Interval Partition Evolutions

Quan Shi

Universität Mannheim

quanshi.math@gmail.com

University of Liverpool, 26.Feb.2021

A visualisation: http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif

Outline

- Motivation: 3 Problems
- Chinese Restaurant Processes and Interval Partition Evolutions

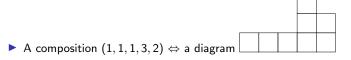
(ロ)、(型)、(E)、(E)、 E) の(()

Applications

1. Motivation

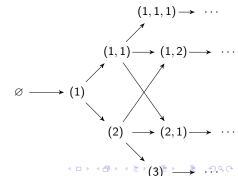
Markov Processes on the Graph of Compositions

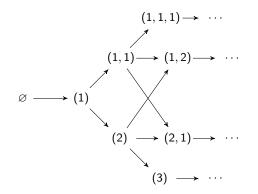
- A composition of $n \in \mathbb{N}$ is a tuple $\sigma = (\sigma_1, \ldots, \sigma_k)$ of positive integers with $n = \sigma_1 + \cdots + \sigma_k$.
 - Keeping track of only the sizes of parts, and not their order: a partition of an integer
 - The ranked sequence of a composition: a partition of an integer



The (directed) graph of compositions

An edge from σ to λ, denoted by σ ↑ λ and λ↓ σ: if λ can be obtained from σ by stacking or inserting one box.





- The graph of compositions is an example of branching graphs known in algebraic combinatorics and representation theory.
- Other branching graphs: Young graph of partitions, Pascal triangle
- Scaling limit of Markov chains on Young graph of partitions: Diffusion on the Kingman simplex (Borodin, Olshanski, Fulman, Pertrov)

Question 1: The scaling limit of Markov chains on the graph of compositions?

Labelled infinitely-many-neutral-alleles model with parameter $\theta \ge 0$ (Kimura–Crow, Watterson, Ethier–Kurtz)

- ► S: the space of allelic types
- Mutations occur with intensity $\theta/2$
- \blacktriangleright The type of each mutant offspring is chosen independently according to a probability law ν_0 on S
- Basic assumption: every mutant is of a new type, i.e. ν_0 is non-atomic

Characterize the evolution of the relative frequencies of types (Ethier-Kurtz)

- A process (µ_t, t ≥ 0) taking values on M^a₁(S), the atomic probability measures on S
- Unique stationary distribution: Pitman–Yor distribution $PY(0, \theta, \nu_0)$
- For $\alpha \in [0, 1)$ and $\theta > -\alpha$, Pitman–Yor distribution on $\mathcal{M}_1^a(S)$:

$$\sum_{i\geq 1} A_i \delta_{U_i} \sim \mathtt{PY}(\alpha, \theta, \nu_0)$$

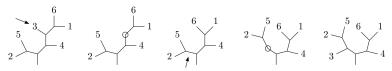
where $(A_i)_{i\geq 1}$ has the Poisson–Dirichlet distribution with parameter (α, θ) on the Kingman simplex and $U_i \sim \nu_0, i \geq 1$, independent of each other.

 Pitman–Yor distributions are widely used in non-parametric Bayesian analysis.

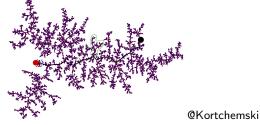
Question 2: generalize the model to a two-parameter family for $\alpha \in [0, 1)$ and $\theta > -\alpha$ (existence conjectured by Feng–Sun)

Continuum-Tree-Valued Diffusions

For n ∈ N, a Markov chain on the space of rooted binary labelled trees with n leaves:



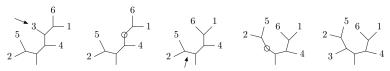
- The law of a uniform binary tree with n leaves is the stationary distribution of this Markov chain.
- As n → ∞, a uniform binary tree with n leaves converges to a Brownian continuum random tree.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Continuum-Tree-Valued Diffusions

For n ∈ N, a Markov chain on the space of rooted binary labelled trees with n leaves:



- The law of a uniform binary tree with n leaves is the stationary distribution of this Markov chain.
- As n → ∞, a uniform binary tree with n leaves converges to a Brownian continuum random tree.

