
INVARIANTS OF LINKS AND 3 -MANIFOLDSFROM SKEIN THEORY AND FROM QUANTUM GROUPS.H. R. MortonDepartment of Pure MathematicsUniversity of LiverpoolPO Box 147Liverpool L69 3BXEngland.ABSTRACT. Starting with Kau�man's bracket polynomial the techniques of linear skein theory areused to present and package a family of polynomial invariants for a framed link. An equivalent familyof invariants is derived from representations of the quantum group SU(2)q . Specialisation of thevariable q leads to invariants of a 3 -manifold de�ned by surgery on a framed link, in terms of theinvariants of the link. A similar programme is outlined relating the invariants constructed from theHomy polynomial to those derived from the quantum groups SU(k)q .Introduction.In this series of talks I shall start by discussing the knot invariants and algebra re-lated to Kau�man's bracket polynomial, and the construction of 3 -manifold invariantsfrom them. The whole area can alternatively be viewed in terms of representationsof the quantum group SU(2)q ; I shall exhibit descriptions which have a convenientinterpretation in either light, and also give the means for translating between them.My presentation here is based on the bracket polynomial, and has much in commonwith the work of Lickorish, [16], and Blanchet, Habegger, Masbaum and Vogel, [2].A direct approach on the quantum group route is given in my paper with Strickland,[23], which draws directly on the early work of Kirillov and Reshetikhin, [13]. Amore general basis for the use of quantum group representations in constructing knotinvariants is given in the work of Reshetikhin and Turaev, [31]. Detailed descriptionsof representations for SU(2)q can be found in Kirby and Melvin, [12]; while theseare based on specialisations of SU(2)q in which the parameter q is a root of unitythey do present careful and explicit details which enable the less complicated case ofgeneric q to be handled as well.The reason for their treatment is to give an account of the invariants of a 3-manifoldM which depend on the choice of a root of unity, and a quantum group (in thiscase SU(2)q ), in terms of the invariants of any framed link which determines the 3-manifold M by the process of surgery on the link. These 3-manifold invariants were�rst constructed in this way by Reshetikhin and Turaev, [32]; their existence andgeneral properties were proposed originally by Witten, [43], based on interpretationsof constructions from theoretical physics. Other accounts are given in [24], [16] and[2]. Those in [16] and [2] are based entirely on the bracket polynomial, while theaccount in [24] uses the quantum group representations at generic q as a means ofestablishing properties of the knot invariants, and then makes constructions based onAppears in `Topics in knot theory', the Proceedings of the NATO Summer Institute in Erzurum1992, NATO ASI Series C 399, ed. M.Bozh�uy�uk. Kluwer 1993, 107-156.1



Link invariants/NATO Summer Institute 1992 20-1-1997the evaluations of these at a given root of unity, without having to consider the morecomplicated representation theory which arises at the root of unity.My presentation of the 3-manifold invariants uses the techniques appropriate tothe bracket polynomial. I shall restate the point that, however the knot invariants areconstructed, whether by quantum group representations or by bracket polynomials,there is a common halfway stage reached to which each of the constructions brings itsown insights. The �nal attack on the question of manifold invariants can then be madefrom this point, no matter how it has been reached, although the representation theoryprovides invaluable guidance at this stage in, for example, setting up and choosing asuitable basis for a naturally occurring �nite dimensional vector space.I believe that a similar two-stage process is appropriate in constructing 3-manifoldinvariants from other quantum groups. Such a construction is done by slightly dif-ferent means, for example, by Turaev and Wenzl, [37], and a general framework isgiven by Walker, [38], in the spirit of Segal's modular functors. It is possible to makea nice comparison of the knot invariants de�ned from the quantum groups SU(k)q ,for di�erent k , with knot invariants based on the Homy polynomial, [29], [41], [19].This permits an analogous two-stage process, allowing the de�nition of 3-manifold in-variants in terms of the knot invariants for generic q , with a root of unity substitutedfor q ; the representation theory to be used in the �rst stage only requires the study ofgeneric q , when the representations mirror directly those of the corresponding classi-cal group. In the �nal section I shall give a description of the SU(k)q knot invariantsfrom the point of view of Homy polynomials, in a similar framework to the earliertalks, which can be thought of as dealing with the case k = 2. More details will befound in [19]; this gives a preparation of the common ground which could be used forthe production of manifold invariants by specialising q to be a root of unity.Readers of earlier versions of this paper should note some minor amendments insection 6, where the substitutions v = s�k; x = s�1=k replace those used previously.1. Knot invariants derived from Kau�man's bracket.1.1 The bracket invariant.In 1986, Kau�man showed how to construct an element < D > 2 Z[A�1] for everyplane diagram D of a knot or link in R3 , which is determined (up to a constant) bytwo properties. These are(1) < D+ > = A< D0 >+ A�1< D1 >;or more pictorially < > = A< >+A�1< >;where D+; D0 and D1 are three link diagrams which only di�er as shown.(2) < D q O > = �< D >;where � = �A2�A�2 , and D q O is a diagram containing one component O whichhas no self-crossings, or crossings with the rest of the diagram D .2



Link invariants/NATO Summer Institute 1992 20-1-1997Example. Properties (1) and (2) allow the simpli�cation of < > as< > = A < >+ A�1 < >= A2 < O O >+< >+< >+ A�2 < >= (A2 + A�2) � < O >+ 2 < O >= �(A4 +A�4) < O >:In a similar way, < D > can be written in terms of < O > for any D ; in Kau�man'soriginal work the Laurent polynomial < D > was normalised by taking < O > = 1,but now it is more often chosen to include use of the empty diagram � , with thecondition that < � > = 1, and consequently < O > = �< � > = � .The reason for using properties (1) and (2) is given by Kau�man's theorem, whichcan be readily established.Theorem 1.1 (Kau�man) . When a diagram D is altered by one of the Reide-meister moves RII or RIII the value of < D > is unchanged. ut
I

R
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R
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R

Reidemeister's movesReidemeister's moves RI , RII and RIII alter one diagram to another which repre-sents a di�erent view of the same knotted curve in space, up to a natural equivalenceof closed curves in space corresponding to physical manipulations of pieces of rope.The classical theorem of Reidemeister states that any two diagrams D1 and D2 oftwo curves which are equivalent in space can be transformed from one to the other3



Link invariants/NATO Summer Institute 1992 20-1-1997by a sequence of Reidemeister's moves, (allowing diagrams to be distorted betweenmoves as shown).
Thus Kau�man's bracket almost de�nes an invariant of a curve C in space, bycalculating < D > for a diagram D of the curve. The element < D > 2 � wouldindeed depend only on the curve C if it were to be unaltered by all of the threeReidemeister moves. Now RII and RIII have no e�ect on < D > . However thebracket, < D > , is altered when D is changed by a move of type RI . All the same,this change is quite limited, and consists of multiplication by a �xed scalar ��1 ,depending on whether a left-handed or right-handed curl is removed.This can be summarised as(3) < > = � < >; < > = ��1 < >;where properties (1) and (2) show readily that � = �A3 .Kau�man's theorem is proved in [8]. It leads immediately, using property (3), toan invariant of oriented curves in space, which can be seen as follows.In an oriented diagram each crossing c can be given a sign "(c) = �1 , de�ned asshown, " = +1, " = �1 .Now de�ne the writhe w(D) of the oriented diagram D to be w(D) = P "(c) ,the sum of the signs of the crossings in D . Since w(D) is unaltered by Reidemeistermoves RII and RIII , and changes by �1 under move RI , the function��w(D)< D >is unaltered by all Reidemeister moves, and hence gives an invariant of an orientedcurve C in space in terms of any choice of diagram D representing C . Kau�manshowed that this invariant could be identi�ed with Jones' invariant, introduced in1984, which has been the foundation for much recent work in relating knot theorywith other topics.1.2 Linear skein theory for the Kauffman bracket.In this section I shall develop the notation and ideas of linear skein theory inusing diagrams of various sorts to de�ne certain linear spaces, or more accurately�-modules, with the properties (1) and (2) of the bracket polynomial closely in mind.The general methods were �rst used by Conway in dealing with versions of the Alexan-der polynomial.Notation. Let F be a planar surface, for example R2 itself, or an annulus S1 � I �R2 , or a rectangular disc. When F has a boundary we also specify a �nite, possiblyempty, set of points on its boundary. A diagram in F consists of any number ofclosed curves, together with arcs joining the speci�ed boundary points of F . Asin the standard case of knot diagrams, the curves and arcs have a �nite number of4



Link invariants/NATO Summer Institute 1992 20-1-1997crossing points where two strands cross. At a crossing the strands are distinguished inthe conventional way as an over-crossing and an under-crossing, so that the diagramcan be interpreted as a view of some curves lying within F � I .Write � for the ring Z[A�1] , and D(F ) for the set of �-linear combinations ofdiagrams in F .For example, when F = R2 , D(F ) consists of linear combinations of knot (andlink) diagrams, such as AK1 � (A+ 2A�1)K2 for the diagrams K1 and K2 shown.
K 1

K 2Notation. When F is a rectangular disc with m points specifed on the top edge,and n points on the bottom edge, denote F by Rmn , and call a diagram in F an(m;n) -tangle.An example of a (4; 2) -tangle is shown below.
The linear combination of (2; 2) -tangles � � AI � A�1H is an element of D(R22)for the tangles � = , I = and H = .De�nition. The linear skein S(F ) of a planar surface F , with a distinguished �nite,(possibly empty), subset of boundary points, is the quotient of D(F ) by the linearrelations(1) D+ = AD0 +A�1D1(2) D q O = �D (= �(A2 +A�2)D)where D+ , D0 and D1 are any three diagrams in F which di�er only as in thebracket relation (1), and D q O consists of a diagram D together with a disjointsimple closed curve O which is null-homotopic in F .5



Link invariants/NATO Summer Institute 1992 20-1-1997Thus condition (2) allows us to replacebut not by � �in the linear skein of the annulus, S(S1 � I) .Theorem 1.2. As a � -module, S(F ) is spanned by diagrams with no crossingsand no null-homotopic closed curves.Proof: By induction on the number of crossings and null-homotopic curves. Relation(1) in the de�nition of S(F ) allows us to replace a diagram by a linear combinationof two diagrams with fewer crossings, while relation (2) allows the removal of null-homotopic closed curves. utCorollary 1.3. The linear skein S(R2) is spanned as a � -module by the emptydiagram � , (or, if the empty diagram is excluded, by the simple unknot diagramO). utRemark. For any diagram D in R2 we can write D = < D >� in S(R2) ; thisprovides an isomorphism S(R2) �= �, induced by mapping D to < D > .Theorem 1.4. Two diagrams in F which di�er by a Reidemeister move withinF of type RII or RIII represent the same element of S(F ) .Proof: Relations (1) and (2) in S(F ) are exactly what is used in the proof of Kau�-man's theorem. ut1.3 Skein maps.Conway's framework, as described by Lickorish [15], for relating skeins of di�erentsurfaces can be helpfully used here to provide a range of linear and multilinear mapsbetween skeins.The central idea is to place one planar surface F inside another F 0 , and includesome �xed `wiring', W , in the region between F and F 0 , consisting of one or moreclosed curves and arcs, arranged so that the boundary points of the arcs consistexactly of the distinguished boundary points of F and F 0 .De�nition. A wiring W of F into F 0 means a choice of inclusion of F in F 0 ,and a �xed diagram of curves and arcs in F 0 � F whose endpoints consist of all thedistinguished points on the boundaries of F and F 0 .Any diagram D inserted in the surface F is then extended by W to give a diagramW (D) in F 0 . 6



Link invariants/NATO Summer Institute 1992 20-1-1997Examples. (1) The rectangle Rnn can be wired into the annulus S1� I as shown. Fora tangle T the extended diagram W (T ) in the annulus, or more usually in R2 , iscalled the closure of T , and will be denoted by bT .

(2) The annulus itself can be wired into R2 by simple inclusion, without anyextra curves.(3) The plat closure of a (2m; 2m) -tangle is the diagram in R2 induced bythe wiring shown.
(4) A partial closure of an (n; n) -tangle T is the (n� 1; n� 1) -tangle W (T )induced by the wiring of Rnn into Rn�1n�1 shown below.

