## Around Salem-Zygmund Central limit Theorem

## Guillaume Poly (based on joint works with Jurgen Angst/Louis Gass/Thibault Pautrel)

## 23 October 2020



The standard central limit Theorem:
(1) $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space,
(2) $\left(a_{k}\right)_{k \geq 1}$ independent and identically distributed random variables,
(3) $\mathbb{E}\left(a_{1}^{2}\right)=1, \mathbb{E}\left(a_{1}\right)=0$,

$$
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_{k} \xrightarrow[n \rightarrow \infty]{\text { distribution }} \mathcal{N}(0,1)
$$

## A general formulation of the problem

We add two new ingredients:
(1) $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right), \mu\right)$ where $\mu$ is a probability measure on $\mathbb{R}^{d}$,
(2) $\left(\Phi_{k}\right)_{k \geq 1}$ a sequence of bounded functions from $\mathbb{R}^{d}$ to $\mathbb{R}$.

We are interested in proving (under some assumptions):

$$
\mathbb{P} \text {-a.s., } S_{n}(x):=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_{k} \Phi_{k}(x) \xrightarrow[n \rightarrow \infty]{\text { Law under } \mu} \mathcal{N}\left(0, \sigma^{2}\right) \text {. }
$$

that is to say:

$$
\mathbb{P}\left(\forall \phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R}), \int_{\mathbb{R}^{d}} \phi\left(S_{n}(x)\right) d \mu(x) \rightarrow \int_{\mathbb{R}} \phi(x) e^{-\frac{x^{2}}{2 \sigma^{2}}} \frac{d x}{\sqrt{2 \pi \sigma^{2}}}\right)
$$

(1) intuitive interpretation: if the coefficients $\left(a_{k}\right)_{k}$ are chosen generically as the realization of an i.i.d. sequence, we have a CLT under the sole randomness of the evaluation point $x$ according to the measure $\mu$.
(2) if the coefficients are frozen, under the sole randomness of $x$, it is not anymore a sum of independent r.v,
(3) Some conditions need to be imposed on the $\left(\phi_{k}\right)_{k \geq 1}$ since if we chose $\phi_{1}=\phi_{2}=\cdots=\phi_{k}=1$ the conclusion fails! Indeed by the law of the iterated logarithm,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{1}{\sqrt{2 n \log (\log (n))}} \sum_{k=1}^{n} a_{k} \phi_{k}(x) \\
& =\limsup _{n} \frac{1}{\sqrt{2 n \log (\log (n))}} \sum_{k=1}^{n} a_{k}=1, \\
& \liminf _{n \rightarrow \infty} \frac{1}{\sqrt{2 n \log (\log (n))}} \sum_{k=1}^{n} a_{k} \phi_{k}(x)=-1 .
\end{aligned}
$$

## A general formulation of the problem

Let us remark that the problem is well posed:

$$
A=\left(\forall \phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R}), \int_{\mathbb{R}^{d}} \phi\left(S_{n}(x)\right) d \mu \rightarrow \int_{\mathbb{R}} \phi(x) e^{-\frac{x^{2}}{2 \sigma^{2}}} \frac{d x}{\sqrt{2 \pi \sigma^{2}}}\right) \in \mathcal{F}
$$

Indeed, let us recall that
$X_{n} \xrightarrow[n \rightarrow \infty]{\text { Law }} X_{\infty} \Leftrightarrow \forall f$ s.t. $\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \leq 1: \mathbb{E}\left(f\left(X_{n}\right)\right) \rightarrow \mathbb{E}(f(X))$.
Besides $K:=\left\{f\right.$ s.t. $\left.\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \leq 1\right\}$ is compact for $\|\cdot\|_{\infty}$, hence $K$ is separable. Take $f_{n}$ a dense sequence then:

$$
A=\bigcap_{p \geq 1}\left(\int_{\mathbb{R}^{d}} f_{p}\left(S_{n}(x)\right) d \mu \rightarrow \int_{\mathbb{R}} f_{p}(x) e^{-\frac{x^{2}}{2 \sigma^{2}}} \frac{d x}{\sqrt{2 \pi \sigma^{2}}}\right) .
$$

Given that $\omega \rightarrow \int_{\mathbb{R}^{d}} f_{p}\left(S_{n}(x)\right) d \mu$ is a random variable, we obtain $A \in \mathcal{F}$.

