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Abstract

It is shown that the knot invariant arising from an irreducible representation
of a quantum group is, under certain conditions, an evaluation of the Homfly or
Dubrovnik polynomial of the knot.

Besides the known cases of the fundamental representation for each of the quan-
tum groups in the series An, Bn, Cn and Dn, the results cover the special cases
of the 3-dimensional representation of SU(2) and the 6-dimensional representation
of SU(4), which can be viewed as the fundamental representations of SO(3) and
SO(6) respectively. The second of these cases leads to a new relation between an
evaluation of the Dubrovnik polynomial of a knot and an evaluation of the Homfly
polynomials of two 2-cables about the knot.

Keywords: Quantum group, Homfly polynomial, Dubrovnik polynomial, SU(4), unitary
invariants.

1 Introduction

In this paper I show how, under certain conditions, the knot invariant arising from an
irreducible representation of a quantum group can readily be seen to be an evaluation of
the Homfly or Dubrovnik polynomial of the knot.

It is known [11] that all the quantum invariants of a framed link L for the quantum
groups of type An, Bn, Cn and Dn can be calculated in terms of knot polynomials by
using suitable linear combinations of the polynomials of satellites of L. I am concerned
here with quantum invariants which can be given by one of the polynomials of L it-
self. Besides the known cases of the fundamental representation for each of the quantum
groups listed, the results cover the special cases of the 3-dimensional representation of
SU(2), which may also be viewed as the fundamental representation of SO(3), and the
6-dimensional representation of SU(4), which corresponds to the fundamental represen-
tation of SO(6). These appear in theorem 3.

To prove the results in this paper it is only necessary to check some simple features of
the representations; it should also be possible to derive the connections from an explicit
identification of the quantum groups.

From the calculation of the quantum invariant in terms of polynomials of satellites in
the case of SU(4) theorem 4 gives a previously unknown relation between an evaluation
of the Dubrovnik polynomial of a knot and of the Homfly polynomials of two 2-cables
about the knot.

1Appears in the Journal of Knot Theory and its Ramifications, vol 2 (1993), 195-209.
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2 The Homfly and Dubrovnik polynomials

In what follows I shall make considerable use of link diagrams in representing both links
and framed links . From a geometric point of view, a link is a collection of closed curves in
R3 while a framed link is a link together with a choice of a neighbouring parallel curve
for each component of the link. The diagrammatic study of both of these is readily
handled by use of Reidemeister’s three types of move, shown below.

I
R

II
R

III
R

Links can be represented by link diagrams, up to a sequence of moves of types RI , RII

and RIII , while a framed link can be represented by a link diagram up to moves of type
RII and RIII only. In this second case the link diagram determines a ‘diagrammatic’
parallel to each component, by keeping just to one side of that component in the diagram,
and thus determines a framed link, which is clearly unaltered by the moves RII and RIII .
It is possible to adjust the diagram of a link, by insertion of curls using move RI , to
ensure that the diagram of a given framed link can be drawn so that the chosen parallel
coincides with the diagrammatic parallel, and I shall assume in what follows that this
has been done. (Strictly we should regard the diagrams as lying on S2 rather than R2 for
framed links, to ensure that the diagrammatic representation is completely equivalent to
the definition using parallel curves.)

The Homfly polynomial PL(v, z) ∈ Z[v±1, z±1] was developed independently by sev-
eral groups shortly after the discovery of the Jones polynomial [2, 6].

It is an invariant of an oriented link, characterised by the Homfly skein relation

v−1 P ( ) − v P ( ) = z P ( )

between oriented link diagrams differing only where shown. It is invariant under all three
Reidemeister moves, and so PL∐O = δPL, where δ = (v−1 − v)/z, and L ∐ O consists
of the diagram L together with a disjoint simple closed curve. Some authors replace v
by v−1 in this definition. In the form given here the exponents of v are predominantly
positive when the crossings of L are positive.
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The Homfly polynomial provides a simultaneous generalisation of the Alexander poly-
nomial and Jones’ polynomial by

PL(v, z) =







∆K(t), the Alexander polynomial, when v = 1, z = s − s−1, t = s2

∇K(z), Conway’s version of the Alexander polynomial, when v = 1,
VK(t), the Jones polynomial, when v = s2 = t, z = s − s−1.

In this original form P is normalised so that the unknot O has invariant 1; in work
which relates to quantum groups it is more convenient to normalise so that the empty
knot φ has invariant 1 and the unknot has invariant δ. I shall adopt this convention in
the present work.

We may construct close relatives of the Homfly polynomial which are invariants of
an oriented diagram D only up to Reidemeister moves RII and RIII for any scalar c by
setting

XD = cw(D)PD(v, z),

where w(D) is the writhe of the diagram D, defined as the sum of the signs of the
crossings in D. Thus w(D) =

∑

ε(κ), where each crossing κ is given a sign ε(κ) = ±1,
defined as shown,

ε = +1, ε = −1.

