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ABSTRACT

This note gives an explicit calculation of the doubly infinite sequence
∆(p, q, 2m), m ∈ Z of Alexander polynomials of the (p, q) torus knot with
m extra full twists on two adjacent strings, where p and q are both positive.
The knots can be presented as the closure of the p-string braids (δp)qσ2m

1 ,
where δp = σp−1σp−2 . . . σ2σ1, or equally of the q-string braids (δq)

pσ2m

1 . As
an application we give conditions on (p, q) which ensure that all the polyno-
mials ∆(p, q, 2m) with |m| ≥ 2 have at least one coefficient a with |a| > 1.
A theorem of Ozsvath and Szabo then ensures that no lens space can arise
by Dehn surgery on any of these knots. The calculations depend on finding a
formula for the multivariable Alexander polynomial of the 3-component link
consisting of the torus knot with twists and the two core curves of the com-
plementary solid tori.
Keywords: torus knot, twist, Dehn surgery, multi-variable Alexander polyno-
mial.

1 Introduction

The calculations for the sequence ∆(p, q, 2m),m ∈ Z of Alexander polynomials of
the (p, q) torus knot with m extra full twists on two adjacent strings were initially
done for the (7, 17) torus knot in response to a query of Yoav Moriah [4] about their
Alexander polynomials. The results in this case allowed him to deduce, from work
of Ozsvath and Szabo [7], that the only knots in this sequence which can give a lens
space after Dehn surgery are those with m = 0,±1.

In his thesis [1] and a subsequent paper [2] John Dean studies a more general
class of knots lying on the surface of a standard genus 2 surface, which he calls
twisted torus knots. He gives a condition, which he terms primitive/Seifert fibred, on
the knot in relation to the two complementary handlebodies. Knots satisfying this
condition yield small Seifert fibre spaces (with base S2 and at most 3 exceptional
fibres) under some Dehn surgery. The knots considered in this paper are simple



examples of Dean’s twisted torus knots, which are primitive/Seifert fibred only in
the cases m = ±1 or q = 3 or q = ±2 mod p.

My original method for the (7, 17) calculation was simply to use the skein re-
lation for the Conway polynomial to produce a recursive relation for the Conway
polynomials fk(z) of any sequence of knots differing only in having k half twists at
one spot in two directly oriented strands.

In the Conway skein a single half-twist σ satisfies the quadratic equation

σ2 = zσ + 1

with roots s,−s−1, where s − s−1 = z. This leads to the relation

fk+2 = (s − s−1)fk+1 + fk.

Solving the recurrence relation gives a formula fk = csk + d(−s)−k in terms of
s, where c and d are rational functions to be determined; the Alexander polynomial
is given by setting s2 = t.

Knowing the Alexander polynomials for say k = 0 and k = 2 determines c and
d, and hence the whole sequence of Alexander polynomials (by setting s2 = t). For
the case of (7, 17) an explicit Maple calculation of f0 and f2 was enough to find the
sequence and to answer Moriah’s original question.

2 Use of the reduced Burau matrix

Attempts to simplify and generalise the calculations led first to the corresponding
recurrence formula for the suitably normalised multivariable Alexander polynomial
ak of a sequence of links with several components, differing by k half twists in two
directly oriented strands. Where the two strands involved in the twisting belong
to components both labelled with the same variable t = s2 the polynomials again
satisfy a recurrence relation with solution ak = csk + d(−s)−k for some rational
functions c and d determined by a0 and a1. This relation holds for the properly
normalised form of the Alexander polynomial, as given for example by Murakami
[6]. Frequently, however, the Alexander polynomial has been multiplied by a power
of the variables, and a variant of this relation may work systematically.