Any wiring W of F into F 0 determines a linear mapD(W ) : D(F )! D(F 0)by D 7! W (D) . It is clear that this induces a linear map between the skeins S(F )and S(F 0) .Theorem 1.5. A wiring W of F into F 0 induces a linear mapS(W ) : S(F )! S(F 0);de�ned on a diagram D in F by D 7!W (D) .Proof: It is enough to observe that if diagrams in F satisfy skein relations (1) or (2)then they continue to do so when extended by W to diagrams in F 0 , so the relationsin S(F ) are respected by the map. utIt is clear from theorem 1.4 that the wiring W can be altered by Reidemeistermoves RII or RIII in F 0 � F without changing the map S(W ) .7



Link invariants/NATO Summer Institute 1992 20-1-19971.4 Multilinear extensions.The wiring construction can be used to wire several surfaces at once, F1; : : : ; Fksay, into F 0 . Any such wiring will induce a mapS(W ) : S(F1)� : : : � S(Fk)! S(F 0)which is multilinear.For example, we can very simply wire the rectangles Rmn and Rnp into Rmp , oneabove the other, inducing a bilinear productS(Rmn )� S(Rnp )! S(Rmp ):In the case m = n = p this diagram-based product determines a multiplicationwhich turns S(Rnn) into an algebra over �.Notation. Write TLn = S(Rnn) for this algebra, which is isomorphic to the n -thTemperley-Lieb algebra.Theorem 1.2 shows that TLn is spanned by diagrams in Rnn with no closed curves,and no crossings.When n = 3 there are just �ve such diagrams,
Id h1 h 2 h   h1   2 h   h2   1Note that h21 = = �h1 and h1h2h1 = = h1 .For general n , TLn is spanned by �2nn �=(n + 1) such diagrams; the number ofdiagrams is the n -th Catalan number.Kau�man proved in [8] that TLn can be presented as an algebra with generatorsh1; : : : ; hn�1 , similar to h1 and h2 above, and only the obvious relations, namelyhihj = hjhi; j i� j j > 1;h2i = �hi;hihi�1hi = hi:He was thus able to identify this algebra with the Temperley-Lieb algebra, whichappears from a totally di�erent viewpoint in Jones' original work.1.5 The braid groups.An n -string braid is a diagram in Rnn consisting only of n arcs, which all runmonotonically from bottom to top. Two n -braids are composed by placing one belowthe other. Braids, up to Reidemeister moves RII and RIII , form Artin's n -stringbraid group, Bn , described by him in [1].Proposition 1.6. There is a multiplicative homomorphism Bn ! TLn deter-mined by representing � 2 Bn by a diagram in Rnn and reading the diagram as anelement of the skein TLn . 8



Link invariants/NATO Summer Institute 1992 20-1-1997Proof: Diagrams which di�er only by moves RII and RIII represent the sameelement in the skein, so the map is well-de�ned. It is clearly a homomorphism, sincecomposition is de�ned in the same way in each case. utThe image of Bn under this homomorphism spans TLn , since each of the generatorshi of TLn satis�es the relation �i = A Id +A�1hi , where �i is the elementary braid�i =
i i+1

;and thus hi = A�i � A2 Id . The presentation of TLn can be rewritten in terms ofthe generators �i . The relations then include the relations in Bn together with theadditional relations (�i � A)(�i + A�3) = 0;or in other words (�i + A�3)hi = 0.1.6 Calculational methods.It is possible to make use of the algebra TLn in calculating the bracket invariantof a link L which has been presented as a closed braid b� on n strings, simply bycombining the map Bn ! TLn with the linear map TLn ! � = S(R2) induced bythe closure wiring on Rnn . We must thus write the braid � as a linear combination� =P�gTg of the �2nn �=(n+1) spanning elements fTgg of TLn , with �g 2 �. It isthen enough to know the bracket invariant < bT g > of the closure of each Tg , to get< L > = < b� > =X�g< bT g >:The expression of � in terms of fTgg can be built up from knowledge of � asa word in the elementary braids �i , by knowing simply how to write each productTg�i , as de�ned in section 1.4, in terms of the basis fTgg of TLn .The amount of calculation required does not grow rapidly with the number ofcrossings, for braids on a �xed number of strings. Such calculations still give one ofthe quickest ways of handling invariants of quite complicated links; see Morton andShort, [21, 22], for further analysis and comments. In principle the bracket invariantof any knot can be found in this way, as every knot can be presented as a closedn -braid for some n , although calculations become rapidly more impracticable withincreasing n .For a simple related illustration, note �rst that TL2 is spanned by just two ele-ments, 1



Link invariants/NATO Summer Institute 1992 20-1-1997The induced bilinear map S(W ) : TL2 � TL2 ! �then evaluates the bracket invariant of the complete diagram, when applied to(�r; �k) . We can write �r = (A + A�1h)r = Pr + Qrh 2 TL2 in terms of thebasis elements 1 and h , and similarly �k . Combine this information with the calcu-lation of S(W ) on pairs of basis elements, to complete the calculation. It is easy tosee that S(W )(1; 1) = S(W )(h; h) = � while S(W )(1; h) = S(W )(h; 1) = �2 , so thatthe required invariant can be written(Pr Qr )� � �2�2 � �� PkQk � :In calculating �r 2 TL2 it can be more e�cient to use a di�erent basis of TL2which reects better its algebraic structure. In each TLn there is one element whichwill be of further algebraic use. This is related to one of the two non-zero homomor-phisms from TLn to �. It is clear from the presentation of TLn that there is a�-linear homomorphism ' : TLn ! �, de�ned by '(1) = 1; '(hi) = 0. In terms ofbraids this corresponds to '(�i) = A; '(1) = 1. (The other homomorphism,  , isde�ned by  (�i) = �A�3 .)In the next section I shall exhibit an element fn 2 TLn with the property thatTfn = fnT = '(T )fn for every T 2 TLn . Before doing this, I shall look in furtherdetail at the skein of the annulus.1.7 The skein of the annulus.Notation. Write B = S(S1 � I) for the skein of the annulus.The linear map B ! S(R2) �= � induced by the inclusion as in example (2) abovewill sometimes be denoted simply by v 7! < v > as it is induced on a diagram in theannulus by taking its bracket invariant when regarded as a diagram in the plane.We can wire two copies of the annulus into the annulus itself by running one copyparallel to the other without adding extra wiring. This de�nes a bilinear productB � B ! B , under which B becomes an algebra over �.For example, the element of B represented byis the product of and .
Write � = as an element of B . Then k parallel curves represent�k , while the empty diagram is the unit element, 1 , of the algebra B .By theorem 1.2, B is spanned by diagrams with no crossings and no null-homotopiccurves. Any such diagram is either empty, or consists of k parallel curves around theannulus, for some k , so that B �= �[�] , the ring of polynomials in � .10



Link invariants/NATO Summer Institute 1992 20-1-1997For example, use of the skein relations shows that the diagram
is equal to (�1� A�4) + (1� A4)�2 in B .Proposition 1.7. The evaluation map < � >: B ! � �= S(R2) is a ringhomomorphism.Proof: This follows at once from the structure of B since < �k > = �k by skeinrelation (2). Even without this knowledge it is enough to observe that the two parallelcopies of the annulus containing diagrams to be multiplied in B can be moved apartwithout change, using RII and RIII , before evaluating each separately. ut2. Satellite knots.Suppose that we want to use the bracket invariant to compare two knots C1 andC2 . Let us draw diagrams of each knot and calculate its bracket invariant. If theknots are equivalent, and the diagrams used have the same writhe, then we will getthe same answer in each case. Hence di�erent answers, from diagrams with the samewrithe, guarantee that the given knots are di�erent.We might, however, get the same answer from two knots which we suspect to bedi�erent. It is still possible that we may be able to show that the knots are di�erentby a less direct use of the bracket invariant. First, `decorate' the two knots in thesame way, to give two more complicated knots K1 and K2 . Make sure that if thedecoration is done in the same way, and the two knots C1 and C2 are equivalent, thenthe decorated knots are equivalent. Then use the bracket invariant again to compareK1 and K2 ; if these give di�erent answers then C1 and C2 must be di�erent.Such a project might be doomed to failure. If, for example, the bracket invariantof Ki could be calculated in terms of the bracket invariant of Ci and the decoration,as is the case for the classical Alexander polynomial, then two knots with the samebracket invariant would, after being decorated in the same way, still give two knotswith the same invariant.Happily, there is a chance of using the bracket invariant in this way. One of theearly discoveries [21] about the recent knot invariants was the existence of pairs ofknots with the same invariant which can be distinguished by calculating the invariantof the knots resulting from suitable decoration.2.1 Construction of satellites.I shall now describe how to decorate a knot. Starting with a given knot C we drawa diagram of it. This selects a `parallel' curve to C , determined by keeping just toone side of C in the diagram. Altering the diagram by RII or RIII does not changethis `diagrammatic' parallel curve when thought of as a curve in space relative to C ,while RI introduces a full twist of the parallel around C .11



Link invariants/NATO Summer Institute 1992 20-1-1997De�nition. A framed knot is a curve C in R3 , with a choice of a neighbouring parallelcurve; a framed link has a choice of parallel for each component of the link.In much of what follows we shall be dealing with framed knots and links. I shallnormally assume that any diagram of a framed link is drawn so that the chosenparallels agree with the diagrammatic parallels. Suitable insertion of curls in thediagram allows the diagrammatic parallels to be adjusted so that this is the case.The study of framed knots and links is almost equivalent to the study of diagramsof the knots and links up to the moves RII and RIII . As noted, the diagrammaticparallels are unaltered by RII and RIII ; conversely we can pass between diagramswith the same parallel curves by using RII and RIII if we are also allowed to movecurls from one side of the string to the other, as shown. !See Kau�man [10] for further comments. In the applications given here this last movewill be permissible, so I shall assume that any statements about framed links can beinterpreted in terms of diagrams up to moves RII and RIII , and vice versa.To continue then with the construction, we shall assume that we have a diagramof C , or equivalently a framing of C . Now select a diagram P in the annulus. Wedecorate C with P as follows. Place the annulus with one edge following C and onefollowing its parallel, and copy P into this annulus. The image of P forms a newdiagram, which is the knot C decorated by P . Changing the exact positioning ofthe copy of P as it is placed to lie around C will alter this new diagram, but onlyby moves RII and RIII . Write C � P for this new diagram, de�ned up to RII andRIII . For example, when C is the trefoil with framing as shown,
C =

and P = then C � P = .
Alteration of the diagram of C itself by RII or RIII will alter C � P only by asequence of moves RII or RIII respectively, and so C �P , as a framed knot, dependsonly on C as a framed knot and on P . Altering the framing of C , i.e. altering itsdiagram by a move RI , will in general alter C � P substantially; for this reason aframing of C must be speci�ed in some way.12



Link invariants/NATO Summer Institute 1992 20-1-1997From a more 3-dimensional viewpoint, the decoration P can be viewed as lying ina solid torus, which is then embedded in R3 as a neighbourhood of the curve C . Theresulting image of P is called a satellite of C , while C is known as its companion.Again, some speci�cation, amounting to a decision on framing, is needed to describeexactly how the solid torus is to be embedded.2.2 The total bracket invariant.Our immediate study can be seen as the study of C by means of the bracketinvariant of its various satellites, as we change the decoration pattern P . As withthe wiring construction, we can show that the process of decorating a �xed diagramC by a pattern P in the annulus induces a linear map B ! � �= S(R2) .Theorem 2.1. Let C be a knot diagram. Then there is a linear map JC : B !� �= S(R2) induced by mapping a diagram P in the annulus to the diagram C � P .Proof: When diagrams in the annulus satisfy skein relations (1) or (2) then thediagrams which result from decorating C will also satisfy the same skein relation.The map JC is thus well-de�ned on the skein B . utAs in the case of wiring diagrams, there is an extension of this result where C isreplaced by a link diagram L with k components. Each component can be decoratedindependently, giving a multilinear mapJL : B � : : : � B ! �;from k copies of B . It is clear that if L is changed by RII or RIII then the mapJL is unaltered; indeed JL is an invariant of the framed link L , its total bracketinvariant .We can make a further generalisation on this construction to the case where D isa diagram with k closed components in a surface F . By decorating each componentof D , following its diagrammatic parallel, with a linear combination of diagrams inthe annulus, we induce a multilinear mapJD : B � : : : � B ! S(F ):When a diagram, L say, arises by decoration of another diagram we can use sucha map, taking F itself as an annulus, to write the total invariant of the diagram Las the composite of simpler maps.For example, suppose that L is a link of k + 1 components which can be drawnwith one of the components, Lk+1 say, as a simple closed curve. Then, after suitableadjustment by moves RII and RIII , the remaining components can be arranged toform a diagram D = bT in an annulus, as shown, so that the link L itself is arrangedas the Hopf diagram H , with one component decorated by D .
L = T H = D = T

13



Link invariants/NATO Summer Institute 1992 20-1-1997Theorem 2.2. The invariant JL is the compositeB � : : : � B JD�1�! B � B JH�! �:Proof: Decorate each component of L by diagrams P1; : : : ; Pk+1 . The decorationsP1; : : : ; Pk determine a diagram in the annulus which is just the decoration of D .The �nal diagram is the Hopf diagram H with this complicated diagram, represent-ing JD(P1; : : : ; Pk) in B , decorating one component, while the other component isdecorated by Pk+1 . Then JL(P1; : : : ; Pk+1) = JH(JD(P1; : : : ; Pk); Pk+1) . The resultfollows by linearity. ut2.3 The satellite formula.We may also use this framework to calculate the total invariant JK of a knotK = C � P which is a satellite of C constructed by decorating the framed knotC by a diagram P in the annulus. Assuming that P has one component we maydecorate P by any diagram Q in the annulus, to get a diagram P � Q also in theannulus. It is easy to see that, up to RII and RIII , the diagrams C � (P �Q) andK �Q = (C �P )�Q are the same. It is then immediate that the invariant JK : B ! �is the composite B JP�! B JC�! �:This equation, and its counterpart for links and patterns with more than one compo-nent, will be termed the satellite formula. In this simple case we may also write itas JC�P = JC � JP :The satellite formula shows that, unlike the bracket polynomial alone, we knowthe total invariant J of a satellite once we know J for the companion and for theannulus diagram P used in constructing the satellite. (Where C or P have more thanone component, the corresponding multilinear maps should be used, and composedappropriately, depending on the component of the companion which is decorated.)The total bracket invariant JC contains all the information about bracket invariantsof satellites of the knot C . It is known once its values JC(�k) on the basis f�kg ofB are known. To determine the bracket invariant of the satellite when C is decoratedby a pattern P it is enough to write out P = a0+a1�+ : : : +ar�r in B and calculatethe bracket invariant of C decorated by �k , for 0 � k � r . ThenJC(P ) = rXk=0 akJC(�k):Now JC(1) = 1 and JC(�) = < C > , since decoration of C by � just gives Cagain. However, as remarked earlier, there is in general no way to determine JC(�k)from JC(�) , when k � 2 .For the unknot and the Hopf link, and also for other torus knots and links, themap JL is known, but not for any other knots. There are examples known, though,of inequivalent knots C1 and C2 for which JC1 = JC2 ; these examples include allmutant pairs of knots, such as the famous pair of Conway and Kinoshita-Teresaka,[25]. 14



