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ABSTRACT. Starting with Kauffman’s bracket polynomial the techniques of linear skein theory are
used to present and package a family of polynomial invariants for a framed link. An equivalent family
of invariants is derived from representations of the quantum group SU(Z)q. Specialisation of the
variable ¢ leads to invariants of a 3-manifold defined by surgery on a framed link, in terms of the
invariants of the link. A similar programme is outlined relating the invariants constructed from the
Homfly polynomial to those derived from the quantum groups SU(k)q.

Introduction.

In this series of talks I shall start by discussing the knot invariants and algebra re-
lated to Kauffman’s bracket polynomial, and the construction of 3-manifold invariants
from them. The whole area can alternatively be viewed in terms of representations
of the quantum group SU(2),; I shall exhibit descriptions which have a convenient
interpretation in either light, and also give the means for translating between them.
My presentation here is based on the bracket polynomial, and has much in common
with the work of Lickorish, [16], and Blanchet, Habegger, Masbaum and Vogel, [2].

A direct approach on the quantum group route is given in my paper with Strickland,
(23], which draws directly on the early work of Kirillov and Reshetikhin, [13]. A
more general basis for the use of quantum group representations in constructing knot
invariants is given in the work of Reshetikhin and Turaev, [31]. Detailed descriptions
of representations for SU(2), can be found in Kirby and Melvin, [12]; while these
are based on specialisations of SU(2), in which the parameter ¢ is a root of unity
they do present careful and explicit details which enable the less complicated case of
generic ¢ to be handled as well.

The reason for their treatment is to give an account of the invariants of a 3-manifold
M which depend on the choice of a root of unity, and a quantum group (in this
case SU(2),), in terms of the invariants of any framed link which determines the 3-
manifold M by the process of surgery on the link. These 3-manifold invariants were
first constructed in this way by Reshetikhin and Turaev, [32]; their existence and
general properties were proposed originally by Witten, [43], based on interpretations
of constructions from theoretical physics. Other accounts are given in [24], [16] and
[2]. Those in [16] and [2] are based entirely on the bracket polynomial, while the
account in [24] uses the quantum group representations at generic ¢ as a means of
establishing properties of the knot invariants, and then makes constructions based on
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the evaluations of these at a given root of unity, without having to consider the more
complicated representation theory which arises at the root of unity.

My presentation of the 3-manifold invariants uses the techniques appropriate to
the bracket polynomial. I shall restate the point that, however the knot invariants are
constructed, whether by quantum group representations or by bracket polynomials,
there is a common halfway stage reached to which each of the constructions brings its
own insights. The final attack on the question of manifold invariants can then be made
from this point, no matter how it has been reached, although the representation theory
provides invaluable guidance at this stage in, for example, setting up and choosing a
suitable basis for a naturally occurring finite dimensional vector space.

I believe that a similar two-stage process is appropriate in constructing 3-manifold
invariants from other quantum groups. Such a construction is done by slightly dif-
ferent means, for example, by Turaev and Wenzl, [37], and a general framework is
given by Walker, [38], in the spirit of Segal’s modular functors. It is possible to make
a nice comparison of the knot invariants defined from the quantum groups SU(k),,
for different k, with knot invariants based on the Homfly polynomial, [29], [41], [19].
This permits an analogous two-stage process, allowing the definition of 3-manifold in-
variants in terms of the knot invariants for generic ¢, with a root of unity substituted
for ¢; the representation theory to be used in the first stage only requires the study of
generic ¢, when the representations mirror directly those of the corresponding classi-
cal group. In the final section I shall give a description of the SU(k), knot invariants
from the point of view of Homfly polynomials, in a similar framework to the earlier
talks, which can be thought of as dealing with the case k& = 2. More details will be
found in [19]; this gives a preparation of the common ground which could be used for
the production of manifold invariants by specialising ¢ to be a root of unity.

Readers of earlier versions of this paper should note some minor amendments in
section 6, where the substitutions v = s~%, 2 = s~1/% replace those used previously.

1. Knot invariants derived from Kauffman’s bracket.

1.1 THE BRACKET INVARIANT.

In 1986, Kauffman showed how to construct an element < D > € Z[A*!] for every
plane diagram D of a knot or link in R?, which is determined (up to a constant) by
two properties. These are

(1) <D, >=A<Dy>+ A< Dy >,
or more pictorially
< >=A<) (>4 A< >,
where D,, Dy and D, are three link diagrams which only differ as shown.
(2) <Du0O>=6<D>,

where § = —A? — A=2 and D 1u O is a diagram containing one component O which
has no self-crossings, or crossings with the rest of the diagram D.
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Ezample. Properties (1) and (2) allow the simplification of < Q > as

<@>:A<U\>>+A*<@>
—A2<00>+<( >
+<©>+A‘2<@>

=(A2+ A7) §<0>+2<0>
=—(A*+ 47 <0 >.

In a similar way, < D > can be written in terms of < O > for any D ; in Kauffman’s
original work the Laurent polynomial < D > was normalised by taking < O > =1,
but now it is more often chosen to include use of the empty diagram ¢, with the
condition that < ¢ > =1, and consequently < O > =6< ¢ > =9.

The reason for using properties (1) and (2) is given by Kauffman’s theorem, which
can be readily established.

THEOREM 1.1 (Kauffman) . When a diagram D is altered by one of the Reide-
meister moves Rrr or Ryrr the value of < D > 1is unchanged. O

I P I

Reidemeister’s moves

Reidemeister’s moves Ry, Ry; and Rjyrr alter one diagram to another which repre-
sents a different view of the same knotted curve in space, up to a natural equivalence
of closed curves in space corresponding to physical manipulations of pieces of rope.
The classical theorem of Reidemeister states that any two diagrams Dy and Dy of
two curves which are equivalent in space can be transformed from one to the other

3
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by a sequence of Reidemeister’s moves, (allowing diagrams to be distorted between

moves as shown).
w —
/ \ / A

Thus Kauffman’s bracket almost defines an invariant of a curve C' in space, by
calculating < D > for a diagram D of the curve. The element < D > € A would
indeed depend only on the curve C' if it were to be unaltered by all of the three
Reidemeister moves. Now Rjy; and Rjrr have no effect on < D >. However the
bracket, < D >, is altered when D is changed by a move of type R;. All the same,
this change is quite limited, and consists of multiplication by a fixed scalar %!,
depending on whether a left-handed or right-handed curl is removed.

This can be summarised as

(3) <(p>:>\<{>, <(b>:>\‘1< >,

where properties (1) and (2) show readily that A = —A3.

Kauffman’s theorem is proved in [8]. It leads immediately, using property (3), to
an invariant of oriented curves in space, which can be seen as follows.

In an oriented diagram each crossing ¢ can be given a sign e(c) = +1, defined as

shown,
A 7
/<€—+1, :\E——l

Now define the writhe w(D) of the oriented diagram D to be w(D) = > e(c),
the sum of the signs of the crossings in D. Since w(D) is unaltered by Reidemeister
moves R;; and Rjjr, and changes by +1 under move Rj, the function

AP p >

is unaltered by all Reidemeister moves, and hence gives an invariant of an oriented
curve C' in space in terms of any choice of diagram D representing C'. Kauffman
showed that this invariant could be identified with Jones’ invariant, introduced in
1984, which has been the foundation for much recent work in relating knot theory
with other topics.

1.2 LINEAR SKEIN THEORY FOR THE KAUFFMAN BRACKET.

In this section I shall develop the notation and ideas of linear skein theory in
using diagrams of various sorts to define certain linear spaces, or more accurately
A-modules, with the properties (1) and (2) of the bracket polynomial closely in mind.
The general methods were first used by Conway in dealing with versions of the Alexan-
der polynomial.

Notation. Let F be a planar surface, for example R? itself, or an annulus S* x I C
R?2, or a rectangular disc. When F has a boundary we also specify a finite, possibly
empty, set of points on its boundary. A diagram in F consists of any number of
closed curves, together with arcs joining the specified boundary points of F'. As
in the standard case of knot diagrams, the curves and arcs have a finite number of
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crossing points where two strands cross. At a crossing the strands are distinguished in
the conventional way as an over-crossing and an under-crossing, so that the diagram
can be interpreted as a view of some curves lying within F' x I.

Write A for the ring Z[A*!], and D(F) for the set of A-linear combinations of
diagrams in F'.

For example, when F = R?, D(F) consists of linear combinations of knot (and
link) diagrams, such as AK; — (A + 247 1)K, for the diagrams K; and Ko shown.

D&

K
Kl 2

Notation. When F' is a rectangular disc with m points specifed on the top edge,
and n points on the bottom edge, denote F' by R, and call a diagram in F' an
(m,n)-tangle.

An example of a (4,2)-tangle is shown below.
\{ /l\
Ia//

The linear combination of (2,2)-tangles o — AI — A~1H is an element of D(R3)

for the tangles o = [Z], I = E and H = [Z]

Definition. The linear skein S(F') of a planar surface F', with a distinguished finite,
(possibly empty), subset of boundary points, is the quotient of D(F) by the linear
relations

(1) D, = ADy + A7 D,

(2) DuO=6D (=—(A*+ A7?)D)

where D, , Dy and D, are any three diagrams in F' which differ only as in the
bracket relation (1), and D 11 O consists of a diagram D together with a disjoint
simple closed curve O which is null-homotopic in F.



Link invariants/NATO Summer Institute 1992 20-1-1997

Thus condition (2) allows us to replace

but not @ by 6 x

in the linear skein of the annulus, S(S! x I).

THEOREM 1.2. As a A-module, S(F) is spanned by diagrams with no crossings
and no null-homotopic closed curves.

Proof: By induction on the number of crossings and null-homotopic curves. Relation
(1) in the definition of S(F') allows us to replace a diagram by a linear combination
of two diagrams with fewer crossings, while relation (2) allows the removal of null-
homotopic closed curves. O

COROLLARY 1.3.  The linear skein S(R?) is spanned as a A -module by the empty
diagram ¢, (or, if the empty diagram is excluded, by the simple unknot diagram

0). |

Remark. For any diagram D in R? we can write D = < D >¢ in S(R?); this
provides an isomorphism S(R?) 22 A, induced by mapping D to < D >.

THEOREM 1.4. Two diagrams in F which differ by a Reidemeister move within
F of type Rrr or Ryrr represent the same element of S(F).

Proof: Relations (1) and (2) in S(F') are exactly what is used in the proof of Kauff-
man’s theorem. O

1.3 SKEIN MAPS.

Conway’s framework, as described by Lickorish [15], for relating skeins of different
surfaces can be helpfully used here to provide a range of linear and multilinear maps
between skeins.

The central idea is to place one planar surface F' inside another F’, and include
some fixed ‘wiring’, W, in the region between F' and F', consisting of one or more
closed curves and arcs, arranged so that the boundary points of the arcs consist
exactly of the distinguished boundary points of F' and F”.

Definition. A wiring W of F into F’' means a choice of inclusion of F' in F”,
and a fixed diagram of curves and arcs in F’ — F whose endpoints consist of all the
distinguished points on the boundaries of F' and F”.

Any diagram D inserted in the surface F' is then extended by W to give a diagram
W(D) in F'.
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Examples. (1) The rectangle R™ can be wired into the annulus S x I as shown. For
a tangle T the extended diagram W (T) in the annulus, or more usually in R?, is

A~

called the closure of T', and will be denoted by T'.

(2) The annulus itself can be wired into R? by simple inclusion, without any
extra curves.
(3) The plat closure of a (2m,2m)-tangle is the diagram in R? induced by
the wiring shown.
AYARENA

WAV

(4) A partial closure of an (n,n)-tangle T is the (n—1,n — 1)-tangle W (T)
induced by the wiring of R™ into R"”{ shown below.

Any wiring W of F into F’ determines a linear map
D(W):D(F)— D(F")
by D — W(D). It is clear that this induces a linear map between the skeins S(F')
and S(F").
THEOREM 1.5. A wiring W of F into F' induces a linear map
S(W): 8(F) — S(F),
defined on a diagram D in F by D — W (D).

Proof: Tt is enough to observe that if diagrams in F' satisfy skein relations (1) or (2)
then they continue to do so when extended by W to diagrams in F”’, so the relations
in S(F) are respected by the map. O

It is clear from theorem 1.4 that the wiring W can be altered by Reidemeister
moves Rj; or Ry in F' — F without changing the map S(W).



Link invariants/NATO Summer Institute 1992 20-1-1997

1.4 MULTILINEAR EXTENSIONS.

The wiring construction can be used to wire several surfaces at once, Fy,..., Fj
say, into F”. Any such wiring will induce a map
S(W):8(Fy) x ... x §(Fy) — S(F")
which is multilinear.
For example, we can very simply wire the rectangles Rj* and Rj into R}, one
above the other, inducing a bilinear product
S(R)) x S(Ry) — S(R').

In the case m = n = p this diagram-based product determines a multiplication
which turns S(R}) into an algebra over A.

Notation. Write TL, = S(R]) for this algebra, which is isomorphic to the n-th
Temperley-Lieb algebra.

Theorem 1.2 shows that T'L,, is spanned by diagrams in R} with no closed curves,
and no crossings.

