Around Salem-Zygmund Central limit Theorem

Guillaume Poly (based on joint works with Jurgen Angst/Louis Gass/Thibault Pautrel)

23 October 2020

The standard central limit Theorem:

- $\textcircled{0} \ (\Omega, \mathcal{F}, \mathbb{P}) \text{ a probability space,}$
- (a_k)_{k≥1} independent and identically distributed random variables,

$$\begin{array}{ll} \textcircled{0} & \mathbb{E}(a_1^2) = 1, \ \mathbb{E}(a_1) = 0, \\ & \displaystyle \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \xrightarrow{\text{distribution}} & \mathcal{N}(0,1). \end{array}$$

直 ト イヨ ト イヨト

A general formulation of the problem

We add two new ingredients:

- $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mu)$ where μ is a probability measure on \mathbb{R}^d ,
- **2** $(\Phi_k)_{k>1}$ a sequence of **bounded** functions from \mathbb{R}^d to \mathbb{R} .

We are interested in proving (under some assumptions):

$$\mathbb{P}\text{-a.s.}, \ S_n(x) := \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \Phi_k(x) \xrightarrow[n \to \infty]{\text{Law under } \mu} \mathcal{N}(0, \sigma^2).$$

that is to say:

$$\mathbb{P}\left(\forall \phi \in \mathcal{C}_b(\mathbb{R},\mathbb{R}), \int_{\mathbb{R}^d} \phi\left(S_n(x)\right) d\mu(x) \to \int_{\mathbb{R}} \phi(x) e^{-\frac{x^2}{2\sigma^2}} \frac{dx}{\sqrt{2\pi\sigma^2}}\right).$$

- intuitive interpretation: if the coefficients (a_k)_k are chosen generically as the realization of an i.i.d. sequence, we have a CLT under the sole randomness of the evaluation point x according to the measure μ.
- If the coefficients are frozen, under the sole randomness of x, it is not anymore a sum of independent r.v,
- Some conditions need to be imposed on the (φ_k)_{k≥1} since if we chose φ₁ = φ₂ = ··· = φ_k = 1 the conclusion fails! Indeed by the law of the iterated logarithm,

$$\limsup_{n \to \infty} \frac{1}{\sqrt{2n \log(\log(n))}} \sum_{k=1}^{n} a_k \phi_k(x)$$

=
$$\limsup_{n} \frac{1}{\sqrt{2n \log(\log(n))}} \sum_{k=1}^{n} a_k = 1,$$

$$\liminf_{n \to \infty} \frac{1}{\sqrt{2n \log(\log(n))}} \sum_{k=1}^{n} a_k \phi_k(x) = -1.$$

A general formulation of the problem

Let us remark that the problem is well posed:

$$A = \left(\forall \phi \in \mathcal{C}_b(\mathbb{R}, \mathbb{R}), \int_{\mathbb{R}^d} \phi\left(S_n(x)\right) d\mu \to \int_{\mathbb{R}} \phi(x) e^{-\frac{x^2}{2\sigma^2}} \frac{dx}{\sqrt{2\pi\sigma^2}} \right) \in \mathcal{F}.$$

Indeed, let us recall that

$$X_n \xrightarrow[n \to \infty]{\text{Law}} X_\infty \Leftrightarrow \forall f \text{ s.t.} \|f\|_\infty + \|f'\|_\infty \le 1 : \mathbb{E}(f(X_n)) \to \mathbb{E}(f(X)).$$

Besides $K := \{f \text{ s.t. } \|f\|_{\infty} + \|f'\|_{\infty} \le 1\}$ is compact for $\|\cdot\|_{\infty}$, hence K is separable. Take f_n a dense sequence then:

$$A = \bigcap_{p \ge 1} \left(\int_{\mathbb{R}^d} f_p\left(S_n(x)\right) d\mu \to \int_{\mathbb{R}} f_p(x) e^{-\frac{x^2}{2\sigma^2}} \frac{dx}{\sqrt{2\pi\sigma^2}} \right).$$

Given that $\omega \to \int_{\mathbb{R}^d} f_p(S_n(x)) d\mu$ is a random variable, we obtain $A \in \mathcal{F}$.