## Salem-Zygmund framework, Gaussian case

(1) We take $\left(a_{k}, b_{k}\right)$ two i.i.d. sequences of standard Gaussian r.V.,
(2) we set $S_{n}(\theta)=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_{k} \cos (k \theta)+b_{k} \sin (k \theta)$,
we want to prove that:

$$
\mathbb{P}\left(\forall \phi \in \mathcal{C}_{b}(\mathbb{R}, \mathbb{R}), \int_{0}^{2 \pi} \phi\left(S_{n}(\theta)\right) \frac{d \theta}{2 \pi} \rightarrow \int_{\mathbb{R}} \phi(x) e^{-\frac{x^{2}}{2}} \frac{d x}{\sqrt{2 \pi}}\right)=1
$$

(1) $\mathbb{E}_{\mathbb{P}}$ stands for expectation w.r.t. $\mathbb{P}$,
(2) $\mathbb{E}_{\theta}$ stands for expectation w.r.t. $\theta \sim \mathcal{U}_{[0,2 \pi]}$.

$$
\begin{aligned}
& \Delta_{n}:=\mathbb{E}_{\mathbb{P}}( \\
&\left.\left(\mathbb{E}_{\theta}\left(e^{i t S_{n}(\theta)}-e^{-\frac{t^{2}}{2}}\right)\right)^{2}\right)=\mathbb{E}_{\mathbb{P}}\left(\mathbb{E}_{\theta}\left(e^{i t S_{n}(\theta)}-e^{-\frac{t^{2}}{2}}\right)\right. \\
&\left.\times \mathbb{E}_{\theta^{\prime}}\left(e^{i t S_{n}\left(\theta^{\prime}\right)}-e^{-\frac{t^{2}}{2}}\right)\right)
\end{aligned}
$$

where $\theta$ and $\theta^{\prime}$ are two independent copies.

Then we use Fubini:

$$
\begin{aligned}
= & \left.\mathbb{E}_{\theta, \theta^{\prime}}\left(\mathbb{E}_{\mathbb{P}}\left(e^{i t\left(S_{n}(\theta)+S_{n}\left(\theta^{\prime}\right)\right.}\right)\right)-2 e^{-\frac{t^{2}}{2}} \mathbb{E}_{\mathbb{P}}\left(e^{i t S_{n}(\theta)}\right)+e^{-t^{2}}\right) \\
= & \mathbb{E}_{\theta, \theta^{\prime}}\left(e^{-t^{2}\left(1+K_{n}\left(\theta, \theta^{\prime}\right)\right)}-e^{-t^{2}}\right) \\
& \text { with } K_{n}\left(\theta, \theta^{\prime}\right)=\frac{1}{n} \sum_{k=1}^{n} \cos \left(k\left(\theta-\theta^{\prime}\right)\right)
\end{aligned}
$$

Indeed, with $\theta, \theta^{\prime}$ frozen, under $\mathbb{P}$ we have
(1) $S_{n}(\theta)+S_{n}\left(\theta^{\prime}\right) \sim \mathcal{N}\left(0,1+K_{n}\left(\theta, \theta^{\prime}\right)\right)$,
(2) $S_{n}(\theta) \sim \mathcal{N}(0,1)$.

So, what seems to matters here is $K_{n}\left(\theta, \theta^{\prime}\right) \rightarrow 0$.

$$
\begin{aligned}
\left|\Delta_{n}\right| & \leq t^{2} \mathbb{E}_{\theta, \theta^{\prime}}\left(\left|K_{n}\left(\theta, \theta^{\prime}\right)\right|\right) \\
& \leq t^{2} \mathbb{E}_{\theta}\left(\left|K_{n}(\theta)\right|\right) \quad\left(\theta-\theta^{\prime} \sim \theta\right) \\
& \leq t^{2} \sqrt{\mathbb{E}_{\theta}\left(K_{n}(\theta)^{2}\right)}=\frac{t^{2}}{\sqrt{2 n}}=0\left(\frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

Now we take the subsequence $n^{3}, \Delta_{n^{3}}=O\left(1 / n^{\frac{3}{2}}\right)$ so by using Borel-Cantelli (for instance):

$$
\mathbb{P}-\text { a.s., } \mathbb{E}_{\theta}\left(e^{i t S_{m^{3}}(\theta)}-e^{-\frac{t^{2}}{2}}\right) \rightarrow 0 .
$$

On the other hand, for any integer $m \geq 1$ one may find $n \geq 1$ such that $n^{3} \leq m \leq(n+1)^{3}$.