One such variant occurs naturally when the multivariable polynomial of a closed
n-braid β̂ and its axis A is realised as the characteristic polynomial of the reduced
Burau matrix of β, as in [5]. We can assume that the sequence of links is presented
as the closure of a sequence of braids βσk

1 , in which the twists take place in the first
two strands, both labelled by the same meridian element t. In this representation
the reduced Burau matrix for σ1 is the (n − 1) × (n − 1) block matrix

S =

(

−t 1
0 1

)

⊕ In−3,

which has eigenvalues −t once and 1 repeated n− 2 times. It satisfies the equation
S2 = (1 − t)S + tI.

Let B be the reduced multivariable Burau matrix of β. Then BSk is the reduced
Burau matrix of βσk

1 , and

BSk+2 = (1 − t)BSk+1 + tBSk.



Since the exterior powers of S all have the two eigenvalues 1 and −t, and char-
acteristic polynomials are formed by taking traces of exterior powers it follows that
the polynomials ∆k = det(I − xBSk) also satisfy the recurrence relation

∆k+2 = (1 − t)∆k+1 + t∆k.

This gives the formula

∆k+1 − ∆k = (−t)k(∆1 − ∆0),

and hence
∆k = (1 − t + t2 − · · · + (−t)k−1)(∆1 − ∆0).

For the case of k = 2m, with m ≥ 0 full twists, this will also give a recurrence
relation leading to the formula

∆2m = (1 + t2 + · · · + t2m−2)(∆2 − ∆0)

for the multivariable polynomials of the sequence of links.

3 The multivariable Alexander polynomial

Use of the multivariable Alexander polynomial can be taken a stage further, by the
application of two basic principles, due essentially to Torres [8] and Fox [3].

Suppose that L is an oriented link with several components, L1, . . . , Ln. Write
H1(S

3 − L) ∼= (C∞)n multiplicatively, with positive meridian generator ti corre-
sponding to the component Li. The Alexander polynomial ∆L is an element of the
group ring Z[H1(S

3 − L)], in other words, a Laurent polynomial in t1, . . . , tn.

Theorem 1 (Fox) If f : S3 −L → S3 −L′ is a homeomorphism of link exteriors,
and f∗ is the induced map on H1 then

∆L′ = f∗(∆L).

We want to find the Alexander polynomials of the sequence of links L′(k) shown
here, which consist of the (p, q) torus knot with k inserted half-twists lying on or near
a standard torus T , along with the core curves L1 and L2 of each complementary
solid torus.
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We label the meridians of the components by t, x and y as shown.
Now apply theorem 1 to the sequence of links L(k), shown below,

L1

L3

L2
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t y

k

L(k)

after choosing an orientation preserving homeomorphism f of the complement of
the core curves which carries T to itself and takes L3(k) to L′

3(k) for all k as follows.
Let A be the oriented arc on T , which runs from one side of L3 to the other and
gives, along with the coherently oriented part of L3, an oriented curve isotopic to
the meridian of L2.
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A

Choose f to carry the curve L3 on T to the (p, q) torus knot and A to the arc which
joins two adjacent strings in the (p, q) knot as shown.
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This homeomorphism f of the complement of L1 and L2 then carries each L(k) to
L′(k).

Now f is determined by its effect on the torus T , which is given by a 2 × 2

unimodular matrix

(

p r
q s

)

. We can find r and s explicitly in terms of p and

q, knowing that f carries the oriented graph L3 ∪ A to the (p, q) torus knot L′

3

together with the arc between adjacent strings in its braid presentation. Following
this oriented arc on T with the coherently oriented part of L′

3 gives a curve whose
linking number with L1 must lie between 1 and p−1, as it will form one component of
a p-string closed braid with axis L1 made from putting the half-twist in the adjacent
strings. Since A together with the coherently oriented part of L3 is isotopic to the
meridian y of L2, we know that f carries this to a curve whose linking number with
L1 is r. Consequently 0 < r < p (and 0 < s < q). This determines r and s, since
s ≡ p−1 mod q and r ≡ −q−1 mod p.

To find the Alexander polynomial ∆′

k for the link L′(k) with k half-twists it is
enough to find the polynomial ∆k for the link L(k) and then substitute f∗(x) and
f∗(y) for x and y.