Salem-Zygmund framework, Gaussian case

We take (a_k, b_k) two i.i.d. sequences of standard Gaussian r.v.,

2 we set
$$S_n(\theta) = \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \cos(k\theta) + b_k \sin(k\theta)$$
,

we want to prove that:

$$\mathbb{P}\left(\forall \phi \in \mathcal{C}_b(\mathbb{R},\mathbb{R}), \int_0^{2\pi} \phi\left(S_n(\theta)\right) \frac{d\theta}{2\pi} \to \int_{\mathbb{R}} \phi(x) e^{-\frac{x^2}{2}} \frac{dx}{\sqrt{2\pi}}\right) = 1$$

• • = • • = •

- **1** $\mathbb{E}_{\mathbb{P}}$ stands for expectation w.r.t. \mathbb{P} ,
- **2** \mathbb{E}_{θ} stands for expectation w.r.t. $\theta \sim \mathcal{U}_{[0,2\pi]}$.

$$\begin{split} \Delta_n &:= \mathbb{E}_{\mathbb{P}} \left(\left(\mathbb{E}_{\theta} \left(e^{itS_n(\theta)} - e^{-\frac{t^2}{2}} \right) \right)^2 \right) &= \mathbb{E}_{\mathbb{P}} \left(\mathbb{E}_{\theta} \left(e^{itS_n(\theta)} - e^{-\frac{t^2}{2}} \right) \right) \\ &\times \mathbb{E}_{\theta'} \left(e^{itS_n(\theta')} - e^{-\frac{t^2}{2}} \right) \end{split}$$

where θ and θ' are two independent copies.

Then we use Fubini:

$$= \mathbb{E}_{\theta,\theta'} \left(\mathbb{E}_{\mathbb{P}} \left(e^{it(S_n(\theta) + S_n(\theta')}) \right) - 2e^{-\frac{t^2}{2}} \mathbb{E}_{\mathbb{P}} \left(e^{itS_n(\theta)} \right) + e^{-t^2} \right)$$
$$= \mathbb{E}_{\theta,\theta'} \left(e^{-t^2(1 + K_n(\theta,\theta'))} - e^{-t^2} \right)$$
with $K_n(\theta,\theta') = \frac{1}{n} \sum_{k=1}^n \cos(k(\theta - \theta')).$

Indeed, with θ, θ' frozen, under $\mathbb P$ we have

9
$$S_n(\theta) + S_n(\theta') \sim \mathcal{N}(0, 1 + K_n(\theta, \theta')),$$

9 $S_n(\theta) \sim \mathcal{N}(0, 1).$

So, what seems to matters here is $K_n(\theta, \theta') \rightarrow 0$.

∃ ► < ∃ ►</p>

Proof of Gaussian case

$$\begin{array}{ll} |\Delta_n| & \leq \quad t^2 \mathbb{E}_{\theta,\theta'} \left(\left| K_n(\theta,\theta') \right| \right) \\ & \leq \quad t^2 \mathbb{E}_{\theta} \left(\left| K_n(\theta) \right| \right) \quad (\theta - \theta' \sim \theta) \\ & \leq \quad t^2 \sqrt{\mathbb{E}_{\theta} \left(K_n(\theta)^2 \right)} = \frac{t^2}{\sqrt{2n}} = \mathsf{O} \left(\frac{1}{\sqrt{n}} \right). \end{array}$$

Now we take the subsequence n^3 , $\Delta_{n^3} = O(1/n^{\frac{3}{2}})$ so by using Borel-Cantelli (for instance):

$$\mathbb{P}-a.s., \mathbb{E}_{\theta}\left(e^{itS_{m^{3}}(\theta)}-e^{-\frac{t^{2}}{2}}\right) \rightarrow 0.$$

On the other hand, for any integer $m \ge 1$ one may find $n \ge 1$ such that $n^3 \le m \le (n+1)^3$.