When n = 3 there are just five such diagrams,

U VARRY U
A A Al LA
U >
—o
Note that h = | () || = 6h1 and hihohy = = h.
\_Jh
M M
For general n, TL, is spanned by (2:)/ (n + 1) such diagrams; the number of

diagrams is the n-th Catalan number.
Kauffman proved in [8] that T'L,, can be presented as an algebra with generators

hi,...,hn_1, similar to h; and hs above, and only the obvious relations, namely
hihj:hjhi, |Z—j| > 1,
h? = 6hi,

hihit1hi = h;.

He was thus able to identify this algebra with the Temperley-Lieb algebra, which
appears from a totally different viewpoint in Jones’ original work.

1.5 THE BRAID GROUPS.

An n-string braid is a diagram in R]! consisting only of n arcs, which all run
monotonically from bottom to top. Two n-braids are composed by placing one below
the other. Braids, up to Reidemeister moves Rj; and Rjjr, form Artin’s n-string
braid group, B, described by him in [1].

PROPOSITION 1.6. There 1s a multiplicative homomorphism B, — TL, deter-

mined by representing 3 € B, by a diagram in R and reading the diagram as an
element of the skein TL, .
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Proof: Diagrams which differ only by moves R;; and Rjyr; represent the same
element in the skein, so the map is well-defined. It is clearly a homomorphism, since
composition is defined in the same way in each case. O

The image of B,, under this homomorphism spans T'L,, , since each of the generators
h; of TL,, satisfies the relation o; = A Id + A~'h;, where o; is the elementary braid

0; = )
i+l

and thus h; = Ao; — A?2Id. The presentation of T'L, can be rewritten in terms of
the generators ;. The relations then include the relations in B,, together with the
additional relations

(O'i — A)(O‘l + A_S) =0,

or in other words (o; + A=3)h; = 0.

1.6 CALCULATIONAL METHODS.

It is possible to make use of the algebra T'L,, in calculating the bracket invariant
of a link L which has been presented as a closed braid B on n strings, simply by
combining the map B,, — TL,, with the linear map TL, — A = S(R?) induced by
the closure wiring on R]'. We must thus write the braid [ as a linear combination
B =3 AT, of the (*>*)/(n+1) spanning elements {T,} of TL, , with A, € A. It is
then enough to know the bracket invariant < Tg > of the closure of each T, to get

<SL>=<fB>=) A<Ty>.

The expression of  in terms of {T;} can be built up from knowledge of 3 as
a word in the elementary braids o;, by knowing simply how to write each product
Ty0;, as defined in section 1.4, in terms of the basis {T,} of T'L,, .

The amount of calculation required does not grow rapidly with the number of
crossings, for braids on a fixed number of strings. Such calculations still give one of
the quickest ways of handling invariants of quite complicated links; see Morton and
Short, [21, 22], for further analysis and comments. In principle the bracket invariant
of any knot can be found in this way, as every knot can be presented as a closed
n-braid for some n, although calculations become rapidly more impracticable with
increasing n.

For a simple related illustration, note first that 7Ly is spanned by just two ele-
ments, 1
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The induced bilinear map
S(W):TLy x TLy — A

then evaluates the bracket invariant of the complete diagram, when applied to
(6",0%). We can write 0" = (A + A7'h)" = P, + Q,.h € TLo in terms of the
basis elements 1 and h, and similarly ¢*. Combine this information with the calcu-
lation of S(W') on pairs of basis elements, to complete the calculation. It is easy to
see that S(W)(1,1) = S(W)(h,h) = § while S(W)(1,h) = S(W)(h,1) = §2, so that

the required invariant can be written

() (o)

In calculating ¢" € T Ly it can be more efficient to use a different basis of T'Lo
which reflects better its algebraic structure. In each T'L,, there is one element which
will be of further algebraic use. This is related to one of the two non-zero homomor-
phisms from T'L, to A. It is clear from the presentation of T'L, that there is a
A-linear homomorphism ¢ : TL,, — A, defined by (1) =1, ¢(h;) = 0. In terms of
braids this corresponds to ¢(o;) = A, ¢(1) = 1. (The other homomorphism, 1, is
defined by (0;) = —A73.)

In the next section I shall exhibit an element f, € T'L, with the property that
Tfn = fuT = o(T)f, for every T € TL,,. Before doing this, I shall look in further
detail at the skein of the annulus.

1.7 THE SKEIN OF THE ANNULUS.

Notation. Write B = S(S* x I) for the skein of the annulus.

The linear map B — S(R?) 2 A induced by the inclusion as in example (2) above
will sometimes be denoted simply by v — < v > as it is induced on a diagram in the
annulus by taking its bracket invariant when regarded as a diagram in the plane.

We can wire two copies of the annulus into the annulus itself by running one copy
parallel to the other without adding extra wiring. This defines a bilinear product
B x B — B, under which B becomes an algebra over A.

For example, the element of B represented by

@ is the product of and @

Write aa = @ as an element of B. Then k parallel curves represent

of | while the empty diagram is the unit element, 1, of the algebra B.

By theorem 1.2, B is spanned by diagrams with no crossings and no null-homotopic
curves. Any such diagram is either empty, or consists of k£ parallel curves around the
annulus, for some k, so that B = Aa], the ring of polynomials in «.

10
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For example, use of the skein relations shows that the diagram

is equal to (=1 — A7%) + (1 — A%)a? in B.

PRrOPOSITION 1.7. The evaluation map < - >: B — A = S(R?) is a ring
homomorphism.

Proof: This follows at once from the structure of B since < of > = §* by skein
relation (2). Even without this knowledge it is enough to observe that the two parallel
copies of the annulus containing diagrams to be multiplied in B can be moved apart
without change, using R;; and Rjjr, before evaluating each separately. ad

2. Satellite knots.

Suppose that we want to use the bracket invariant to compare two knots C; and
Cs. Let us draw diagrams of each knot and calculate its bracket invariant. If the
knots are equivalent, and the diagrams used have the same writhe, then we will get
the same answer in each case. Hence different answers, from diagrams with the same
writhe, guarantee that the given knots are different.

We might, however, get the same answer from two knots which we suspect to be
different. It is still possible that we may be able to show that the knots are different
by a less direct use of the bracket invariant. First, ‘decorate’ the two knots in the
same way, to give two more complicated knots K; and K. Make sure that if the
decoration is done in the same way, and the two knots C'; and C5 are equivalent, then
the decorated knots are equivalent. Then use the bracket invariant again to compare
K, and Ks; if these give different answers then C; and C5 must be different.

Such a project might be doomed to failure. If, for example, the bracket invariant
of K; could be calculated in terms of the bracket invariant of C; and the decoration,
as is the case for the classical Alexander polynomial, then two knots with the same
bracket invariant would, after being decorated in the same way, still give two knots
with the same invariant.

Happily, there is a chance of using the bracket invariant in this way. One of the
early discoveries [21] about the recent knot invariants was the existence of pairs of
knots with the same invariant which can be distinguished by calculating the invariant
of the knots resulting from suitable decoration.

2.1 CONSTRUCTION OF SATELLITES.

I shall now describe how to decorate a knot. Starting with a given knot C we draw
a diagram of it. This selects a ‘parallel’ curve to C', determined by keeping just to
one side of C' in the diagram. Altering the diagram by Rj; or Rjr; does not change
this ‘diagrammatic’ parallel curve when thought of as a curve in space relative to C',
while R; introduces a full twist of the parallel around C'.

11
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Definition. A framed knot is a curve C' in R3, with a choice of a neighbouring parallel
curve; a framed link has a choice of parallel for each component of the link.

In much of what follows we shall be dealing with framed knots and links. I shall
normally assume that any diagram of a framed link is drawn so that the chosen
parallels agree with the diagrammatic parallels. Suitable insertion of curls in the
diagram allows the diagrammatic parallels to be adjusted so that this is the case.

The study of framed knots and links is almost equivalent to the study of diagrams
of the knots and links up to the moves R;; and Rjj;. As noted, the diagrammatic
parallels are unaltered by R;r and Rjyr; ; conversely we can pass between diagrams
with the same parallel curves by using Ryr and Rpjr if we are also allowed to move
curls from one side of the string to the other, as shown.

0 =0

See Kauffman [10] for further comments. In the applications given here this last move
will be permissible, so I shall assume that any statements about framed links can be
interpreted in terms of diagrams up to moves Ry and Rjyrr, and vice versa.

To continue then with the construction, we shall assume that we have a diagram
of C', or equivalently a framing of C'. Now select a diagram P in the annulus. We
decorate C' with P as follows. Place the annulus with one edge following C' and one
following its parallel, and copy P into this annulus. The image of P forms a new
diagram, which is the knot C' decorated by P. Changing the exact positioning of
the copy of P as it is placed to lie around C will alter this new diagram, but only
by moves Ry and Ryrrr. Write C x P for this new diagram, defined up to Ry and
Ryrr. For example, when C' is the trefoil with framing as shown,

C =

and P = then C'x P = @

Alteration of the diagram of C' itself by Ry; or Ry will alter C'x P only by a
sequence of moves Ry or Ry respectively, and so C'x P, as a framed knot, depends
only on C as a framed knot and on P. Altering the framing of C, i.e. altering its
diagram by a move Ry, will in general alter C % P substantially; for this reason a
framing of C' must be specified in some way.

12
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From a more 3-dimensional viewpoint, the decoration P can be viewed as lying in
a solid torus, which is then embedded in R3 as a neighbourhood of the curve C'. The
resulting image of P is called a satellite of C', while C is known as its companion.
Again, some specification, amounting to a decision on framing, is needed to describe
exactly how the solid torus is to be embedded.

2.2 THE TOTAL BRACKET INVARIANT.

Our immediate study can be seen as the study of C' by means of the bracket
invariant of its various satellites, as we change the decoration pattern P. As with
the wiring construction, we can show that the process of decorating a fixed diagram
C by a pattern P in the annulus induces a linear map B — A = S(R?).

THEOREM 2.1. Let C be a knot diagram. Then there is a linear map Jo : B —
A =2 S(R?) induced by mapping a diagram P in the annulus to the diagram C x P .

Proof: When diagrams in the annulus satisfy skein relations (1) or (2) then the
diagrams which result from decorating C' will also satisfy the same skein relation.
The map Jo is thus well-defined on the skein B. O

As in the case of wiring diagrams, there is an extension of this result where C is
replaced by a link diagram L with k& components. Each component can be decorated
independently, giving a multilinear map

Jr:Bx...xB—A,

from k copies of B. It is clear that if L is changed by Rj;; or Rjr;y then the map
Jr, is unaltered; indeed .Jp is an invariant of the framed link L, its total bracket
imvariant.

We can make a further generalisation on this construction to the case where D is
a diagram with k£ closed components in a surface F'. By decorating each component
of D, following its diagrammatic parallel, with a linear combination of diagrams in
the annulus, we induce a multilinear map

Jp:Bx...xB— S(F).

When a diagram, L say, arises by decoration of another diagram we can use such
a map, taking F' itself as an annulus, to write the total invariant of the diagram L
as the composite of simpler maps.

For example, suppose that L is a link of £ + 1 components which can be drawn
with one of the components, L1 say, as a simple closed curve. Then, after suitable
adjustment by moves R;r and Rjrr, the remaining components can be arranged to
form a diagram D = T in an annulus, as shown, so that the link L itself is arranged
as the Hopf diagram H , with one component decorated by D.

13
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THEOREM 2.2.  The wnvariant Jy, is the composite

JDX]. JH

Bx.. xB == BxB —

Proof: Decorate each component of L by diagrams Pi,..., Pry1. The decorations
Py,..., P, determine a diagram in the annulus which is just the decoration of D.
The final diagram is the Hopf diagram H with this complicated diagram, represent-
ing Jp(Pi,...,P;) in B, decorating one component, while the other component is
decorated by Pyi1. Then Ji(Pi,...,Pry1) = Ju(Jp(Pi,. .., Py), Pyy1). The result
follows by linearity. ad

2.3 THE SATELLITE FORMULA.

We may also use this framework to calculate the total invariant Jx of a knot
K = C % P which is a satellite of C' constructed by decorating the framed knot
C by a diagram P in the annulus. Assuming that P has one component we may
decorate P by any diagram () in the annulus, to get a diagram P x () also in the
annulus. It is easy to see that, up to Ry; and Rjjs, the diagrams C x (P x () and
K+Q = (CxP)*(Q are the same. It is then immediate that the invariant Jg : B — A

is the composite

Jp

B~ B& A.

This equation, and its counterpart for links and patterns with more than one compo-
nent, will be termed the satellite formula. In this simple case we may also write it
as

Joxp = Jo o Jp.

The satellite formula shows that, unlike the bracket polynomial alone, we know
the total invariant J of a satellite once we know J for the companion and for the
annulus diagram P used in constructing the satellite. (Where C' or P have more than
one component, the corresponding multilinear maps should be used, and composed
appropriately, depending on the component of the companion which is decorated.)

The total bracket invariant Jo contains all the information about bracket invariants
of satellites of the knot C'. Tt is known once its values Jo(a*) on the basis {a*} of
B are known. To determine the bracket invariant of the satellite when C' is decorated
by a pattern P it is enough to write out P = ap+aja+... +a,a" in B and calculate
the bracket invariant of C' decorated by aF, for 0 <k <r. Then

Jo(P) = Z arJo(a®).
k=0

Now Jeo(1) = 1 and Jo(a) = < C >, since decoration of C by « just gives C
again. However, as remarked earlier, there is in general no way to determine Jo(a*)
from Jo(a), when k > 2.