Link invariants/NATO Summer Institute 1992 20-1-1997The relation given above for the invariant J of a satellite knot is equivalent to the`satellite formula' of [23] which relates the total invariant of a given satellite to thoseof the companion, the Hopf link H and the `pattern link', namely the satellite of Hconstructed from the same annulus diagram P as the given satellite. The patternlink consists of P and one extra component, which can be compared to the axis of aclosed braid, and which gives the means for recovering P as a diagram in the annulusfrom the pattern link in S3 . To get the appropriate reinterpretation of [23] it issimply necessary to identify B with the representation ring R of the quantum groupSU(2)q .In section 4 I shall give a brief account of the translation between the two viewpoints,but the important features of either approach are the existence of the multilinearinvariant JL for a framed link L , and its natural behaviour on satellites.2.4 Framing change and the total invariant.To complete this stage in the understanding of the invariant JL for a framed linkL we must discuss the behaviour of J when the framing of L is altered.To see more clearly what happens I shall look at the case when L has one com-ponent. Suppose that L0 has the same diagram as L , except for the addition of asingle right-handed curl, so that the underlying knots are equivalent, but the fram-ing has been altered by a single twist. If we use the simple decoration by � thenJL0(�) = < L0 > = �< L > = �JL(�) , where � = �A3 . However, JL0(�) is not ingeneral a simple multiple of JL(�) . For example, we can calculate JL0(�2) in termsof JL by using the diagram shown
to decorate L . This diagram represents A8�2 � (A8 � 1) in B .In general the change of framing can be expressed in terms of the map F : B ! Binduced by decorating the diagram T in the annulus.T =
Theorem 2.3. Let L0 be a knot given from L by adding one right-hand twistto the framing. Then JL0 = JL � F , where F = JT , induced by the diagram shownabove in the annulus. 15



Link invariants/NATO Summer Institute 1992 20-1-1997Proof: The diagram L0 is just L � T , and so the result follows from the satelliteformula. utThe map F has an inverse, induced similarly by the left-hand curl.When the framing on a link of several components is altered, the total invariant J ,as a multilinear map on B , is changed by applying a suitable power of the automor-phism F to each copy of B , depending on the change of framing to be made on thecorresponding link component.To describe the e�ect of framing change it is enough to determine the map F , orequivalently to �nd F(�k) for each k . As noted above, it is not true that F(�k)is a multiple of �k when k > 1 , although it is easy to see that, as a polynomial in� , it must have degree at most k , and indeed that its degree is exactly k . In the3-dimensional view, F arises when the solid torus formed by thickening the annulusis mapped to itself by cutting along a meridian disc and regluing after a full twist.To handle the invariant J most readily, including its behaviour under framingchange, it is natural to try to change the basis of B from f�kg to one consisting ofeigenvectors wi of F , if this is possible. Then JL0(wi) = �iJL(wi) , where �i is theeigenvalue of wi , and the value of JL0(�) can be found readily in terms of JL bywriting � in terms of the basis wi .2.5 The Temperley-Lieb algebra.I shall now use the Temperley-Lieb algebra to help construct enough eigenvectorsof F to form a basis of B . Some of the properties of these eigenvectors are mostreadily appreciated in the alternative view of B as the representation ring of SU(2)qin which the eigenvectors appear naturally as the irreducible representations. For thisreason I shall index the eigenvectors as w1; : : : ; wi; : : : , where wi , which is a monicpolynomial in � of degree i� 1 , will correspond to the irreducible representation ofdimension i , in conict with the notation used by Lickorish [16], who indexes by thedegree of the polynomial. In the corresponding construction in [2], Blanchet et alfocus heavily on the eigenvector property, without using the Temperley-Lieb algebraat all.Using the closure wiring referred to earlier to map (n; n) -tangles into annulus di-agrams I shall construct elements of B from the closure of elements in TLn ; inparticular, the closure of the element fn mentioned at the end of section 1.6 is amultiple of the desired eigenvector wn+1 .It is easy to see the e�ect of F on any element of B which is in the closure ofTLn , in terms of the multiplication in TLn . For suppose that X is an (n; n) -tangle.Then the closure of the tangle QnX , where Qn is the right-handed curl on n parallelstrings, as shown,
will represent F( bX) as an element of B . Write 'A : TLn ! � for the linear ho-16



Link invariants/NATO Summer Institute 1992 20-1-1997momorphism de�ned by 'A(�i) = A for each i . In what follows I shall de�ne theelements fn 2 TLn with the property that Tfn = 'A(T )fn for all T 2 TLn . Itis then immediate that the closure of fn is an eigenvector of F since we can writeQnfn = 'A(Qn)fn . Take X = fn ; its closure bfn is then an eigenvector with eigen-value 'A(Qn) .Now by removing n right-hand curls, one from each component, we can write Qnas a multiple of the right-hand full-twisted braid �2n , as an element of TLn , so wehave Qn = (�1)nA3n�2n . Since �2n is a braid it is easy to calculate 'A(�2n) in termsof the crossings in the braid, as 'A(�i) = A for each i . Now after removal of the ncurls from Qn there remain n2 � n crossings in the braid �2n , all in the same sense,so we have 'A(�2n) = An2�n and thus the eigenvalue for bfn is (�1)nAn2+2n .De�ne elements wi 2 B �= �[�] by the relationsw1 = 1; w2 = �;wi+1 = �wi � wi�1; i > 1:Each wk is clearly a monic polynomial of degree k � 1 , and can be recognised asthe Chebyshev polynomial of the second kind, resulting from writing sin k�= sin � asa polynomial in � = 2 cos � , (cf. Lickorish [16]).The �nal result in this section is to establish that 'A(fn)wn+1 = bfn so that each wiis an eigenvector of F with eigenvalue �i = (�1)i�1Ai2�1 , provided that 'A(fn) 6=0.While it appears more appealing to divide bfn by 'A(fn) in order to map exactly town+1 this can only be done by extending the ring � to allow suitable denominators.At the present stage this need cause no problems, but later developments whichrequire substitution of the variable A in � then become more di�cult as there isa chance that 'A(fn) may become zero. Lickorish in fact uses carefully controlleddenominators to de�ne an element denoted by f (n) whose closure is exactly wn+1 .However, the de�nition of fn without the factor, as given here, is also quite natural.2.6 Positive permutation braids.I shall construct the element fn 2 TLn by means of positive permutation braids.These have been used in [22] as a convenient basis for the Hecke algebra, and arediscussed more fully in [4]. In the algebraic context the construction of fn given hereis a special case of a construction of Jones in the Hecke algebra [7]; this method hasalso been noted more recently by Kau�man [10].De�nition. For each permutation � 2 Sn there is an n -braid w�(�1; : : : ; �n�1) , calleda positive permutation braid . It is uniquely determined by the following properties.(1) String i joins the point numbered i at the bottom of the braid to thepoint numbered �(i) at the top, i = 1; : : : ; n .(2) At any crossing, string i always crosses over string j if i < j .We may view the strings in the braid as lying in layers, with string 1 above string 2 ,and so on, so that each string can be moved independently of the others. This ensuresthe uniqueness of w� , which can be drawn, if required, so that pairs of strings crossat most once. In this form, condition (2) is equivalent to asking that each crossing bepositive, when all strings are oriented from bottom to top.Let us now consider an algebra A in which the n -string braid group Bn is rep-resented. In what follows, we shall be primarily interested in the Temperley-Lieb17



Link invariants/NATO Summer Institute 1992 20-1-1997algebra, TLn , but the arguments will work as well in a more general setting. I shallcontinue to write �i for the element of A which represents the elementary braid �i .We may then de�ne an element En(�1; : : : ; �n�1) in the algebra A as the sumEn(�1; : : : ; �n�1) = X�2Snw�(�1; : : : ; �n�1):Thus E3 = 1+�1+�2+�1�2+�2�1+�1�2�1 , noting that the last braid in the sum,corresponding to the permutation (1 3) , could equally well be written as �2�1�2 . It isa convenient property of the permutation braids that it is only necessary to rememberthem by their permutation of the strings, without having to specify each braid as aword in f�ig .Theorem 2.4. For each i we can factorise En in the given algebra A asEn = E(i)n (�i + 1) .Proof: Given i , we can pair the permutations as follows. For each permutation� consider its composite �0 = � � (i i+1) with the transposition (i i+1) . Exactlyone of the pair preserves the order of i and i + 1. Suppose that it is � , so that�(i) < �(i+ 1) . Then the braid w��i satis�es property (2) above, and so is itself apositive permutation braid. Since its permutation is �0 we have w��i = w�0 . ThenEn = X�(i)<�(i+1)w� + X�0(i)>�0(i+1)w�0= X�(i)<�(i+1)w� + X�(i)<�(i+1)w��i= E(i)n (�i + 1);where E(i)n = X�(i)<�(i+1)w� . utIf � is a scalar, then we may substitute ��i for �i and rewrite the elementw�(��1; : : : ; ��n�1) as �l(�)w�(�1; : : : ; �n�1) in A , where l(�) is the writhe of thebraid w� . This is the same as the length of w� when written as a monomial inpositive powers of the elementary braids �i . It is equal to the number of reversals ofthe permutation � , i.e. the number of pairs i < j for which �(i) > �(j) .Suppose now that all the elementary braids satisfy the quadratic equation(�i � a)(�i � b) = 0in the algebra A . Substitute ��i for �i in En , with � = �a�1 or � = �b�1 , tode�ne an = En(�a�1�1; : : : ;�a�1�n�1); bn = En(�b�1�1; : : : ;�b�1�n�1):Theorem 2.5. Suppose that the algebra A is spanned by braids, that (�i�a)(�i�b) = 0 in A and that 'a and 'b are linear homomorphisms from A to the scalarsde�ned by 'a(�i) = a; 'b(�i) = b . Then every T 2 A satis�esanT = 'b(T )an = Tan; bnT = 'a(T )bn = Tbn:18



Link invariants/NATO Summer Institute 1992 20-1-1997Proof: To establish the left-hand equality in each case it is enough to show thatan�i = 'b(�i)an = ban for each i , and similarly that bn�i = abn . We can factorisean using the theorem above, asan = E(i)n (�a�1�1; : : : ;�a�1�n�1)� (�a�1�i + 1) = Qn(�i � a); say ;giving an(�i�b) = Qn(�i�a)(�i�b) = 0, so that an�i = ban . Similarly bn(�i�a) =0.The factorisation of En as (�i + 1)E0(i)n is also possible, proving the right-handequalities Tan = 'b(T )an and Tbn = 'a(T )an . utRemark. When A is the group algebra of the symmetric group, Z[Sn] , and each �i isrepresented as a transposition, the quadratic equation is �2i �1 = (�i�1)(�i+1) = 0.The elements an and bn are then the classical symmetriser and skew-symmetriser,bn = X�2Sn �; an = X�2Sn "(�)� :The Temperley-Lieb algebra TLn is generated by the n -braids �1; : : : ; �n�1 whichsatisfy the relation �i = A + A�1hi with h2i = �hi (= �(A2 + a�2)hi) . Then�ihi = �A�3hi , so that (�i + A�3)(�i � A) = 0.De�nition. In TLn we de�ne an element fn byfn = En(A3�1; : : : ; A3�n�1) (= X�2SnA3l(�)w�(�1; : : : ; �n�1) ):Corollary to theorem 2.5. Every T 2 TLn satis�es the multiplicative propertyfnT = Tfn = 'A(T )fn;where 'A : TLn ! � is the linear homomorphism de�ned by 'A(�i) = A for eachi .Proof: We can apply the theorem to TLn with a = �A�3 and b = A . Then fn = anand the result follows. utRemarks. The element bn 2 TLn is identically zero for n � 3 .The general algebra to which the theorem applies is some quotient of the Heckealgebra. Jones [7] notes the elements an and bn for the Hecke algebra when a =q; b = �1 ; any other case can be rewritten in this way if �i is replaced throughoutby a suitable multiple.2.7 The alternative basis for the skein of the annulus.Having established the de�nition and multiplicative property of fn in TLn I nowwant to relate the closure of fn in B to the element wn+1 , de�ned inductively aboveby wn+1 = �wn � wn�1 , with w1 = 1 and w2 = � .Theorem 2.6. In B , the skein of the annulus, we have bfn = 'A(fn)wn+1 for alln � 1 . 19