One has the decomposition

$$
\begin{aligned}
S_{m}(\theta)-S_{n}(\theta) & =\frac{1}{\sqrt{m}} \sum_{k=1}^{m} \cdots-\frac{1}{\sqrt{m}} \sum_{k=1}^{n^{3}} \cdots \\
& +\left(\sqrt{\frac{n^{3}}{m}}-1\right) S_{n^{3}}
\end{aligned}
$$

Setting $\Delta_{m, n^{3}}:=\mathbb{E}_{\theta}\left[\left|S_{m}(\theta)-S_{n^{3}}(\theta)\right|^{2}\right]$, we deduce

$$
\begin{aligned}
\Delta_{m, n^{3}} & \leq 2\left(\sqrt{\frac{n^{3}}{m}}-1\right)^{2} \underbrace{\mathbb{E}_{\theta}\left[S_{n^{3}}(\theta)^{2}\right]}_{=1}+ \\
& \frac{2}{n^{3}} \mathbb{E}_{\theta}\left[\left|\sum_{k=n^{3}+1}^{m} a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right|^{2}\right] \\
& \leq \underbrace{2\left(\sqrt{\frac{n^{3}}{(n+1)^{3}}}-1\right)^{2}+2 \frac{(n+1)^{3}-n^{3}}{n^{3}}}_{=O\left(\frac{1}{n}\right)}=O\left(\frac{1}{m^{\frac{1}{3}}}\right) .
\end{aligned}
$$

Then, almost surely w.r.t. $\mathbb{P}, \Delta_{m, n^{3}}$ tends to zero and this ends the proof.

## Generalization1 a quantified estimate

## Theorem

Suppose that $\left(a_{k}, b_{k}\right)_{k \geq 1}$ is a sequence of independent and identically distributed random variables such that
$\mathbb{E}\left[a_{1}\right]=0, \mathbb{E}\left[a_{1}^{2}\right]=1$ and $\mathbb{E}\left[a_{1}^{4}\right]<\infty$. Setting,

$$
C\left(a_{1}\right):=81 \sqrt{13+\left|\mathbb{E}\left[a_{1}^{3}\right]\right|}+8 \sqrt{\mathbb{E}\left[a_{1}^{4}\right]}+\sqrt{2}+8 \mathbb{E}\left[\left|a_{1}\right|^{3}\right]+24 \mathbb{E}\left[\left|a_{1}\right|\right]
$$

if $G \sim \mathcal{N}(0,1)$, then one has

$$
\mathbb{E}\left[d_{\mathcal{C}^{3}}^{\theta}\left(f_{n}(\theta), G\right)\right] \leq \frac{C\left(a_{1}\right)}{\sqrt{n}}
$$

where

$$
d_{\mathcal{C}^{3}}(X, Y)=\sup _{\|\phi\|_{\infty}+\left\|\phi^{\prime}\right\|_{\infty}+\left\|\phi^{\prime \prime}\right\|_{\infty}+\left\|\phi^{(3)}\right\|_{\infty}} \mathbb{E}(\phi(X)-\phi(Y)) .
$$

## Generalization2 a total variation CLT

## Theorem

Let $\left(a_{k}, b_{k}\right)_{k \geq 1}$ be independent and identically distributed random variables that are centered with unit variance and admit a third moment. Almost surely with respect to the probability $\mathbb{P}$, if $G \sim \mathcal{N}(0,1)$ under $\mathbb{P}_{\theta}$, then as $n$ goes to infinity, we have

$$
\lim _{n \rightarrow+\infty} \mathrm{d}_{T V}^{\theta}\left(S_{n}(\theta), G\right)=0
$$

Said otherwise, $S_{n}(\theta)$ admits a (random) density w.r.t to Lebesgue which (almost surely) converges in $L^{1}$ to the Gaussian density.