For the unknot and the Hopf link, and also for other torus knots and links, the
map Jr is known, but not for any other knots. There are examples known, though,
of inequivalent knots C; and Cy for which Jo, = J¢,; these examples include all
mutant pairs of knots, such as the famous pair of Conway and Kinoshita-Teresaka,
[25].
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The relation given above for the invariant J of a satellite knot is equivalent to the
‘satellite formula’ of [23] which relates the total invariant of a given satellite to those
of the companion, the Hopf link H and the ‘pattern link’, namely the satellite of H
constructed from the same annulus diagram P as the given satellite. The pattern
link consists of P and one extra component, which can be compared to the axis of a
closed braid, and which gives the means for recovering P as a diagram in the annulus
from the pattern link in S®. To get the appropriate reinterpretation of [23] it is
simply necessary to identify B with the representation ring R of the quantum group
SU(2),.

In section 4 I shall give a brief account of the translation between the two viewpoints,
but the important features of either approach are the existence of the multilinear
invariant J;, for a framed link L, and its natural behaviour on satellites.

2.4 FRAMING CHANGE AND THE TOTAL INVARIANT.

To complete this stage in the understanding of the invariant J; for a framed link
L we must discuss the behaviour of J when the framing of L is altered.

To see more clearly what happens I shall look at the case when L has one com-
ponent. Suppose that L’ has the same diagram as L, except for the addition of a
single right-handed curl, so that the underlying knots are equivalent, but the fram-
ing has been altered by a single twist. If we use the simple decoration by « then
Jo(a) = < L' >= A< L>=\J(a), where A = —A3. However, Jr/(3) is not in
general a simple multiple of Jr(3). For example, we can calculate Jr(a?) in terms
of Jr by using the diagram shown

to decorate L. This diagram represents A%«? — (A% —1) in B.

In general the change of framing can be expressed in terms of the map F: B — B
induced by decorating the diagram 7' in the annulus.

THEOREM 2.3. Let L' be a knot given from L by adding one right-hand twist
to the framing. Then Jp = Jg o F, where F = Jr, induced by the diagram shown
above in the annulus.

15
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Proof: The diagram L’ is just L = T, and so the result follows from the satellite
formula. O

The map F has an inverse, induced similarly by the left-hand curl.

When the framing on a link of several components is altered, the total invariant .J,
as a multilinear map on B, is changed by applying a suitable power of the automor-
phism F to each copy of B, depending on the change of framing to be made on the
corresponding link component.

To describe the effect of framing change it is enough to determine the map F, or
equivalently to find F(a¥) for each k. As noted above, it is not true that F(a*)
is a multiple of a* when k > 1, although it is easy to see that, as a polynomial in
a, it must have degree at most k, and indeed that its degree is exactly k. In the
3-dimensional view, F arises when the solid torus formed by thickening the annulus
is mapped to itself by cutting along a meridian disc and regluing after a full twist.

To handle the invariant J most readily, including its behaviour under framing
change, it is natural to try to change the basis of B from {a*} to one consisting of
eigenvectors w; of F, if this is possible. Then Jp:(w;) = A;Jr(w;), where A; is the
eigenvalue of w;, and the value of Jp.(3) can be found readily in terms of .J; by
writing (3 in terms of the basis w; .

2.5 THE TEMPERLEY-LIEB ALGEBRA.

I shall now use the Temperley-Lieb algebra to help construct enough eigenvectors
of F to form a basis of B. Some of the properties of these eigenvectors are most
readily appreciated in the alternative view of B as the representation ring of SU(2),
in which the eigenvectors appear naturally as the irreducible representations. For this
reason I shall index the eigenvectors as ws,...,w;,..., where w;, which is a monic
polynomial in « of degree ¢ — 1, will correspond to the irreducible representation of
dimension 4, in conflict with the notation used by Lickorish [16], who indexes by the
degree of the polynomial. In the corresponding construction in [2], Blanchet et al
focus heavily on the eigenvector property, without using the Temperley-Lieb algebra
at all.

Using the closure wiring referred to earlier to map (n,n)-tangles into annulus di-
agrams I shall construct elements of B from the closure of elements in T'L,,; in
particular, the closure of the element f, mentioned at the end of section 1.6 is a
multiple of the desired eigenvector w1 .

It is easy to see the effect of F on any element of B which is in the closure of
TL,, in terms of the multiplication in T'L,, . For suppose that X is an (n,n)-tangle.
Then the closure of the tangle (), X, where @, is the right-handed curl on n parallel
strings, as shown,

will represent F(X) as an element of B. Write @4 : TL, — A for the linear ho-
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momorphism defined by ¢4(0;) = A for each i. In what follows I shall define the
elements f, € TL, with the property that T'f, = @a(T)f, for all T € TL, . It
is then immediate that the closure of f, is an eigenvector of F since we can write
Qnfn = 0a(Qn)fn. Take X = f,; its closure fn is then an eigenvector with eigen-
valte ¢4(Qn).

Now by removing n right-hand curls, one from each component, we can write @Q,,
as a multiple of the right-hand full-twisted braid A2, as an element of TL,,, so we
have @, = (—1)"A3"A2 . Since A2 is a braid it is easy to calculate p4(A2) in terms
of the crossings in the braid, as ¢4(c;) = A for each i. Now after removal of the n
curls from @, there remain n? —n crossings in the braid A2, all in the same sense,
so we have @4(A2) = A" =" and thus the eigenvalue for f, is (—1)"A" +2n

Define elements w; € B = Ala] by the relations

w; =1, wy=q,
Wit1 = QW; — W;_1, 1> 1.

Each wy is clearly a monic polynomial of degree k& — 1, and can be recognised as
the Chebyshev polynomial of the second kind, resulting from writing sin k6/sinf as
a polynomial in @ = 2cos@, (cf. Lickorish [16]).

The final result in this section is to establish that ¢ 4 (fy)wni1 = f,, S0 that each w;
is an eigenvector of F with eigenvalue A; = (—1)~1 A" =1 provided that ¢4 (f,)#0.

While it appears more appealing to divide f,, by ¢4 (f») in order to map exactly to
Wy +1 this can only be done by extending the ring A to allow suitable denominators.
At the present stage this need cause no problems, but later developments which
require substitution of the variable A in A then become more difficult as there is
a chance that ¢(f,) may become zero. Lickorish in fact uses carefully controlled
denominators to define an element denoted by f(™ whose closure is exactly wy, 4.
However, the definition of f,, without the factor, as given here, is also quite natural.

2.6 POSITIVE PERMUTATION BRAIDS.

I shall construct the element f,, € T'L, by means of positive permutation braids.
These have been used in [22] as a convenient basis for the Hecke algebra, and are
discussed more fully in [4]. In the algebraic context the construction of f, given here
is a special case of a construction of Jones in the Hecke algebra [7]; this method has
also been noted more recently by Kauffman [10].

Definition. For each permutation 7 € S, there is an n-braid w,(o1,...,0,-1), called
a positive permutation braid. It is uniquely determined by the following properties.
(1) String ¢ joins the point numbered ¢ at the bottom of the braid to the
point numbered (i) at the top, i =1,...,n.
(2) At any crossing, string i always crosses over string j if i < j.

We may view the strings in the braid as lying in layers, with string 1 above string 2,
and so on, so that each string can be moved independently of the others. This ensures
the uniqueness of w, , which can be drawn, if required, so that pairs of strings cross
at most once. In this form, condition (2) is equivalent to asking that each crossing be
positive, when all strings are oriented from bottom to top.

Let us now consider an algebra A in which the n-string braid group B, is rep-
resented. In what follows, we shall be primarily interested in the Temperley-Lieb
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algebra, T'L,, , but the arguments will work as well in a more general setting. I shall
continue to write o; for the element of A which represents the elementary braid o;.

We may then define an element E,(o1,...,0,-1) in the algebra A as the sum
En(O'l, ce ey O-n—l) = Z ’wﬂ—(O'l, ceey O'n_l).
TESH

Thus E3 = 1401 +09+ 0102+ 0501 + 0102071, noting that the last braid in the sum,
corresponding to the permutation (13), could equally well be written as oa0102. It is
a convenient property of the permutation braids that it is only necessary to remember
them by their permutation of the strings, without having to specify each braid as a
word in {o;}.

THEOREM 2.4. For each i we can factorise E, in the given algebra A as
En = E»,(:)(O', + ].) .

Proof: Given ¢, we can pair the permutations as follows. For each permutation
7 consider its composite 7' = 7o (i i+1) with the transposition (i i+1). Exactly
one of the pair preserves the order of ¢+ and ¢ 4+ 1. Suppose that it is 7, so that
7(i) < (i 4+ 1). Then the braid w,o; satisfies property (2) above, and so is itself a
positive permutation braid. Since its permutation is #’ we have w,o; = w, . Then

E, = Zwr + Zwr:

w(i)<m(i+1) ! (2)>n'(141)
= Z W + Z WrO;
w(i)<m(i+1) w(i)<m(i+1)

where E() = Zw,r . O
(i) <m(i+1)

If A is a scalar, then we may substitute Ao; for o; and rewrite the element
Wr(Ao1, ..., Aop_1) as )\l(”)ww(al, .eey0n—1) in A, where [(7) is the writhe of the
braid w,. This is the same as the length of w, when written as a monomial in
positive powers of the elementary braids o;. It is equal to the number of reversals of
the permutation 7, i.e. the number of pairs ¢ < j for which 7 (i) > 7(j).

Suppose now that all the elementary braids satisfy the quadratic equation

(0; —a)(o; —b) =0

in the algebra 4. Substitute Ao; for o; in E,, with A = —a=! or A = —b7!, to
define

an = Ep(—a" oy, ..., —a " op_1), by =E,(=b"tor,...,~b"to,_1).

THEOREM 2.5.  Suppose that the algebra A is spanned by braids, that (o; —a)(o; —
b) =0 in A and that ¢, and ¢y are linear homomorphisms from A to the scalars
defined by pq(0;) = a, @p(o;) =b. Then every T € A satisfies

anT = pp(T)an =Tan, bpT = @a(T)bn = Thy.
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Proof: To establish the left-hand equality in each case it is enough to show that
ano; = pp(0;)a, = ba, for each i, and similarly that b,0; = ab,. We can factorise
a, using the theorem above, as

an = EWD(—a"Yoq,...,—a  on_1) X (—a" oy + 1) = Qu(0; — a), say,

giving ay,(0; —b) = Qpn(0;—a)(o;—b) = 0, so that a,0; = ba, . Similarly b, (0; —a) =
0.

The factorisation of F, as (o; + 1)En(’) is also possible, proving the right-hand
equalities Ta,, = pp(T)a, and Tb, = @, (T)a, . O

Remark. When A is the group algebra of the symmetric group, Z[S,], and each o; is
represented as a transposition, the quadratic equation is 62 —1 = (0;—1)(0;+1) = 0.
The elements a,, and b, are then the classical symmetriser and skew-symmetriser,

by, = Z’R’, Ay, = Zs(w)w.

TESy TESy

The Temperley-Lieb algebra T'L,, is generated by the n-braids o4, ...,0,_1 which
satisfy the relation o; = A + A='h; with h? = éh; (= —(A% + a=2)h;). Then
o;h; = —A_ghi, so that (O'i + A_S)(O'i — A) =0.

Definition. In TL,, we define an element f, by

fn=E (A%0q,...,A%0,_1) (= Z Ay (o1, o) ).
TESH

COROLLARY TO THEOREM 2.5. FEvery T € TL,, satisfies the multiplicative property

T =Tf, = SOA(T)fnv

where @ : TL, — A is the linear homomorphism defined by pa(o;) = A for each
Q.

Proof: We can apply the theorem to T'L,, with a = —A=2 and b= A. Then f, = a,
and the result follows. O

Remarks. The element b, € TL,, is identically zero for n > 3.

The general algebra to which the theorem applies is some quotient of the Hecke
algebra. Jones [7] notes the elements a, and b, for the Hecke algebra when a =
q,b = —1; any other case can be rewritten in this way if o; is replaced throughout
by a suitable multiple.

2.7 THE ALTERNATIVE BASIS FOR THE SKEIN OF THE ANNULUS.

Having established the definition and multiplicative property of f, in T'L, I now
want to relate the closure of f,, in B to the element w, 1, defined inductively above
by wp41 = aw, — wyp—1, with wy =1 and wy = «.

THEOREM 2.6. In B, the skein of the annulus, we have fn = @A(fn)wna1 for all
n>1.
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Proof: We have f; =1 in T'L; as a braid on one string, so fl = a = ws. Indeed,
we could consider fy = ¢ in T'Lg, which gives J?o = ¢ = w1, noting that the empty
diagram in the annulus represents the identity element w; = 1 in the algebra B. The
rest of the proof is by induction on n, and depends on establishing the appropriate
relation between fn, fn_l and ./f\n—Z' This in turn depends on rewriting some of the
permutation braids w, which appear in the sum F, .