Link invariants/NATO Summer Institute 1992 20-1-1997Proof: We have f1 = 1 in TL1 as a braid on one string, so bf1 = � = w2. Indeed,we could consider f0 = � in TL0 , which gives bf0 = � = w1, noting that the emptydiagram in the annulus represents the identity element w1 = 1 in the algebra B . Therest of the proof is by induction on n , and depends on establishing the appropriaterelation between bfn; bfn�1 and bfn�2. This in turn depends on rewriting some of thepermutation braids w� which appear in the sum En .Corresponding to the inclusion i : Sn�1 � Sn in which �0 2 Sn�1 is extendedto �0 2 Sn by �0(n) = n there is an inclusion of the braid group Bn�1 in Bnby adjoining an n -th straight string. The same procedure de�nes an inclusion i :TLn�1 � TLn ; this can even be seen to come from a simple wiring of Rn�1n�1 into Rnnwhich adjoins the extra string. The element i(En�1) is then X�(n)=nw� . Because ofthe extra string the closure of i(T ) , for any T 2 TLn�1 , can be written as �bT in B .De�ne braids r 2 Bn , r = 0; : : : ; n�1 , by 0 = 1; r = �n�1�n�2 : : : �n�r . In rthe string ending at position n crosses exactly r others, while no other strings crosseach other. The braids w�r with �(n) = n are then positive permutation braids forall such � and for all r = 0; : : : ; n� 1 . All permutations of strings arise exactly onceon this list, so all positive permutation braids are counted exactly once asEn = X�2Snw� = 0@ X�(n)=nw�1A n�1Xr=0 r! :Replace �i by A3�i to get(�)n fn = i(fn�1) n�1Xr=0A3rr! :We can calculate 'A(fn) inductively, using (�)n , since 'A(r) = Ar . For we have'A(fn) = 'A(fn�1) n�1Xr=0A4r! = [n]q'A(fn�1);where [n]q = 1 + q + � � �+ qn�1 (= n when q = 1) and q = A4 . Consequently,'A(fn) = [n]q[n� 1]q : : : [1]q = [n]q! :To complete the proof of the theorem it will be enough to establish the relationbfn = [n]q�bfn�1 � [n]q[n� 1]qbfn�2;as the right hand side is then, by the induction hypothesis, 'A(fn)(�wn � wn�1) ='A(fn)wn+1 .We now use (�)n to �nd the closure bfn. For any elements T1 and T2 in TLn theproducts T1T2 and T2T1 have the same closure in B . We can then replace fn bythe product Pn =  n�1Xr=0A3rr! i(fn�1) . Now �j i(fn�1) = A i(fn�1) , for j < n� 1 ,by the multiplicative property of fn�1 , so ri(fn�1) = Ar�1�n�1i(fn�1) , for r > 0 .20



Link invariants/NATO Summer Institute 1992 20-1-1997Then Pn = i(fn�1) + n�1Xr=1 A4r�1!�n�1i(fn�1)=  n�1Xr=0A4r! i(fn�1) + n�1Xr=1A4r�2!hn�1i(fn�1)= [n]qi(fn�1) + A2[n� 1]qhn�1i(fn�1);since �n�1 = A + A�1hn�1 in TLn . Hence bfn = bPn = [n]q�bfn�1 + A2[n� 1]q bQn,where Qn = hn�1i(fn�1) 2 TLn .We complete the proof by showing that bQn = �A�2[n]qbfn�2.By (�)n�1 we haveQn = hn�1i(fn�1) = hn�1i(fn�2) n�2Xr=0A3r0r! ;where 0r = �n�2 : : : �n�r�1 .Then Qn has the same closure as  n�2Xr=0A3r0r!hn�1i(fn�2) = Rn , say. Now �jcommutes with hn�1 and �ji(fn�2) = A i(fn�2) , for j < n� 2 , so as above we getRn = hn�1i(fn�2) + n�2Xr=1 A4r�1!�n�2hn�1i(fn�2)=  n�2Xr=0A4r!hn�1i(fn�2) + n�2Xr=1A4r�2!hn�2hn�1i(fn�2)= [n� 1]qhn�1i(fn�2) + A2[n� 2]qhn�2hn�1i(fn�2):Now
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T T=

Thus bQn = bRn = ([n� 1]q� + A2[n� 2]q)bfn�2= �A�2 �(1 +A4)[n� 1]q � A4[n� 2]q� bfn�2= �A�2(A4[n� 1]q + 1)bfn�2 = �A�2[n]qbfn�2:This completes the last step in the proof. utAs remarked earlier, this result establishes that the elements wi are eigenvectorsof the twist-induced map F , with eigenvalue �i = (�1)i�1Ai2�1 .3. Invariants of 3-manifolds.3.1 Surgery on framed links.A description of closed orientable 3 -manifolds has been known for some time interms of surgery on framed links in S3 .Given a framed link L in S3 , the technique of surgery produces a manifold M(L)by removing a solid torus neighbourhood Vi of each link component Li from S3 ,leaving the `exterior' of L , a compact 3-manifold whose boundary consists of k tori.The closed manifold M(L) is built up from this piece and k solid tori, by gluing eachsolid torus to one of the boundary components. On the boundary of each solid torusthere is a distinguished family of closed curves, the meridians, which bound discs inthe solid torus. To specify M(L) we must say which curves on the boundary of theexterior of L are to be matched with the meridians by the gluing.We use the framing of L to determine this match. The framing of the componentLi speci�es a choice of curves parallel to Li which determines a distinguished familyof curves on the corresponding boundary component of the exterior of L ; the surgeryis de�ned by matching these curves with the meridians.We may think of the link L as giving us a view in S3 of a large part of the manifoldM(L) , namely the exterior of L . All that remains unseen are the added solid tori,and the picture provides a good indirect knowledge of these as well. Of course therecan be other views of the same 3-manifold, based on a di�erent link L0 say, in otherwords we may �nd links L and L0 for which M(L) �=M(L0) .The study of 3 -manifolds by means of framed links is greatly simpli�ed by theresults of Kirby [11] and Fenn and Rourke [5].Theorem 3.1 (Kirby, Fenn-Rourke).(1) Every closed oriented 3 -manifold arises as M(L) for some framed linkL . 22



Link invariants/NATO Summer Institute 1992 20-1-1997(2) There is an orientation preserving homeomorphism M(L) �= M(L0) ifand only if L and L0 are related by a �nite sequence of Kirby moves.Kirby moves are of two types, shown below.
T T

L ϕ (L)
+

T T

L ϕ (L)
-As in the earlier sections we assume that each diagram speci�es a framed link usingthe diagrammatic framing.These moves have been used by Reshetikhin and Turaev [32], and subsequentlyseveral other authors, as a means of approaching the family of 3 -manifold invariantsdescribed by Witten [W]. The central idea is to look for an element 
 2 B withthe property that the value JL(
; : : : ;
) 2 �, possibly normalised in some way,is unaltered when L is changed by Kirby moves. If such an 
 were to exist, thenJL(
; : : : ;
) would depend only on the manifold M(L) , and so would give an elementof � which is an invariant of M(L) . Unfortunately this does not prove to be possiblewithout some modi�cation, even allowing 
 to be a formal power series in � ratherthan a polynomial.The modi�cation which works is to decide initially on a `level' l , or equivalently toselect a 4r -th root of unity, with r = l+2, which is to be substituted for the variableA in �. Having decided on l , it is then possible to choose 
 2 B , (dependingon l ), so that the complex number given by substituting a 4r -th root of unity inJL(
; : : : ;
) is, after suitable normalisation, unaltered by the Kirby moves, and isthus an invariant of M(L) .In keeping with Segal's view of Witten's invariantsum an invarian0e J toc

a 4 r(-th)Tj
18.72 0 Td
24 0 Td
(view)Tj
28 14.4 Td
(of)Tj
14.76 0 Td
(unit)0san elrian 2 .44 0 Td
(hos)Tj
14.2I0.12 Tf
28.32 0 Td
(48)Tj
/R118R112 0.12 Tf
6 0 TTTj
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Link invariants/NATO Summer Institute 1992 20-1-19973.2 Evaluations of the total invariant at roots of unity.I shall start by discussing the evaluation of JL on the ideal in B generated by oneof the elements wr . For any given component of the diagram of L it is possible, usingmoves RII and RIII , to draw it in an annulus as the closure of some (1; 1) -tangleT so that the chosen component, L1 say, is the single arc in T while the remainingcomponents L2; : : : ; Lk lie entirely in T . This diagram bT in the annulus induces amultilinear map JbT : B � : : : � B ! B and JL is the composite of this with theevaluation map < � >: B ! �.Theorem 3.2. For any n , and any �2; : : : ; �k 2 B we haveJbT (wn+1; �2; : : : ; �k) = �wn+1; for some � 2 �:Proof: From the tangle T construct an (n; n) -tangle T (n) with n parallel arcs inplace of the single arc. Decorate the k � 1 closed curves by �2; : : : ; �k to give anelement, G say, in TLn . The closure of fnG will then be JbT (bfn; �2; : : : ; �k) 2 B.Now the multiplicative property of fn allows us to write fnG = �fn , where � ='A(G) 2 �. Thus JbT (bfn; �2; : : : ; �k) = �bfn, and the result follows since bfn is amultiple of wn+1 . utTheorem 3.3. Let L be a link diagram. Then(a) JL(wr �B� : : : �B) � �< wr > , the ideal generated by < wr > in � ,and (b) JL(Ir�B�: : :�B) � �< wr > , where Ir � B is the ideal of B generatedby wr .Proof: Part (a) is an immediate corollary of the previous theorem, with r = n+ 1,on drawing L to lie appropriately in the annulus. The result holds when any of thecomponents is decorated by wr .To prove part (b) it is enough to deal with the element wr� 2 Ir for any � 2 B .We can use the multiplication in B to writeJL(wr�; �2; : : : ; �k) = JL0(wr; �; �2; : : : ; �k);where L0 is the link with two parallel components in place of the �rst component ofL but otherwise identical to L . The result now follows from (a) applied to L0 . utThe evaluation map < � > : B ! � is a ring homomorphism, and hence< wn+1 > = < � >< wn >�< wn�1 >:Starting from < w1 > = 1 and < w2 > = < � > = � = �(A2+A�2) it follows readilythat < wr > = (�1)r�1A2r � A�2rA2 � A�2 2 �. Then < wr > = 0 when A4r = 1; A4 6= 0.Notation. Write �r � C for the image of � when A is mapped to a primitive 4r -throot of unity, e.g. A = e�i=2r .Equivalently, take �r to be the quotient of � by the ideal generated by Euler'spolynomial '4r(A) .Write also Br for the �nite-dimensional �r -module (B=Ir)
 �r , where, as notedabove, the coe�cient ring has been changed from � to �r by substitution for A .Theorem 3.3 can then be reformulated. 24



Link invariants/NATO Summer Institute 1992 20-1-1997Theorem 3.4. For any link diagram L the invariant JL : B � : : : � B ! �induces a multilinear map J (r)L : Br � : : : � Br ! �r .Proof: The value of J (r)L can be calculated by choosing decorations (�1; : : : ; �k) inB� : : : �B , and substituting the chosen 4r -th root of unity for A in JL(�1; : : : ; �k) .The previous theorem shows that this number in �r is unchanged when an elementof the ideal Ir is added to any �i , by multilinearity of JL , and so the result dependsonly on the elements represented by �i in Br . ut3.3 Structure of the algebras B and Br .The product wjwk of two basis elements in B can be written as a sum Xi nijkwi ,with structure constants nijk 2 �. It can be established inductively that nijk 2 N ,and that n1jk = �jk ; in factnijk = � 1; if i+ j + k = 1 mod 2 and jj � kj < i < j + k,0; otherwise.This is more obvious once we are able to identify B with the representation ring ofSU(2) and wi with the irreducible representations.Then nijk is the coe�cient of w1 in the product wiwjwk . Since B is commutative,nijk is unchanged by permutation of i; j and k .The algebra Br has a basis w1; : : : ; wr�1 , or properly speaking the images of theseelements. Each wi 2 B represents some integer linear combination of w1; : : : ; wr�1in Br , and we can write wjwk = r�1Xi=1mijkwi in Br , for some integers mijk . It can beshown [24] that mijk is also symmetric in i; j and k when j; k < r and only takesthe values 0 or 1 .3.4 The 3 -manifold invariants.Let us now compare the invariants of two links related by a positive Kirby move.Suppose that the two links are as shown in the Kirby move diagram, and that thesecond link '+(L) has k components, corresponding to the �rst k components of thelink L . Regard the closure bT as a diagram in the annulus, determining JbT : B� : : : �B ! B . Choose any decoration �1; : : : ; �k of bT and write X = JbT (�1; : : : ; �k) 2 B .The satellite formula shows that JL(�1; : : : ; �k;
) = JM (X;
), where M is the linkshown below.M = K =Since M itself is two parallel copies of the diagram K , which in turn is the unknotwith a positive curl, we can write JM (X;
) = JK(X
) = < F (X
) > . We want tocompare this with the invariant after the Kirby move, namely J'+(L)(�1; : : : ; �k) =< X > . 25



Link invariants/NATO Summer Institute 1992 20-1-1997Theorem 3.5. Given r there exists 
 2 B and c� 6= 0 2 �r depending only onr such that, for any choice of L and decorations �1; : : : ; �k ,JL(�1; : : : ; �k;
) = c�J'�(L)(�1; : : : ; �k)when evaluated in �r .Proof: Choose 
 = r�1Xk=1 akwk with ak = < wk > . By the calculations above, itis enough to �nd c+ so that JM (X;
) = c+< X > in �r for all X 2 B . Sincewe are evaluating in �r it is enough to check for X in a spanning set of Br , e.g.X = wj ; j = 1; : : : ; r � 1 .Now JM (wj ;
) = JK(wj
). Again it is enough to work with wj
 as an elementof Br , since we are only concerned with the evaluation in �r , so that in �r we haveJK(wj
) = JK(r�1Xk=1 akwjwk)= JK(r�1Xk=1 r�1Xi=1mijkakwi)= < r�1Xk=1 r�1Xi=1mijkak�iwi >= r�1Xi=1 �i< wi > r�1Xk=1mijkak :On the other hand, < wi >< wj > = < wiwj > = r�1Xk=1mkij< wk > = r�1Xk=1mijkak bysymmetry of the coe�cients mijk . ThusJM (wj ;
) = r�1Xi=1 �i< wi >< wi >< wj >= c+< wj >;where c+ = r�1Xi=1 �i< wi >2 .The assignment c� = r�1Xi=1 ��1i < wi >2 will handle the negative Kirby move sim-ilarly, as the only di�erence is in the use of F�1 in place of F to deal with theleft-handed curl. Noting that c� are complex conjugates in �r since jAj = 1 we canwrite c� = �c�1 in polar form, with � > 0 and jcj = 1. It is possible to calculatec; � in terms of the root of unity A , and check also that � 6= 0. utAssignment of 
 to each component then gives an element of �r which is invariantunder the Kirby moves, except for the appearances of c� . It is not di�cult tointroduce a normalising factor to correct for this, as follows.26



