THE ALEXANDER POLYNOMIAL OF A TORUS KNOT WITH TWISTS

HUGH R. MORTON
Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool, L69 7ZL, England
morton@liv.ac.uk

Abstract

This note gives an explicit calculation of the doubly infinite sequence $\Delta(p, q, 2 m), m \in \mathbf{Z}$ of Alexander polynomials of the (p, q) torus knot with m extra full twists on two adjacent strings, where p and q are both positive. The knots can be presented as the closure of the p-string braids $\left(\delta_{p}\right)^{q} \sigma_{1}^{2 m}$, where $\delta_{p}=\sigma_{p-1} \sigma_{p-2} \ldots \sigma_{2} \sigma_{1}$, or equally of the q-string braids $\left(\delta_{q}\right)^{p} \sigma_{1}^{2 m}$. As an application we give conditions on (p, q) which ensure that all the polynomials $\Delta(p, q, 2 m)$ with $|m| \geq 2$ have at least one coefficient a with $|a|>1$. A theorem of Ozsvath and Szabo then ensures that no lens space can arise by Dehn surgery on any of these knots. The calculations depend on finding a formula for the multivariable Alexander polynomial of the 3 -component link consisting of the torus knot with twists and the two core curves of the complementary solid tori. Keywords: torus knot, twist, Dehn surgery, multi-variable Alexander polynomial.

1 Introduction

The calculations for the sequence $\Delta(p, q, 2 m), m \in \mathbf{Z}$ of Alexander polynomials of the (p, q) torus knot with m extra full twists on two adjacent strings were initially done for the $(7,17)$ torus knot in response to a query of Yoav Moriah [4] about their Alexander polynomials. The results in this case allowed him to deduce, from work of Ozsvath and Szabo [7], that the only knots in this sequence which can give a lens space after Dehn surgery are those with $m=0, \pm 1$.

In his thesis [1] and a subsequent paper [2] John Dean studies a more general class of knots lying on the surface of a standard genus 2 surface, which he calls twisted torus knots. He gives a condition, which he terms primitive/Seifert fibred, on the knot in relation to the two complementary handlebodies. Knots satisfying this condition yield small Seifert fibre spaces (with base S^{2} and at most 3 exceptional fibres) under some Dehn surgery. The knots considered in this paper are simple
examples of Dean's twisted torus knots, which are primitive/Seifert fibred only in the cases $m= \pm 1$ or $q=3$ or $q= \pm 2 \bmod p$.

My original method for the $(7,17)$ calculation was simply to use the skein relation for the Conway polynomial to produce a recursive relation for the Conway polynomials $f_{k}(z)$ of any sequence of knots differing only in having k half twists at one spot in two directly oriented strands.

In the Conway skein a single half-twist σ satisfies the quadratic equation

$$
\sigma^{2}=z \sigma+1
$$

with roots $s,-s^{-1}$, where $s-s^{-1}=z$. This leads to the relation

$$
f_{k+2}=\left(s-s^{-1}\right) f_{k+1}+f_{k}
$$

Solving the recurrence relation gives a formula $f_{k}=c s^{k}+d(-s)^{-k}$ in terms of s, where c and d are rational functions to be determined; the Alexander polynomial is given by setting $s^{2}=t$.

Knowing the Alexander polynomials for say $k=0$ and $k=2$ determines c and d, and hence the whole sequence of Alexander polynomials (by setting $s^{2}=t$). For the case of $(7,17)$ an explicit Maple calculation of f_{0} and f_{2} was enough to find the sequence and to answer Moriah's original question.

2 Use of the reduced Burau matrix

Attempts to simplify and generalise the calculations led first to the corresponding recurrence formula for the suitably normalised multivariable Alexander polynomial a_{k} of a sequence of links with several components, differing by k half twists in two directly oriented strands. Where the two strands involved in the twisting belong to components both labelled with the same variable $t=s^{2}$ the polynomials again satisfy a recurrence relation with solution $a_{k}=c s^{k}+d(-s)^{-k}$ for some rational functions c and d determined by a_{0} and a_{1}. This relation holds for the properly normalised form of the Alexander polynomial, as given for example by Murakami [6]. Frequently, however, the Alexander polynomial has been multiplied by a power of the variables, and a variant of this relation may work systematically.