One has the decomposition

$$S_m(\theta) - S_n(\theta) = \frac{1}{\sqrt{m}} \sum_{k=1}^m \cdots - \frac{1}{\sqrt{m}} \sum_{k=1}^{n^3} \cdots + \left(\sqrt{\frac{n^3}{m}} - 1\right) S_{n^3}$$

A B M A B M

Setting
$$\Delta_{m,n^3} := \mathbb{E}_{ heta} \left[|S_m(heta) - S_{n^3}(heta)|^2
ight]$$
, we deduce

$$\begin{split} \Delta_{m,n^3} &\leq 2\left(\sqrt{\frac{n^3}{m}}-1\right)^2\underbrace{\mathbb{E}_{\theta}\left[S_{n^3}(\theta)^2\right]}_{=1} + \\ & \frac{2}{n^3}\mathbb{E}_{\theta}\left[\left|\sum_{k=n^3+1}^m a_k\cos(k\theta) + b_k\sin(k\theta)\right|^2\right] \\ &\leq \underbrace{2\left(\sqrt{\frac{n^3}{(n+1)^3}}-1\right)^2 + 2\frac{(n+1)^3-n^3}{n^3}}_{=O\left(\frac{1}{m^{\frac{1}{3}}}\right)} = O\left(\frac{1}{m^{\frac{1}{3}}}\right). \end{split}$$

Then, almost surely w.r.t. \mathbb{P} , Δ_{m,n^3} tends to zero and this ends the proof.

直 ト イヨ ト イヨト

э

Generalization1 a quantified estimate

Theorem

Suppose that $(a_k, b_k)_{k \ge 1}$ is a sequence of independent and identically distributed random variables such that $\mathbb{E}[a_1] = 0, \mathbb{E}[a_1^2] = 1$ and $\mathbb{E}[a_1^4] < \infty$. Setting,

$$C(a_1) := 81\sqrt{13 + |\mathbb{E}[a_1^3]|} + 8\sqrt{\mathbb{E}\left[a_1^4\right]} + \sqrt{2} + 8\mathbb{E}\left[|a_1|^3\right] + 24\mathbb{E}\left[|a_1|\right],$$

if $G \sim \mathcal{N}(0,1)$, then one has

$$\mathbb{E}\left[d_{\mathcal{C}^3}^{\theta}\left(f_n(\theta), G\right)\right] \leq \frac{C(a_1)}{\sqrt{n}}.$$

where

$$d_{\mathcal{C}^{3}}(X,Y) = \sup_{\|\phi\|_{\infty} + \|\phi'\|_{\infty} + \|\phi''\|_{\infty} + \|\phi^{(3)}\|_{\infty}} \mathbb{E}(\phi(X) - \phi(Y)).$$

• • = • • = •

Theorem

Let $(a_k, b_k)_{k\geq 1}$ be independent and identically distributed random variables that are centered with unit variance and admit a third moment. Almost surely with respect to the probability \mathbb{P} , if $G \sim \mathcal{N}(0, 1)$ under \mathbb{P}_{θ} , then as n goes to infinity, we have

$$\lim_{n\to+\infty} \mathrm{d}_{TV}^{\theta} \left(S_n(\theta), G \right) = 0.$$

Said otherwise, $S_n(\theta)$ admits a (random) density w.r.t to Lebesgue which (almost surely) converges in L^1 to the Gaussian density.