## Generalization3: non uniforms distributions

## Theorem

Let $\left(a_{k}, b_{k}\right)_{k \geq 1}$ be a sequence of independent and identically distributed random variables that are centered with unit variance and which admit a moment of order $\beta \geq 3$. Let $X$ be an independent random variable on $[0,2 \pi]$ whose Fourier coefficients satisfy

$$
\exists \alpha>0, \forall k \in \mathbb{Z} /\{0\},\left|\widehat{\mathbb{P}_{X}}(k)\right| \leq \frac{C}{|k|^{\alpha}}
$$

Then, provided that $\beta>\frac{2}{\min \left(\alpha, \frac{1}{2}\right)}, \mathbb{P}$ almost surely, under $\mathbb{P}_{X}$, one has

$$
S_{n}(X) \xrightarrow[n \rightarrow \infty]{\text { law under } \mathbb{P}_{X}} \mathcal{N}(0,1)
$$

## Generalization4 a functional CLT

Let us introduce the stochastic process $\left(g_{n}(t)\right)_{t \in[0,2 \pi]}$ defined by

$$
g_{n}(t):=S_{n}\left(\theta+\frac{t}{n}\right)
$$

## Theorem

Suppose that $\left(a_{k}, b_{k}\right)_{k \geq 1}$ is a sequence of independent and identically distributed random variables that are centered with unit variance. Then $\mathbb{P}$ almost surely, as $n$ goes to infinity, the process $\left(g_{n}(t)\right)_{t \in[0,2 \pi]}$ converges in distribution in the $\mathcal{C}^{1}$ topology, to a stationary Gaussian process $\left(g_{\infty}(t)\right)_{t \in[0,2 \pi]}$ with $\sin _{c}$ covariance function, i.e.

$$
\mathbb{E}_{\theta}\left[g_{\infty}(t) g_{\infty}(s)\right]=\frac{\sin (t-s)}{t-s}
$$

## Application to the number of roots of random trigonometric polynomials

## Theorem

Let us consider a random trigonometric polynomial

$$
f_{n}(t):=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_{k} \cos (k t)+b_{k} \sin (k t), \quad t \in \mathbb{R}
$$

where $\left(a_{k}\right)$ and $\left(b_{k}\right)$ are i.i.d., with unit variance and a moment of order four. Then, $\mathbb{P}$ almost surely, we have as $n$ goes to infinity

$$
\lim _{n \rightarrow+\infty} \frac{\mathcal{N}\left(f_{n},[0,2 \pi]\right)}{n}=\frac{2}{\sqrt{3}} .
$$

and more generally for any interval $[a, b] \subset[0,2 \pi]$

$$
\lim _{n \rightarrow+\infty} \frac{\mathcal{N}\left(f_{n},[a, b]\right)}{n}=\frac{b-a}{\pi \sqrt{3}}
$$

## Key idea to relate Salem-Zygmund with roots of random polynomials

## Lemma

If $f$ is a $2 \pi$-periodic function with a finite number of zeros, then for any $0<h<2 \pi$, we have

$$
\frac{h}{2 \pi} \times \mathcal{N}(f,[0,2 \pi])=\mathbb{E}_{\theta}[\mathcal{N}(f,[\theta, \theta+h])]
$$

where $\theta$ is a random variable, with uniform distribution in $[0,2 \pi]$.
Set $N=\mathcal{N}(f,[0,2 \pi])$ which is finite by hypothesis, and denote by $x_{1}, \ldots, x_{N}$ the zeros of $f$ in $[0,2 \pi]$ and $\mu_{f}$ the associated empirical measure

$$
\mu_{f}:=\frac{1}{N} \sum_{k=1}^{N} \delta_{x_{k}} .
$$

Naturally, we have for all $a<b$ such that $b-a \leq 2 \pi$

$$
\mathcal{N}(f,[a, b])=N \times \int_{0}^{2 \pi} \mathbf{1}_{[a, b] \bmod 2 \pi}(t) \mu_{f}(d t)
$$

If $\theta$ is uniform in $[0,2 \pi]$, we have then applying Fubini inversion of sums

$$
\begin{aligned}
\mathbb{E}_{\theta}[\mathcal{N}(f,[\theta, \theta+h])] & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathcal{N}(f,[x, x+h]) d x \\
& =\frac{N}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{2 \pi} \mathbf{1}_{[x, x+h] \bmod 2 \pi}(t) d x\right) \mu_{f}(d t) \\
& =\frac{N}{2 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{2 \pi} \mathbf{1}_{[t-h, t] \bmod 2 \pi}(x) d x\right) \mu_{f}(d t) \\
& =\frac{N}{2 \pi} \times h \times \int_{0}^{2 \pi} \mu_{f}(d t)=\frac{N}{2 \pi} \times h
\end{aligned}
$$

Applying it to $S_{n}(x)=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} a_{k} \cos (k x)+b_{k} \sin (k x)$ leads to
$\frac{\mathcal{N}\left(S_{n},[0,2 \pi]\right)}{n}=\mathbb{E}_{\theta}\left(\mathcal{N}\left(g_{n},[0,2 \pi]\right)\right)$
Heuristically the rest of the proof is (as $n \rightarrow \infty$ )

$$
\mathbb{E}_{\theta}\left(\mathcal{N}\left(g_{n},[0,2 \pi]\right)\right) \approx \mathbb{E}_{\mathbb{P}}\left(\mathcal{N}\left(\left(X_{t}\right)_{t}, t \in[0,2 \pi]\right)\right)
$$

where $\left(X_{t}\right)_{t>0}$ is a stationnary Gaussian process with correlation $\frac{\sin (x)}{x}$.