One such variant occurs naturally when the multivariable polynomial of a closed n-braid $\hat{\beta}$ and its axis A is realised as the characteristic polynomial of the reduced Burau matrix of β, as in [5]. We can assume that the sequence of links is presented as the closure of a sequence of braids $\beta \sigma_{1}^{k}$, in which the twists take place in the first two strands, both labelled by the same meridian element t. In this representation the reduced Burau matrix for σ_{1} is the $(n-1) \times(n-1)$ block matrix

$$
S=\left(\begin{array}{cc}
-t & 1 \\
0 & 1
\end{array}\right) \oplus I_{n-3}
$$

which has eigenvalues $-t$ once and 1 repeated $n-2$ times. It satisfies the equation $S^{2}=(1-t) S+t I$.

Let B be the reduced multivariable Burau matrix of β. Then $B S^{k}$ is the reduced Burau matrix of $\beta \sigma_{1}^{k}$, and

$$
B S^{k+2}=(1-t) B S^{k+1}+t B S^{k} .
$$

Since the exterior powers of S all have the two eigenvalues 1 and $-t$, and characteristic polynomials are formed by taking traces of exterior powers it follows that the polynomials $\Delta_{k}=\operatorname{det}\left(I-x B S^{k}\right)$ also satisfy the recurrence relation

$$
\Delta_{k+2}=(1-t) \Delta_{k+1}+t \Delta_{k}
$$

This gives the formula

$$
\Delta_{k+1}-\Delta_{k}=(-t)^{k}\left(\Delta_{1}-\Delta_{0}\right)
$$

and hence

$$
\Delta_{k}=\left(1-t+t^{2}-\cdots+(-t)^{k-1}\right)\left(\Delta_{1}-\Delta_{0}\right)
$$

For the case of $k=2 m$, with $m \geq 0$ full twists, this will also give a recurrence relation leading to the formula

$$
\Delta_{2 m}=\left(1+t^{2}+\cdots+t^{2 m-2}\right)\left(\Delta_{2}-\Delta_{0}\right)
$$

for the multivariable polynomials of the sequence of links.

3 The multivariable Alexander polynomial

Use of the multivariable Alexander polynomial can be taken a stage further, by the application of two basic principles, due essentially to Torres [8] and Fox [3].

Suppose that L is an oriented link with several components, L_{1}, \ldots, L_{n}. Write $H_{1}\left(S^{3}-L\right) \cong\left(C_{\infty}\right)^{n}$ multiplicatively, with positive meridian generator t_{i} corresponding to the component L_{i}. The Alexander polynomial Δ_{L} is an element of the group ring $\mathbf{Z}\left[H_{1}\left(S^{3}-L\right)\right]$, in other words, a Laurent polynomial in t_{1}, \ldots, t_{n}.

Theorem 1 (Fox) If $f: S^{3}-L \rightarrow S^{3}-L^{\prime}$ is a homeomorphism of link exteriors, and f_{*} is the induced map on H_{1} then

$$
\Delta_{L^{\prime}}=f_{*}\left(\Delta_{L}\right)
$$

We want to find the Alexander polynomials of the sequence of links $L^{\prime}(k)$ shown here, which consist of the (p, q) torus knot with k inserted half-twists lying on or near a standard torus T, along with the core curves L_{1} and L_{2} of each complementary solid torus.

We label the meridians of the components by t, x and y as shown.
Now apply theorem 1 to the sequence of links $L(k)$, shown below,

fter choosing an orientation preserving homeomorphism f of the complement of the core curves which carries T to itself and takes $L_{3}(k)$ to $L_{3}^{\prime}(k)$ for all k as follows. Let A be the oriented arc on T, which runs from one side of L_{3} to the other and gives, along with the coherently oriented part of L_{3}, an oriented curve isotopic to the meridian of L_{2}.

Choose f to carry the curve L_{3} on T to the (p, q) torus knot and A to the arc which joins two adjacent strings in the (p, q) knot as shown.

This homeomorphism f of the complement of L_{1} and L_{2} then carries each $L(k)$ to $L^{\prime}(k)$.

Now f is determined by its effect on the torus T, which is given by a 2×2 unimodular matrix $\left(\begin{array}{cc}p & r \\ q & s\end{array}\right)$. We can find r and s explicitly in terms of p and q, knowing that f carries the oriented graph $L_{3} \cup A$ to the (p, q) torus knot L_{3}^{\prime} together with the arc between adjacent strings in its braid presentation. Following this oriented arc on T with the coherently oriented part of L_{3}^{\prime} gives a curve whose linking number with L_{1} must lie between 1 and $p-1$, as it will form one component of a p-string closed braid with axis L_{1} made from putting the half-twist in the adjacent strings. Since A together with the coherently oriented part of L_{3} is isotopic to the meridian y of L_{2}, we know that f carries this to a curve whose linking number with L_{1} is r. Consequently $0<r<p$ (and $0<s<q$). This determines r and s, since $s \equiv p^{-1} \bmod q$ and $r \equiv-q^{-1} \bmod p$.