Theorem

Let $(a_k, b_k)_{k\geq 1}$ be a sequence of independent and identically distributed random variables that are centered with unit variance and which admit a moment of order $\beta \geq 3$. Let X be an independent random variable on $[0, 2\pi]$ whose Fourier coefficients satisfy

$$\exists lpha > 0, \, orall k \in \mathbb{Z}/\{0\}, \, \left|\widehat{\mathbb{P}_X}(k)\right| \leq rac{C}{|k|^{lpha}}$$

Then, provided that $\beta > \frac{2}{\min(\alpha, \frac{1}{2})}$, \mathbb{P} almost surely, under \mathbb{P}_X , one has

$$S_n(X) \xrightarrow{\text{law under } \mathbb{P}_X} \mathcal{N}(0,1).$$

Generalization4 a functional CLT

Let us introduce the stochastic process $(g_n(t))_{t \in [0,2\pi]}$ defined by

$$g_n(t) := S_n\left(\theta + \frac{t}{n}\right).$$

Theorem

Suppose that $(a_k, b_k)_{k\geq 1}$ is a sequence of independent and identically distributed random variables that are centered with unit variance. Then \mathbb{P} almost surely, as n goes to infinity, the process $(g_n(t))_{t\in[0,2\pi]}$ converges in distribution in the C^1 topology, to a stationary Gaussian process $(g_{\infty}(t))_{t\in[0,2\pi]}$ with \sin_c covariance function, i.e.

$$\mathbb{E}_{ heta}[g_{\infty}(t)g_{\infty}(s)] = rac{\sin(t-s)}{t-s}.$$

Application to the number of roots of random trigonometric polynomials

Theorem

Let us consider a random trigonometric polynomial

$$f_n(t) := rac{1}{\sqrt{n}} \sum_{k=1}^n a_k \cos(kt) + b_k \sin(kt), \quad t \in \mathbb{R},$$

where (a_k) and (b_k) are i.i.d., with unit variance and a moment of order four. Then, \mathbb{P} almost surely, we have as n goes to infinity

$$\lim_{n \to +\infty} \frac{\mathcal{N}(f_n, [0, 2\pi])}{n} = \frac{2}{\sqrt{3}}$$

and more generally for any interval $[a,b] \subset [0,2\pi]$

$$\lim_{n \to +\infty} \frac{\mathcal{N}(f_n, [a, b])}{n} = \frac{b-a}{\pi\sqrt{3}}.$$

Guillaume Poly (based on joint works with Jurgen Angst/Louis G Around Salem-Zygmund Central limit Theorem

୨୯୯

Key idea to relate Salem-Zygmund with roots of random polynomials

Lemma

If f is a 2π -periodic function with a finite number of zeros, then for any $0 < h < 2\pi$, we have

$$rac{h}{2\pi} imes\mathcal{N}(f,[0,2\pi])=\mathbb{E}_{ heta}\left[\mathcal{N}\left(f,[heta, heta+ heta]
ight)
ight],$$

where θ is a random variable, with uniform distribution in $[0, 2\pi]$.

Set $N = \mathcal{N}(f, [0, 2\pi])$ which is finite by hypothesis, and denote by x_1, \ldots, x_N the zeros of f in $[0, 2\pi]$ and μ_f the associated empirical measure

$$\mu_f := \frac{1}{N} \sum_{k=1}^N \delta_{x_k}.$$

Naturally, we have for all a < b such that $b - a \leq 2\pi$

$$\mathcal{N}(f,[a,b]) = \mathbf{N} imes \int_0^{2\pi} \mathbf{1}_{[a,b] \operatorname{mod} 2\pi}(t) \mu_f(dt).$$

If θ is uniform in $[0,2\pi],$ we have then applying Fubini inversion of sums

$$\mathbb{E}_{\theta} \left[\mathcal{N} \left(f, \left[\theta, \theta + h \right] \right) \right] = \frac{1}{2\pi} \int_{0}^{2\pi} \mathcal{N} \left(f, \left[x, x + h \right] \right) dx$$
$$= \frac{N}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} \mathbf{1}_{\left[x, x + h \right] \mod 2\pi}(t) dx \right) \mu_{f}(dt)$$
$$= \frac{N}{2\pi} \int_{0}^{2\pi} \left(\int_{0}^{2\pi} \mathbf{1}_{\left[t - h, t \right] \mod 2\pi}(x) dx \right) \mu_{f}(dt)$$
$$= \frac{N}{2\pi} \times h \times \int_{0}^{2\pi} \mu_{f}(dt) = \frac{N}{2\pi} \times h.$$