Link invariants/NATO Summer Institute 1992 20-1-1997To a framed oriented link L = L1[L2[ : : :[Lk we can associate a quadratic formwith k � k matrix (lij) wherelij = lk(Li; Lj); i 6= j; lii = framing on Li:Write sig(L) for the signature of this form.Then sig(L) is independent of the choice of orientation of L , andsig'�(L) = sigL� 1:Corollary 3.6. When M(L) is given by surgery on the framed link L with kcomponents the complex number��kc�sigLJL(
; : : : ;
);evaluated at the given root of unity, is an invariant of the 3 -manifold M(L) .Proof: It is enough to show that the number is unaltered by a Kirby move on L .Consider the case of the positive Kirby move, giving '+(L) with k� 1 components.Then ��kc�sigLJL(
; : : : ;
) = c+��kc�sigLJ'+(L)(
; : : : ;
)= ��(k�1)c�(sigL�1)J'+(L)(
; : : : ;
)= ��(k�1)c�sig'+(L)J'+(L)(
; : : : ;
);which is the corresponding number for '+(L) . The negative Kirby move workssimilarly, with c� in place of c+ covered by the alteration in signature. utRemarks. There has only been a limited amount of calculation of these invariants. Arecent tabulation of known evaluations is given in [27]. Kirby and Melvin have beenable to give a closed formula for the invariants for Lens spaces as r varies, and alsoshow how the value for r = 2; 3; 4 or 6 can be related in general to known topologicalinvariants. Strickland has also developed programs to compute for Lens spaces, usingknowledge of J for torus knots. The di�culty in general comes in calculating JL(
)for larger values of r , as this requires knowledge of JL(wk) , at least in �r , for allk < r . This in turn is equivalent to knowing JL(�j) for j < r � 1 , in other words,the bracket invariant of the j -fold parallels of L . As a computational exercise thisrapidly becomes impractical with increasing j , even when L has a braid presentationon as few as 3 strings.4. The quantum group approach.In this section I shall discuss the alternative view of the invariants JL of a framedlink which was pioneered by Reshetikhin [29] and Turaev [34].The starting point here is a quantum group Gq , most conveniently one which isassociated to a classical Lie group G ; in the present context it is enough to considerG = SU(2) . The quantum group is an algebra over a ring � which includes aparameter q . Many of the constructions involve polynomials in q� 14 at the worst,and with care the ring can be regarded as Z[q� 14 ] .Finite-dimensional representations of the quantum group G (i.e. G -modules) playa central role in the de�nition of link invariants. The most important property of G27



Link invariants/NATO Summer Institute 1992 20-1-1997is that it is a Hopf algebra, in other words it admits a comultiplication � : G ! G�Gwhich has a su�ciently natural interaction with the algebra multiplication to allowtensor products of G -modules to be themselves regarded as G -modules.The map � is not symmetric, in the sense that � �� 6=� where � : G
G ! G
Gis induced by �(g 
 h) = h
 g . Consequently, when V and W are two G -modules,the simple interchange map � : V 
W ! W 
 V need not be an isomorphism ofG -modules, since � is used in the de�nition of V 
W as a G -module. There is,however, as part of the de�nition of a quantum group, an element R in a suitableextension of G 
 G which relates � � � and �. From this `universal R -matrix' Rthere arises a G -module isomorphism RVW : V 
W ! W 
 V for all modules Vand W , which is not the simple interchange map; thus in general R�1VW 6= RWV .4.1 Construction of link invariants.The aim is to start with any (m;n) -tangle T and choose a `colouring' of its com-ponents by �nite-dimensional G -modules, in other words, select a G -module for eachcomponent. Then try to represent coloured tangles by G -module homomorphisms insuch a way that when the strings at the bottom of the tangle T have been colouredby modules V1; : : : ; Vn and the strings at the top by W1; : : : ;Wm then the colouredtangle is represented by a module homomorphism V1 
 : : : 
 Vn !W1 
 : : : 
Wm ,while the composite of two consistently coloured tangles placed one above the otheris represented by the composite of the two homomorphisms.Every tangle can be built up as the composite of a number of elementary tangleswhich are either a simple crossing or or a local maximum orminimum , alongside a number of parallel straight strings. Once it is decidedhow to assign a homomorphism to each of these elementary tangles, with colouring,the homomorphism for the whole tangle will be determined as a composite. To showthat the homomorphism de�ned in this way for a coloured tangle is independent ofhow the tangle is drawn, up to say moves RII and RIII , it is su�cient to show thatcertain combinations of the elementary tangles determine the same homomorphism.To make the assignments for the elementary coloured tangles we require homomor-phisms V 
W !W
V for each of the (2; 2) -tangles and , for which weuse RVW and R�1WV respectively. The identity (1; 1) -tangle, , is representedby 1V ; when placed alongside other elementary tangles a number of parallel straightstrings are represented by taking the tensor product with the appropriate identityhomomorphism.When a tangle has no points at the top or bottom, the appropriate G -module to useas domain or target is the trivial module, in other words the coe�cient ring �. Thusthe local minimum (2; 0) -tangle, U = , requires a homomorphism �! V 
V ,while the local maximum tangle, V = , requires a homomorphism V 
V ! �.Turaev observed that only a small number of checks on these are needed to ensureinvariance of the homomorphism when the strings of the tangle are moved. These areshown pictorially below, and should be read as the equality of the composites of the28



Link invariants/NATO Summer Institute 1992 20-1-1997homomorphisms determined when the tangle is coloured arbitrarily, and regarded asthe product of elementary tangles.R0 = =

RII =

RIII =

RIV =A little care is needed in de�ning the homomorphisms to represent the local maxi-mum and minimum coloured by the general module V . Reshetikhin and Turaev [31]give details in a wider context; for irreducible V and the quantum group SU(2)q thereis an almost canonical choice, and having made this choice to satisfy R0 the otherrelations are guaranteed by the nature of the universal R -matrix. The consequenceof the de�nition is that a link diagram L , regarded as a (0; 0) -tangle, determines ahomomorphism �! � for each assignment of modules V1; : : : ; Vk to its components.This homomorphism is simply multiplication by some scalar J(L;V1; : : : ; Vk) whichdepends only on L up to moves RII and RIII and so gives an invariant of the framedlink L .Whatever de�nition of the homomorphisms representing and isused, a little care can be taken to ensure that(1) J(L) is multilinear on sums of modules,(2) when one component of L , say the �rst, is coloured with the tensorproduct V 
W thenJ(L;V 
W;V2; : : : ; Vk) = J(L0;V;W; V2; : : : ; Vk);where the link L0 has two parallel components in place of the �rst component of L ,coloured with V and W separately.A fuller account is given in [23], in which condition (1) is forced by working primarilywith irreducible representations, and then (2) has to be proved. In [31] the de�nitions29



Link invariants/NATO Summer Institute 1992 20-1-1997guarantee property (2) immediately, while (1) then needs a little proof. Rosso [33]has shown that in the general case, where G is regarded as an algebra over the�eld of rational functions in an indeterminate q� 14 , �nite dimensional G -modules arecompletely reducible, (i.e. isomorphic to a direct sum of irreducible modules). Inthis generic case write R for the representation ring of G , as an algebra over �. Anelement of R is then a �nite �-linear combination of �nite dimensional irreducible G -modules, and every G -module can be written in R as a positive-integer combinationof irreducible modules. Tensor product of modules makes R into a ring.4.2 The total quantum invariant.The multilinear property (1) of J(L) means that it can be extended to give amultilinear map J(L) : R � : : : � R ! �. By de�nition, R has a basis consistingof irreducible representations of G ; in this case with G = SU(2)q we know that R isisomorphic to the representation ring of SU(2) having one irreducible module Wi ineach dimension i � 1 . Details of these modules and the corresponding R -matricesare given in [13]; an account following the universal R -matrix prescription of Drinfeldis given in [12].The generic case, where the parameter q is treated as an indeterminate, has theadvantage that the representation ring is isomorphic to the representation of the cor-responding classical Lie group, and so its structure is understood. Construction oflink invariants can also be done when G is replaced by a �nite dimensional algebra,and the coe�cient ring is altered by specialising q to a root of unity. In this casethe representation theory becomes more complicated, as modules are not always com-pletely reducible, so that a direct interpretation of the link invariant as a functionon the representation ring is no longer possible, and more detailed work is needed tohandle the invariant comfortably, as in [32] and [12].Returning to the generic case, it is straightforward to use properties (1) and (2) forJ(L) , and knowledge of the ring R , to identify R with the ring B and J(L) withthe total bracket invariant JL .Theorem 4.1. The � -linear map h : R ! B de�ned by h(Wi) = wi is a ringisomorphism, where � = Z[A�1]; A4 = q . For a framed link L the invariants J(L)and JL can be identi�ed byJ(L;V1; : : : ; Vk) = JL(h(V1); : : : ; h(Vk)):Proof: It is a classical result that the representation ring of SU(2) is a polynomialring generated by the fundamental 2-dimensional irreducible representation, so thatR is the polynomial ring generated by W2 . Hence there is an isomorphism from Rto B carrying W2 to � = w2 2 B . To establish that this is the map h it is enoughto show that the elements Wi satisfy the recurrence relation Wn+1 =W2Wn�Wn�1in R . Now it is readily established from the representation theory of SU(2) that thetensor product W2
Wn decomposes as the direct sum of irreducibles Wn�1�Wn+1so that in R we have W2Wn =Wn�1 +Wn+1 .Using the fact that R is spanned by the powers of W2 we may evaluate the invariantJ(L) by evaluating it simply on modules Vj =W j2 , for varying j . When the invariantJ(L) is evaluated at W j2 on one component of L we may use property (2) to replacethis by the link L0 with j components in place of the one component, each coloured30



Link invariants/NATO Summer Institute 1992 20-1-1997by W2 . In this way comparison of J(L) and JL reduces to showing that for eachlink L J(L;W2; : : : ;W2) = JL(w2; : : : ; w2):Now JL(w2; : : : ; w2) = < L > so it remains to identify J(L;W2; : : : ;W2) with thebracket polynomial of L . It is enough to show that the three linear maps fromW2 
W2 to itself representing the diagrams� = ; Id = and H =satisfy the relation � = A Id + A�1H , and that the invariant of the simple unknot,as a (0; 0) -tangle, is � = �A2 � A�2 .When all strings are coloured by W2 the (2; 2) -tangles � , Id and H are eachrepresented by an endomorphism of the module W2 
 W2 . These endomorphismsare RW2W2 , 1W2
W2 and the composite of the local minimum and local maximummaps for W2 respectively. It is possible, given the detailed information from thequantum group, to calculate these maps explicitly and con�rm that they satisfy thelinear relation corresponding to the equation � = A Id +A�1H . We can also con�rmfrom the explicit maps that the composite of the local maximum and local minimummaps when coloured with W2 represents the simple unknotted circle by the map from� to � which is multiplication by � = �A�2 � A2 . Consequently the linear mapD(R2) ! � de�ned on the diagram L by J(L;W2; : : : ;W2) respects the de�ningrelations for S(R2) and hence factors through S(R2) . Thus, applied to the diagramL , we have J(L;W2; : : : ;W2) = < L >J(�; ) = < L >;since L = < L >� in S(R2) . utRemark. It is in fact more accurate to take the isomorphism determined by W2 7!�w2 , and the identi�cation of A with �e�h=4 , where q = eh . The quantum grouphomomorphism RW2W2 is then given directly by Drinfeld's universal R -matrix forSU(2)q .We may thus use either the bracket invariant approach or the quantum groupapproach to determine the same multilinear invariant J(L) in terms of B , the skeinof the annulus, or equally of R , the representation ring of SU(2) . In this second guisesome of the properties of the invariant which we have already discussed appear quitenaturally, in particular that wi is an eigenvector of the map F : B ! B . The framingchange in the quantum view requires the insertion of a curl on the component of alink, to which some element of R has been attached. Suppose that this element is oneof the irreducibles, Wi . We may draw the diagram after the framing change so thatthe extra curl is viewed as a (1; 1) -tangle coloured with Wi , inserted at some point inthe original diagram. This (1; 1) -tangle is represented by a module homomorphismfrom Wi to Wi . Since Wi is irreducible, such a map must, by Schur's lemma, be ascalar multiple, �i say, of the identity. Hence the curl can be removed at the expenseof multiplying J(L) by �i without any other change.Having made the identi�cation of the two descriptions for the generic link invariantit is possible to move on to discuss the 3-manifold invariant, as in the previous section,via the quotient ring Br (or Rr ) without having to consider the actual representationsof SU(2)q at the root of unity. 31