To find the Alexander polynomial Δ_{k}^{\prime} for the link $L^{\prime}(k)$ with k half-twists it is enough to find the polynomial Δ_{k} for the link $L(k)$ and then substitute $f_{*}(x)$ and $f_{*}(y)$ for x and y.

In terms of the homology of $S^{3}-L^{\prime}$ the original meridian x becomes $f_{*}(x)=$ $x^{p} y^{q} t^{p q}$ and y becomes $f_{*}(y)=x^{r} y^{s} t^{r q}$, since the image of the meridian x lies in the solid torus with core L_{1} and represents q times the core, so its linking number with L_{3}^{\prime} is q times the linking number of L_{1} with L_{3}^{\prime} giving the term $t^{p q}$, while the image of the meridian y represents r times the core of L_{2}, giving the term $t^{r q}$.

The basic link $L(0)$ has polynomial $\Delta_{L}(0)=1-x$, using for example the characteristic polynomial of the reduced Burau matrix for the identity braid on 2 strings (L_{2} and L_{3}) with axis L_{1}. Substituting $f_{*}(x)$ for x gives $\Delta_{L^{\prime}(0)}=1-x^{p} y^{q} t^{p q}$.

We already have $\Delta_{0}=1-x$, so it is enough to find Δ_{1} or Δ_{2}, or indeed Δ_{-1}. In fact $L(-1)$ is the fairly simple link shown here.

This yields $\Delta_{-1}=(1-y)\left(1-x(y t)^{-1}\right)$, and gives

$$
\Delta_{1}-\Delta_{0}=-t\left(\Delta_{0}-\Delta_{-1}\right)=(1+t) x-t y-x y^{-1}
$$

and $\Delta_{2}-\Delta_{0}=\left(1-t^{2}\right) x-t(1-t) y-(1-t) x y^{-1}$.

Then

$$
\Delta_{2 m}=1-t^{2 m} x-(1-t)\left(1+t^{2}+\cdots+t^{2 m-2}\right)\left(t y+x y^{-1}\right)
$$

for $m>0$, and so

$$
\Delta_{2 m}^{\prime}=1-t^{2 m} x^{p} y^{q} t^{p q}-(1-t)\left(1+t^{2}+\cdots+t^{2 m-2}\right)\left(x^{r} y^{s} t^{r q+1}+x^{p-r} y^{q-s} t^{(p-r) q}\right) .
$$

The corresponding formula for $m<0$ is

$$
\Delta_{-2 m}=1-t^{-2 m} x+(1-t)\left(t^{-2}+t^{-4}+\cdots+t^{-2 m}\right)\left(t y+x y^{-1}\right)
$$

giving

$$
\Delta_{-2 m}^{\prime}=1-t^{-2 m} x^{p} y^{q} t^{p q}+(1-t)\left(t^{-2}+t^{-4}+\cdots+t^{-2 m}\right)\left(x^{r} y^{s} t^{r q+1}+x^{p-r} y^{q-s} t^{(p-r) q}\right) .
$$

To find the Alexander polynomial of the (p, q) torus knot with $2 m$ half-twists we apply f_{*} as above to get $\Delta_{2 m}^{\prime}$, and then use the second general result which gives the Alexander polynomial of a sublink starting from the polynomial of the link.

Theorem 2 (Torres) The Alexander polynomial of the sublink of L given by deleting a component L_{1} with meridian x, leaving a link of more than one component, is found by setting $x=1$ in Δ_{L} and dividing by $1-X$, where the component L_{1} represents X in the homology of the residual link $L-L_{1}$. If only one component remains, with meridian t, the Alexander polynomial of this knot is the expression above (which will be a rational function of t) multiplied by $1-t$.

In our case, deleting both L_{1} and L_{2} from $L^{\prime}(2 m)$ will involve dividing $\Delta_{2 m}^{\prime}$ by $\left(1-t^{p}\right)\left(1-t^{q}\right)$ and multiplying by $1-t$, after setting $x=y=1$.