Corresponding to the inclusion i : S,_; C S, in which #’ € S, _; is extended
to #' € S, by 7n'(n) = n there is an inclusion of the braid group B,_; in B,
by adjoining an n-th straight string. The same procedure defines an inclusion % :
TL,_1 C TL,; this can even be seen to come from a simple wiring of R”"] into R?

which adjoins the extra string. The element i(FE,_1) is then Z wy . Because of
w(n)=n

the extra string the closure of i(T'), for any T' € TL,,_1, can be written as ol in B.
Define braids v, € B,, r=0,....n—1,by vo=1, v = 0p_10p-2-.-0p_r. In 7,

the string ending at position n crosses exactly r others, while no other strings cross

each other. The braids w7y, with 7(n) = n are then positive permutation braids for

all such 7 and for all » =0,...,n —1. All permutations of strings arise exactly once

on this list, so all positive permutation braids are counted exactly once as

n—1
n — Zwr: Z W (Z’W‘)
TESR w(n)=n r=0

Replace o; by A30; to get

(*)n fn =1 fn 1 (Z A3T’Y'f‘> .

We can calculate @4 (f,) inductively, using (), since @ 4(7y,) = A". For we have

ea(fn) = 0alfar (ZA4T) = [n]qpa(fa-1),

where [n],=1+q+---+¢""! (=n when ¢ =1) and ¢ = A*. Consequently,

0a(fn) = [nlgln —1g...[1]g = [n]g!-

To complete the proof of the theorem it will be enough to establish the relation

.;En = [n]qa}\n—l - [n]q[n - 1]‘1?77,—27

as the right hand side is then, by the induction hypothesis, ¢4 (f)(ow, — w,_1) =
a(fo)Wnt1.

We now use (%), to find the closure f,. For any elements Ty and T in TL, the
products T1T> and T57T; have the same closure in B. We can then replace f,, by

n—1

the product P, = (Z A3T7r> i(fn=1). Now 0 i(fn-1) = Ai(fn-1), for j<n—1,
r=0
by the multiplicative property of fn_1, 80 .i(fn_1) = A" Yo, _1i(fn_1), for r > 0.
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Then

Pn:"'(fn 1 (ZA4T 1) On— ll(fn 1)

= [n]qi(fn—l) + Az[n - 1]qhn—1i(fn—1)7

since oy = A+ A h,_y in TL,. Hence f, = P, = [n]qa}\n_l + A%[n - 1],Q,,
where @, = hy_1i(fn_1) € TL, .

We complete the proof by showing that @n = —A_2[n]qfn_2.
By (%)n—1 we have

n—2
Qn - hn—li(fn—l) - hn—li(fn—2) (Z A3T77/") )

r=0

where v, =0,-9...0p—r_1.

Then @, has the same closure as (Z A3T ’) n—14(fn—2) = Ry, say. Now o;

0
commutes with h,_1 and o;i(fn—2) = Ai(fn—2), for j <n —2, so as above we get

R —hn 17' fn 2 (ZA4T 1) On— 2hn 17' fn 2)

— (ZA4T) n— 10 fn 2 (ZA4T 2) n— 2hn—1i(fn—2)
r=0

:[n_l] n— ll(fn 2 +A n_2 n 2hn ll(fn 2)
!
Now for T' € T'L,,_5 the closures of the elements h,_1 i(T
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Thus
Q. =Ry =(n—1]46 + A%n —2]y) fu_s
= A7 (14 AN 1], — A —2],) T
= —A (A =1+ D f o = —A[n], f
This completes the last step in the proof. O

As remarked earlier, this result establishes that the elements w; are eigenvectors
of the twist-induced map F, with eigenvalue ; = (—1)i=1 A" ~1,

3. Invariants of 3-manifolds.

3.1 SURGERY ON FRAMED LINKS.

A description of closed orientable 3-manifolds has been known for some time in
terms of surgery on framed links in $3.

Given a framed link L in S3, the technique of surgery produces a manifold M (L)
by removing a solid torus neighbourhood V; of each link component L; from S3,
leaving the ‘exterior’ of L, a compact 3-manifold whose boundary consists of k£ tori.
The closed manifold M (L) is built up from this piece and k solid tori, by gluing each
solid torus to one of the boundary components. On the boundary of each solid torus
there is a distinguished family of closed curves, the meridians, which bound discs in
the solid torus. To specify M (L) we must say which curves on the boundary of the
exterior of L are to be matched with the meridians by the gluing.

We use the framing of L to determine this match. The framing of the component
L; specifies a choice of curves parallel to L; which determines a distinguished family
of curves on the corresponding boundary component of the exterior of L ; the surgery
is defined by matching these curves with the meridians.

We may think of the link L as giving us a view in S® of a large part of the manifold
M (L), namely the exterior of L. All that remains unseen are the added solid tori,
and the picture provides a good indirect knowledge of these as well. Of course there
can be other views of the same 3-manifold, based on a different link L’ say, in other
words we may find links L and L’ for which M (L) = M(L').

The study of 3-manifolds by means of framed links is greatly simplified by the
results of Kirby [11] and Fenn and Rourke [5].

THEOREM 3.1 (Kirby, Fenn-Rourke).
(1) Ewvery closed oriented 3-manifold arises as M (L) for some framed link

L.
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(2) There is an orientation preserving homeomorphism M (L) = M(L') if
and only if L and L' are related by a finite sequence of Kirby moves.

Kirby moves are of two types, shown below.

L s
XX
T —_—

L — 6 (L)

As in the earlier sections we assume that each diagram specifies a framed link using
the diagrammatic framing.

These moves have been used by Reshetikhin and Turaev [32], and subsequently
several other authors, as a means of approaching the family of 3-manifold invariants
described by Witten [W]. The central idea is to look for an element Q € B with
the property that the value Jp(£,...,Q) € A, possibly normalised in some way,
is unaltered when L is changed by Kirby moves. If such an ) were to exist, then
JL(€,...,Q) would depend only on the manifold M (L), and so would give an element
of A which is an invariant of M (L). Unfortunately this does not prove to be possible
without some modification, even allowing () to be a formal power series in « rather
than a polynomial.

The modification which works is to decide initially on a ‘level’ [, or equivalently to
select a 4r-th root of unity, with r = [+ 2, which is to be substituted for the variable
A in A. Having decided on [, it is then possible to choose Q € B, (depending
on [), so that the complex number given by substituting a 4r-th root of unity in
Jr(,...,Q) is, after suitable normalisation, unaltered by the Kirby moves, and is
thus an invariant of M(L).

In keeping with Segal’s view of Witten’s invariantsim an invaiGen J
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3.2 EVALUATIONS OF THE TOTAL INVARIANT AT ROOTS OF UNITY.

I shall start by discussing the evaluation of J;, on the ideal in B generated by one
of the elements w, . For any given component of the diagram of L it is possible, using
moves Ry and Rjrr, to draw it in an annulus as the closure of some (1,1)-tangle
T so that the chosen component, L say, is the single arc in 7" while the remaining
components Ls, ..., L lie entirely in T". This diagram T in the annulus induces a
multilinear map JT :Bx ... xB — B and Jp is the composite of this with the

evaluation map < - >: B — A.

THEOREM 3.2.  For any n, and any (s,..., 0 r € B we have

JT(wn+1,ﬂ2, ooy Br) = Awyyq, for some A € A.
Proof: From the tangle T construct an (n,n)-tangle T™ with n parallel arcs in
place of the single arc. Decorate the & — 1 closed curves by ﬁ%& ..., 0k to give an
element, G say, in TL, . The closure of f,G will then be JT(fn,BQ, .., Pr) € B.
Now the multiplicative property of f, allox/;\vs us to write f,G = Af,, whelle A=
0a(G) € A. Thus JT(fn,ﬂz,...,ﬂk) = Af,,, and the result follows since f, is a
multiple of w41 . O

THEOREM 3.3. Let L be a link diagram. Then

(a) Jp(w, xBx...xB)CA<w, >, the ideal generated by < w, > in A,
and

(b) JoL(Z,xBx...xB) C A< w, >, where I, C B is the ideal of B generated
by w, .

Proof: Part (a) is an immediate corollary of the previous theorem, with r =n + 1,
on drawing L to lie appropriately in the annulus. The result holds when any of the
components is decorated by w,. .

To prove part (b) it is enough to deal with the element w,( € Z, for any g € B.
We can use the multiplication in B to write

JL(wT'Bv 527 s 7/8k) = JL’(wTvﬁv 527 .. '757@)7

where L’ is the link with two parallel components in place of the first component of
L but otherwise identical to L. The result now follows from (a) applied to L'. O

The evaluation map < - > : B — A is a ring homomorphism, and hence
< UWpt1 > =< a>< Wy > — < Wp_1 >.
Starting from < wy; > =1 and <ws > =< a>=4§ = —(A2+A7?) it follows readily

A27‘_A—27‘
r=t € A. Then < w, > =0 when A% =1, A*#£0.

Notation. Write A,. C C for the image of A when A is mapped to a primitive 4r-th
root of unity, e.g. A = e™i/2"

Equivalently, take A, to be the quotient of A by the ideal generated by Euler’s
polynomial ¢4, (A).

Write also B, for the finite-dimensional A,-module (B/Z,) ® A, , where, as noted
above, the coefficient ring has been changed from A to A, by substitution for A.
Theorem 3.3 can then be reformulated.
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THEOREM 3.4. For any link diagram L the invariant Jp : Bx ... X B — A
induces a multilinear map Jg") B, x ... xB,— A,.

Proof: The value of Jg) can be calculated by choosing decorations (fi,...,5k) in
B x ... x B, and substituting the chosen 4r-th root of unity for A in Ji(fB1,...,0k).
The previous theorem shows that this number in A, is unchanged when an element
of the ideal Z, is added to any [;, by multilinearity of .J;, and so the result depends
only on the elements represented by [3; in B, . ad

3.3 STRUCTURE OF THE ALGEBRAS B AND B,.

The product wjwy, of two basis elements in B can be written as a sum E Nk Wi 5

7
with structure constants n;;, € A. It can be established inductively that n;;, € N,
and that ny;, = 6 ; in fact

I, fi+j+k=1mod2 and |j—k|<i<j+Ek,
Nijk = .
0, otherwise.

This is more obvious once we are able to identify B with the representation ring of
SU(2) and w; with the irreducible representations.

Then n;jj, is the coefficient of w; in the product w;wjwy . Since B is commutative,
n;ji is unchanged by permutation of ¢,j and k.

The algebra B, has a basis wq,...,w,_1, or properly speaking the images of these

elements. Each w; € B represents some integer linear combination of wy, ..., w,_1
r—1

in B,, and we can write wjwy = Z mijrw; in B, , for some integers m;j; . It can be
i=1

shown [24] that m;; is also symmetric in ¢,j and k£ when j,k < r and only takes

the values 0 or 1.

3.4 THE 3-MANIFOLD INVARIANTS.

Let us now compare the invariants of two links related by a positive Kirby move.
Suppose that the two links are as shown in the Kirby move diagram, and that the
second link ¢, (L) has k components, corresponding to the first k£ components of the

link L. Regard the closure 7" as a diagram in the annulus, determining Jf :Bx... X
B — B. Choose any decoration i, ..., 0 of T and write X = Jf(ﬁl, .., Pk) € B.

The satellite formula shows that Jp(f1,..., Bk, Q) = Jy (X, Q), where M is the link
shown below.

Since M itself is two parallel copies of the diagram K, which in turn is the unknot
with a positive curl, we can write Jyp (X, Q) = Jx(XQ) = < F(XQ) >. We want to
compare this with the invariant after the Kirby move, namely J,_ (r)(f1,...,0k) =
<X >.
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THEOREM 3.5.  Given 1 there exists 0 € B and c4 # 0 € A, depending only on
r such that, for any choice of L and decorations [B1,..., [0k,

JL(Brs-- s B, Q) = cxdy () (Brs - -+ Br)

when evaluated in A, .

r—1
Proof: Choose ) = Zakwk with ar = < wg >. By the calculations above, it
k=1
is enough to find c¢; so that Jy(X,Q) = ¢4 < X > in A, for all X € B. Since
we are evaluating in A, it is enough to check for X in a spanning set of B,, e.g.
X=wj; j=1,...,7r—1.
Now Ju(w;, ) = Jg(w;Q). Again it is enough to work with w;{ as an element
of B, , since we are only concerned with the evaluation in A,., so that in A, we have

r—1
Jr(w;Q) = JK(Z aRwjw)
k=1
r—1r—1
=Jx(D ) miragw;)
k=1i=1
r—1r—1
=< Z Zmijkak)\iwi >
k=1i=1
r—1 r—1
= Z)\,< w; > Zmijkak .
i=1 k=1
r—1 r—1
On the other hand, < w; >< w; > = < w;w; > = kaij< Wi > = Zmijkak by
k=1 k=1
symmetry of the coefficients m;;, . Thus
r—1
Tu(wi, Q) =Y X< w; >< w; >< w; >
i=1
=c4 < Wy >,
r—1
where ¢ = Z)\,-< w; >2.
i=1
r—1
The assignment c_ = Z A '< w; >? will handle the negative Kirby move sim-
i=1

ilarly, as the only difference is in the use of F~! in place of F' to deal with the
left-handed curl. Noting that ¢4 are complex conjugates in A, since |A| =1 we can
write c4 = pct! in polar form, with p > 0 and |¢| = 1. It is possible to calculate
¢, p in terms of the root of unity A, and check also that p#0. O

Assignment of 2 to each component then gives an element of A, which is invariant
under the Kirby moves, except for the appearances of c4. It is not difficult to
introduce a normalising factor to correct for this, as follows.
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To a framed oriented link L = L1 ULoU...U L, we can associate a quadratic form
with k x k matrix (l;;) where

lij = k(L;,Lj), i #j, li = framing on L;.