In terms of the homology of S3 − L′ the original meridian x becomes f∗(x) =
xpyqtpq and y becomes f∗(y) = xrystrq, since the image of the meridian x lies in
the solid torus with core L1 and represents q times the core, so its linking number
with L′

3 is q times the linking number of L1 with L′

3 giving the term tpq, while the
image of the meridian y represents r times the core of L2, giving the term trq.

The basic link L(0) has polynomial ∆L(0) = 1 − x, using for example the
characteristic polynomial of the reduced Burau matrix for the identity braid on 2
strings (L2 and L3) with axis L1. Substituting f∗(x) for x gives ∆L′(0) = 1−xpyqtpq.

We already have ∆0 = 1 − x, so it is enough to find ∆1 or ∆2, or indeed ∆−1.
In fact L(−1) is the fairly simple link shown here.
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This yields ∆−1 = (1 − y)(1 − x(yt)−1), and gives

∆1 − ∆0 = −t(∆0 − ∆−1) = (1 + t)x − ty − xy−1

and ∆2 − ∆0 = (1 − t2)x − t(1 − t)y − (1 − t)xy−1.



Then

∆2m = 1 − t2mx − (1 − t)(1 + t2 + · · · + t2m−2)(ty + xy−1)

for m > 0, and so

∆′

2m = 1− t2mxpyqtpq − (1− t)(1 + t2 + · · ·+ t2m−2)(xrystrq+1 + xp−ryq−st(p−r)q).

The corresponding formula for m < 0 is

∆−2m = 1 − t−2mx + (1 − t)(t−2 + t−4 + · · · + t−2m)(ty + xy−1)

giving

∆′

−2m = 1−t−2mxpyqtpq+(1−t)(t−2+t−4+· · ·+t−2m)(xrystrq+1+xp−ryq−st(p−r)q).

To find the Alexander polynomial of the (p, q) torus knot with 2m half-twists we
apply f∗ as above to get ∆′

2m, and then use the second general result which gives
the Alexander polynomial of a sublink starting from the polynomial of the link.

Theorem 2 (Torres) The Alexander polynomial of the sublink of L given by delet-
ing a component L1 with meridian x, leaving a link of more than one component,
is found by setting x = 1 in ∆L and dividing by 1 − X, where the component L1

represents X in the homology of the residual link L − L1. If only one component
remains, with meridian t, the Alexander polynomial of this knot is the expression
above (which will be a rational function of t) multiplied by 1 − t.

In our case, deleting both L1 and L2 from L′(2m) will involve dividing ∆′

2m by
(1 − tp)(1 − tq) and multiplying by 1 − t, after setting x = y = 1.

Equivalently set x = tpq, y = trq in ∆2m(1− t)/(1− tp)(1− tq) to get an explicit
formula for the Alexander polynomial ∆(p, q, 2m) for the (p, q) torus knot with
m > 0 full twists in adjacent strings.

∆(p, q, 2m) =
1 − t

(1 − tp)(1 − tq)

× (1 − (1 − t)(1 + t2 + · · · + t2m−2)(trq+1 + t(p−r)q) − tpq+2m).

This form works well for m ≥ 0, as it gives the Alexander polynomial as a genuine
polynomial, with non-zero constant term. Indeed it is well-adapted for power series
expansion. The two critical powers of t which contribute to the changes of the
polynomial with m are trq+1 = tps and t(p−r)q. If the roles of p and q are reversed
then these terms change places, since p − r ≡ q−1 mod p and s ≡ p−1 mod q. We
shall assume that we have ordered p and q so that ps is the smaller of the two
exponents. Equivalently we have arranged that s < 1

2q (and hence r < 1
2p).

The formula for ∆2m can be derived without using the recurrence relation from
the multivariable polynomial of the 4-component link shown.
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Using the presentation of this link as the closure of the braid
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its multivariable polynomial can be found using the multivariable Burau calculation
procedure [5]. In terms of the meridians x, y, t, w, it is

(1 − t2)(1 − xw) − (1 − t)(1 − w)(yt + xy−1).