Link invariants/NATO Summer Institute 1992 20-1-19974.3 The Temperley-Lieb algebra again.One further link between the two viewpoints arises when we apply the quantumgroup viewpoint to tangles in which every component is coloured with the fundamentalrepresentation W2 = V , say. Each (m:n) -tangle then determines a linear map fromV 
n to V 
m , which is a G -module homomorphism, while composition of tanglesinduces composition of maps. Because the skein relations are satis�ed when W2 isused on all strings there is an induced map from the skein S(Rnn) = TLn to the linearendomorphisms of V 
n . This gives a representation, which is in fact faithful, of theTemperley-Lieb algebra TLn as an algebra of 2n � 2n matrices, with coe�cientsin �. Since V 
n is a G -module, and the tangles are all represented by moduleendomorphisms, we can see further that TLn is represented as a subalgebra of allG -module endomorphisms of V 
n . Indeed, if the coe�cient ring � is extended toinclude su�cient denominators then the image of TLn can be shown to be the algebraof all G -module endomorphisms of V 
n .There is just one submodule of V 
n which is isomorphic to the irreducible Wn+1 .Projection to this submodule determines a G -module endomorphism of V 
n , andhence an element of TLn . This element of TLn is in fact the element fn discussedearlier, divided by 'A(fn) . The multiplicative property of fn is seen in this contextfrom the fact that V 
k with k < n has no summands isomorphic to Wn+1 , so thatthe composition of the projection with the map representing any (n; k) -tangle, k < n ,must be zero. Now each generator hi of TLn is the composite of an (n; n� 2) -tanglewith an (n� 2; n) -tangle, so that the projection when composed with any of thesemust be zero. This leads to the equation fnhi = 0, and thus to the multiplicativeproperty, given that 'A can also be recognised by the property that 'A(hi) = 0.The representation of TLn on V 
n can be quickly recovered from the two mapsrepresenting the local maximum and minimum. These can be chosen to have matrices( 0 A �A�1 0 ) and ( 0 �A A�1 0 )T ;representing the linear maps Max : V 
 V ! � and Min : �! V 
 V respectively,where V has a basis v1; v2 and the basis elements of V 
 V are written in the orderv1 
 v1; v1 
 v2; v2 
 v1; v2 
 v2 . These maps satisfy the condition R0 and canbe combined as Max :Min to represent H . The matrix representing � is then givenby � = A + A�1H , while the value of � can be checked by calculating the productMin :Max .This representation of TLn can be used as a means of calculating explicitly thebracket polynomial of the closure of any (n; n) -tangle. It also provides a representa-tion of the braid group Bn on V 
n in which the generators �i satisfy a quadraticrelation, and so have only two eigenvalues. This representation preserves each G -submodule of V 
n which consists of the sum of all submodules isomorphic to a givenirreducible Wi , and hence it breaks up into a number of lower dimensional repre-sentations of Bn and indeed of TLn . Details of this are discussed in Reshetikhin'spapers [29]. Other representations of the braid group arise in a similar way, withhigher degree minimal polynomial for �i , using (n; n) -tangles coloured by one of theother irreducible modules Wj in place of W2 .5. A geometric view of the invariants.In de�ning the `generic' type of link invariant JL , taking values in a ring � con-32



Link invariants/NATO Summer Institute 1992 20-1-1997taining an indeterminate A = q 14 , I have described two di�erent approaches whicharrive at essentially the same end result. The interpretations of the parameter spaceB = R in terms of `decorations' or `colourings' which can be applied to the link com-ponents highlight di�erent properties, depending on whether the view as quantumgroup representations or as bracket invariants of satellites is uppermost in the mind.Either of these views constitutes a �rst stage for the invariants. The second stagearises when they are used to build invariants of general 3 -manifolds, typically interms of evaluations of the generic invariants, where the indeterminate is replaced bya speci�ed root of unity. The account given so far has made use of some featureswhich are special to SU(2)q , or equally to the bracket invariant, but there is muchwhich will work readily in a wider context. In the �nal section I shall give a briefaccount of the generic stage in constructing invariants, using the quantum groupsSU(k)q on one hand, and linear skein theory based on the Homy polynomial onthe other. Similar work relates Kau�man's Dubrovnik polynomial with the quantumgroups of the B , C and D series, coming from the orthogonal and symplectic groups,[42]. The corresponding second stage can be pursued, with a little care, following thegeneral lines of section 3.In the remainder of this section I look �rst at the generic invariant from the 3-dimensional point of view, and then note how this and the second stage invariants �tin to the framework of Witten.5.1 The generic invariant and modular functors.Both approaches, from linear skein theory and from the representation theory ofSU(2)q , lead to a framed link invariant JL : Bk ! �, and a satellite formula relatingJK for a satellite K to JC for its companion C and JP : Bk ! B for the patternP , viewed as a diagram in the annulus.There are two alternative views of the pattern(1) as a k -component diagram in the annulus, and(2) as a k + 1-component link P 0 consisting of P together with one distin-guished unknotted component which determines the annulus.View (1) determines a multilinear map JP : Bk ! B , while view (2) gives a mapJP 0 : Bk+1 ! �. These can be related by regarding P 0 as a satellite of the Hopf linkH using the pattern P , so that JP 0 = JH � (JP �1) as maps from Bk�B to �. TheHopf link invariant JH : B2 ! � thus provides a bilinear form which plays a centralrole in comparing the two views.The remaining feature of the generic invariant is the linear automorphism F : B !B describing the framing change, and the basis of B consisting of its eigenvectors.When we move to a more 3-dimensional view one characteristic feature is the be-haviour of the invariants when pieces of 3 -manifold with boundary are glued together.In Witten's framework, once the choice of a quantum group G and a level k havebeen made there should then be determined a `modular functor' from the category ofcobordisms of surfaces to the category of complex vector spaces and linear maps.De�nition. We say that the boundary of a 3-manifold has been marked if for eachboundary component of genus g there is an explicit choice of homeomorphism froma standard copy of the surface of genus g to that boundary component. We refer tothe homeomorphism as a marking . 33



Link invariants/NATO Summer Institute 1992 20-1-1997A full description of the required ingredients is given for example in [38]. The cen-tral idea is that every oriented 3-manifold M with boundary @M can be regarded asa cobordism when its boundary is marked and is partitioned into two parts, each con-sisting of a union of closed surfaces. In categorical terms, the objects of the categoryare unions of oriented surfaces, and the morphisms are oriented 3-manifolds withmarked partitioned boundary, so that M with boundary @M� [ @M+ is regardedas a morphism from the incoming boundary @M� to the outgoing boundary @M+ .Morphisms (cobordisms) are composed by gluing the outgoing boundary of one man-ifold to the incoming boundary of the other, using the marking of each component todetermine the gluing.A modular functor is a functor from this category to the category of vector spacesand linear maps. It associates a vector space to each surface of genus g , and thetensor product of such spaces to a disjoint union of surfaces. The marked cobordismM provides a linear map from the space for @M� to the space for @M+ . Thismap is assumed to be unchanged when the marking of a component is altered byisotopy. The functorial property ensures that composition of cobordisms translatesinto composition of linear maps. The marking of a boundary component may bealtered by composing the original cobordism with another of the form surface � I ,in which di�erent choices of marking are made at the two ends. Such cobordismsdetermine ine 
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Link invariants/NATO Summer Institute 1992 20-1-1997companion to the exterior of P translates exactly to the appropriate composition oflinear maps, provided that the marking of the boundary of the solid torus is suitablychosen. Further comments on this point of view are made in [23].We could try to base a limited cobordism functor on these de�nitions, with therestriction that the only boundary components allowed should be unions of tori. Wedo not however have enough freedom to do this; the most serious problem is thatwe are in general unable to change the linear map appropriately when we change theassignment of boundary components on a link exterior from incoming to outgoing.The case of the pattern link P 0 is a special case in which the component to be switchedis unknotted in S3 ; in this case the marking to be used on the outgoing componentdi�ers from that of the incoming components by switching the factors in S1 � S1 .The two maps JP 0 : B
k+1 ! � and JP : B
k ! B exhibit the sort of change thatwe would like to use generally when switching components from incoming to outgoing.They are related by the invariant JH : B 
 B ! � of the Hopf link. This representsthe exterior of H , in which both components are incoming. The same 3-manifoldis homeomorphic to the product (S1 � S1) � I , represented by the identity B ! Bwhen viewed as a cobordism with one incoming and one outgoing component. Theexpected procedure for altering the map when a component is switched from incomingto outgoing would be to change a copy of B in the domain of the map to a copy ofits dual B� in the target, and then use the bilinear form JH to identify B� withB . This would at least agree with the case of a pattern link P 0 and its unknottedcomponent.The problem with doing this in general is that B is in�nite dimensional, so that JHdoes not provide a good identi�cation. The other missing ingredient is the ability toalter the marking of a boundary component, so as to allow freedom to glue boundariestogether in di�erent ways. The change of framing, which corresponds to certainchanges of marking, can indeed be represented by use of the automorphism F on thevector space B , but there is no immediate analogue available to account for the otherhomeomorphisms in the mapping class group of the torus.5.2 The finite-dimensional invariants.Both of these problems disappear when we �x the level l , and thus r = l� 2 , andpass to the corresponding quotient ring Br in place of B as the linear space to usefor each boundary torus. The exterior of a link L can now be represented by the mapJ (r)L , regarded either as a multilinear map from (Br)k to �r � C or equivalentlyas a linear map on the tensor product (Br)
k . This map is determined by the fullpolynomial invariant JL after replacement of the variable A by a 4r -th root of unity.The complex vector space Br is �nite dimensional, and can be readily identi�edwith its dual, using the non-degenerate bilinear form J (r)H . This permits link exte-riors to be used in de�ning cobordism invariants, where any selection of boundarycomponents may be taken as the incoming part of the boundary. With these as basicingredients, a coherent assignment of linear maps can be made to cover the case ofcompact 3-manifolds with torus boundary components, up to a power of the numberc (depending on r ) mentioned in section 3. For example, the trivial knot, whoseexterior is a solid torus, determines the invariant < � > : Br ! � when regarded asa cobordism from the torus to the empty set. As a cobordism from the empty set tothe torus, it gives the element w1 2 Br , regarded as a map from � to Br . In this35



Link invariants/NATO Summer Institute 1992 20-1-1997setting, the torus is marked in such a way that composing this cobordism with a linkexterior has the e�ect of gluing the solid torus to the boundary of the neighbourhoodof one component of the link L so as to replace the neighbourhood exactly. The newcobordism is just the exterior of the link given by deleting the chosen component ofL , and its invariant is given by decorating that component of L by w1 , i.e. by theempty decoration, as expected.To perform surgery on the link exterior we must reglue the solid torus in a di�erentway, or equivalently we must choose a di�erent marking of its boundary torus, switch-ing the two factors S1 � S1 . When working with Br it is possible to represent thefull mapping class group of the torus on Br , (up to a power of c ), and in particularto represent the switching homeomorphism. The image of w1 under the switch is��1
, and so the solid torus glued in to one boundary component of a link exteriorby surgery is a cobordism which is represented by the map �r ! Br which takes 1to ��1
. The cobordism invariant of the new manifold is then given from that ofthe manifold before gluing by evaluation at ��1
 on the appropriate component. Sowe anticipate in this view that we might get an invariant of the manifold given bysurgery on a framed link L by regarding the manifold as a composite of cobordisms,starting with k solid tori, and attaching them to the exterior of L . The resultinginvariant would then be J (r)L (��1
; : : : ; ��1
) up to a power of c , which is indeedthe form of the invariant discussed in section 3.The invariant of a manifold constructed by general Dehn surgery from a framedlink L , where solid tori are glued in to the link exterior using other markings of theboundaries, can similarly be found by evaluation of J (r)L on suitably chosen elements ofBr , depending on the nature of the marking for each individual boundary component.The determination of these elements is a matter of �nding the image of w1 under theautomorphism of Br corresponding to the self-homeomorphism of the torus whichalters the chosen marking to the marking determined by the framing of L . Theycan be found once the action of the mapping class group of the torus on Br hasbeen established. The powers of c mentioned as an indeterminacy can be handledas in [24], or they can be incorporated into the cobordism invariant by regarding themarked 3-manifolds as also carrying a framing, adjustments to which account formultiplication by powers of c .It is possible to extend the invariant from a similar point of view to handle generalcobordisms in which the boundary components need not be tori. An account of thelinear space related to the surface of genus g can be given in terms of the skein ofa planar surface with g holes, just as Br is described in terms of the skein of theannulus. See for example the recent account by Lickorish [18], following work of Vogel,or an earlier account by Kohno from the quantum group viewpoint [14].6. Unitary invariants and the Hecke algebras.In this �nal section I shall give a brief indication of the similarities and modi�-cations to the previous work which are needed in considering the invariants relatedto the Homy polynomial [6] by satellite constructions, or equivalently to the uni-tary quantum groups SU(k)q , for di�erent values of k . There is a similar relationbetween the orthogonal/symplectic quantum groups and Kau�man's 2-variable in-variant. Wenzl [41] gives an account of this in which the quantum group approach,and the appropriate algebra, is much to the fore. He continues, with Turaev [37],36



Link invariants/NATO Summer Institute 1992 20-1-1997to develop this to the second stage when a root of unity is involved, so as to dis-cuss 3 -manifold invariants based on modi�cations to the quantum group. This inturn entails a separate study of the representation theory for the modi�ed quantumgroup, rather than using the classical representation theory based on the generic case.Although I will not attempt to move to this stage for the general quantum group,it is possible to reach the 3-manifold invariants in a similar way to the discussionsabove by dealing with invariants de�ned on what is in e�ect a natural quotient ringof the representation ring of the quantum group being used, or equivalently of thecorresponding classical group.6.1 The Homfly polynomial.The Homy polynomial PL(v; z) 2 Z[v�1; z�1] was developed independently byseveral groups shortly after the discovery of the Jones polynomial [6, 28]. It is aninvariant of an oriented link, characterised by the Homy skein relationv�1 P ( ) � v P ( ) = z P ( )between oriented link diagrams di�ering only where shown. It is invariant under allthree Reidemeister moves, and so PLqO = �PL , where � = (v�1 � v)=z , and Lq Oconsists of the diagram L together with a disjoint simple closed curve.It provides a simultaneous generalisation of the Alexander polynomial and Jones'polynomial byPL(v; z) = 8<:�K(t); the Alexander polynomial, when v = 1; z = s� s�1; t = s2rK(z); Conway's version of the Alexander polynomial, when v = 1,VK(t); the Jones polynomial, when v = s2 = t; z = s� s�1.In this original form P is normalised so that the unknot O has invariant 1 ; it ismore convenient in work which relates to quantum groups to normalise so that theempty knot � has invariant 1 and the unknot has invariant � . I shall adopt thisconvention in the present work.We may construct close relatives of the Homy polynomial which are invariants ofan oriented diagram D only up to RII and RIII for any scalar � by settingXD = �w(D)PD(v; z);where w(D) is the writhe of the diagram D . Then X can be recognised by theproperties X( ) = �X( )and the skein relation��1v�1 X( ) � �v X( ) = z X( ) ;up to normalisation. In this way we can identify any invariant of oriented diagramswhich satis�es a skein relation between , and with such a variantof the Homy polynomial, provided that it multiplies by a �xed scalar � under RI .The bracket polynomial, for example, arises with � = �A3; z = A�2 � A2 andv = A�4 . 37



