
An overview of the Isaac Newton 
Institute programme, “Mathematical 
and statistical approaches to climate 

modelling and prediction”  

•  Aims/goals of the programme 
•  What did we do? 
•  Emerging themes and findings 
 - stochastic models 
 - statistical frameworks 

 Kevin Horsburgh (with thanks to my co-organisers 
and all participants of CLP 

 Liverpool Marine Symposium. 17 January 2011 



•  The programme will complement NERC endeavours in 
climate research 

•  It is intended to bring together world-leading researchers in 
climate modelling, mathematics and statistics in order to 
make progress in solving some of the major issues facing 
climate prediction  



Extreme positions on both sides of the climate debate 
arise because of the high degree of uncertainty 
surrounding the amount of future warming and the lack 
of detailed predictions at the regional level  
“The Northern Hemisphere winter is already proving once 
again that global warming is another undelivered 
government promise”. Dr Tim Ball, Dec 2010 

A major goal for climate scientists is to provide credible and transparent 
assessments of model accuracy and other uncertainties. This requires the 
close collaboration of mathematicians, statisticians and climate scientists  

Coldest Winter in 1000 Years Cometh – not. 



Overarching goals 
•  To bring together world-leading researchers in 

climate modelling, mathematics & statistics to 
face the challenges of climate prediction 

•  Provide a credible, systematically-derived, 
transparent assessment of uncertainty….. 

•  ….thus engage in an honest dialogue with policy 
makers and the public (by answering the question 
asked; and by pointing out when the question is 
unanswerable) 



Reality 

Comprehensive 
mathematical models 

Idealised mathematical 
models 

Mathematics and Climate  

• Aids understanding 
• Used to frame 

hypotheses 

• Used to test hypotheses 
• Policy relevant 

INI has brought these various communities together 



Specific aims of our programme 
•  To stimulate improved stochastic sub-grid-scale physics 

models 
–  to improve the variability of ensemble climate simulations 
–  improve the connection between deterministic models and 

statistical tools 
– establish frameworks for relating models of different 

resolutions  
•  Develop statistical techniques to provide a sound basis for 

probabilistic climate prediction 
– Synthesis of vast amounts of model data 
– quantitative answers to questions of interpreting 

probabilistic output 
– how best to use measurements to assess quality of 

climate model predictions (and initialisation – D/A)   



The CLP programme in numbers 
•  157 – number of participants 
•  19 week programme 
•  95 days of scientific interaction  
•  150 – hours of formal presentations 
•  2-5 new collaborations per participant (as 

indicated by individual final reports) 
• Many potential new papers, grant 

applications 
•  In short, an unrivalled opportunity for cross 

discipline research on a large scale    



What happened – workshops and outputs 
•  August 23-27 workshop in Cambridge  

–  “Stochastic methods in climate modelling” 
–  Programme, abstracts, videos at 
http://www.newton.ac.uk/programmes/CLP/clpw01p.html 
–  Some papers in Phil Trans. Roy. Soc. Lond. A special issue 

“Climate predictions: the influence of nonlinearity and 
randomness” 

•  September 20-23 workshop at University of Exeter 
–  “Probablistic Climate Prediction” 
–  Programme, abstracts, videos at 
http://www.newton.ac.uk/programmes/CLP/clpw02p.html 
–  Emerging research questions (10) and discussion on Wiki 

•  November 24, Willis Research Network, London 
–  “Climate Change Question Time” Open for Business event 

•  December 6-10 2010 – final workshop 
–  Uncertainty in climate prediction: models, methods and decision 

support  



What happened – many discussion sessions 

•  Emulators and “particle filtering” September 2 

•  Palaeo-climate reconstruction and SUPRAnet 
September 15 

•  Tipping points October 18-21 

•  Allied RSS meeting  October 22 
“Complexity and statistics: tipping points and crashes” 

•  Multi-model ensembles / probabilistic climate 
projection October 26 



Statistical aspects of the programme 
•  Role of phenomenological models in studying complex systems 

(Michael Ghil, Didier Paillard, Frank Kwasniok, Hank Dijkstra, 
Michel Crucifix, Arthur Dempster) 

•  Data assimilation with uncertain static parameters: statistical 
approach using Particle-MCMC (Jonty Rougier, Michel Crucifix). 