何 ト イヨ ト イヨ ト

3

Applying it to $S_n(x) = \frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)$ leads to

$$\frac{\mathcal{N}(S_n, [0, 2\pi])}{n} = \mathbb{E}_{\theta}\left(\mathcal{N}(g_n, [0, 2\pi])\right)$$

Heuristically the rest of the proof is (as $n \to \infty$)

$$\mathbb{E}_{ heta}\left(\mathcal{N}(g_n,[0,2\pi])
ight) pprox \mathbb{E}_{\mathbb{P}}\left(\mathcal{N}((X_t)_t,t\in[0,2\pi])
ight)$$

where $(X_t)_{t>0}$ is a stationnary Gaussian process with correlation $\frac{\sin(x)}{x}$.

Indeed, take $f \in C^1([a, b])$ such that |f| + |f'| > 0 on [a, b] (non-degeneracy assumption)

$$u_n \xrightarrow{\mathsf{C}^1} f \Rightarrow \mathcal{N}(u_n, [a, b]) \to \mathcal{N}(f, [a, b]).$$

So one is left to compute $\mathbb{E}_{\mathbb{P}}(\mathcal{N}((X_t)_t, t \in [0, 2\pi]))$. By using the Kac-Rice formula we have

$$\mathbb{E}_{\mathbb{P}}\left(\mathcal{N}((X_t)_t, t \in [0, 2\pi])\right) = \mathbb{E}\left(\lim_{\delta \to 0} \int_0^{2\pi} |X_t'| \mathbf{1}_{|X_t| < \delta} \frac{dt}{2\delta}\right)$$

$$= \lim_{\delta \to 0} \int_0^{2\pi} \mathbb{E}\left(|X_t'| \mathbf{1}_{|X_t| < \delta}\right) \frac{dt}{2\delta}$$
(Independence of X_t and X_t') = $\int_0^{2\pi} \mathbb{E}\left(|X_t'|\right) \lim_{\delta \to 0} \mathbb{P}(|X_t| < \delta) \frac{dt}{2\delta}$

$$= 2\pi \mathbb{E}\left(|X_0'|\right) \frac{1}{\sqrt{2\pi}}$$

$$= \sqrt{2\pi} \sigma(X_0') \sqrt{\frac{2}{\pi}}$$

$$= 2\sqrt{-\sin_c} "(0)$$

$$= \frac{2}{\sqrt{3}}$$

• • = • • = •

э

We consider here $(a_k)_{k\geq 1}$ and $(b_k)_{k\geq 1}$ two independent realizations of a stationary Gaussian field such that

- $\mathbb{E}(a_k a_l) = \rho(k l)$ with ρ the correlation function,
- $ho(k) = \hat{\mu}(k)$ with μ the spectral measure,
- μ possesses an absolutely continuous part ψ_{μ} such that $\int_{0}^{2\pi} |\log(|\psi_{\mu}(x)|)| dx < \infty.$

$$\mathbb{P}-a.s., \ rac{\mathcal{N}(f_n,[0,2\pi])}{n}
ightarrow rac{2}{\sqrt{3}}.$$

The case of dependent Gaussian coefficients

The conclusions fails if ψ_{μ} vanishes: (if ψ_{μ} is continuous):

$$\mathbb{P}-\textit{a.s.},\;rac{\mathcal{N}(f_n,[0,2\pi])}{n}
ightarrowrac{1}{\pi\sqrt{3}}\lambda\left(\psi_\mu
eq0
ight)+rac{1}{\pi\sqrt{2}}\lambda\left(\psi_\mu=0
ight).$$

 $\underbrace{\text{Conjecture1:}}_{\text{measurable}} \text{ The previous formula holds true whenever } \psi_{\mu} \text{ is }$

<u>Conjecture2</u>: $\frac{2}{\sqrt{3}}$ is the least possible value of the asymptotic mean number of roots among all possible correlations of $(a_k)_{k\geq 1}$, $(b_k)_{k\geq 1}$.