Then X can be recognised by the properties

X( ) = cX( )

and the skein relation

c−1v−1 X( ) − cv X( ) = z X( ) ,

up to normalisation. In this way we can identify any invariant of oriented diagrams

up to moves RII and RIII which satisfies a linear relation between , and

with such a variant of the Homfly polynomial, provided that it multiplies by a
fixed scalar c under move RI . Kauffman’s bracket polynomial, for example, arises with
c = −A3, z = A−2 − A2 and v = A−4.

In general, when we write the relation as

x−1 X( ) − x X( ) = z X( ) ,

we have X = cw(D)PD(xc−1, z) = (xv−1)w(D)PD(v, z).

Kauffman’s Dubrovnik polynomial DL(v, z), introduced in [3], is an invariant of a
framed unoriented link L, or equivalently of unoriented link diagrams up to moves RII

and RIII . It is defined up to a constant by the linear relation

D( ) − D( ) = z
(

D( ) − D( )
)

,
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on diagrams which differ as shown, and by its behaviour

D( ) = v−1D( )

under move RI . As above, it is appropriate here to normalise the invariant so as to take
the value 1 on the empty diagram φ rather than on the unknot. The value on the unknot
with framing 0 is then 1 + (v−1 − v)/z. It was shown by Lickorish that D is equivalent
to Kauffman’s original invariant which is defined in a similar way but with + signs in
place of − signs in the linear relation.

3 Quantum group invariants

In this section I shall take G to be any of the quantum groups Gq associated to a classical
Lie group G, with a generic choice of parameter q. I refer to the work of Reshetikhin
and Turaev [8] for the details of the definitions of the quantum groups and associated
invariants. The quantum group G is an algebra, in fact a Hopf algebra, over a ground ring
Λ, which can frequently be taken as the Laurent polynomial ring Z[s±1], with s2 = q, or
some straightforward extension of this, although it would be more correct to work with
the formal power series ring Q[[h]] with q = eh and s = eh/2. Definition of the invariants
relies crucially on the existence of an element R, called the ‘universal R-matrix’, in an
extension of G ⊗ G. The key to the construction of these invariants is the systematic
representation by G-module homomorphisms of oriented tangles whose strings have been
‘coloured’ by finite-dimensional G-modules. When the components of the tangle are
coloured by modules the tangle itself is represented by a homomorphism from the tensor
product of the modules which colour the strings at the bottom to the tensor product of
the modules which colour the strings at the top, provided that the string orientations
are inwards at the bottom and outwards at the top. The dual module V ∗ comes into
play in place of V when an arc of the tangle coloured by V has an output at the bottom
or an input at the top.

For example, the (4, 2)-tangle below, when coloured as shown, is represented by a
homomorphism U ⊗ W ∗ → U ⊗ X∗ ⊗ X ⊗ W ∗.

U

V W

X

U X* X W*

U W*

It is possible [8] to build up the definition so that the composites of consistently
coloured tangles are represented by the appropriate composite homomorphisms, while
one tangle alongside another is represented by the tensor product of the two correspond-
ing homomorphisms. Every tangle can be built up as the composite of a number of
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elementary tangles which are either a simple crossing

σ = or σ−1 =

or a local maximum or minimum , alongside a number of parallel straight

strings represented by the appropriate identity homomorphism. Once it is decided how
to assign a homomorphism to each of these elementary tangles, with colouring, the
homomorphism for the whole tangle will be determined as a composite.

Homomorphisms for the elementary tangles are defined using the universal R-matrix
for the tangles σ±1 and the antipode in G for the local maximum and minimum. Two
cases, depending on the orientation, must be considered for both the local maximum and
the local minimum, and a little care is needed here to ensure consistency.

The final result is a definition of a homomorphism which can be shown to be invariant
when the coloured tangle is altered by RII and RIII , or deformed by isotopy. When
applied to an oriented k-component link diagram L regarded as an oriented (0, 0)-tangle
the result is a homomorphism from Λ to Λ for each colouring of the components of L by
G-modules. This homomorphism is multiplication by an element G(L;V1, . . . , Vk) ∈ Λ =
Q[[h]] , which is thus an invariant of the framed oriented link L.

This invariant G(L) (for a fixed quantum group G) is
(1) multilinear under direct sums of modules, and
(2) multiplicative on parallels, in the sense that modules V and W on two parallel
components in a diagram can be replaced by the single module V ⊗ W on a diagram
with the two components amalgamated into one.

We can use (1) to extend the definition of G(L) to allow colouring by linear com-
binations of modules, and thus determine a multilinear map G(L) : R × . . . × R → Λ,
where R is the representation ring of G. Work of Rosso [9] shows that for generic choice
of the parameter q the finite dimensional representations of G are completely reducible,
and that the representation ring R is isomorphic to that of the corresponding classical
group.

4 Quantum invariants which are polynomial evaluations

I shall now consider the case of the quantum invariants when the same irreducible V is
used on each component of a framed oriented link L. By Rosso’s result we may write

V ⊗ V =
r

∑

i=1

niVi, in R, where each Vi is irreducible, Vi 6∼= Vj when i 6= j and ni ∈ N.

