Z akdk(x

= I|msup

V2n Iog(log Z W=

liminf

a
n—00 \/2n|og log(n Z kOk(x
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A general formulation of the problem

Let us remark that the problem is well posed:

_ (v¢ecb(R,R), /qub(sn(x)) dp — /Rgb(x)e—;; \/%) . F

Indeed, let us recall that

Law

Xn —>X S Vst ||[flloot||f]loo <1: E(f(X)) = E(Ff(X)).

Besides K := {f s.t. [[f]lco + [|f'||co < 1} is compact for || - ||oo,
hence K is separable. Take f,, a dense sequence then:

A= (L fsendns o205

Given that w — [ga fp (Sn(x)) dp is a random variable, we obtain
Ac F.
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Salem-Zygmund framework, Gaussian case

© We take (ag, bx) two i.i.d. sequences of standard Gaussian
r.v.,

Q we set 5,(0) = % > k1 ak cos(kO) + by sin(kE),

we want to prove that:

P<v¢ecb(R,R), o /¢ %
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Proof of Gaussian case

© Ep stands for expectation w.r.t. P,

@ Ey stands for expectation w.r.t. 6 ~ Ujg 271

) 2 2 ) 2
A, :=Ep ((Eo (e'ts”(o) - e_2>> > = Ep (Ee (e’ts"(g) - e‘z)

x Egyr (eits,,(e/) e

N"",\)
N———
N———

where 6 and @’ are two independent copies.
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Proof of Gaussian case

Then we use Fubini:

= Egpo <E[P> (eit(sn(9)+5n(9’))> _ 267§EP (eitSn(0)> n et2>

g2 / _
= Ego (e EA+Ka(0.07) _ o t2)

with K( Zcos (0 — 9/

Indeed, with 0,6’ frozen, under P we have

QO Sn(0) + Sn(0') ~ N(0,1+ Kn(6,6")),
o 5,7(9) ~ N(Ov 1)'

So, what seems to matters here is K,(0,6') — 0.
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Proof of Gaussian case

|An] < PRy (|Ka(6,6')])
< Eo (|Ka(0)]) (0 -6 ~06)
2 2 2 (L
Wik -o()

Now we take the subsequence n3, A s = O(l/n%) so by using
Borel-Cantelli (for instance):

. t2
P—as., Ey (e’t5m3(9) — e_2> — 0.
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Proof of Gaussian case

On the other hand, for any integer m > 1 one may find n > 1 such
that n < m < (n+1)3.

One has the decomposition

1 & 1 <
Sm(0) —Sp(0) = — - — Z
vmiS VmiS
3
+ % —-115,3
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Setting A, 3 = Ey {|5m(9) - Sns(ﬁ)ﬂ, we deduce

2
3
Ay <214 ”_ 1] Eg [5,13((9)2} +
m N—— ——

=1
2
2

3 Z ay cos(k@) + by sin(k8)

k=n3+1

n3 ? (n+1)3—-n? 1
§2< (n+1)3—1> +2n3:O<m;)'
~o(2)

Then, almost surely w.r.t. P, A, 3 tends to zero and this ends the
proof.

Egy
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Generalizationl a quantified estimate

Theorem

Suppose that (ak, bi)k>1 is a sequence of independent and
identically distributed random variables such that
E[a1] = 0,E [a?] =1 and E [a}] < oco. Setting,

C(a1) = 814/13 + |E[a3]|+8/E [f] + V2+8E [|a1|*] +24E [|an ],

if G ~ N(0,1), then one has

E [ (6(6), 6)] < < 2.
where
des (X, Y) = sup E(¢(X) — ¢(Y)).
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Generalization2 a total variation CLT

Theorem

Let (ak, bk)k>1 be independent and identically distributed random
variables that are centered with unit variance and admit a third
moment. Almost surely with respect to the probability P, if

G ~ N(0,1) under Py, then as n goes to infinity, we have

lim d%, (Sa(6), G) = 0.

n—+00

Said otherwise, S,(6) admits a (random) density w.r.t to Lebesgue
which (almost surely) converges in L! to the Gaussian density.
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Generalization3: non uniforms distributions

Theorem

Let (ak, bk)k>1 be a sequence of independent and identically
distributed random variables that are centered with unit variance
and which admit a moment of order > 3. Let X be an
independent random variable on [0, 27| whose Fourier coefficients
satisfy