@Kortchemski

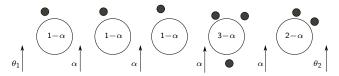
▶ Question 3: As $n \to \infty$, Aldous conjectured a limiting diffusion on the space of continuum trees, with stationary distribution given by the Brownian continuum random tree.

2. Chinese Restaurant Processes and Interval Partition Evolutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Up-Down Ordered Chinese Restaurant Processes

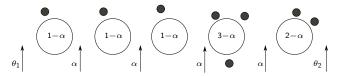
- ► Tables are ordered in a line.
- Fix $\alpha \in (0, 1)$ and $\theta_1, \theta_2 \ge 0$. We construct a continuous-time Markov chain.
- Arriving (up-step):
 - For each occupied table, say there are $m \in \mathbb{N}$ customers, a new customer comes to join this table at rate $m \alpha$
 - At rate θ_1 and θ_2 respectively, a new customer enters to start a new table at the leftmost and the rightmost positions.
 - Between each pair of two neighbouring occupied tables, a new customer enters and begins a new table there at rate α;



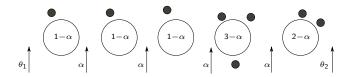
This is an ordered version of a Chinese Restaurant Process with parameter $\alpha \in (0, 1)$ and $\theta = \theta_1 + \theta_2 - \alpha \ge -\alpha$.

Up-Down Ordered Chinese Restaurant Processes

- Tables are ordered in a line.
- Fix $\alpha \in (0, 1)$ and $\theta_1, \theta_2 \ge 0$. We construct a continuous-time Markov chain.
- Arriving (up-step):
 - For each occupied table, say there are $m \in \mathbb{N}$ customers, a new customer comes to join this table at rate $m \alpha$
 - At rate θ_1 and θ_2 respectively, a new customer enters to start a new table at the leftmost and the rightmost positions.
 - Between each pair of two neighbouring occupied tables, a new customer enters and begins a new table there at rate α;



- ▶ This is an ordered version of a Chinese Restaurant Process with parameter $\alpha \in (0, 1)$ and $\theta = \theta_1 + \theta_2 \alpha \ge -\alpha$.
- Leaving (down-step): Each customer leaves at rate 1.
- When the restaurant is empty, a new customer arrives at rate $\theta \lor 0$.



At each time t ≥ 0, list the numbers of customers of occupied tables, from left to right, by a composition of an integer.

- View the model as a Markov process on the graph of compositions:
 - (1,1,1,3,2) to (1,1,1,1,3,2) at rate $\theta_1 + 3\alpha$
 - (1,1,1,3,2) to (1,1,3,2) at rate 3.

Definition

The composition-valued process is called a Poissonized up-down ordered Chinese Restaurant Process with parameters $(\alpha, \theta_1, \theta_2)$, PCRP $(\alpha, \theta_1, \theta_2)$.

Main result

Theorem (S., Winkel)

Let $\alpha \in (0,1)$ and $\theta_1, \theta_2 \ge 0$. For every $n \in \mathbb{N}$, let $(C^{(n)}(t), t \ge 0)$ be a sequence of $\mathrm{PCRP}(\alpha, \theta_1, \theta_2)$ started from $C^{(n)}(0)$. Suppose that

 $n^{-1}C^{(n)}(0) \xrightarrow[n \to \infty]{} \gamma$ in the space of interval partitions

Then, under the Skorokhod topology,

$$(n^{-1}C^{(n)}(2nt), t \ge 0) \xrightarrow[n \to \infty]{} (\beta(t), t \ge 0)$$
 in distribution.