Write sig(L) for the signature of this form.
Then sig(L) is independent of the choice of orientation of L, and

sigpy (L) = sigL F 1.

COROLLARY 3.6. When M(L) is given by surgery on the framed link L with k
components the complexr number

pEeSIBL L (Q, ..., Q),
evaluated at the given root of unity, is an invariant of the 3-manifold M(L).

Proof: 1t is enough to show that the number is unaltered by a Kirby move on L.
Consider the case of the positive Kirby move, giving ¢ (L) with £ — 1 components.
Then . i

p keS8 LT (Q,...,0) = c+p_kc_SIgLJ4p+(L)(Q, ey )

_ p—(k—l)c—(SigL—l)J(er(L)(Q, Q)
= p (=D =S18es (D) g (0L, Q),

which is the corresponding number for ¢ (L). The negative Kirby move works
similarly, with c_ in place of ¢y covered by the alteration in signature. O

Remarks. There has only been a limited amount of calculation of these invariants. A
recent tabulation of known evaluations is given in [27]. Kirby and Melvin have been
able to give a closed formula for the invariants for Lens spaces as r varies, and also
show how the value for r = 2,3,4 or 6 can be related in general to known topological
invariants. Strickland has also developed programs to compute for Lens spaces, using
knowledge of J for torus knots. The difficulty in general comes in calculating Jr,(2)
for larger values of r, as this requires knowledge of Jr(wyg), at least in A, , for all
k < r. This in turn is equivalent to knowing Jr(a’) for j < r — 1, in other words,
the bracket invariant of the j-fold parallels of L. As a computational exercise this
rapidly becomes impractical with increasing j, even when L has a braid presentation
on as few as 3 strings.

4. The quantum group approach.

In this section I shall discuss the alternative view of the invariants J; of a framed
link which was pioneered by Reshetikhin [29] and Turaev [34].

The starting point here is a quantum group §,, most conveniently one which is
associated to a classical Lie group G'; in the present context it is enough to consider
G = SU(2). The quantum group is an algebra over a ring A which includes a
parameter ¢. Many of the constructions involve polynomials in qi% at the worst,
and with care the ring can be regarded as Z[¢*7].

Finite-dimensional representations of the quantum group G (i.e. G-modules) play
a central role in the definition of link invariants. The most important property of G
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is that it is a Hopf algebra, in other words it admits a comultiplication A : G — G x G
which has a sufficiently natural interaction with the algebra multiplication to allow
tensor products of G-modules to be themselves regarded as G-modules.

The map A is not symmetric, in the sense that To A= A where 7: G®G — GRG
is induced by 7(¢g ® h) = h ® g. Consequently, when V and W are two G-modules,
the simple interchange map 7 : V@ W — W ® V need not be an isomorphism of
G-modules, since A is used in the definition of V' ® W as a G-module. There is,
however, as part of the definition of a quantum group, an element R in a suitable
extension of G ® G which relates 7o A and A. From this ‘universal R-matrix’ R
there arises a G-module isomorphism Ryw : V@ W — W ® V for all modules V'
and W, which is not the simple interchange map; thus in general R‘_,‘I,V # Rwvy .

4.1 CONSTRUCTION OF LINK INVARIANTS.

The aim is to start with any (m,n)-tangle T and choose a ‘colouring’ of its com-
ponents by finite-dimensional G-modules, in other words, select a G-module for each
component. Then try to represent coloured tangles by G-module homomorphisms in
such a way that when the strings at the bottom of the tangle T" have been coloured
by modules Vi,...,V, and the strings at the top by Wy,..., W,, then the coloured
tangle is represented by a module homomorphism Vi ® ... @V, - W1 ®... ® W,,,,
while the composite of two consistently coloured tangles placed one above the other
is represented by the composite of the two homomorphisms.

Every tangle can be built up as the composite of a number of elementary tangles

which are either a simple crossing [Z] or [X] or a local maximum ] or

minimum | \_/ , alongside a number of parallel straight strings. Once it is decided

how to assign a homomorphism to each of these elementary tangles, with colouring,
the homomorphism for the whole tangle will be determined as a composite. To show
that the homomorphism defined in this way for a coloured tangle is independent of
how the tangle is drawn, up to say moves R;; and Rjjr, it is sufficient to show that
certain combinations of the elementary tangles determine the same homomorphism.

To make the assignments for the elementary coloured tangles we require homomor-

phisms VW — WV for each of the (2,2)-tangles [Z] and [X] , for which we

use Ryw and R;VIV respectively. The identity (1,1)-tangle, < , 1s represented

by 1y ; when placed alongside other elementary tangles a number of parallel straight
strings are represented by taking the tensor product with the appropriate identity
homomorphism.

When a tangle has no points at the top or bottom, the appropriate G-module to use
as domain or target is the trivial module, in other words the coefficient ring A. Thus

the local minimum (2, 0)-tangle, U = U , requires a homomorphism A — V@V,

while the local maximum tangle, V' = m , requires a homomorphism V@V — A.

Turaev observed that only a small number of checks on these are needed to ensure
invariance of the homomorphism when the strings of the tangle are moved. These are
shown pictorially below, and should be read as the equality of the composites of the
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homomorphisms determined when the tangle is coloured arbitrarily, and regarded as
the product of elementary tangles.

Tk

Y- D
N

Rrrr

Rrv =

[ \

A little care is needed in defining the homomorphisms to represent the local maxi-
mum and minimum coloured by the general module V. Reshetikhin and Turaev [31]
give details in a wider context; for irreducible V' and the quantum group SU(2), there
is an almost canonical choice, and having made this choice to satisfy Rg the other
relations are guaranteed by the nature of the universal R-matrix. The consequence
of the definition is that a link diagram L, regarded as a (0,0)-tangle, determines a
homomorphism A — A for each assignment of modules Vq,...,V} to its components.
This homomorphism is simply multiplication by some scalar J(L;Vy,...,Vs) which
depends only on L up to moves R;; and Rjy;; and so gives an invariant of the framed
link L.

Whatever definition of the homomorphisms representing U and N is

used, a little care can be taken to ensure that

(1) J(L) is multilinear on sums of modules,

(2) when one component of L, say the first, is coloured with the tensor
product V @ W then

J(L;VRW,Va, ..., Vi) = J(L; V, W, Va, ..., Vi),

where the link L’ has two parallel components in place of the first component of L,
coloured with V' and W separately.

A fuller account is given in [23], in which condition (1) is forced by working primarily
with irreducible representations, and then (2) has to be proved. In [31] the definitions
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guarantee property (2) immediately, while (1) then needs a little proof. Rosso [33]
has shown that in the general case, where G is regarded as an algebra over the
field of rational functions in an indeterminate qi% , finite dimensional G-modules are
completely reducible, (i.e. isomorphic to a direct sum of irreducible modules). In
this generic case write R for the representation ring of G, as an algebra over A. An
element of R is then a finite A-linear combination of finite dimensional irreducible G-
modules, and every G-module can be written in R as a positive-integer combination

of irreducible modules. Tensor product of modules makes R into a ring.

4.2 THE TOTAL QUANTUM INVARIANT.

The multilinear property (1) of J(L) means that it can be extended to give a
multilinear map J(L) : R X ... x R — A. By definition, R has a basis consisting
of irreducible representations of G; in this case with G = SU(2), we know that R is
isomorphic to the representation ring of SU(2) having one irreducible module W; in
each dimension 7 > 1. Details of these modules and the corresponding R-matrices
are given in [13]; an account following the universal R-matrix prescription of Drinfeld
is given in [12].

The generic case, where the parameter ¢ is treated as an indeterminate, has the
advantage that the representation ring is isomorphic to the representation of the cor-
responding classical Lie group, and so its structure is understood. Construction of
link invariants can also be done when G is replaced by a finite dimensional algebra,
and the coefficient ring is altered by specialising ¢ to a root of unity. In this case
the representation theory becomes more complicated, as modules are not always com-
pletely reducible, so that a direct interpretation of the link invariant as a function
on the representation ring is no longer possible, and more detailed work is needed to
handle the invariant comfortably, as in [32] and [12].

Returning to the generic case, it is straightforward to use properties (1) and (2) for
J(L), and knowledge of the ring R, to identify R with the ring B and J(L) with
the total bracket invariant Jy,.

THEOREM 4.1. The A-linear map h : R — B defined by h(W;) = w; is a ring
isomorphism, where A = Z[A*Y], A* = q. For a framed link L the invariants J(L)
and Jr, can be identified by

J(L; Vl, ey Vk) = JL(h(Vl), ey h(Vk))

Proof: Tt is a classical result that the representation ring of SU(2) is a polynomial
ring generated by the fundamental 2-dimensional irreducible representation, so that
R is the polynomial ring generated by W5. Hence there is an isomorphism from R
to B carrying Wy to a = wy € B. To establish that this is the map h it is enough
to show that the elements W; satisfy the recurrence relation W, = WoW,, — W, _;
in R. Now it is readily established from the representation theory of SU(2) that the
tensor product Ws ® W,, decomposes as the direct sum of irreducibles W,,_1 & W, 11
so that in R we have WoW,, = W, _1 + W, 41.

Using the fact that R is spanned by the powers of W we may evaluate the invariant
J(L) by evaluating it simply on modules V; = WJ , for varying j. When the invariant
J(L) is evaluated at W7 on one component of L we may use property (2) to replace
this by the link L’ with j components in place of the one component, each coloured
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by Ws. In this way comparison of J(L) and Jr reduces to showing that for each
link L
J(La W27 R WZ) = JL(w27 Ty wZ)‘

Now Jp(wa,...,we) = < L > so it remains to identify J(L;Ws,...,Ws) with the
bracket polynomial of L. It is enough to show that the three linear maps from
Wo @ Wy to itself representing the diagrams

o= [Z], Id = E and H = [Z]

satisfy the relation o = AId + A~'H, and that the invariant of the simple unknot,
as a (0,0)-tangle, is § = —A2 — A™2.

When all strings are coloured by Wy the (2,2)-tangles o, Id and H are each
represented by an endomorphism of the module Wy ® Ws. These endomorphisms
are Rw,w,, lw,ew, and the composite of the local minimum and local maximum
maps for Wy respectively. It is possible, given the detailed information from the
quantum group, to calculate these maps explicitly and confirm that they satisfy the
linear relation corresponding to the equation ¢ = A Id + A='H . We can also confirm
from the explicit maps that the composite of the local maximum and local minimum
maps when coloured with W5 represents the simple unknotted circle by the map from
A to A which is multiplication by § = —A~2 — A%2. Consequently the linear map
D(R?) — A defined on the diagram L by J(L;Ws,...,W3) respects the defining
relations for S(R?) and hence factors through S(R?). Thus, applied to the diagram
L, we have

J(L;Wa, ..., Wa) =< L>J(¢;) =< L >,

since L =< L >¢ in S(R?). O

Remark. 1t is in fact more accurate to take the isomorphism determined by Wy —
—ws, and the identification of A with —e~"/*, where ¢ = . The quantum group

homomorphism Ryw,w, is then given directly by Drinfeld’s universal R-matrix for
SU(2),.

We may thus use either the bracket invariant approach or the quantum group
approach to determine the same multilinear invariant J(L) in terms of B, the skein
of the annulus, or equally of R, the representation ring of SU(2). In this second guise
some of the properties of the invariant which we have already discussed appear quite
naturally, in particular that w; is an eigenvector of the map F : B — B. The framing
change in the quantum view requires the insertion of a curl on the component of a
link, to which some element of R has been attached. Suppose that this element is one
of the irreducibles, W;. We may draw the diagram after the framing change so that
the extra curl is viewed as a (1, 1)-tangle coloured with W;, inserted at some point in
the original diagram. This (1,1)-tangle is represented by a module homomorphism
from W; to W;. Since W; is irreducible, such a map must, by Schur’s lemma, be a
scalar multiple, \; say, of the identity. Hence the curl can be removed at the expense
of multiplying J(L) by A; without any other change.

Having made the identification of the two descriptions for the generic link invariant
it is possible to move on to discuss the 3-manifold invariant, as in the previous section,
via the quotient ring B, (or R, ) without having to consider the actual representations
of SU(2), at the root of unity.
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4.3 THE TEMPERLEY-LIEB ALGEBRA AGAIN.

One further link between the two viewpoints arises when we apply the quantum
group viewpoint to tangles in which every component is coloured with the fundamental
representation Wo = V', say. Each (m.n)-tangle then determines a linear map from
Veén to VO™ which is a G-module homomorphism, while composition of tangles
induces composition of maps. Because the skein relations are satisfied when Ws is
used on all strings there is an induced map from the skein S(R)Y) = T'L,, to the linear
endomorphisms of V®”. This gives a representation, which is in fact faithful, of the
Temperley-Lieb algebra T'L, as an algebra of 2™ x 2™ matrices, with coefficients
in A. Since V®" is a G-module, and the tangles are all represented by module
endomorphisms, we can see further that T'L, is represented as a subalgebra of all
G-module endomorphisms of V®" . Indeed, if the coefficient ring A is extended to
include sufficient denominators then the image of T'L,, can be shown to be the algebra
of all G-module endomorphisms of V®".