Equivalently set $x=t^{p q}, y=t^{r q}$ in $\Delta_{2 m}(1-t) /\left(1-t^{p}\right)\left(1-t^{q}\right)$ to get an explicit formula for the Alexander polynomial $\Delta(p, q, 2 m)$ for the (p, q) torus knot with $m>0$ full twists in adjacent strings.

$$
\begin{aligned}
\Delta(p, q, 2 m) & =\frac{1-t}{\left(1-t^{p}\right)\left(1-t^{q}\right)} \\
& \times\left(1-(1-t)\left(1+t^{2}+\cdots+t^{2 m-2}\right)\left(t^{r q+1}+t^{(p-r) q}\right)-t^{p q+2 m}\right)
\end{aligned}
$$

This form works well for $m \geq 0$, as it gives the Alexander polynomial as a genuine polynomial, with non-zero constant term. Indeed it is well-adapted for power series expansion. The two critical powers of t which contribute to the changes of the polynomial with m are $t^{r q+1}=t^{p s}$ and $t^{(p-r) q}$. If the roles of p and q are reversed then these terms change places, since $p-r \equiv q^{-1} \bmod p$ and $s \equiv p^{-1} \bmod q$. We shall assume that we have ordered p and q so that $p s$ is the smaller of the two exponents. Equivalently we have arranged that $s<\frac{1}{2} q$ (and hence $r<\frac{1}{2} p$).

The formula for $\Delta_{2 m}$ can be derived without using the recurrence relation from the multivariable polynomial of the 4 -component link shown.

Using the presentation of this link as the closure of the braid

$$
\sigma_{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2}^{-2} \sigma_{1}^{2} \sigma_{2} \sigma_{3}^{-1} \sigma_{2} \sigma_{1}^{2} \sigma_{2}
$$

its multivariable polynomial can be found using the multivariable Burau calculation procedure [5]. In terms of the meridians x, y, t, w, it is

$$
\left(1-t^{2}\right)(1-x w)-(1-t)(1-w)\left(y t+x y^{-1}\right) .
$$

The polynomial for the link $L(2 m)$ can then be derived, using theorems 1 and 2 . First put m full twists on the two strings through the unknotted component with meridian w, where the effect on the polynomial, by theorem 1 , is to replace w by $w t^{2 m}$. Then delete this unknotted component leaving the link $L(2 m)$. By theorem 2 the polynomial is then given by setting $w=1$ and dividing by $1-t^{2}$, to get

$$
\Delta_{2 m}=1-x t^{2 m}-\frac{(1-t)\left(1-t^{2 m}\right)}{1-t^{2}}\left(y t+x y^{-1}\right)
$$

for all $m \in \mathbf{Z}$.

4 Sequences of polynomials whose coefficients are not all $0, \pm 1$

In this section we give conditions on $p, q>0$ which ensure that the only possible Alexander polynomials in the sequence $\Delta(p, q, 2 m)$ with all their coefficients $0, \pm 1$ are those with $|m| \leq 1$, and hence by [7] at most three knots in the sequence yield lens spaces after Dehn surgery.

We start with a result for the part of the sequence with $m \geq 0$.
Theorem 3 Suppose that $s<\frac{1}{3} q$, where $s \equiv p^{-1} \bmod q$ and $0<s<q$. Then the coefficient of $t^{p s+2}$ in $\Delta(p, q, 2 m)$ is ≤-2 for all $m \geq 2$.

For example, if $\{p, q\}=\{7,17\}$ we have $5 \equiv 7^{-1} \bmod 17$ and the coefficient of t^{37} is -2 for $m \geq 2$.

Proof. Under the given conditions $p s<(p-r) q$, and $p, q>3$. For $m \geq 2$ the only terms that can contribute to $t^{p s+2}$ are

$$
\frac{1-t}{\left(1-t^{p}\right)\left(1-t^{q}\right)}\left(1-(1-t)\left(1+t^{2}\right) t^{p s}\right) .
$$

Expand $\left(\left(1-t^{p}\right)\left(1-t^{q}\right)\right)^{-1}$ as $\left(1+t^{p}+t^{2 p}+\cdots\right)\left(1+t^{q}+t^{2 q}+\cdots\right)=A(p, q)$, say. We must examine the coefficient of $t^{p s+2}$ in $(1-t) A(p, q)-t^{p s}(1-t)^{2}\left(1+t^{2}\right) A(p, q)$. Now $(1-t)^{2}\left(1+t^{2}\right) A(p, q)=1-2 t+2 t^{2}$ up to terms in t^{2}, and will contribute -2 to the coefficient of $t^{p s+2}$.