•  Approximations of the above for large problems (John Haslett, 
Vincent Garreta, Andrew Parnell, Nathan Urban, Richard 
Wilkinson, Neil Edwards) 

•  General Bayesian methods for palaeoclimate reconstruction 
(Caitlin Buck, John Haslett, Vincent Garreta, Andrew Parnell, 
Michel Crucifix, Jonty Rougier) 

•  Statistical models for multi-model ensembles (James Annan, 
Julia Hargreaves, David Stephenson, Bryson Bates, Richard 
Chandler, Jonty Rougier, Michael Goldstein) 



Emerging themes and findings 

•  Statistical framework for handling uncertainty 
•  Probabilistic Projections 
•  Emulators, Accelerated Bayesian Computation 
•  Paeleo-climate and proxy data 
•  Tipping points 
•  Stochastic parameterisations and turbulence 

spectrum in GCMs 
•  Data assimilation for decadal climate prediction 
•  Maximum Entropy Production 



“The mechanisms for atmospheric blocking are only partially 
understood, but it is clear that there are complex motions, 

involving meso-scale atmospheric turbulence, and interactions 
that climate-resolution models may not be able to represent 

fully.”  

“In developing the UKCP09 projections it was decided not to 
include probabilistic projections for future wind due to the 

high level of associated uncertainty.”  

From UKCP09 



Standard ansatz for “ab initio” weather/climate models   

Deterministic  local 
bulk-formula 
parametrisation  

Increasing scale 

e.g. momentum transport 
by: 

• Turbulent eddies in 
boundary layer 

• Orographic gravity wave 
drag.   

• Convective clouds 

Eg 

Local bulk-formula parameterisation 



Will future UK offshore winds be reliably strong 
enough to provide projected energy needs from 

renewables? 

Primitive equation models are required to resolve the 
variability of planetary waves and the processes 

leading to blocking anticyclones  



…and also to evaluate consequences of 
geoengineering proposals 

Permanent El Nino, alteration of monsoon patterns? 



“I believe that the ultimate climate 
models..will be stochastic, ie random 
numbers will appear somewhere in the 
time derivatives” Lorenz 1975.  



Stochastic-dynamic approaches to 
probabilistic Earth-system modelling   

Computationally-cheap nonlinear 
stochastic-dynamic models 
(potentially on a secondary grid) 
providing specific realisations of 
sub-grid motions rather than  
sub-grid bulk effects.  

Potentially coupled 
over a range of 
scales  

(Palmer, 1997; 2001)   



Examples : 

• Multiplicative Noise (Stochastically Perturbed Parametriatsion 
Tendencies; SPPT - Buizza et al, 1999) 
• Stochastic Backscatter (Stochastic Spectral Backscatter Scheme; 
SPBS, Shutts, 2005, Berner et al  2010) 
• Cellular Automata (Palmer 1997, Berner et al  2010) 
• Stochastic lattice models (Majda et al, 2010) 
• Dual grid, stochastic mode reduction (Majda et al, 2010: Allen et 
al, 2010) 
• Statistical mechanics of finite sized cloud ensembles   (Plant and 
Craig 2008) 



CNTT95-ERA40 SPBST95-CNTT95 CNTT511-CNTT95 

T511 T95+Stochastic 
parametrisation   

T95 

•  Experiments with Berner et al (JAS 2009) stochastic backscatter 
scheme (partially conducted during CLP programme) 

•  Winters (Dec-Mar) of the period 1990-2005 



Comparison of the BSS(∞) for precipitation over land regions: 
ENSEMBLES multi-model ensemble (MM), perturbed parameter 

ensemble (PP), ECMWF stochastic physics ensemble (SP) and 
ECMWF control ensemble (noSP) 

M Weisheimer (ECMWF), Work in progress 



Regions from Giorgi and Francisco, 2000 



Comparison of the BSS(∞) for temperature over land regions: 
ENSEMBLES multi-model ensemble (MM), perturbed parameter 

ensemble (PP), ECMWF stochastic physics ensemble (SP) and 
ECMWF control ensemble (noSP) 



Stochastic parameterisation for convection 

Example snapshot of precipitation 
rate, Met Office model,  
with scattered convection 
(randomly distributed) 

Pdf of convective mass flux, 
shows range of convective 
responses 
over an area (64km)2  
Plant-Craig scheme behaviour 
c.f.  
distribution from equilibrium 
theory 