Indeed, take $f \in \mathcal{C}^{1}([a, b])$ such that $|f|+\left|f^{\prime}\right|>0$ on $[a, b]$ (non-degeneracy assumption)

$$
u_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{C}^{1}} f \Rightarrow \mathcal{N}\left(u_{n},[a, b]\right) \rightarrow \mathcal{N}(f,[a, b])
$$

So one is left to compute $\mathbb{E}_{\mathbb{P}}\left(\mathcal{N}\left(\left(X_{t}\right)_{t}, t \in[0,2 \pi]\right)\right)$. By using the Kac-Rice formula we have

$$
\begin{aligned}
\mathbb{E}_{\mathbb{P}}\left(\mathcal{N}\left(\left(X_{t}\right)_{t}, t \in[0,2 \pi]\right)\right) & =\mathbb{E}\left(\lim _{\delta \rightarrow 0} \int_{0}^{2 \pi}\left|X_{t}^{\prime}\right| \mathbf{1}_{\left|X_{t}\right|<\delta} \frac{d t}{2 \delta}\right) \\
& =\lim _{\delta \rightarrow 0} \int_{0}^{2 \pi} \mathbb{E}\left(\left|X_{t}^{\prime}\right| \mathbf{1}_{\left|X_{t}\right|<\delta}\right) \frac{d t}{2 \delta}
\end{aligned}
$$

(Independence of $X_{t}$ and $\left.X_{t}^{\prime}\right)=\int_{0}^{2 \pi} \mathbb{E}\left(\left|X_{t}^{\prime}\right|\right) \lim _{\delta \rightarrow 0} \mathbb{P}\left(\left|X_{t}\right|<\delta\right) \frac{d t}{2 \delta}$

$$
\begin{aligned}
& =2 \pi \mathbb{E}\left(\left|X_{0}^{\prime}\right|\right) \frac{1}{\sqrt{2 \pi}} \\
& =\sqrt{2 \pi} \sigma\left(X_{0}^{\prime}\right) \sqrt{\frac{2}{\pi}} \\
& =2 \sqrt{-\sin _{c}{ }^{\prime \prime}(0)} \\
& =\frac{2}{\sqrt{3}}
\end{aligned}
$$

## The case of dependent Gaussian coefficients

We consider here $\left(a_{k}\right)_{k \geq 1}$ and $\left(b_{k}\right)_{k \geq 1}$ two independent realizations of a stationary Gaussian field such that

- $\mathbb{E}\left(a_{k} a_{l}\right)=\rho(k-l)$ with $\rho$ the correlation function,
- $\rho(k)=\hat{\mu}(k)$ with $\mu$ the spectral measure,
- $\mu$ possesses an absolutely continuous part $\psi_{\mu}$ such that $\int_{0}^{2 \pi}\left|\log \left(\left|\psi_{\mu}(x)\right|\right)\right| d x<\infty$.

$$
\mathbb{P}-\text { a.s., } \frac{\mathcal{N}\left(f_{n},[0,2 \pi]\right)}{n} \rightarrow \frac{2}{\sqrt{3}} .
$$

The conclusions fails if $\psi_{\mu}$ vanishes: (if $\psi_{\mu}$ is continuous):

$$
\mathbb{P}-\text { a.s., } \frac{\mathcal{N}\left(f_{n},[0,2 \pi]\right)}{n} \rightarrow \frac{1}{\pi \sqrt{3}} \lambda\left(\psi_{\mu} \neq 0\right)+\frac{1}{\pi \sqrt{2}} \lambda\left(\psi_{\mu}=0\right) .
$$

 measurable

Conjecture2: $\frac{2}{\sqrt{3}}$ is the least possible value of the asymptotic mean number of roots among all possible correlations of $\left(a_{k}\right)_{k \geq 1}$, $\left(b_{k}\right)_{k \geq 1}$.