Link invariants/NATO Summer Institute 1992 20-1-1997In general, when we write the relation asx�1 X( ) � x X( ) = z X( ) ;we have X = �w(D)PD(x��1; z) = (xv�1)w(D)PD(v; z) .6.2 Skein theory.We can use the Homy skein relation to de�ne skeins based on the Homy poly-nomial, following the methods used in the �rst section for the bracket invariant. Weshall consider diagrams, up to moves RII and RIII in a planar surface F whoseboundary contains a �nite set of distinguished points. We insist that each boundarypoint is given an orientation either as an input or an output, and we consider orienteddiagrams in F whose string orientation matches the orientation of the boundarypoints.De�nition. For a planar surface F the Homy skein SP (F ) is the set of linearcombinations of oriented diagrams in F subject to the relations(1) v�1 � v = z(2) = ;for diagrams which di�er as shown.The existence and uniqueness theorem for the Homy polynomial shows thatSP (R2) is isomorphic to the scalars, and the diagram L represents the multiplePL(v; z)� � of the empty diagram � , given our convention that P� = 1.As an example, if we take F to be the rectangle Rnn with n inputs at the bottomand n outputs at the top then the skein SP (Rnn) , constructed from oriented (n; n) -tangles, forms an algebra with composition induced by putting rectangles one belowthe other, as for the Temperley-Lieb algebra. This algebra is spanned by n! elements,represented by the positive permutation braids w�; � 2 Sn discussed above. It isgenerated as an algebra by the elementary braids �i , oriented with all strings upwards,and it is known to be isomorphic to the n -th Hecke algebra Hn , as shown in [26].A presentation for this algebra is given by generators �i satisfying the braid rela-tions �i�j = �j�i; ji� jj > 1;�i�i+1�i = �i+1�i�i+1and the skein relation v�1�i � v��1i = z .Variants on the skein de�nitions can be adopted, by use of a scalar � as in theinvariant X above, with x = �v , from which we can de�ne a variant skein S 0P (F ) bythe relations(10) x�1 � x = z(2) = � :38



Link invariants/NATO Summer Institute 1992 20-1-1997There is a linear isomorphism SP (F ) ! S 0P (F ) de�ned on each diagram D in Fby D 7! ��w(D)D , where w(D) is the writhe of the diagram. In the case whenF = R2 the link diagram L , which represents PL(v; z)� � in SP (F ) , will represent�w(L)PL(v; z)� � in S 0P (
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Oriented wiring diagrams can be used as before to induce linear maps betweenskeins. We may also decorate oriented link diagrams by elements of C and thusdetermine a multilinear map PD : Ck ! SP (F ) for any diagram D in F with kclosed components. This map will be independent of D up to moves RII and RIII ,while changes of framing on a component of D , in other words alteration by movesRI , can be accounted for by use of a framing change map F : C ! C de�ned asbefore by decorating the simple curl
regarded as a diagram in the annulus.In this way we can extend the Homy polynomial to de�ne invariants PL of aframed oriented link L by decorating its components with elements of C , so as togive a multilinear map PL : C � : : :C ! SP (R2) , the `total Homy invariant' of L .The Homy polynomial itself is recovered by evaluating the map PL at (�1; : : : ; �1) ,when SP (R2) is identi�ed with the ring of scalars. Other decorations give rise tofurther invariants of L , which I shall term `satellite Homy invariants' of L , as theyare constructed from the Homy polynomials of satellites of L .6.4 Representing the Hecke algebra.The closure wiring of a rectangle into the annulus induces a linear map Hn ! Cfor each n , with image Cn say. Every diagram in the annulus can be viewed as theclosure of some tangle, but we cannot assume that the string orientations at the top ofthe tangle are all inputs, so the skein C is not necessarily the union of the subspacesCn . We can certainly recover the whole of C by considering tangles in which theboundary points at the bottom are divided into n inputs and p outputs, with thematching points at the top forming n outputs and p inputs, for varying n and p .The algebra C is the product C+�C� of the subalgebras generated respectively byf�ig alone and by f��i g alone. The image Cn of Hn lies in C+ for each n ; it has abasis consisting of monomials in f�ig of total weight n , where �i has weight i . Itsdimension is thus �(n) , the number of partitions of n .An alternative basis for Cn is suggested by the representation theory of Hn , whichis a deformation of the group algebra C[Sn] of the symmetric group. For generic40



Link invariants/NATO Summer Institute 1992 20-1-1997values of the parameter z = s� s�1 (in fact for s2r 6= 1; r � n ) the algebra Hn isknown to decompose as the direct sum of �(n) subalgebras, LM� , each isomorphicto the algebra of d� � d� matrices for some d� . This decomposition is similar to theclassical case of C[Sn] ; the subalgebras M� are traditionally indexed by the Youngdiagrams � with n cells. Any such Young diagram is determined by a sequence ofnon-negative integers �1 � �2 � : : : � �n � 0with �1 + : : : + �n = n , and is commonly drawn diagramatically as an array of ncells with �i cells in row i . For example, the diagramcorresponds to the partition 3 � 2 � 1 � 1 � 0 � 0 � 0 with n = 7.Given the structure of Hn as a direct sum there will be a central idempotente� 2 Hn for each � , corresponding to the identity element of the subalgebra M� .These are orthogonal, in the sense that e�e� = 0 if � 6=� , while e2� = e� . The algebraHn decomposes in this way, provided that the coe�cient ring allows denominatorssr � s�r for r � n . The idempotents can be found explicitly, for example in [41].The simplest of these are multiples of the elements an and bn given above. Theycorrespond to the two Young diagrams, each with d� = 1, which have n cells andjust one row or just one column.The closure be� of the idempotents provide between them an alternative basis forCn consisting of �(n) elements. They have the merit of all being eigenvectors of theframing change map F : C ! C . This follows since any central element of Hn can bewritten as a linear combination of the idempotents P c�e� . The n -string curl Qn ,with appropriate orientation, which commutes up to RII and RIII with all (n; n) -tangles, can then be written as Qn = P c�e� . Orthogonality of the idempotentsshows that Qne� = c�e� and hence F(be�) = c�be�. The elements be� thus behaverather like the elements wi 2 B .Example. When n = 2 there are just two Young diagrams and , withcorresponding idempotentse = (sv�1�1 + 1)=(1 + s2); e = (�s�1v�1�1 + 1)=(1 + s�2) :When s = v = 1 these are the symmetriser and skew-symmetriser respectively for thesymmetric group S2 . It is easy to express each be� in terms of the basis of monomialsfor C , noting that for (2; 2) -tangles the closure of the identity braid 1 is �21 and theclosure of �1 is �2 .Thus when K is the �gure-eight knot with framing as shown
41



Link invariants/NATO Summer Institute 1992 20-1-1997we have its satellite Homy invariantPK(be ) = 1=(1 + s2) �v�1s PK(�2) + PK(�21)�given by calculating the Homy polynomials of two 2-string satellites of K . Theinvariant can be written as�s2 � s�2 (v�5s5 � v�3(s7 + s5 + s�1) + v�1(s7 + s3 + 2s+ s�5)� v(s�7 + s�3 + 2s�1 + s5) + v3(s�7 + s�5 + s)� v5s�5);where � = v�1 � vs� s�1 is the Homy invariant of the unknot. For comparison thestandard Homy invariant of the �gure-eight knot is PK(�1) = �(v�2 � s�2 + 1 �s2 + v2) .Similarly when n = 3 we can write down the two idempotents e and e asabove, using an and bn . The remaining idempotent e can be found from theequation 1 =P e� in Hn . The closures of all three can be calculated in terms of themonomial basis, giving for instancebe = 2s�2 + 1 + s2 ��31 + v�1(s� s�1)�1�2 � v�2�3� :This can also be written as 2s�2 + 1 + s2 bd where d = 1� ��11 �2 .Transition between the monomial basis and the basis fbe�g is not so convenient as inthe case of B , where the two bases of interest, f�jg and fwig , are integrally related.In Cn we need a limited set of denominators of the form sr � s�r and vsr � v�1s�rwith jrj � n to perform a complete transition. In principle, though, the informationavailable from a link by taking its Homy polynomial after decoration by elements ofC+ is equivalent to knowing, on the one hand, its satellite Homy polynomials whendecorated by all possible monomials in the �i and, on the other hand, the invariantswhen decorated by all possible be� for Young diagrams � . The connection with thequantum group SU(k)q invariants of the framed link L comes about through anidenti�cation of the quantum group invariants with the invariants above which usebe�, as � varies through Young diagrams restricted according to the value of k .6.5 Unitary quantum groups.The methods of Reshetikhin and Turaev [31] allow the quantum groups G = SU(k)qto be used to represent oriented tangles whose components are coloured by G -modulesas G -module homomorphisms. The scheme and necessary ingredients are similar tothose outlined in section 4, with one additional feature, namely the use of the dualmodule V � de�ned by means of the antipode in G , (an antiautomorphism of G whichis part of its structure as a Hopf algebra). When the components of the tangle arecoloured by modules the tangle itself is represented by a homomorphism from thetensor product of the modules which colour the strings at the bottom to the tensorproduct of the modules which colour the strings at the top, provided that the stringorientations are inwards at the bottom and outwards at the top. The dual module42



Link invariants/NATO Summer Institute 1992 20-1-1997V � comes into play in place of V when an arc of the tangle coloured by V has anoutput at the bottom or an input at the top.For example, the (4; 2) -tangle below, when coloured as shown, is represented by ahomomorphism U 
W � ! U 
X� 
X 
W � .
U

V W

X

U X* X W*

U W*As in the earlier case it is possible [31] to build up the de�nition so that consistentlycoloured tangles are represented by the appropriate composite homomorphisms, start-ing from a de�nition of the homomorphisms for the elementary oriented tangles. Twocases, depending on the orientation, must be considered for both the local maximumand the local minimum, and a little care is needed here to ensure consistency. The �nalresult is a de�nition of a homomorphism which is invariant when the coloured tangle isaltered by RII and RIII . When applied to an oriented k -component link diagram Lregarded as an oriented (0; 0) -tangle it gives an element J(L;V1; : : : ; Vk) 2 � = Q[[h]]for each colouring of the components of L by G -modules, which is an invariant ofthe framed oriented link L . This element, apart from a simple factor, is an integerpolynomial in q = eh . A categorical account of the appropriate features needed tode�ne an invariant in this way is given in [44].As in section 4, this invariant J(L) (for a �xed quantum group G ) is(1) multilinear under direct sums of modules, and(2) multiplicative on parallels.We can use (1) to extend the de�nition of J(L) to allow colouring by linear combi-nations of modules, and thus determine a multilinear map J(L) : R� : : : �R ! �,where R is the representation ring of G .De�nition. Refer to the map J(L) as the coloured invariants of L , where the choiceof quantum group G is clear. A colouring of L will mean a choice of an element ofR , (in other words, a linear combination of modules,) for each component of the link,and will determine an element of � by evaluation of J(L) .Notation. Write R(k) for the representation ring in the case when G = SU(k)q .For generic q this ring is shown in [33] to be isomorphic to the classical representa-tion ring of SU(k) . The irreducible modules of SU(k) and hence of SU(k)q are alsoindexed by Young diagrams. There is an irreducible SU(k)q -module V� for everyYoung diagram � provided that � is either the diagram with k rows and 1 columnor otherwise has at most k � 1 rows. Such Young diagrams are referred to later as`admissible' for k . Among these modules there is a `fundamental' irreducible mod-ule of dimension k , which is indexed by the Young diagram ut . Write Vut for thismodule. Each module V� whose Young diagram has n cells occurs as a summand ofV 
nut . 43