Stochastic parameterisation for convection [Bob Plant] 
Background 
Few clouds per grid box (depends on size and forcing), maybe 1 or 2 
  => actual no. of clouds &  convection in box unpredictable 
Convective equilibrium: theory for mean strength & fluctuations  
Plant-Craig parameterisation enacts :   
   stochastic:  models fluctuations (and mean response). 
 (hitherto in single-column models & ensemble weather forecasting)  

clouds vary; no effect if coarse GCM grid;      finer grid needs stochastic parameterisation 



Emulation as parametrisation [Peter Challenor, NOC] 

•  We have a GCM that cannot resolve sub-grid scale 
processes 

•  But we have a process model for these processes 

•  This is too slow to embed in the GCM 

•  Build an emulator for the process model 

•  Embed this in the GCM (in a deterministic or a stochastic 
way) 
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A community-wide approach to the 
Climate  Model development? 



Standard argument against the “Airbus 
paradigm” 

“We need model diversity in order to be able to 
estimate prediction uncertainty” 

However, development of a skilful Probabilistic 
Climate Model weakens this argument, opening 
the door to greater integration of climate model 
development, and to much more efficient use of 
the enormous human and computational 
resources needed to develop reliable climate 
prediction models.  



Climate and its interpretation 

•  The term “climate” has undergone a number of 
meanings, in different disciplines and at different times  

•  Alexander von Humbolt (1845) described climate in 
holistic terms that included the impact of the total 
environment on peoples and their culture.  

•  In the late 19th century climate, was increasingly 
characterised as  the average condition of the 
atmosphere at any point.  Climate was the statistics of 
weather calculated over long periods of time, and usually 
for larger geographic areas. Climate research was 
classification of regional averages. In this era, global 
climate was broadly the sum of all regional climates. 



•  As observing technologies improved throughout the 20th 
century, climatology emerged as the science of 
climatological processes and, as a discipline, the 
balance fell away from geography and towards physics.  
Regional climate was now more correctly thought of as 
interaction of the global climate with regional physical 
geography 

•  Most recently we think of the climate system as the 
physical-biogeochemical system (atmosphere, ocean, 
cryosphere, vegetation, biogeochemical cycles) which 
generates the time-variable statistics of the Earth 
system. Only in this latter phase have dynamical models 
aspired to explicitly represent all of the aforementioned 
components. This has allowed the models to become 
tools for political and environmental debate. 



31 

What is climate? 
•  We cannot observe the climate; we merely observe the 

states of the various components of the climate system at 
various instants in time 

•  Climate is: 

–  the invariant measure in a hypothetical thought 
experiment in which the forcing is held constant 
indefinitely 

– what is obtained by taking the joint PDF for the state and 
the parameters and then integrating it over the 
parameters 

–  the PDF of the current system state given all the 
historical observations 

•  Current GCMs are not configured to produce PDFs, and 
hence additional statistical assumptions are required to 
compute climate as defined in these terms 



•  Given a forward model of the climate system, a prior on 
the initial variables, a prior on the parameters (e.g. 
expert knowledge and measurements: the climate is 
could be defined as the joint posterior density of the 
variables and parameters conditioned on the model and 
the available measurements. 

Black line  = pdf of obs data 1970-1999 
Blue line    = pdf of climate data 1970-1999 
Red line    = pdf of climate data 2070-2099 
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The Multi-Model Ensemble 

A “fruit bowl of opportunity” {X1,X2,...,Xm} 
Note: Not a random sample from one homogeneous population 
(and it does not include all possible fruit!) 
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What does reality look like? 

true climate Y – inferred from observations Z 
It could not have been drawn out of the fruit bowl   

How can we infer properties of this from the fruit in the fruitbowl? 

An inconvenient truth 
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Smoothies (multi-model means) 

A smoothie is a weighted average of fruits.  
•  It is not an item of real fruit!  
(important information has been lost by averaging) 

•  Non-unique choice of weights for making smoothies.  

