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Seifert circles and knot polynomials
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In this paper I shall show how certain bounds on the possible diagrams presenting
a given oriented knot or link K can be found from its two-variable polynomial PK

defined in [3]. The inequalities regarding exponent sum and braid index of possible
representations of K by a closed braid which are proved in [5] and [2] follow as a
special case.

Notation. In a diagram D for an oriented knot, write c+(D) and c~(D) for the number

\ /
of positive and negative crossings, where V is a positive crossing.

The crossing number, c(D), and the algebraic crossing number, c(D), are defined by

By cutting out each crossing, respecting the orientation, the diagram D is converted
to a number of oriented simple closed curves in the plane, called the Seifert circles oiD.
Write s(D) for the number of Seifert circles of D.

The two-variable polynomial, PK(v, z), of the oriented link K will be defined, as in
[5], so that

where K+, K~ and K° have diagrams differing only by the change

X X )(
near one crossing.

Write PK(v, z) = Sjfcf ak(z) v*, with ae(z) =f= 0 #= aE(z), as a Laurent polynomial in v, to
define its range, [e, E], in v. Write also PK(v, z) = J^Zm f>r(

v) zT> ^ t h bm(v) + 0 =# bM(v),
to define its range in z.

Lickorish and Millett[4] show that m = 1-|-K], where \K\ = number of com-
ponents of K.

I shall show here that:

THEOREM 1. For any diagram D of K,

c(D) - (s(D) -1) ^ e < E < c(D) + (s(D) - 1).
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THEOREM 2. For any diagram D of K,

M £

COROLLARY 1 [5], [2]. IfK is presented as the closure of a braid (/?, n) on n strings, then
c(/?) — (n— 1) ^ e ^ E ^ c(ft) + (n — 1), where c(/?) is the exponent sum of fl.

COROLLARY 2. Under the same conditions M ^ length (/?) — (n — 1).

Proof. The diagram presenting K as the closure of/? has n Seifert circles following the
braid strings.

An extension of the braid index bound for K to give a lower bound for s(D) in terms
of the 'spread' of v in PK follows:

COROLLARY 3. For any diagram D of K, s(D) ^ \(E — e) + 1.

COROLLARY 4 (Compare Bennequin [1]). For any diagram D of the unknot, or any
amphicheiral knot, we must have \c(D)\ < s(D).

Proof. In the case of the unknot e = E = 0. For an amphicheiral knot e = - E, so
that e < 0 ^ E.

Remarks 1. It is conceivable that e < 1 — x where x is the Euler characteristic of a
minimal genus spanning surface for K. This would give a sharp form of Bennequin's
inequality for braid presentations of K.

2. The bound c — (s—l) for M in Theorem 2 is just l - ^ (D) , where #(Z>) is the Euler
characteristic of the spanning surface for K constructed from D using the Seifert
circles. I t is worth noting that in general M is not bounded above by 1 — x ft>r *n e

minimal genus spanning surface for K. For example, in the case of the untwisted
double of a trefoil M = 6 while 1—^ = 2. This illustrates quite sharply the possible
difference between M and the highest degree in z in PK(l,z), the Conway polynomial,
a variant of the Alexander polynomial, which is well-known to be bounded above by
the minimal 1 — x-

Proof of Theorem 1. I t will be enough to prove the inequality c(D) — (s(D) — 1) < e.
For if the diagram is reflected to give a diagram D of the mirror image knot K then
s(B) = s(D), c(D) = -c{D), and it is known that Pg(v,z) = P x ( -v- 1 ,z) , so that
EK = ~ eg. The inequality above, for K, gives — c(D) — (s(D)~ 1) < eg, and so

Write <f>{D) = c(D) - {s(D) - 1) for a knot diagram D. The theorem will then follow
by showing that v~^D) PK(v, z) is a polynomial in v (i.e. has no negative powers of v) for
every diagram D of K.

The Seifert circles arising from any three related diagrams D+, D~ and D° are the
same, so that <p(D+) = <j>(D°) + l, <f>(D~) = <fi(D0)- 1, and the recurrence relation (*)
then gives

So if v~ttD)PK is a polynomial in v for two of D+, D~ and D° then it is also for the
third.

Proceed by induction on c(D), the number of crossings in D. The result is true when
D has no crossings, since then K is the unlink with s components, and

PK = ( ( « - ! -
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Otherwise we can find a sequence of crossing changes on D which lead, as in [4],
to an ascending diagram D' for an unlink. It is then enough to prove the result for D',
since, for each crossing change in the sequence, the third diagram, D°, in the recurrence
formula given by cutting out the crossing has v-^-D°)PKo a polynomial in v, by induction.

For an ascending diagram D' of the unlink with k components, say, we have
P = ((fl-i _ v)/z)k~1, so we must prove that -<j>{D') > k- 1.

In each component of an ascending diagram D' there is a base point; the component
rises monotonically, relative to the direction of projection, until it lies vertically above
the base point, when it returns to base by a vertical segment. Different components are
stacked above each other in disjoint projection levels.

Case 1. Suppose first that one component of D' has a self-crossing point. We may
then find the lowest self-crossing, p, in this component, i.e. the first one reached on
starting from the base point. Because D' is ascending, the link whose diagram D" is
given by cutting out the crossing a,tp will be the unlink with k + 1 components, for the
component containing p will become a 2-component unlink lying between the levels of
the other unchanged k— 1 components. (In fact D" will again be ascending, for the
ascending arc from the undercrossing to the overcrossing at p will become a component
lying entirely beneath the other arc of the component which is cut in two at p.) Now
<j>(D") = <f>{D') + 1 depending on the sign of the crossing at p. By induction,
- <j>(D") ^ k, giving - <j>{D') ^ & ± l 3 s f c - l a s required.

Cose 2. If no components of D' have self-crossings we may suppose that each lies in
a single level. By changing the levels of two components with no crossings, if necessary,
we can find two components in adjacent levels which cross each other. We can select
a negative crossing of one with the other, since their algebraic crossing number is zero,
and cut it out as before to get a new diagram D". This time D" (again an ascending
diagram) represents the unlink with k— 1 components. We have <f>(D") = <j>(D') + 1,
and, by induction, — 0(Z>") ^ k - 2, so that - (f>(D') > k - 1, finishing the proof.

Proof of Theorem 2. Write iJr(D) = c(D) - (s(D) - 1) for a diagram D of K, and show,
by a similar induction on c, that z-^D)PK{v,z) is a polynomial in z~x. In this case
i/r(D+) = \]r(D~) = i/r(D°)+ 1. The recurrence relation (*) then gives

If any two are polynomials in z- 1 then the third will be, so it is enough, as in the proof
of Theorem 1, to prove for an ascending diagram D' of an unlink. If D' has k com-
ponents then P = ((v~1 — v)/z)k~1, so we must prove that —ip-(D') < k— 1.

Select a new diagram D" as before, with one fewer crossing, representing the unlink
with either k+ I or k— 1 components. In each case ft(D") = \jr(D') — l. By induction
we have either -rjr(D") ^ &or -f{D") < k- 2. This ensures that -^(-D") < k, so that
— ifr(D') ^ k- 1, as required.
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