Link invariants/NATO Summer Institute 1992 20-1-1997An early relation between the Homy polynomial and the quantum invariants of alink was discovered by Jones and Turaev [34], when considering the invariant givenby colouring all components with the fundamental module Vut .Theorem 6.1 (Turaev, Jones). For the quantum group SU(k)q the invariantJ(L;V ut ; : : : ; V ut ) of the framed oriented link L is, up to normalisation, the Homypolynomial PL(v; z) with z = s� s�1 , v = s�k and s = pq = eh=2 . Assuming thatP� = 1 we have J(L;V ut ; : : : ; V ut ) = (xv�1)w(L)PL(v; z);where w(L) is the writhe of a correctly framed diagram of L , evaluated at z =s� s�1; v = s�k and x = s�1=k = e�h=2k .Proof: It is enough to show that J(L;Vut ; : : : ; Vut ) satis�es a quadratic skein rela-tion, and multiplies by a scalar under RI , to identify it with some specialisation ofPL as at the beginning of this section. Turaev represents the (2; 2) -tangle � whencoloured with the fundamental representation Vut by a map R : Vut
Vut ! Vut
Vutwhich satis�es the quadratic relationR�R�1 = (s� s�1)Id :It is possible to deduce the existence of some quadratic relation for R from the factthat Vut 
 Vut is the sum of just two irreducible modules.The (1; 1) -tangle when coloured with any irreducible must be represented bya multiple of the identity, by Schur's lemma. Turaev shows that this multiple is s�kwhen the k -dimensional fundamental module Vut of SU(k)q is used. This wouldlead to the result of theorem 6.1, without the factor x . It appears, however, thata scalar multiple of Turaev's endomorphism is more appropriate, to permit a moreconsistent behaviour of the family of invariants J(L) when evaluated on di�erentmodules. In the general construction of J(L) this behaviour is ensured by the useof the universal R -matrix to determine the representation of the elementary tangle� under each colouring. Since the universal R -matrix satis�es a non-homogeneousequation it is not possible to replace it by a scalar multiple of itself without losing themultiplicative behaviour of J(L) on parallels. The endomorphism R used by Turaevis a non-trivial multiple of the one which arises from Drinfeld's universal R -matrix.The appropriate endomorphism R as given in [3] satis�es instead the relation(�) x�1R� xR�1 = (s� s�1)Id ;with x = s�1=k .Assuming that we use this endomorphism R to represent � , equation (�) enablesus to de�ne a function S 0(R2)! � from the variant skein S 0(R2) with z = s� s�1 ,v = s�k and x = s�1=k by taking the diagram L to J(L;Vut ; : : : ; Vut ) . SinceL = (xv�1)w(D)PL(v; z)� � in S 0(R2) and the value of J on the empty diagram �is 1 we have the equationJ(L;Vut ; : : : ; Vut ) = s(k�1=k)w(L)PL(s�k; s� s�1) ;where the Homy polynomial PL is normalised to have value 1 on the empty diagram,and w(L) is the writhe of any diagram of L which realises the chosen framing. ut44



Link invariants/NATO Summer Institute 1992 20-1-1997Given a Young diagram � there is a corresponding SU(k)q -module V� for each k ,which should properly be distinguished from each other as k varies. It is, however,possible to organise things systematically so as to handle all the unitary quantumgroup invariants with colouring V� at once, by �nding a 2-variable function of v ands depending on C and � , from which the substitution v = s�k allows us to recoverthe invariant J(C;V�) for the quantum group SU(k)q , as shown in [41]. In thecase when � = ut the theorem above shows that the Homy polynomial of C itselfprovides a suitable function. For general � we use a satellite Homy polynomial ofC ; in fact we can use the closure be� derived from the Hecke algebra idempotent forthe same Young diagram � as the element of C to provide the satellite decoration.We shall see that it is possible to realise all possible colourings of C as linearcombinations of invariants which arise by varying the decoration P while restrictingthe colouring of P to the fundamental module Vut . Thus all coloured invariants ofC for the unitary quantum groups will arise, by the theorem of Jones and Turaev, aslinear combinations of the Homy polynomials of satellites of C , in which the variablev has been specialised to v = s�k for SU(k)q .There is a satellite theorem for the quantum invariants J(L) of a satellite link L .This allows us to express the invariants of the link given when a companion knot Cis decorated by some pattern P in the annulus in terms of the invariants of C andof the pattern P . From the point of view of constructing invariants of C we maychoose the decorating pattern, and then choose a colouring of P = bT to determinea coloured invariant of the satellite; this is an invariant of the original C , and thesatellite theorem shows how to realise this as a coloured invariant of C itself, in otherwords as the value of J(C) for some colouring of C .Suppose that the pattern P , and hence the satellite, has r components, whichwe colour by modules U1; : : : ; Ur . The tangle T , forming a subdiagram of P willthen itself be coloured by these modules so that the top and bottom endpoints arerepresented by the same tensor product of modules, W say, drawn from fUi; U�i g .The tangle T is represented by an endomorphism T (U) of the module W . WriteW as a direct sum LV�i of irreducible modules, and choose vi 6= 0 in V�i for eachi . The endomorphism T (U) then determines aij 2 � with T (U)(vj) = P aijvi .De�ne a weighted trace Tr(T (U)) 2 R(k) by settingTr(T (U)) =X b�V� ; where b� = XV�i �= V�aii:Satellite theorem 6.2. Let L be the framed oriented satellite of C with patternP = bT and let U = (U1; : : : ; Ur) denote a colouring of its components. ThenJ(L;U) = J(C; Tr(T (U))):The proof can be constructed with care from [31]. Notice that Tr(T (U)) dependsonly on P and the colouring, and not on the companion C . It provides a multilinearmap J(P ) : R(k) � : : : �R(k) !R(k) whose value on (U1; : : : ; Ur) is Tr(T (U)) .Theorem 6.3. Let C be an oriented framed knot, let � be any Young diagram andlet V� be the corresponding irreducible SU(k)q -module. Then, with the conventionthat J(C;V�) = 0 if � is not an admissible shape for SU(k)q , we haved�J(C;V�) = (xv�1)j�j2w(D)PC(be�);45



Link invariants/NATO Summer Institute 1992 20-1-1997as functions of s = pq , when the variable v on the right-hand side is replaced bys�k and x by s�1=k . Here d� , independent of k , is the degree of the matrix algebraM� in the appropriate Hecke algebra, j�j is the number of cells in the Young diagram� and w(D) is the writhe of a diagram for C with the chosen framing.A corresponding result holds for oriented framed links, dealing with each componentindependently.Proof: An outline of the proof follows. Apart from the normalising factor this resultis given in [41]; some further discussion will be found in [19]. Suppose that the givenYoung diagram � has n cells, so that j�j = n . We shall make use of a representationof Hn on W = V 
nut which carries the idempotent e� to the projection of W to the`isotypic' submodule for V� , namely the submodule isomorphic to LV�i for whichV�i �= V� .Any oriented (n; n) -tangle T determines an endomorphism f(T ) of W by colour-ing each of its components with the module Vut . Because of the relation (�) amongthe endomorphisms f(T ) as T varies, the map f induces a representation of thevariant skein S 0P (Rnn) , with v = s�k , x = s�1=k , on W . Using the isomorphism ofHn = SP (Rnn) with this variant skein gives an explicit homomorphism'k : Hn = SP (Rnn)! End(W )induced by 'k(T ) = (x�1v)w(T )f(T ) , where again v and x are replaced appropriatelywhen dealing with SU(k)q .Now decorate the diagram of C with the pattern bT to form a link diagram L , andcolour all components of L with Vut . By the satellite theorem we can calculateJ(L;Vut ; : : : ; Vut ) = J(C; Tr f(T )) = (xv�1)w(T )J(C; Tr 'k(T )) :On the other hand, theorem 6.1 shows thatJ(L;Vut ; : : : ; Vut ) = (xv�1)w(L)PL = (xv�1)w(L)PC(bT ) ;where v = s�k . Now the writhe of the decorated diagram L can readily be given asw(L) = w(T ) + n2w(C) , since each crossing in C will give n2 crossings of the samesign in L where the groups of n parallel strings cross. We can then writeJ(C; Tr 'k(T )) = (xv�1)n2w(C)PC(bT ) ; with v = s�k:We may now replace T by any linear combination of (n; n) -tangles to get a similarresult. In particular the idempotent e� in Hn can be written in this way, and thenwe have (xv�1)j�j2w(C)PC(be�) = J(C; Tr 'k(e�)) ; with v = s�k; x = s�1=k:The proof of theorem 6.3 can then be completed by showing that 'k(e�) is theprojection of W to the isotypic submodule for V� which is isomorphic to d� copiesof V� . The trace of this projection is d�V� so that the right-hand side in the equationabove becomes d�J(C;V�) as claimed. utIn the proof above the identi�cation of 'k(e�) with the projection to one of theisotypic submodules of W remains to be established. A deeper understanding of thestructure both of Hn and of the modules W = Vut for di�erent k can be achievedby use of the representation 'k . This representation gives a direct analogue of thesetting for classical invariant theory of the symmetric group, where the Hecke algebra46



Link invariants/NATO Summer Institute 1992 20-1-1997corresponds to the group algebra of the symmetric group Sn and the quantum groupsto the special linear groups. By drawing on work of Wassermann [39] and Wenzl [41]it can be shown that the following generalisations of the classical results hold in thiscontext.Theorem 6.4. The homomorphism 'k : Hn ! EndSU(k)qV 
nut is(1) surjective for all k ,(2) injective when k � n .The �rst part shows that every module endomorphism of W can be represented asthe linear combination of some tangles coloured with Vut . In particular the projectionto any submodule of W must be representable in this way; the choice of the elemente� is then simply one explicit way to realise J(C;V�) by means of a satellite Homypolynomial. Indeed the element e� is generally rather complicated and it is usuallypossible to �nd a simpler combination with the same closure in C .The isomorphism of Hn with the endomorphism ring for large enough k permits usto extend the classical correspondence between the idempotent e� and the projectionto the corresponding isotypic submodule in this case as well. It is also possible todescribe readily the kernel of 'k when k < n as the ideal generated by those idem-potents e� whose Young diagram has too many rows to be admissible for k , againexactly as in the classical case.The most striking consequence of the approach using the skein of the annulus is theexistence of the 2-variable invariant of C indexed by � whose specialisations at v =s�k provide the quantum invariants J(C;V�) for all SU(k)q at once. Links L can betreated in essentially the same way, taking the satellite Homy polynomial when eachcomponent is decorated independently by some be�, multiplied by a suitable power ofv , to specialise to the corresponding quantum invariant J(L) . It is interesting to notethat when the orientation of one component is reversed the quantum invariant of thenew link can be recovered from that of the old link by replacing the module on thatcomponent with its dual. The dual of the irreducible module V� is again irreducible,but its Young diagram �� depends on k as well as � so it is not possible to give asimilar universal treatment to handle string reversals for satellite Homy invariants.By way of example, the dual of the fundamental module Vut has Young diagram ��with a single column and k�1 cells. In the case of SU(2)q the fundamental module isthen self-dual, as are all the other irreducibles, which accounts for the insensitivity ofthe bracket invariant to string orientation. For SU(3)q the calculation J(C;V ) willthen give J(C;Vut) = (xv�1)w(C)PC with v = s�3 , where C is C with the oppositeorientation. The Homy polynomial of a knot is unchanged by string reversal, so wesee that (xv�1)4w(C)PC(be ) = J(C;V ) = J(C;Vut) = (xv�1)w(C)PC ;and so PC(be ) = (x�1v)3w(C)PC , the standard Homy polynomial, with v = s�3and x = s�1=3 . This gives PC(be ) = s�8w(C)PC , when v = s�3 .It is also possible to identify the module V for SU(4)q with the fundamental47



Link invariants/NATO Summer Institute 1992 20-1-1997module for SO(6)q and so relate PC(be ) with v = s�4 to an evaluation of Kau�man'sDubrovnik polynomial, [20].6.6 Remarks.The satellite theorem provides a multiplicative homomorphism from C to R(k) foreach k , which is most readily de�ned on the variant skein of the annulus by takingeach pattern P = bT to the trace of T when coloured entirely with Vut . On C+ thisdescription is independent of k and can be given on the basis fbe�g by be� 7! d�V�,so that after suitable writhe adjustment the functions JL and PL agree. The mapcarries the element �1 to Vut and �2 to vsV � vs�1V , while on the other hand��1 is mapped to V �ut , which will depend on k as noted above.The skein map PL on the algebra C , or even its restriction to the subalgebraC+ , carries the information for all the total invariants JL as k varies. Unlike thecase earlier where we compared the algebra B for the bracket invariant and therepresentation ring of SU(2) , we have here a single algebra C arising from the Homypolynomials and a whole series of non-trivial quotients R(k) of C which organise thequantum invariants.In fact the ring R(k) is the quotient of C+ by the ideal generated by Xn = be� forn > k , where � is the Young diagram with one column and n cells. The correspondingmodule V� is the n -th exterior power of the fundamental module Vut . It is possibleto draw on classical knowledge of the representation rings R(k) as polynomial ringsin the exterior powers of the fundamental module to give alternative constructionsfor the general basis element be� in C+ as a polynomial in the elements fXng . Theelement Xn is noted above to be Xn = ('b(an))�1ban. Equally the elements Yn =('a(bn))�1bbn, corresponding to the symmetric powers of Vut , can be used to generateC+ as a polynomial ring.An attempt to deal with 3-manifold invariants by means of C+ , on the lines ofthe treatment in section 3, has the corresponding feature that when calculating withv = s�k and s2(k+l) = 1, the invariant PC(Yn) = 0 for n = l; l + 1; : : : ; l + k � 1 .When the ideal generated by the k elements corresponding to Yn; n = l; : : : ; l+k�1is factored out from R(k) , the quotient is a �nite-dimensional algebra (a Verlindealgebra), which gives an analogue to Rr in the case of the SU(2) invariant, withr = k+ l . It corresponds closely with the ingredients used by Turaev and Wenzl [37]in their construction of a 3-manifold invariant of level l based on SU(k)q . It wouldbe interesting to consider this approach via C in more detail, with enough care aboutthe denominators in the ring of scalars to ensure that the substitutions of variablescause no problems.Acknowledgements.These notes have evolved from a series of seminars given in Liverpool during 1991,and represent one of many ways to choose a path through the wealth of materialavailable. I am grateful to my colleagues and co-workers for providing a willing andcritical audience, and particularly to Peter Cromwell and Ian Nutt for helpful criticismof the manuscript.I must acknowledge the considerable inuence of others, notably Raymond Lickorish48
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