A model assessment of boundary wave communication of bottom pressure and overturning changes for the North Atlantic

Vassil Roussenov¹, Ric Williams¹, Chris Hughes² and Rory Bingham²

1. Department of Earth and Ocean Sciences, University of Liverpool, UK 2. Proudman Oceanography Laboratory, Liverpool, UK

1. How changes in the high latitude forcing communicate over the ocean?

Downstream response at lower latitudes along the western boundary involving:

- rapid response: wave propagation against the sidewalls and along the equator - Kelvin waves, coastal trapped waves (Huthnance, 1978, JPO; Kawase, 1987; Johnson & Marshall, 2002, JPO)
- an intermediate response involving changes in local circulation
- slower response: advection along western boundary and evolution of dense water masses

3. SSH and bottom pressure correlations

ndel SSH

Correlations with mean SSH/BP along 1000m west of Scotland

positive correlations around 20°N – Ross by waves generated at

• higher correlations in case of coarse resolution and smoothed

• coherent, highly correlated signals along the coast

negative correlations in the centre of subtropical gyre

& Meredith, Phil. Trans. Roy Soc., 2006)

Model SSH correlation

2. Model Studies

Model simulations carried out using a 16 layer isopycnic model (MICOM).

Resolution is 0.23° (26 km at the equator & 13km at 60°N). Model initialised from Levitus and run for years, forced by ECMWF monthly-mean winds and surface fluxes. Parallel run is performed, forced by annual mean forcing, and a twin experiment involving extra thermohaline forcing is run from

The twin perturbation experiment is run for 10 years, with deep interface raised 50m per 5 days over the northern relaxation zone. Advection is monitored by a transient model tracer. released in the Labrador Sea, when the perturbed buoyancy forcing starts.

forcing; annual forcing; annual forcing, smooth topography; monthly forcing ,coarse reso

(b) Overturning streamfunction (c) Upper transport variability

Time of BP anomaly

propagation 0.23° model

4. Propagation of wave signals in the model

- boundary wave propagation on time scale of months to
- connected to interior via equatorial Kelvin waves and basin-wide Rossby waves
- similar structures of SSH and bottom pressure anomalies, but highest anomalies of BP along western

5. Overturning and bottom pressure variability

Rottom pressure correlations with upper transport (35° N - 65° N) High-pass (T<360d)

the eastern boundary

altimetry

Timeseries of upper transport and

962 1963 1964 1993 1986 1987 1988 1989 1990 1991 1992 103 Upper model transport and BP derived estimates

model transport; WB BP estimate; (E - W) BP e

- highly correlated overturning and western boundary bottom pressure variations
- different response over the shelf (negative correlations) and along the continental slope (positive correlations)
- externally forced variability dominates onger term transport variations
- close agreement of the model transport variations and BP derived estimates on longer timescale
- changes in overturning can be efficiently inferred from the western boundary BP variations

6. Conclusions

- Boundary wave propagation on time scale of months to vears
- Connected to interior via equatorial Kelvin waves and basin-wide Rossby waves
- Waves modified by the topography and stratification
- Wave signals associated with changes in basin-wide overturning of typically 1 - 3 Sv, occurring prior any deep advective signal
- Externally forced variability dominates longer term transport variations
- Coherent, highly correlated signals of SSH and bottom pressure along the coast
- Significant correlations of the overturning and bottom pressure along western boundary
- Changes in overturning can be efficiently inferred from the western boundary BP

Reference: Roussenov, V., R.G. Williams, C.W. Hughes and R.J. Bingham, 2008. Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. Journal of Geophysical Research, in press.