The limiting process ($\beta(t), t \ge 0$) is called an ($\alpha, \theta_1, \theta_2$)-self-similar interval-partition evolution, SSIPE($\alpha, \theta_1, \theta_2$).

The Space of Interval Partitions

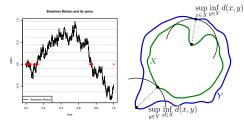
- $L \ge 0$. We say β is an interval partition of the interval [0, L], if
 - ▶ $\beta = \{(a_i, b_i) \subset (0, L): i \ge 1\}$ a collection of disjoint open intervals
 - The total mass (sum of lengths) of β is $\|\beta\| := \sum_{i>1} (b_i a_i) = L$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► a composition (1, 1, 1, 3, 2) of integer 8 an interval partition $\{(0, 1), (1, 2), (2, 3), (3, 6), (6, 8)\}$ of [0, 8] $(1, 1, 1, 3, 2) \Leftrightarrow \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{2}{\longrightarrow}$

The Space of Interval Partitions

- $L \ge 0$. We say β is an interval partition of the interval [0, L], if
 - ▶ $\beta = \{(a_i, b_i) \subset (0, L): i \ge 1\}$ a collection of disjoint open intervals
 - The total mass (sum of lengths) of β is $\|\beta\| := \sum_{i \ge 1} (b_i a_i) = L$.
 - ▶ a composition (1, 1, 1, 3, 2) of integer 8 an interval partition $\{(0, 1), (1, 2), (2, 3), (3, 6), (6, 8)\}$ of [0, 8] $(1, 1, 1, 3, 2) \Leftrightarrow \stackrel{1}{\longmapsto} \stackrel{1}{\longmapsto} \stackrel{1}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{2}{\longrightarrow}$
 - Zero points Z of a Brownian motion on (0, 1): interval components of the open set (0, 1) \ Z form an interval partition β of [0, 1]



- The space *I* of all interval partitions is equipped with the Hausdorff metric d_H (between the endpoint sets [0, L] \ β).
- ► (\mathcal{I}, d_H) is not complete but the induced topological space is Polish.

Main Result

Theorem (S., Winkel)

Let $\alpha \in (0,1)$ and $\theta_1, \theta_2 \ge 0$. For every $n \in \mathbb{N}$, let $(C^{(n)}(t), t \ge 0)$ be a sequence of $\mathrm{PCRP}(\alpha, \theta_1, \theta_2)$ started from $C^{(n)}(0)$. Suppose that

$$n^{-1}C^{(n)}(0) \xrightarrow[n \to \infty]{} \gamma \quad in (\mathcal{I}, d_H)$$

Then, under the Skorokhod topology,

$$(n^{-1}C^{(n)}(2nt), t \ge 0) \xrightarrow[n \to \infty]{} (\beta(t), t \ge 0)$$
 in distribution.

The limiting process ($\beta(t), t \ge 0$) is called an ($\alpha, \theta_1, \theta_2$)-self-similar interval-partition evolution, SSIPE($\alpha, \theta_1, \theta_2$).

Main Result

Theorem (S., Winkel)

Let $\alpha \in (0,1)$ and $\theta_1, \theta_2 \ge 0$. For every $n \in \mathbb{N}$, let $(C^{(n)}(t), t \ge 0)$ be a sequence of $\mathrm{PCRP}(\alpha, \theta_1, \theta_2)$ started from $C^{(n)}(0)$. Suppose that

$$n^{-1}C^{(n)}(0) \xrightarrow[n \to \infty]{} \gamma \quad in (\mathcal{I}, d_H)$$

Then, under the Skorokhod topology,

$$(n^{-1}C^{(n)}(2nt), t \ge 0) \xrightarrow[n \to \infty]{} (\beta(t), t \ge 0)$$
 in distribution.