It is then enough to show that the coefficient of $t^{p s+2}$ in $(1-t) A(p, q)$ is ≤ 0. This in turn will be guaranteed by showing that the coefficient of $t^{p s+2}$ in $A(p, q)$ is zero. Now this coefficient counts the number of solutions of the equation $a p+b q=p s+2$ in non-negative integers a, b.

Since $p s \equiv 1 \bmod q$ we have $a p \equiv 3 \bmod q$ and so $3 p s-a p \equiv 0 \bmod q$. Then $3 s \equiv a \bmod q$, but this is not possible since $0 \leq a \leq s<3 s<q$, by hypothesis.

The formula for the Alexander polynomial $\Delta(p, q,-2 m)$ of the (p, q) torus knot with m negative full twists in adjacent strings (where $p, q>0$) is given from $\Delta_{-2 m}^{\prime}$ above as

$$
\begin{aligned}
\Delta(p, q,-2 m) & =\frac{1-t}{\left(1-t^{p}\right)\left(1-t^{q}\right)} \\
& \times\left(1+(1-t)\left(t^{-2}+t^{-4}+\cdots+t^{-2 m}\right)\left(t^{r q+1}+t^{(p-r) q}\right)-t^{p q-2 m}\right)
\end{aligned}
$$

This can be adapted for power series computation by considering

$$
\begin{aligned}
t^{2 m} \Delta(p, q,-2 m) & =\frac{1-t}{\left(1-t^{p}\right)\left(1-t^{q}\right)} \\
& \times\left(t^{2 m}+(1-t)\left(1+t^{2}+\cdots+t^{2 m-2}\right)\left(t^{r q+1}+t^{(p-r) q}\right)-t^{p q}\right)
\end{aligned}
$$

Again we shall assume that we have ordered p and q so that $p s$ is the smaller of the two critical powers $r q+1=p s$ and $(p-r) q$ of t which contribute to the changes with m.

The following general result for negative twists complements the previous result, under the same conditions.

Theorem 4 Suppose that $s<\frac{1}{3} q$, where $s \equiv p^{-1} \bmod q$ and $0<s<q$. Then the coefficient of at least one of the terms $t^{p s+1}, t^{p s+2}, t^{p s+3}$ in $t^{2 m} \Delta(p, q,-2 m)$ is ± 2 for all $m \geq 2$.

Proof. Under the given conditions $p s<(p-r) q$, and $p, q>3$. For $m \geq 2$ we have

$$
t^{2 m} \Delta(p, q,-2 m)=\frac{1-t}{\left(1-t^{p}\right)\left(1-t^{q}\right)}\left(t^{2 m}+(1-t)\left(1+t^{2}\right) t^{p s}\right)
$$

up to terms in $t^{p s+3}$. Expand $\left(\left(1-t^{p}\right)\left(1-t^{q}\right)\right)^{-1}$ as $A(p, q)=\sum a_{i} t^{i}$, where a_{i} counts the number of ways to write $i=a p+b q$ with non-negative integers a, b. For $i \leq p q$ we know that $a_{i}=0$ or 1 . Furthermore, $i=p s$ is the first time that two consecutive coefficients a_{i-1} and a_{i} are both 1 , as $s \equiv p^{-1} \bmod q$.

Since we have assumed that $3 s<q$ it also follows that we can't have $a_{i}=a_{i+2}=$ 1 with $i<p s$. Thus in any four consecutive coefficients of $\sum_{i=0}^{p s} a_{i} t^{i}$ there are two consecutive coefficients which are equal (either to 0 , or 1), and so among any 3 consecutive coefficients of $(1-t) \sum_{i=0}^{p s} a_{i} t^{i}$ at least one of them is zero.

Now consider the coefficients of the three consecutive terms $t^{p s+1}, t^{p s+2}, t^{p s+3}$ in $t^{2 m} \Delta(p, q,-2 m)$. The contribution from $(1-t)^{2}\left(1+t^{2}\right) A(p, q) t^{p s}$ is $(1-2 t+$ $\left.2 t^{2}-2 t^{3}\right) t^{p s}$, while the contribution from $t^{2 m}(1-t) A(p, q)$ involves three consecutive coefficients of $(1-t) A(p, q)$ up to degree at most $p s$. At least one of these must be zero, leaving one of the coefficients as ± 2.
(Of course, once $2 m>p s+1$ the coefficient of $t^{p s+1}$ will be -2 , and the lowest degree term in the whole polynomial will be $t^{p s}$ so that in standard polynomial form the Alexander polynomial is $1-2 t+\cdots$.)