There is just one submodule of V®" which is isomorphic to the irreducible W, 1.
Projection to this submodule determines a G-module endomorphism of V®", and
hence an element of T'L,,. This element of T'L,, is in fact the element f,, discussed
earlier, divided by ¢4 (f,). The multiplicative property of f, is seen in this context
from the fact that V®*¥ with k& < n has no summands isomorphic to W, 1, so that
the composition of the projection with the map representing any (n, k)-tangle, k < n,
must be zero. Now each generator h; of T'L,, is the composite of an (n,n — 2)-tangle
with an (n — 2,n)-tangle, so that the projection when composed with any of these
must be zero. This leads to the equation f,h; = 0, and thus to the multiplicative
property, given that ¢4 can also be recognised by the property that ¢4(h;) =0.

The representation of TL, on V®" can be quickly recovered from the two maps
representing the local maximum and minimum. These can be chosen to have matrices

(0 A —A=1 0) and (0 —A A~* 0)7,

representing the linear maps Max : V®V — A and Min : A — V ® V respectively,
where V has a basis vy, v, and the basis elements of V ® V' are written in the order
v1 ® v1, V1 ® vy, vy ® vy, Vs ® va. These maps satisfy the condition Ry and can
be combined as Max.Min to represent H. The matrix representing o is then given
by 0 = A+ A~'H, while the value of § can be checked by calculating the product
Min.Max .

This representation of T'L,, can be used as a means of calculating explicitly the
bracket polynomial of the closure of any (n,n)-tangle. It also provides a representa-
tion of the braid group B, on V®" in which the generators o; satisfy a quadratic
relation, and so have only two eigenvalues. This representation preserves each G-
submodule of V®™ which consists of the sum of all submodules isomorphic to a given
irreducible W;, and hence it breaks up into a number of lower dimensional repre-
sentations of B,, and indeed of T'L, . Details of this are discussed in Reshetikhin’s
papers [29]. Other representations of the braid group arise in a similar way, with
higher degree minimal polynomial for o;, using (n,n)-tangles coloured by one of the
other irreducible modules W; in place of Ws.

5. A geometric view of the invariants.

In defining the ‘generic’ type of link invariant Jr, taking values in a ring A con-
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taining an indeterminate A = q%, I have described two different approaches which
arrive at essentially the same end result. The interpretations of the parameter space
B =R in terms of ‘decorations’ or ‘colourings’ which can be applied to the link com-
ponents highlight different properties, depending on whether the view as quantum
group representations or as bracket invariants of satellites is uppermost in the mind.

Either of these views constitutes a first stage for the invariants. The second stage
arises when they are used to build invariants of general 3-manifolds, typically in
terms of evaluations of the generic invariants, where the indeterminate is replaced by
a specified root of unity. The account given so far has made use of some features
which are special to SU(2),, or equally to the bracket invariant, but there is much
which will work readily in a wider context. In the final section I shall give a brief
account of the generic stage in constructing invariants, using the quantum groups
SU(k)q on one hand, and linear skein theory based on the Homfly polynomial on
the other. Similar work relates Kauffman’s Dubrovnik polynomial with the quantum
groups of the B, C' and D series, coming from the orthogonal and symplectic groups,
[42]. The corresponding second stage can be pursued, with a little care, following the
general lines of section 3.

In the remainder of this section I look first at the generic invariant from the 3-
dimensional point of view, and then note how this and the second stage invariants fit
in to the framework of Witten.

5.1 THE GENERIC INVARIANT AND MODULAR FUNCTORS.

Both approaches, from linear skein theory and from the representation theory of
SU(2),, lead to a framed link invariant J, : B¥ — A, and a satellite formula relating
Jx for a satellite K to Jg for its companion C and Jp : B¥ — B for the pattern
P, viewed as a diagram in the annulus.

There are two alternative views of the pattern

(1) as a k-component diagram in the annulus, and
(2) asa k+ 1-component link P’ consisting of P together with one distin-
guished unknotted component which determines the annulus.

View (1) determines a multilinear map Jp : B¥ — B, while view (2) gives a map
Jpr : B¥t1 — A. These can be related by regarding P’ as a satellite of the Hopf link
H using the pattern P, so that Jp = Jgo(Jp x 1) as maps from B¥ x B to A. The
Hopf link invariant Jg : B2 — A thus provides a bilinear form which plays a central
role in comparing the two views.

The remaining feature of the generic invariant is the linear automorphism F : B —
B describing the framing change, and the basis of B consisting of its eigenvectors.

When we move to a more 3-dimensional view one characteristic feature is the be-
haviour of the invariants when pieces of 3-manifold with boundary are glued together.
In Witten’s framework, once the choice of a quantum group G and a level k£ have
been made there should then be determined a ‘modular functor’ from the category of
cobordisms of surfaces to the category of complex vector spaces and linear maps.

Definition. We say that the boundary of a 3-manifold has been marked if for each
boundary component of genus ¢ there is an explicit choice of homeomorphism from
a standard copy of the surface of genus g to that boundary component. We refer to
the homeomorphism as a marking.

33



Link invariants/NATO Summer Institute 1992 20-1-1997

A full description of the required ingredients is given for example in [38]. The cen-
tral idea is that every oriented 3-manifold M with boundary OM can be regarded as
a cobordism when its boundary is marked and is partitioned into two parts, each con-
sisting of a union of closed surfaces. In categorical terms, the objects of the category
are unions of oriented surfaces, and the morphisms are oriented 3-manifolds with
marked partitioned boundary, so that M with boundary OM~ U OM ™ is regarded
as a morphism from the incoming boundary M~ to the outgoing boundary oM™ .
Morphisms (cobordisms) are composed by gluing the outgoing boundary of one man-
ifold to the incoming boundary of the other, using the marking of each component to
determine the gluing.

A modular functor is a functor from this category to the category of vector spaces
and linear maps. It associates a vector space to each surface of genus ¢, and the
tensor product of such spaces to a disjoint union of surfaces. The marked cobordism
M provides a linear map from the space for M~ to the space for OM ™. This
map is assumed to be unchanged when the marking of a component is altered by
isotopy. The functorial property ensures that composition of cobordisms translates
into composition of linear maps. The marking of a boundary component may be
altered by composing the original cobordism with another of the form surface x I,
in which different choices of marking are made at the two ends. Such cobordisms
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companion to the exterior of P translates exactly to the appropriate composition of
linear maps, provided that the marking of the boundary of the solid torus is suitably
chosen. Further comments on this point of view are made in [23].

We could try to base a limited cobordism functor on these definitions, with the
restriction that the only boundary components allowed should be unions of tori. We
do not however have enough freedom to do this; the most serious problem is that
we are in general unable to change the linear map appropriately when we change the
assignment of boundary components on a link exterior from incoming to outgoing.
The case of the pattern link P’ is a special case in which the component to be switched
is unknotted in S3; in this case the marking to be used on the outgoing component
differs from that of the incoming components by switching the factors in S* x S*t.
The two maps Jp: : B+l — A and Jp : B* — B exhibit the sort of change that
we would like to use generally when switching components from incoming to outgoing.
They are related by the invariant Jg : B® B — A of the Hopf link. This represents
the exterior of H, in which both components are incoming. The same 3-manifold
is homeomorphic to the product (S x S1) x I, represented by the identity B — B
when viewed as a cobordism with one incoming and one outgoing component. The
expected procedure for altering the map when a component is switched from incoming
to outgoing would be to change a copy of B in the domain of the map to a copy of
its dual B* in the target, and then use the bilinear form Jgy to identify B* with
B. This would at least agree with the case of a pattern link P’ and its unknotted
component.

The problem with doing this in general is that B is infinite dimensional, so that Jg
does not provide a good identification. The other missing ingredient is the ability to
alter the marking of a boundary component, so as to allow freedom to glue boundaries
together in different ways. The change of framing, which corresponds to certain
changes of marking, can indeed be represented by use of the automorphism F on the
vector space B, but there is no immediate analogue available to account for the other
homeomorphisms in the mapping class group of the torus.

5.2 THE FINITE-DIMENSIONAL INVARIANTS.

Both of these problems disappear when we fix the level [, and thus » =1 — 2, and
pass to the corresponding quotient ring B, in place of B as the linear space to use
for each boundary torus. The exterior of a link I can now be represented by the map
J g), regarded either as a multilinear map from (B,)¥ to A, C C or equivalently
as a linear map on the tensor product (B,)®¥. This map is determined by the full
polynomial invariant Jy, after replacement of the variable A by a 4r-th root of unity.

The complex vector space B, is finite dimensional, and can be readily identified
with its dual, using the non-degenerate bilinear form .J g ). This permits link exte-
riors to be used in defining cobordism invariants, where any selection of boundary
components may be taken as the incoming part of the boundary. With these as basic
ingredients, a coherent assignment of linear maps can be made to cover the case of
compact 3-manifolds with torus boundary components, up to a power of the number
¢ (depending on r) mentioned in section 3. For example, the trivial knot, whose
exterior is a solid torus, determines the invariant < - > : B, — A when regarded as
a cobordism from the torus to the empty set. As a cobordism from the empty set to
the torus, it gives the element w; € B, , regarded as a map from A to B,. In this
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setting, the torus is marked in such a way that composing this cobordism with a link
exterior has the effect of gluing the solid torus to the boundary of the neighbourhood
of one component of the link L so as to replace the neighbourhood exactly. The new
cobordism is just the exterior of the link given by deleting the chosen component of
L, and its invariant is given by decorating that component of L by wy, i.e. by the
empty decoration, as expected.

To perform surgery on the link exterior we must reglue the solid torus in a different
way, or equivalently we must choose a different marking of its boundary torus, switch-
ing the two factors S x S'. When working with B, it is possible to represent the
full mapping class group of the torus on B, , (up to a power of ¢), and in particular
to represent the switching homeomorphism. The image of w; under the switch is
p~ 1, and so the solid torus glued in to one boundary component of a link exterior
by surgery is a cobordism which is represented by the map A, — B, which takes 1
to p~1Q. The cobordism invariant of the new manifold is then given from that of
the manifold before gluing by evaluation at p~'€2 on the appropriate component. So
we anticipate in this view that we might get an invariant of the manifold given by
surgery on a framed link L by regarding the manifold as a composite of cobordisms,
starting with k& solid tori, and attaching them to the exterior of L. The resulting
invariant would then be Jg)(p_lﬂ, ...,p Q) up to a power of ¢, which is indeed
the form of the invariant discussed in section 3.

The invariant of a manifold constructed by general Dehn surgery from a framed
link L, where solid tori are glued in to the link exterior using other markings of the
boundaries, can similarly be found by evaluation of J g) on suitably chosen elements of
B, , depending on the nature of the marking for each individual boundary component.
The determination of these elements is a matter of finding the image of w; under the
automorphism of B, corresponding to the self-homeomorphism of the torus which
alters the chosen marking to the marking determined by the framing of L. They
can be found once the action of the mapping class group of the torus on B, has
been established. The powers of ¢ mentioned as an indeterminacy can be handled
as in [24], or they can be incorporated into the cobordism invariant by regarding the
marked 3-manifolds as also carrying a framing, adjustments to which account for
multiplication by powers of c.

It is possible to extend the invariant from a similar point of view to handle general
cobordisms in which the boundary components need not be tori. An account of the
linear space related to the surface of genus g can be given in terms of the skein of
a planar surface with ¢ holes, just as B, is described in terms of the skein of the
annulus. See for example the recent account by Lickorish [18], following work of Vogel,
or an earlier account by Kohno from the quantum group viewpoint [14].

6. Unitary invariants and the Hecke algebras.

In this final section I shall give a brief indication of the similarities and modifi-
cations to the previous work which are needed in considering the invariants related
to the Homfly polynomial [6] by satellite constructions, or equivalently to the uni-
tary quantum groups SU(k),, for different values of k. There is a similar relation
between the orthogonal/symplectic quantum groups and Kauffman’s 2-variable in-
variant. Wenzl [41] gives an account of this in which the quantum group approach,
and the appropriate algebra, is much to the fore. He continues, with Turaev [37],
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to develop this to the second stage when a root of unity is involved, so as to dis-
cuss 3-manifold invariants based on modifications to the quantum group. This in
turn entails a separate study of the representation theory for the modified quantum
group, rather than using the classical representation theory based on the generic case.
Although I will not attempt to move to this stage for the general quantum group,
it is possible to reach the 3-manifold invariants in a similar way to the discussions
above by dealing with invariants defined on what is in effect a natural quotient ring
of the representation ring of the quantum group being used, or equivalently of the
corresponding classical group.