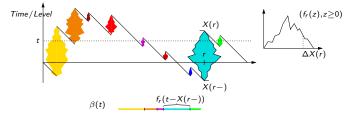
The limiting process ($\beta(t), t \ge 0$) is called an ($\alpha, \theta_1, \theta_2$)-self-similar interval-partition evolution, SSIPE($\alpha, \theta_1, \theta_2$).

Comments:

- Scaling limits of Markov chains: on Young graph of partitions (Borodin, Olshanski, Fulman, Pertrov); on the graph of compositions (Rivera-Lopez, Rizzolo)
- Our method is very different from these works.
- ▶ We establish a pathwise construction of the limiting process SSIPE.

Construction of SSIPE

- A spectrally positive Lévy process $(X(s), s \ge 0)$ stopped at a random time
- ► Mark each jump by an excursion $(f_r(z), z \ge 0)$, whose length satisfies inf $\{z > 0: f_r(z) = 0\} = \Delta X(r) = X(r) X(r-)$
- A table is add at position r at time/level X(r-), whose size evolves according to f_r
- Skewer at level t: the sizes of ordered tables at level t form an interval partition β(t)



A simulation: http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif

Properties of SSIPE

Theorem (Forman, Rizzolo, S., Winkel)

For $\alpha \in (0, 1)$ and $\theta_1, \theta_2 \ge 0$, let $(\beta(t), t \ge 0)$ be an SSIPE $(\alpha, \theta_1, \theta_2)$ starting from $\gamma \in \mathcal{I}$.

- ▶ It is a path-continuous Hunt process on (\mathcal{I}, d_H)
- (Self-similar with index 1) For c > 0, the space-time rescaled process (cβ(t/c), t ≥ 0) is also an SSIPE(α, θ₁, θ₂)
- Let $\theta = \theta_1 + \theta_2 \alpha$. There are three phases:
 - when $\theta \geq 1$, it a.s. never hits \emptyset
 - when $heta \in (0,1)$, it is reflected at \emptyset
 - when $\theta \in [-\alpha, 0]$, it is absorbed at \emptyset
- The total mass ($||\beta(t)||, t \ge 0$) evolves according to a squared Bessel process of "dimension 2θ ".
- For any t > 0, β(t) a.s. has the α-diversity property, i.e. the following limit exists for each x ≥ 0:

$$\mathcal{D}_{\alpha}(x) := \Gamma(1-\alpha) \lim_{h \downarrow 0} h^{\alpha} \#\{(a,b) \in \beta(t) : |b-a| > h, b \leq x\}.$$

Remark: when $\theta_2 = \alpha$, we extend SSIPE to the completion of (\mathcal{I}, d_H)

De-Poissonized process and Stationary Distribution

Theorem (Forman, Rizzolo, S., Winkel)

For an $SSIPE(\alpha, \theta_1, \theta_2)$ ($\beta(t), t \ge 0$), introduce a Lamperti/Shiga-type time-change

$$au(u):=\inf\left\{t\geq 0:\;\int_0^t\|eta(r)\|dr>u
ight\},\quad u\geq 0.$$

The de-Poissonized SSIPE($\alpha, \theta_1, \theta_2$) (renormalized and time-changed)

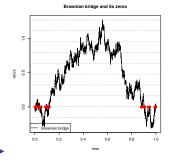
$$ar{eta}(u) := \|eta(au(u))\|^{-1}eta(au(u)), \qquad u \ge 0$$

is a continuous Hunt process on the space of unit interval partitions, with stationary distribution denoted by $PDIP(\alpha, \theta_1, \theta_2)$.