5 Some contrasting examples.

The conditions on p and q in theorems 3 and 4 can be phrased simply in terms of the continued fraction expansion of $p / q=\left[a_{0}, a_{1}, \ldots, a_{k}\right]=a_{0}+1 /\left(a_{1}+1 /\left(\cdots+1 / a_{k}\right)\right.$, where each $a_{i} \geq 1$ and $a_{k} \geq 2$.
Definition. A Laurent polynomial with integer coefficients is thick if it has some coefficient a with $|a|>1$.

A knot whose Alexander polynomial is thick admits no lens space surgery, [7].
Theorem 5 (rephrasing theorems 3, 4) If $p, q>3$ and $p / q=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$ with $a_{k} \geq 3$ then $\Delta(p, q, 2 m)$ is thick for all m with $|m| \geq 2$.

Proof. If $p>q$ and $p / q=\left[a_{0}, a_{1}, \ldots, a_{k}\right]$ then $q / p=\left[0, a_{0}, a_{1}, \ldots, a_{k}\right]$. We can then assume, by swapping p and q if necessary, that k is odd. Then

$$
\left(\begin{array}{cc}
1 & a_{0} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{1} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
1 & 0 \\
a_{k} & 1
\end{array}\right)=\left(\begin{array}{cc}
p & r \\
q & s
\end{array}\right)
$$

where $0<r<p$ and $0<s<q$. Hence $\left(\begin{array}{ll}p & r \\ q & s\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{rr}1 & 0 \\ a_{k} & 1\end{array}\right)$ for some non-negative a, b, c, d. It follows that $q=c+d a_{k}>d a_{k}=s a_{k}$ unless $s=1$ and $q=a_{k}$. When $a_{k} \geq 3$ and $p, q>3$ we have $3 s<q$ as required for theorems 3 and 4.

The methods in theorem 4 show also that, except in the case $q=2$, when the term $t^{(p-r) q}$ also contributes to the coefficient of $t^{p s+1}$, the Alexander polynomial $\Delta(p, q,-2 m)$ will start $1-2 t+\cdots$ for sufficiently large m.

In contrast to this if $(p-1)(q-1)<2 p s<p q$ then all the knots with $2 m>0$ half-twists have coefficients $0, \pm 1$. This follows since the adjustments in the series
in passing from $2 m$ to $2 m+2$ occur after the half-way stage $(p-1)(q-1) / 2$ in the Alexander polynomial, and inductively all the terms must be $0, \pm 1$, by symmetry of the Alexander polynomial.

This happens, when $q=3$, and in some cases when $a_{k}=2$, for example when $p \equiv \pm 2 \bmod q$. This includes the case $(5,8)$ but not the next Fibonacci pair $(8,13)$, which has some some coefficients ± 2 for certain positive values of m.

Noting that the cases where $m= \pm 1, q=3$ or $q= \pm 2 \bmod p$ are those which satisfy Dean's primitive/Seifert fibred condition it is interesting to speculate on how far this condition identifies knots with thin Alexander polynomial among Dean's general twisted torus knots.

Acknowledgements

I would like to thank the referee for drawing my attention to the work of Dean in this context.

References

[1] J.C.Dean. Hyperbolic knots with small Seifert-fibered Dehn surgeries. PhD thesis, University of Texas at Austin (1996).
[2] J.C.Dean. Small Seifert-fibered Dehn surgery on hyperbolic knots. Algebraic and Geometric Topology 3 (2003), 435-472.
[3] R.H.Fox. Free differential calculus II. Ann. of Math. 59 (1954), 196-210.
[4] Y.Moriah. Private communication. April 2005.
[5] H.R.Morton. The multivariable Alexander polynomial for a closed braid. Contemporary Mathematics 233 (1999), 167-172.
[6] H.Murakami. A weight system derived from the multivariable Conway potential function. J. London Math. Soc. 59 (1999), 698-714.
[7] P.Ozsvath and Z.Szabo. On knot Floer homology and lens space surgeries. Topology 44 (2005), 1281-1300.
[8] G.Torres. On the Alexander polynomial. Ann. of Math. 57 (1953), 57-89.