6.1 THE HOMFLY POLYNOMIAL.
The Homfly polynomial Pr(v,z) € Z[vt!, 2*!] was developed independently by
several groups shortly after the discovery of the Jones polynomial [6, 28]. It is an

invariant of an oriented link, characterised by the Homfly skein relation

PG =0 PON) = 2 P() ()

between oriented link diagrams differing only where shown. It is invariant under all
three Reidemeister moves, and so Prio = 6Pr,, where § = (v=! —v)/z, and LII O
consists of the diagram L together with a disjoint simple closed curve.

It provides a simultaneous generalisation of the Alexander polynomial and Jones’
polynomial by

Ak (t), the Alexander polynomial, when v =1,z = s — s~ 1 t = 52
Vk(z), Conway’s version of the Alexander polynomial, when v = 1,

Vi (t), the Jones polynomial, when v = 82 = ¢,z = s — s~ 1,

Pp(v,2) =

In this original form P is normalised so that the unknot O has invariant 1; it is
more convenient in work which relates to quantum groups to normalise so that the
empty knot ¢ has invariant 1 and the unknot has invariant 6. I shall adopt this
convention in the present work.

We may construct close relatives of the Homfly polynomial which are invariants of
an oriented diagram D only up to R;y; and Rjy; for any scalar A by setting

XD = )\w(D)PD(U, Z),

where w(D) is the writhe of the diagram D. Then X can be recognised by the

properties
(
X(/0) = ax())
and the skein relation

Vot x () = x(N) = 2 x(0) ()

up to normalisation. In this way we can identify any invariant of oriented diagrams
which satisfies a skein relation between X , ;\/ and > < with such a variant

of the Homfly polynomial, provided that it multiplies by a fixed scalar A under Rj.
The bracket polynomial, for example, arises with A\ = —A3,2 = A72 — A% and
v=A"%.
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In general, when we write the relation as

X0 —e X(N) = 2 x0) ()

we have X = AP Pp (A1, 2) = (20~ )*P) Pp(v, 2).

6.2 SKEIN THEORY.

We can use the Homfly skein relation to define skeins based on the Homfly poly-
nomial, following the methods used in the first section for the bracket invariant. We
shall consider diagrams, up to moves R;; and Rjj; in a planar surface F' whose
boundary contains a finite set of distinguished points. We insist that each boundary
point is given an orientation either as an input or an output, and we consider oriented
diagrams in F' whose string orientation matches the orientation of the boundary
points.

Definition. For a planar surface F the Homfly skein Sp(F') is the set of linear
combinations of oriented diagrams in F' subject to the relations

o BRI Y
) 0 = |

for diagrams which differ as shown.

The existence and uniqueness theorem for the Homfly polynomial shows that
Sp(R?) is isomorphic to the scalars, and the diagram L represents the multiple
Pr(v,z) x ¢ of the empty diagram ¢, given our convention that Py = 1.

As an example, if we take F' to be the rectangle R} with n inputs at the bottom
and n outputs at the top then the skein Sp(R]), constructed from oriented (n,n)-
tangles, forms an algebra with composition induced by putting rectangles one below
the other, as for the Temperley-Lieb algebra. This algebra is spanned by n! elements,
represented by the positive permutation braids w,,w € S, discussed above. It is
generated as an algebra by the elementary braids o;, oriented with all strings upwards,
and it is known to be isomorphic to the n-th Hecke algebra H,,, as shown in [26].

A presentation for this algebra is given by generators o; satisfying the braid rela-
tions

0,0 = 0403, |’&—]| > 1,
0i0i+10% = 0i410i0i+1

and the skein relation v=lo; —vo; ! = 2.
Variants on the skein definitions can be adopted, by use of a scalar A as in the
invariant X above, with £ = Av, from which we can define a variant skein Sp(F') by

the relations

w X =)
2) Lp:w.
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There is a linear isomorphism Sp(F) — Sp(F) defined on each diagram D in F
by D — A~%(P)D where w(D) is the writhe of the diagram. In the case when
F = R? the link diagram L, which represents Pr(v,z) x ¢ in Sp(F), will represent
NP (v,2) x ¢ in SH(F).

One frequent choice for this variant is zfned
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Oriented wiring diagrams can be used as before to induce linear maps between
skeins. We may also decorate oriented link diagrams by elements of C and thus
determine a multilinear map Pp : C¥ — Sp(F) for any diagram D in F with k
closed components. This map will be independent of D up to moves R;r and Ryyr,
while changes of framing on a component of D, in other words alteration by moves
Ry, can be accounted for by use of a framing change map F : C — C defined as
before by decorating the simple curl

regarded as a diagram in the annulus.

In this way we can extend the Homfly polynomial to define invariants Pr of a
framed oriented link L by decorating its components with elements of C, so as to
give a multilinear map P, : C x ...C — Sp(R?), the ‘total Homfly invariant’ of L.
The Homfly polynomial itself is recovered by evaluating the map Py, at (aq,...,a1),
when Sp(R?) is identified with the ring of scalars. Other decorations give rise to
further invariants of L, which I shall term ‘satellite Homfly invariants’ of L, as they
are constructed from the Homfly polynomials of satellites of L.

6.4 REPRESENTING THE HECKE ALGEBRA.

The closure wiring of a rectangle into the annulus induces a linear map H,, — C
for each n, with image C,, say. Every diagram in the annulus can be viewed as the
closure of some tangle, but we cannot assume that the string orientations at the top of
the tangle are all inputs, so the skein C is not necessarily the union of the subspaces
Cn. We can certainly recover the whole of C by considering tangles in which the
boundary points at the bottom are divided into n inputs and p outputs, with the
matching points at the top forming n outputs and p inputs, for varying n and p.

The algebra C is the product Cy xC_ of the subalgebras generated respectively by
{a;} alone and by {«a}} alone. The image C,, of H, liesin C; for each n; it has a
basis consisting of monomials in {a;} of total weight n, where a; has weight 7. Its
dimension is thus A(n), the number of partitions of n.

An alternative basis for C,, is suggested by the representation theory of H,,, which
is a deformation of the group algebra C[S,] of the symmetric group. For generic

40



Link invariants/NATO Summer Institute 1992 20-1-1997

values of the parameter z = s — s™1 (in fact for s2" # 1, r < n) the algebra H,, is
known to decompose as the direct sum of A(n) subalgebras, @ M) , each isomorphic
to the algebra of d) x d) matrices for some d). This decomposition is similar to the
classical case of CI[S,,]; the subalgebras M) are traditionally indexed by the Young
diagrams A with n cells. Any such Young diagram is determined by a sequence of
non-negative integers

A>A > 20,20

with A1 +... + A, = n, and is commonly drawn diagramatically as an array of n
cells with A; cells in row . For example, the diagram

&

corresponds to the partition 3>2>1>1>0>02>0 with n=7.

Given the structure of H, as a direct sum there will be a central idempotent
ex € H, for each A, corresponding to the identity element of the subalgebra M) .
These are orthogonal, in the sense that exe, = 0 if A#u, while e3 = e). The algebra
H,, decomposes in this way, provided that the coefficient ring allows denominators
s" —s~" for r < n. The idempotents can be found explicitly, for example in [41].
The simplest of these are multiples of the elements a,, and b, given above. They
correspond to the two Young diagrams, each with d) = 1, which have n cells and
just one row or just one column.

The closure €y of the idempotents provide between them an alternative basis for
C,, consisting of A(n) elements. They have the merit of all being eigenvectors of the
framing change map F : C — C. This follows since any central element of H,, can be
written as a linear combination of the idempotents > c,e,. The n-string curl @,
with appropriate orientation, which commutes up to Ry and Ryrr with all (n,n)-
tangles, can then be written as @, = ) cye,. Orthogonality of the idempotents
shows that Qnpex = cyen and hence F(€)) = cx€x. The elements €, thus behave
rather like the elements w; € B.

Example. When n = 2 there are just two Young diagrams m and [ , with
corresponding idempotents

e = (svlop+1)/(1+ s?), cg = (—s o loy +1)/(14572) .
(|

When s = v =1 these are the symmetriser and skew-symmetriser respectively for the
symmetric group S3. It is easy to express each €) in terms of the basis of monomials
for C, noting that for (2,2)-tangles the closure of the identity braid 1 is a? and the
closure of o7 is as.

Thus when K is the figure-eight knot with framing as shown
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we have its satellite Homfly invariant

PK(’e\D:| ) =1/(1 + s%) (v_ls P () + PK(a%))

given by calculating the Homfly polynomials of two 2-string satellites of K. The
invariant can be written as

)
m(v_f’ss — 03 (T8 5T Lo (T 4+ 5% 425 +570)
— (s 5425 4 ) 03 (s T+ 570 +5) —0dsTO),
-1
where § = % is the Homfly invariant of the unknot. For comparison the
§s— 8~

standard Homfly invariant of the figure-eight knot is Px(cay) = 6(v™2 —s72 +1 —
52 +v?).
Similarly when n = 3 we can write down the two idempotents e and ea as
oo

above, using a, and b,. The remaining idempotent eEFl can be found from the

equation 1 = > ey in H, . The closures of all three can be calculated in terms of the
monomial basis, giving for instance

2
af + 07 (s — s Haras — v %ag) .

-~

‘B :s_2+1+82(

This can also be written as _2—8 where d =1 — o7 'oy.
s724+ 1+ 52

Transition between the monomial basis and the basis {€)} is not so convenient as in
the case of B, where the two bases of interest, {a/} and {w;}, are integrally related.
In C, we need a limited set of denominators of the form s” — s~ and vs" — v~ ts™"
with |r| < n to perform a complete transition. In principle, though, the information
available from a link by taking its Homfly polynomial after decoration by elements of
C4+ is equivalent to knowing, on the one hand, its satellite Homfly polynomials when
decorated by all possible monomials in the «; and, on the other hand, the invariants
when decorated by all possible €\ for Young diagrams A. The connection with the
quantum group SU(k), invariants of the framed link L comes about through an
identification of the quantum group invariants with the invariants above which use

€\, as A varies through Young diagrams restricted according to the value of k.

6.5 UNITARY QUANTUM GROUPS.

The methods of Reshetikhin and Turaev [31] allow the quantum groups G = SU(k),
to be used to represent oriented tangles whose components are coloured by G-modules
as G-module homomorphisms. The scheme and necessary ingredients are similar to
those outlined in section 4, with one additional feature, namely the use of the dual
module V* defined by means of the antipode in G, (an antiautomorphism of G which
is part of its structure as a Hopf algebra). When the components of the tangle are
coloured by modules the tangle itself is represented by a homomorphism from the
tensor product of the modules which colour the strings at the bottom to the tensor
product of the modules which colour the strings at the top, provided that the string
orientations are inwards at the bottom and outwards at the top. The dual module
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V* comes into play in place of V when an arc of the tangle coloured by V has an
output at the bottom or an input at the top.

For example, the (4,2)-tangle below, when coloured as shown, is represented by a
homomorphism U@ W* - UQ X*® X @ W*.

o

U W*

As in the earlier case it is possible [31] to build up the definition so that consistently
coloured tangles are represented by the appropriate composite homomorphisms, start-
ing from a definition of the homomorphisms for the elementary oriented tangles. Two
cases, depending on the orientation, must be considered for both the local maximum
and the local minimum, and a little care is needed here to ensure consistency. The final
result is a definition of a homomorphism which is invariant when the coloured tangle is
altered by Rrr and Rjyrr. When applied to an oriented k-component link diagram L
regarded as an oriented (0, 0)-tangle it gives an element J(L; Vi,..., Vi) € A = Q[[A]]
for each colouring of the components of L by G-modules, which is an invariant of
the framed oriented link L. This element, apart from a simple factor, is an integer
polynomial in ¢ = e®. A categorical account of the appropriate features needed to
define an invariant in this way is given in [44].

As in section 4, this invariant J(L) (for a fixed quantum group G) is

(1) multilinear under direct sums of modules, and
(2) multiplicative on parallels.

We can use (1) to extend the definition of J(L) to allow colouring by linear combi-
nations of modules, and thus determine a multilinear map J(L) : R x ... x R — A,
where R is the representation ring of G.

Definition. Refer to the map J(L) as the coloured invariants of L, where the choice
of quantum group G is clear. A colouring of L will mean a choice of an element of
R, (in other words, a linear combination of modules,) for each component of the link,
and will determine an element of A by evaluation of J(L).

Notation. Write R(*) for the representation ring in the case when G = SU(k),.

For generic ¢ this ring is shown in [33] to be isomorphic to the classical representa-
tion ring of SU(k). The irreducible modules of SU(k) and hence of SU(k), are also
indexed by Young diagrams. There is an irreducible SU(k),-module V) for every
Young diagram A provided that A is either the diagram with & rows and 1 column
or otherwise has at most k£ — 1 rows. Such Young diagrams are referred to later as
‘admissible’ for k. Among these modules there is a ‘fundamental’ irreducible mod-
ule of dimension k, which is indexed by the Young diagram 0O . Write Vg for this
module. Each module V) whose Young diagram has n cells occurs as a summand of
vE".
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An early relation between the Homfly polynomial and the quantum invariants of a
link was discovered by Jones and Turaev [34], when considering the invariant given
by colouring all components with the fundamental module V.