 We require modelling frameworks for obtaining samples of 
real fruit from the posterior distribution p(Y|X) (not smoothies E
(X) or E(X|Y)).  
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Homogeous sub-samples  

How to relate Y to X? 
•  Are the {Xi} independent draws from a distribution centred on Y? 
•  Are the {Xi} second-order exchangeable with each other and Y? 
•  How best to model model discrepancy Y-Xi?   
“All fruit are equal, but some are are more equal than others” – 
Granny Orwell 
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Statistical frameworks 
We need more than weights – we need a credible statistical model  
for the distribution of real climate Y given information from a  
multi-model ensemble 

•  Incorrect to interpret weights w 
as probabilities for each model 
•  Need to know dependencies in 
X_i to find variance of X’ 
•  X’ does not equal real climate Y  
•  require a statistical model for 
the distribution Y|X’ 

Y = real climate 
X_i = climate model run 
Z = observation of climate 



Uncertainty within statistical frameworks  

•  What are relevant / dominant sources of uncertainty in any 
application?  

•  Which climate simulators to include in any study?  
•  How to handle fundamental simulator deficiencies?  
•  How to weight information from multiple simulators?  
•  Different conceptual frameworks e.g. “population” of 

simulators versus exchangeable set (operationally probably 
similar however) 

•  How to ensure decision-relevant probabilistic interpretation 
of information?  

•  How to provide uncertainty assessments in form suitable 
for downstream / stakeholder use? 



Models of complex systems 
•  Using complex simulators to understand physical systems 

raises many technical and conceptual questions about the 
uncertainty introduced by moving from the model to the 
system 

•  Methodologies to deal with these difficulties have been 
devised under the Managing Uncertainties in Complex 
Models project (http://www.mucm.ac.uk) 

•  Understanding climate inevitably requires “best expert 
judgement” in a probabilistic framework 
–  Probabilistic estimates from an individual (subjective Bayes analysis) 
–  A probabilistic analysis so compelling it would demand agreement 

from all experts (objective bayes analysis)  

•  Advanced statistics provides the framework for simulator 
analysis, inverse modelling and expert judgement 



OBS PHYSICAL  
LAWS 

DATA MODEL 
DA 

OPTIMAL STATE ESTIMATE  40 

Aim:  to combine limited observations with our 
Knowledge of the laws of physics for optimal state 

estimation 

Data Assimilation (DA) 



DA and Climate 
 DA developed in context of Numerical Weather Prediction 
 Starting to be used in paleoclimate studies and in oceanography. 
 Challenges to full implementation in Earth System Models: 

•  Multiple time scales 
•  High dimensions 
•  Sparsity of data 
•  Nonlinearity of climate 

processes 
•  Model Uncertainty 

Find the state x given observations 
yi  by minimising  



BENEFITS 

1. Reduction in prediction uncertainty due to improved 
estimation of initial state, especially for seasonal and  
decadal prediction 

2. Sophisticated diagnostics to reduce model errors- can 
isolate errors in physical processes 

3. Sophisticated diagnostics to reduce key uncertainties in 
climate change e.g. due to cloud or ice feedbacks 



Final remarks 
•  The programme has led to  

–  (i) a common understanding of need for a joint effort of statisticians 
and climate modellers to form climate projections with uncertainties 
and usable by stakeholders  

–  (ii) better agreement over concepts 
–  (iii) a common sense of direction.   

•  Acceptance and a raised profile of modelling uncertainty in 
climate science, the need to test models, ideas to deal with 
uncertainty, tightening vocabulary, clarifying issues 

•  Impetus to think about fundamentals of climate modelling 
and combining state-of-the-art statistics and modelling 
(projects instigated). 

•  We see the combination of state-of-the-art statistics and 
modelling as the way forward for climate science and its 
use for policy and investment decisions. 



Developing the CLP approach 
•  More networking programmes such as this one 

•  Better recognition of the important role of statistical and 
stochastic modelling by climate centres – it is a 
fundamental part of the prediction system 

•  More incentivisation for statisticians to be involved in 
climate science – there’s a skill shortage of statisticians in 
climate science that needs to be addressed; 

•  Improved funding mechanisms for joint climate-statistical 
research e.g. coordinated joint funding by NERC and 
EPSRC. For example, a funding call for complexity 
mathematics in climate science would be ground-breaking 



Emulators 

•  An emulator is a statistical approximation to the original 
simulator (Gaussian Process, or Bayesian NN) 

•  It gives us an estimate of what the simulator would give 
plus a measure of uncertainty 

•  It is very fast 
1. Run a designed experiment with the simulator 
2. Build the emulator (incl diagnostic checks) 
3. Use the emulator for statistical inference on the simulator 

outputs 