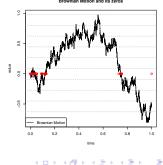
Poisson–Dirichlet Interval Partition $PDIP(\alpha, \theta_1, \theta_2)$

- The ranked lengths of intervals in a PDIP $(\alpha, \theta_1, \theta_2)$ has the law of Poisson–Dirichlet distribution (α, θ) on the Kingman simplex with $\theta = \theta_1 + \theta_2 - \alpha.$
- Stick-breaking construction (S., Winkel)
- When $\theta_2 = \alpha$: related to regenerative composition structures (Gnedin-Pitman, Winkel-Pitman)

```
Examples:
PDIP(1/2, 1/2, 1/2): zero points of
a Brownian bridge on [0, 1] from
zero to zero.
```



PDIP(1/2, 1/2, 0): zero points of a Brownian motion on [0, 1].



Brownian Motion and its zeros

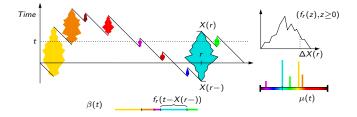
3. Applications

(ロ)、(型)、(E)、(E)、 E) の(()

Projection on the Kingman Simplex

- An SSIPE($\alpha, \theta_1, \theta_2$) is the scaling limit of certain Markov processes on the graph of compositions
- Consider a de-Poissonized SSIPE(α, θ₁, θ₂) (β
 (u), u ≥ 0): Write W(u) for the ranked interval lengths of β
 (u). Then (Forman, Pal, Rizzolo, Winkel) prove that the process (W(u/2), u ≥ 0) is an EKP diffusion on the Kingman simplex introduced by (Ethier–Kurtz,Petrov)
- An EKP diffusion is the scaling limit of certain Markov chains on the graph of partitions (Ethier–Kurtz,Petrov).

A Related Population-Genetic Model



(Forman, Rizzolo, S., Winkel)

- A Lévy process marked by a pair (f_r, U_r): an excursion f_r and an independent allelic type U_r ~ ν₀ (colour).
- Statistic of alleles: a measure-valued process $(\mu(t), t \ge 0)$ associated with an SSIPE $(\beta(t), t \ge 0)$.
- ▶ The de-Poissonized process has a stationary distribution: the Pitman–Yor distribution $PY(\alpha, \theta, \nu_0)$ with $\alpha \in (0, 1)$ and $\theta = \theta_1 + \theta_2 \alpha \ge -\alpha$.
- This generalizes the *labelled infinitely-many-neutral-alleles* model (α = 0) by (Ethier–Kurtz).

Continuum-Tree-Valued Diffusions

- ▶ $\rho \in (1,2]$, ρ -stable continuum random tree [Aldous, Duquesne, LeGall]
- ▶ $\rho = 2$: Brownian Continuum-random tree
- Question: construct a continuum-tree-valued diffusion which is stationary under the law of the ρ-stable continuum random tree?
- In the Brownian case ρ = 2: Aldous's conjectured diffusion (Forman–Pal–Rizzolo–Winkel, Löhr–Mytnik–Winter)
- Idea: using the de-Poissonized SSIPE with stationary distribution PDIP (S.-Winkel in progress)

Further questions:

- Ford's tree growth model (Ford)
- Alpha-gamma model (Chen–Ford–Winkel)
- Continuum fragmentation trees (Haas, Miermont, Pitman, Winkel)

PDIPs in Continuum Random Trees

 \triangleright A ρ -stable tree is a metric space equipped with a mass measure of total mass 1.

With $\alpha = 1 - 1/\rho$:

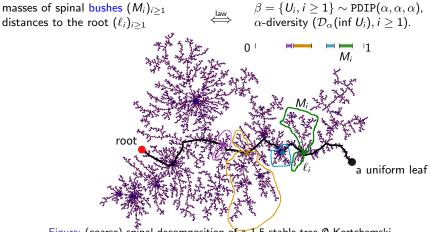


Figure: (coarse) spinal decomposition of a 1.5-stable tree @ Kortchemski

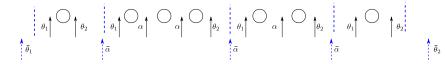
Difficulty in the non-Brownian case: branch point with infinite degree (S., Winkel): nested SSIPE ▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Scaling limit of Nested PCRP