Ja >0, Vk € Z/{0},

—~ C

Then, provided that 3 > ﬁ P almost surely, under Px, one
i 15

has
Sn(X) law under Px N(O,l)

n—oo
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Generalization4 a functional CLT

Let us introduce the stochastic process (gn(t))¢c[0,2x] defined by
() =5 (9 + t)
&n ‘= 9n n)

Theorem

Suppose that (ak, bi)k>1 is a sequence of independent and
identically distributed random variables that are centered with unit
variance. Then P almost surely, as n goes to infinity, the process
(gn(t))tejo,2n) converges in distribution in the C! topology, to a
stationary Gaussian process (geo(t))te[0,2x] With sinc covariance
function, i.e.

_sin(t —s)

Eolgo(Oge (5)] =
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Application to the number of roots of random

trigonometric polynomials

R

Let us consider a random trigonometric polynomial

fo(t) == \f Z ay cos(kt) + by sin(kt), teR,

where (ax) and (by) are i.i.d., with unit variance and a moment of
order four. Then, P almost surely, we have as n goes to infinity

- N(fn,[0,27]) 2
AR 5 V3

and more generally for any interval [a, b] C [0, 27|

i Nfalab]) _b-a
n——+-00 n B ﬂ\/g '

Guillaume Poly (based on joint works with Jurgen Angst/Louis G Around Salem-Zygmund Central limit Theorem



Key idea to relate Salem-Zygmund with roots of random
polynomials

Lemma

If f is a 2w—periodic function with a finite number of zeros, then
for any 0 < h < 27w, we have

% x N(f,[0,2]) = Eg [N (£, 6,0 + A)],

where 0 is a random variable, with uniform distribution in [0, 27].

Set N = N(f,[0,2x]) which is finite by hypothesis, and denote by

X1,...,Xxn the zeros of f in [0,27] and uf the associated empirical
measure
1N
= — Ox, -
Mf N l;. &
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Naturally, we have for all a < b such that b — a <27

27
N(fv [37 b]) =N x 0 l[a,b]mod27r(t)uf(dt)'

If 6 is uniform in [0, 27], we have then applying Fubini inversion of
sums

1 27
Eo [N (£, (6,0 + A])] :E/o N (F, [, x + h]) dx

N 27 o
- E/o (/0 | TR m0d27r(t)dX) wr(dt)

N 2T o
- %/0 (/o Lit—ng modzw(X)dX> pr(dt)

N on N
SRELIN dt) = — x h.
g XXy o) =
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Applying it to Sp(x) = % > k—q ak cos(kx) + by sin(kx) leads to

N(Sn, [0,27])

n

= Ey (N (gn, [0, 27]))

Heuristically the rest of the proof is (as n — o0)

Eg (N (gn, [0, 27])) = Ep (N ((Xe)e, t € [0,2n]))

where (X;)t>0 is a stationnary Gaussian process with correlation
sin(x)

X

Indeed, take f € C1([a, b]) such that |f| + |f’| > 0 on [a, b]
(non-degeneracy assumption)
Uy =S F = N(un[a, b]) = N(F,[a, b]).

n—o0
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So one is left to compute Ep (N((Xt)¢, t € [0,27])). By using the
Kac-Rice formula we have

B V(O 0.20) = E(Jim [ IXLxcrs )

6—0

27 dt
J— H !/
= cél—%/o (!X |1|xt|<5) %

2
(Independence ofX; and X]) = / E (1X{]) I|m IP’(]Xt| < 5)dt
0

26
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The case of dependent Gaussian coefficients

We consider here (ax)x>1 and (bx)k>1 two independent
realizations of a stationary Gaussian field such that

e E(akxas) = p(k — I) with p the correlation function,
e p(k) = [i(k) with p the spectral measure,

@ /i possesses an absolutely continuous part v, such that
2
o [og(lthu(x)])]dx < oc.

. /\/’(f,,,l[70,27r]) . 2

P—-

Sl
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The case of dependent Gaussian coefficients

The conclusions fails if 1, vanishes: (if v, is continuous):

N(f,,]0, 27]) R 1

P—a.s., n 7_[_\[ (’(ﬁu#O) 71'\[ (

~0).

Conjecturel: The previous formula holds true whenever 1), is
measurable

Conjecture2: % is the least possible value of the asymptotic mean

number of roots among all possible correlations of (ak)kzl,
(br)k>1-
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