THEOREM 6.1 (Turaev, Jones). For the quantum group SU(k)y the invariant
J(L;VO,..., V) of the framed oriented link L is, up to normalisation, the Homfly
polynomial Pr(v,z) with z=5—5"1, v=35"% and s = Va4 = el/? . Assuming that
Py =1 we have

J(L;VE,...,Vo) = (v )" B Py (v, 2),

where w(L) is the writhe of a correctly framed diagram of L, evaluated at z =

1 k 1/k — o—h/2k

s—s,v=s"and r=s"

Proof: 1t is enough to show that J(L;V,..., V) satisfies a quadratic skein rela-
tion, and multiplies by a scalar under Ry, to identify it with some specialisation of
P, as at the beginning of this section. Turaev represents the (2,2)-tangle o when
coloured with the fundamental representation Vo byamap R : VoeVo — VOoeVo
which satisfies the quadratic relation

R—-R‘'=(s—s1Id.

It is possible to deduce the existence of some quadratic relation for R from the fact
that Vg ® Vg is the sum of just two irreducible modules.

The (1,1)-tangle when coloured with any irreducible must be represented by

a multiple of the identity, by Schur’s lemma. Turaev shows that this multiple is s—*

when the k-dimensional fundamental module Vg of SU(k), is used. This would
lead to the result of theorem 6.1, without the factor x. It appears, however, that
a scalar multiple of Turaev’s endomorphism is more appropriate, to permit a more
consistent behaviour of the family of invariants J(L) when evaluated on different
modules. In the general construction of J(L) this behaviour is ensured by the use
of the universal R-matrix to determine the representation of the elementary tangle
o under each colouring. Since the universal R-matrix satisfies a non-homogeneous
equation it is not possible to replace it by a scalar multiple of itself without losing the
multiplicative behaviour of J(L) on parallels. The endomorphism R used by Turaev
is a non-trivial multiple of the one which arises from Drinfeld’s universal R-matrix.
The appropriate endomorphism R as given in [3] satisfies instead the relation

(%) T 'R— 2R ' = (s—s1)Id

with © = s~/

Assuming that we use this endomorphism R to represent o, equation (x) enables
us to define a function &'(R?) — A from the variant skein &'(R?) with z = s—s71,
v = s % and = = s~Y* by taking the diagram L to J(L;V[Q,...,VQ). Since
L= (zv )PP (v,2) x ¢ in S'(R?) and the value of J on the empty diagram ¢
is 1 we have the equation

where the Homfly polynomial Py, is normalised to have value 1 on the empty diagram,
and w(L) is the writhe of any diagram of L which realises the chosen framing. 0O
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Given a Young diagram A there is a corresponding SU (k),-module V) for each k,
which should properly be distinguished from each other as k varies. It is, however,
possible to organise things systematically so as to handle all the unitary quantum
group invariants with colouring V) at once, by finding a 2-variable function of v and
s depending on C and X, from which the substitution v = s~ allows us to recover
the invariant J(C;V)) for the quantum group SU(k),, as shown in [41]. In the
case when A = O the theorem above shows that the Homfly polynomial of C' itself
provides a suitable function. For general A we use a satellite Homfly polynomial of
C; in fact we can use the closure €, derived from the Hecke algebra idempotent for
the same Young diagram A as the element of C to provide the satellite decoration.

We shall see that it is possible to realise all possible colourings of C' as linear
combinations of invariants which arise by varying the decoration P while restricting
the colouring of P to the fundamental module V. Thus all coloured invariants of
C for the unitary quantum groups will arise, by the theorem of Jones and Turaev, as
linear combinations of the Homfly polynomials of satellites of C', in which the variable
v has been specialised to v = s for SU(k),.

There is a satellite theorem for the quantum invariants J(L) of a satellite link L.
This allows us to express the invariants of the link given when a companion knot C
is decorated by some pattern P in the annulus in terms of the invariants of C' and
of the pattern P. From the point of view of constructing invariants of C' we may
choose the decorating pattern, and then choose a colouring of P = T to determine
a coloured invariant of the satellite; this is an invariant of the original C', and the
satellite theorem shows how to realise this as a coloured invariant of C' itself, in other
words as the value of J(C) for some colouring of C'.

Suppose that the pattern P, and hence the satellite, has r components, which
we colour by modules Uy,...,U,. The tangle T, forming a subdiagram of P will
then itself be coloured by these modules so that the top and bottom endpoints are
represented by the same tensor product of modules, W say, drawn from {U;,U}}.
The tangle T is represented by an endomorphism 7(U) of the module W. Write
W as a direct sum @ V), of irreducible modules, and choose v; #0 in V), for each
i. The endomorphism T'(U) then determines a;; € A with T(U)(v;) = ) ai;v;.
Define a weighted trace Tr(T'(U)) € R®*) by setting

Tr(T(U)) = ZbAVA , where by = Z A
W, =W

SATELLITE THEOREM 6.2.  Let L be the framed oriented satellite of C with pattern
P =T andlet U= (Uy,...,U,) denote a colouring of its components. Then

J(L;U) = J(C; Tr(T(U))).

The proof can be constructed with care from [31]. Notice that Tr(7'(U)) depends
only on P and the colouring, and not on the companion C'. It provides a multilinear
map J(P): R® x ... x R® — R¥) whose value on (Uy,...,U,) is Tr(T(U)).

THEOREM 6.3. Let C' be an oriented framed knot, let A\ be any Young diagram and
let V\ be the corresponding irreducible SU(k)q-module. Then, with the convention
that J(C;Vy) =0 if X is not an admissible shape for SU(k)y, we have

dyJ(C; Vy) = (zv~ DM P py(ay),
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as functions of s = /q, when the variable v on the right-hand side is replaced by
s~k and z by s~Y*. Here dy, independent of k, is the degree of the matriz algebra
My in the appropriate Hecke algebra, |\| is the number of cells in the Young diagram
A and w(D) is the writhe of a diagram for C with the chosen framing.

A corresponding result holds for oriented framed links, dealing with each component

independently.

Proof: An outline of the proof follows. Apart from the normalising factor this result
is given in [41]; some further discussion will be found in [19]. Suppose that the given
Young diagram A has n cells, so that |A] = n. We shall make use of a representation
of H, on W = V%” which carries the idempotent ey to the projection of W to the
‘isotypic’ submodule for V), namely the submodule isomorphic to @ V), for which
Vi 2 V.

Any oriented (n,n)-tangle T' determines an endomorphism f(7") of W by colour-
ing each of its components with the module V. Because of the relation (%) among
the endomorphisms f(7T) as T varies, the map f induces a representation of the
variant skein Sp(R"), with v = s7% 2 = s7/% on W. Using the isomorphism of
H, = Sp(R') with this variant skein gives an explicit homomorphism

v+ Hy, = Sp(R}) — End (W)
induced by ¢x(T) = (z~)*T) f(T), where again v and z are replaced appropriately

when dealing with SU(k),.

Now decorate the diagram of C' with the pattern T to form a link diagram L, and
colour all components of L with V. By the satellite theorem we can calculate

J(L:VE, .. V) = J(C3 Tr f(T)) = (a0 )" DI(C; Tr ok (T)) -
On the other hand, theorem 6.1 shows that
J(L;Va,....Vo) = (zv )" B Py = (zo ) B Pe(T) |
where v = s7%. Now the writhe of the decorated diagram L can readily be given as

w(L) = w(T) + n?w(C), since each crossing in C' will give n? crossings of the same
sign in L where the groups of n parallel strings cross. We can then write

J(C; Tr i(T)) = (2o )" O Pe(T) , with v = s

We may now replace T' by any linear combination of (n,n)-tangles to get a similar
result. In particular the idempotent ey in H,, can be written in this way, and then
we have

(xv_l)p"%(c)Pc(”e\)\) = J(C; Tr gi(eyr)) , with v =s7F, z = sk,

The proof of theorem 6.3 can then be completed by showing that ¢g(ey) is the
projection of W to the isotypic submodule for V) which is isomorphic to dy copies
of Vi . The trace of this projection is dyV) so that the right-hand side in the equation
above becomes dy.J(C;Vy) as claimed. 0

In the proof above the identification of ¢g(ey) with the projection to one of the
isotypic submodules of W remains to be established. A deeper understanding of the
structure both of H,, and of the modules W = Vg for different k£ can be achieved
by use of the representation ¢y . This representation gives a direct analogue of the
setting for classical invariant theory of the symmetric group, where the Hecke algebra
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corresponds to the group algebra of the symmetric group §,, and the quantum groups
to the special linear groups. By drawing on work of Wassermann [39] and Wenzl [41]
it can be shown that the following generalisations of the classical results hold in this
context.

THEOREM 6.4.  The homomorphism ¢y : H, — EndSU(k)qV%" 18
(1)  surjective for all k,
(2) injective when k> n.

The first part shows that every module endomorphism of W can be represented as
the linear combination of some tangles coloured with V. In particular the projection
to any submodule of W must be representable in this way; the choice of the element
ey is then simply one explicit way to realise J(C;V)) by means of a satellite Homfly
polynomial. Indeed the element ey is generally rather complicated and it is usually
possible to find a simpler combination with the same closure in C.

The isomorphism of H,, with the endomorphism ring for large enough k permits us
to extend the classical correspondence between the idempotent ey and the projection
to the corresponding isotypic submodule in this case as well. It is also possible to
describe readily the kernel of ¢ when k£ < n as the ideal generated by those idem-
potents ey whose Young diagram has too many rows to be admissible for &, again
exactly as in the classical case.

The most striking consequence of the approach using the skein of the annulus is the
existence of the 2-variable invariant of C' indexed by A whose specialisations at v =
s~ provide the quantum invariants J(C;Vy) for all SU(k), at once. Links L can be
treated in essentially the same way, taking the satellite Homfly polynomial when each
component is decorated independently by some €y, multiplied by a suitable power of
v, to specialise to the corresponding quantum invariant J(L). It is interesting to note
that when the orientation of one component is reversed the quantum invariant of the
new link can be recovered from that of the old link by replacing the module on that
component with its dual. The dual of the irreducible module V) is again irreducible,
but its Young diagram A* depends on k as well as A so it is not possible to give a
similar universal treatment to handle string reversals for satellite Homfly invariants.

By way of example, the dual of the fundamental module V7 has Young diagram A\*
with a single column and k—1 cells. In the case of SU(2), the fundamental module is
then self-dual, as are all the other irreducibles, which accounts for the insensitivity of
the bracket invariant to string orientation. For SU(3), the calculation J(C; VE ) will

then give J(C; V) = (207 1)@ P5 with v = s72, where C is C with the opposite
orientation. The Homfly polynomial of a knot is unchanged by string reversal, so we
see that

(20~ ) D Po(eg) = J(C;Vg) = J(C: Vo) = (w0~ )P,
and so Po(éa) = (27 '0)3%(©) Pg, the standard Homfly polynomial, with v = 53

and z = s~1/3. This gives Pc(/e\H) = 58O Pg, when v = 573,

It is also possible to identify the module VE for SU(4), with the fundamental
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module for SO(6), and so relate PC(€E ) with v = s7* to an evaluation of Kauffman’s

Dubrovnik polynomial, [20].

6.6 REMARKS.

The satellite theorem provides a multiplicative homomorphism from C to R*) for
each k, which is most readily defined on the variant skein of the annulus by taking
each pattern P = T to the trace of 7' when coloured entirely with Vy. On Cy this
description is independent of k and can be given on the basis {€y} by €\ — d)\Vi,
so that after suitable writhe adjustment the functions J; and Pr agree. The map
carries the element a7 to Vg and as to vsV —vs‘lVH , while on the other hand

m
aj is mapped to V[, which will depend on £ as noted above.

The skein map Pr on the algebra C, or even its restriction to the subalgebra
C4, carries the information for all the total invariants Jr as k varies. Unlike the
case earlier where we compared the algebra B for the bracket invariant and the
representation ring of SU(2), we have here a single algebra C arising from the Homfly
polynomials and a whole series of non-trivial quotients R(*) of C which organise the
quantum invariants.

In fact the ring R®*) is the quotient of C, by the ideal generated by X,, = €y for
n > k, where A\ is the Young diagram with one column and n cells. The corresponding
module V) is the n-th exterior power of the fundamental module V7. It is possible
to draw on classical knowledge of the representation rings R(*) as polynomial rings
in the exterior powers of the fundamental module to give alternative constructions
for the general basis element €, in C; as a polynomial in the elements {X,}. The
element X, is noted above to be X, = (¢p(an)) " '@,. Equally the elements Y, =
(goa(bn))_lgn, corresponding to the symmetric powers of V7, can be used to generate
C+ as a polynomial ring.

An attempt to deal with 3-manifold invariants by means of C, on the lines of
the treatment in section 3, has the corresponding feature that when calculating with
v = s7% and s2(*+) = 1, the invariant Po(Y,) =0 for n = 1,1+ 1,...,1 +k—1.
When the ideal generated by the k£ elements corresponding to Y,,, n=1,...,[+k—1
is factored out from R) the quotient is a finite-dimensional algebra (a Verlinde
algebra), which gives an analogue to R, in the case of the SU(2) invariant, with
r =k + 1. It corresponds closely with the ingredients used by Turaev and Wenzl [37]
in their construction of a 3-manifold invariant of level [ based on SU(k),. It would
be interesting to consider this approach via C in more detail, with enough care about
the denominators in the ring of scalars to ensure that the substitutions of variables
cause no problems.
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