Nested PCRP: clusters of tables

- Clusters: PCRP($\bar{\alpha}, \bar{\theta}_1, \bar{\theta}_2$)
- Tables in each cluster: $PCRP(\alpha, \theta_1, \theta_2)$

• Consistency:
$$\theta := \theta_1 + \theta_2 - \alpha = -\bar{\alpha} < 0$$



- Nested Chinese restaurant processes are widely applied in non-parametric Bayesian analysis.
- **S., Winkel**: the scaling limit of nested PCRP is nested SSIPE.
- Applications to multifurcating trees: bushes of subtrees
- Key ingredient: SSIPE(α, θ₁, θ₂) excursion away from Ø with θ < 0 (though Ø is an absorbing state!)</p>

SSIPE excursions

Theorem (S., Winkel)

Let $(C(t), t \ge 0)$ be a $PCRP(\alpha, \theta_1, \theta_2)$ starting from the composition of 1 and suppose that $\theta := \theta_1 + \theta_2 - \alpha < 1$. Denote the law of the process $(n^{-1}C(2nt), t \ge 0)$ by $P^{(n)}$. Then the following convergence holds vaguely:

$$n^{1-\theta} \cdot \mathrm{P}^{(n)} \xrightarrow[n \to \infty]{} \Lambda.$$

The limit Λ is a sigma-finite measure on the space of continuous interval-partition excursions away from \emptyset .

Comments:

- When $\theta > 0$, an $SSIPE(\alpha, \theta_1, \theta_2)$ is reflected at \emptyset and Λ is the Itô measure.
- When $\theta \leq 0$, an SSIPE $(\alpha, \theta_1, \theta_2)$ is absorbed at \emptyset , but our description of A still makes sense of an SSIPE $(\alpha, \theta_1, \theta_2)$ excursion measure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ideas of the proof

- In a Chinese restaurant process, a new table has one customer initially, and this table is removed when all customers of this table have left.
- ► the number of customers at a single table evolves according to a birth-death process X, started from 1 and absorbed at zero, with birth rate P_{i→i+1} = i − α and death rate P_{i→i-1} = i.

Lemma

Denote the law of the process $(\frac{1}{n}X(2nt), t \ge 0)$ by $\pi^{(n)}$. The following convergence holds vaguely:

$$2\alpha n^{1+\alpha} \cdot \pi^{(n)} \xrightarrow[n \to \infty]{} \mu.$$

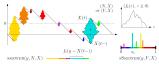
The limit μ is a σ -finite measure of the space of positive continuous excursions: excursion measure of (-2α) -dimensional squared Bessel process (Pitman–Yor)

- Define the lifetime of a positive excursion f by ζ(f) := sup{s ≥ 0: f(s) > 0}. Then μ(ζ(f) ∈ ·) coincides with the Lévy measure of scaffolding stable (1 + α) precess.
- ► Under µ(· | ζ(f) = x), the excursion is a (-2α)-dimensional squared Bessel process of length x.

Summery

- We have constructed a three-parameter family of interval-partition diffusions
- Scaling limit of Markov chains on the graph of compositions

Generalized labelled infinitely-many-neutral-alleles model



Future work: continuum-tree-valued process with stationary distribution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

🔋 N. Forman, D. Rizzolo, Q. Shi and M. Winkel.

A two-parameter family of measure-valued diffusions with Poisson–Dirichlet stationary distributions. arXiv:2007.05250

N. Forman, D. Rizzolo, Q. Shi and M. Winkel. Diffusions on a space of interval partitions: the two-parameter model. arXiv:2008.02823.

Q. Shi and M. Winkel.

Two-sided immigration, emigration and symmetry properties of self-similar interval partition evolutions.

arXiv:2011.13378.

Q. Shi and M. Winkel.

Up-down ordered Chinese restaurant processes with two-sided immigration, diffusion limits and emigration. arXiv:2012.15758.

Thanks!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00