The polynomial for the link L(2m) can then be derived, using theorems 1 and 2.
First put m full twists on the two strings through the unknotted component with
meridian w, where the effect on the polynomial, by theorem 1, is to replace w by
wt2m. Then delete this unknotted component leaving the link L(2m). By theorem
2 the polynomial is then given by setting w = 1 and dividing by 1 − t2, to get

∆2m = 1 − xt2m −
(1 − t)(1 − t2m)

1 − t2
(yt + xy−1)

for all m ∈ Z.

4 Sequences of polynomials whose coefficients are

not all 0,±1

In this section we give conditions on p, q > 0 which ensure that the only possible
Alexander polynomials in the sequence ∆(p, q, 2m) with all their coefficients 0,±1
are those with |m| ≤ 1, and hence by [7] at most three knots in the sequence yield
lens spaces after Dehn surgery.

We start with a result for the part of the sequence with m ≥ 0.

Theorem 3 Suppose that s < 1
3q, where s ≡ p−1 mod q and 0 < s < q. Then the

coefficient of tps+2 in ∆(p, q, 2m) is ≤ −2 for all m ≥ 2.



For example, if {p, q} = {7, 17} we have 5 ≡ 7−1 mod 17 and the coefficient of
t37 is −2 for m ≥ 2.

Proof. Under the given conditions ps < (p − r)q, and p, q > 3. For m ≥ 2
the only terms that can contribute to tps+2 are

1 − t

(1 − tp)(1 − tq)
(1 − (1 − t)(1 + t2)tps).

Expand ((1− tp)(1− tq))−1 as (1 + tp + t2p + · · ·)(1 + tq + t2q + · · ·) = A(p, q), say.
We must examine the coefficient of tps+2 in (1− t)A(p, q)− tps(1− t)2(1+ t2)A(p, q).
Now (1− t)2(1 + t2)A(p, q) = 1− 2t + 2t2 up to terms in t2, and will contribute −2
to the coefficient of tps+2.

It is then enough to show that the coefficient of tps+2 in (1−t)A(p, q) is ≤ 0. This
in turn will be guaranteed by showing that the coefficient of tps+2 in A(p, q) is zero.
Now this coefficient counts the number of solutions of the equation ap+ bq = ps+2
in non-negative integers a, b.

Since ps ≡ 1 mod q we have ap ≡ 3 mod q and so 3ps − ap ≡ 0 mod q. Then
3s ≡ a mod q, but this is not possible since 0 ≤ a ≤ s < 3s < q, by hypothesis. 2

The formula for the Alexander polynomial ∆(p, q,−2m) of the (p, q) torus knot
with m negative full twists in adjacent strings (where p, q > 0) is given from ∆′

−2m

above as

∆(p, q,−2m) =
1 − t

(1 − tp)(1 − tq)

× (1 + (1 − t)(t−2 + t−4 + · · · + t−2m)(trq+1 + t(p−r)q) − tpq−2m).

This can be adapted for power series computation by considering

t2m∆(p, q,−2m) =
1 − t

(1 − tp)(1 − tq)

× (t2m + (1 − t)(1 + t2 + · · · + t2m−2)(trq+1 + t(p−r)q) − tpq).

Again we shall assume that we have ordered p and q so that ps is the smaller of
the two critical powers rq+1 = ps and (p−r)q of t which contribute to the changes
with m.

The following general result for negative twists complements the previous result,
under the same conditions.

Theorem 4 Suppose that s < 1
3q, where s ≡ p−1 mod q and 0 < s < q. Then the

coefficient of at least one of the terms tps+1, tps+2, tps+3 in t2m∆(p, q,−2m) is ±2
for all m ≥ 2.

Proof. Under the given conditions ps < (p − r)q, and p, q > 3. For m ≥ 2
we have

t2m∆(p, q,−2m) =
1 − t

(1 − tp)(1 − tq)
(t2m + (1 − t)(1 + t2)tps)



up to terms in tps+3. Expand ((1 − tp)(1 − tq))−1 as A(p, q) =
∑

ait
i, where ai

counts the number of ways to write i = ap + bq with non-negative integers a, b. For
i ≤ pq we know that ai = 0 or 1. Furthermore, i = ps is the first time that two
consecutive coefficients ai−1 and ai are both 1, as s ≡ p−1 mod q.

Since we have assumed that 3s < q it also follows that we can’t have ai = ai+2 =
1 with i < ps. Thus in any four consecutive coefficients of

∑ps

i=0 ait
i there are two

consecutive coefficients which are equal (either to 0, or 1), and so among any 3
consecutive coefficients of (1 − t)

∑ps

i=0 ait
i at least one of them is zero.

Now consider the coefficients of the three consecutive terms tps+1, tps+2, tps+3

in t2m∆(p, q,−2m). The contribution from (1 − t)2(1 + t2)A(p, q)tps is (1 − 2t +
2t2−2t3)tps, while the contribution from t2m(1−t)A(p, q) involves three consecutive
coefficients of (1− t)A(p, q) up to degree at most ps. At least one of these must be
zero, leaving one of the coefficients as ±2.

(Of course, once 2m > ps + 1 the coefficient of tps+1 will be −2, and the lowest
degree term in the whole polynomial will be tps so that in standard polynomial form
the Alexander polynomial is 1 − 2t + · · ·. ) 2

5 Some contrasting examples.

The conditions on p and q in theorems 3 and 4 can be phrased simply in terms of the
continued fraction expansion of p/q = [a0, a1, . . . , ak] = a0 +1/(a1 +1/(· · ·+1/ak),
where each ai ≥ 1 and ak ≥ 2.

Definition. A Laurent polynomial with integer coefficients is thick if it has some
coefficient a with |a| > 1.

A knot whose Alexander polynomial is thick admits no lens space surgery, [7].

Theorem 5 (rephrasing theorems 3, 4) If p, q > 3 and p/q = [a0, a1, . . . , ak]
with ak ≥ 3 then ∆(p, q, 2m) is thick for all m with |m| ≥ 2.

Proof. If p > q and p/q = [a0, a1, . . . , ak] then q/p = [0, a0, a1, . . . , ak]. We
can then assume, by swapping p and q if necessary, that k is odd. Then

(

1 a0

0 1

)(

1 0
a1 1

)

· · ·

(

1 0
ak 1

)

=

(

p r
q s

)

where 0 < r < p and 0 < s < q. Hence

(

p r
q s

)

=

(

a b
c d

)(

1 0
ak 1

)

for some

non-negative a, b, c, d. It follows that q = c + dak > dak = sak unless s = 1 and
q = ak. When ak ≥ 3 and p, q > 3 we have 3s < q as required for theorems 3 and
4. 2

The methods in theorem 4 show also that, except in the case q = 2, when the
term t(p−r)q also contributes to the coefficient of tps+1, the Alexander polynomial
∆(p, q,−2m) will start 1 − 2t + · · · for sufficiently large m.

In contrast to this if (p − 1)(q − 1) < 2ps < pq then all the knots with 2m > 0
half-twists have coefficients 0,±1. This follows since the adjustments in the series



in passing from 2m to 2m + 2 occur after the half-way stage (p− 1)(q − 1)/2 in the
Alexander polynomial, and inductively all the terms must be 0,±1, by symmetry
of the Alexander polynomial.

This happens, when q = 3, and in some cases when ak = 2, for example when
p ≡ ±2 mod q. This includes the case (5, 8) but not the next Fibonacci pair (8, 13),
which has some some coefficients ±2 for certain positive values of m.

Noting that the cases where m = ±1, q = 3 or q = ±2 mod p are those which
satisfy Dean’s primitive/Seifert fibred condition it is interesting to speculate on how
far this condition identifies knots with thin Alexander polynomial among Dean’s
general twisted torus knots.
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