Theorem 1 Let V be an irreducible module for the quantum group G. Suppose that
V ⊗ V ∼= V1 ⊕ V2 where V1 and V2 are irreducible and not isomorphic G-modules. Then
for any framed oriented link L we have

G(L;V, . . . , V ) = cw(L)PL(v, z)

for some scalars c, v and z, where w(L) is the writhe of a correctly framed diagram for
L.
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Theorem 2 Let V be an irreducible module for the quantum group G which is isomorphic
to its dual. Suppose that V ⊗ V ∼= V1 ⊕ V2 ⊕ V3 where V1, V2 and V3 are irreducible and
not isomorphic. Then for any framed link L we have

G(L;V, . . . , V ) = DL(v, z)

for some v and z.

Remark. In this case exactly one of the summands, V3 say, must be the trivial module.

Proof of theorem 1: Every G-module endomorphism of V ⊗ V must preserve the two
irreducible summands V1 and V2, and will act on each by scalar multiplication, by scalars
a1 and a2 respectively. These scalars determine the endomorphism, and so any three
endomorphisms of V ⊗ V must be linearly dependent. Now the three tangles

, and

when coloured throughout by V are represented by three endomorphisms R, R−1 and
Id of V ⊗ V . These must satisfy some linear relation, which can be written as

x−1R − xR−1 = zId (∗)

for some scalars x and z. Suppose now that we have diagrams of three framed links
D± and D0, differing only by the three tangles shown above. We may use the diagrams
to calculate the invariant G(L;V . . . , V ) for each link, by composing module homomor-
phisms. The homomorphisms given by the three diagrams will be identical, except that
at some level the homomorphism R used in D+ is replaced either by R−1 for D− or Id
for D0. The composite homomorphisms, and thus the eventual invariants, must then
satisfy the same linear relation, giving

x−1G(D+;V, . . . , V ) − xG(D−;V, . . . , V ) = zG(D0;V, . . . , V ).

Furthermore, since V is irreducible, the (1, 1)-tangle when coloured by V must

be represented by some scalar multiple, c say, of the identity on V , by Schur’s lemma.

When is replaced by in a diagram the invariant G(D;V, . . . , V ) is then multiplied

by c. It follows from the properties of the Homfly polynomial discussed above that
G(D;V, . . . , V ) can be identified with a variant XD of the Homfly polynomial. Since
G(D) has the value 1 on the empty diagram the exact formula is

G(D;V, . . . , V ) = cw(D)PD(xc−1, z),

where x, c and z have the values determined by the relations. �

Remark. The endomorphism R satisfies the quadratic relation R2 − xzR − x2 = 0; if
we set z = s − s−1 then the eigenvalues of R are xs and −xs−1 and its eigenspaces are
the two submodules V1 and V2 making up the decomposition of V ⊗ V .
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Proof of theorem 2: With three irreducible summands for V ⊗ V each endomorphism
is determined by three scalars, and so any four endomorphisms of V ⊗V will be linearly
dependent.

Because V is isomorphic to its dual V ∗ the tangle , when its components are
coloured by the module V , will be represented by an endomorphism, H say, of V ⊗ V .
We then have a linear relation between the four endomorphisms R±1, Id and H, where
R±1 represent the tangles σ±1 when coloured by V . Suppose then that

aR + bR−1 = cId + dH

for some scalars a, b, c and d.
Write V (L) for the invariant G(L;V, . . . , V ) of the framed link L. The linear relation

between the endomorphisms gives a similar relation as before among the invariants where
the diagrams only differ as shown, thus

a V ( ) + b V ( ) = c V ( ) + d V ( ).

Again the irreducibility of V shows that there is some scalar v with V ( ) = v−1 V ( ).

We can then identify V (L) with the Dubrovnik invariant of L in one of its forms if we
can show that either a + b = c + d = 0 or that a = b and c = d.

We may redraw the tangle σ−1 by isotopy as another composite of elementary tangles
in the way shown.

=

By the theory of quantum group invariants, the endomorphism R−1 can equally
be expressed as the appropriate composite of three homomorphisms. Now one of the
factors in the composite involves the tangle σ which is represented by R, and this can
be replaced, using the linear relation, by a combination of R−1, H and Id. This gives
a linear relation between the composite endomorphisms arising from four tangles, as
indicated.

a + b = c + d .

Since these tangles be simplified by isotopy the endomorphisms which represent them
are just R±1, H and Id, giving the equation

aR−1 + bR = cH + dId.

Subtracting the two equations gives

R − R−1 = z(Id − H), with z =
c − d

a − b
,

unless a = b. Then V (L) = D(v, z).
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If a = b then (c − d)(Id − H) = 0 and so c = d since H 6= Id. This gives

R + R−1 = z(Id + H), with z = c/a,

and hence V (L) is the other version of the Dubrovnik invariant. �

Remark. The endomorphism R has three eigenspaces, V1, V2 and V3, with eigenvalues
a1, a2 and a3 say. The endomorphism H represents the composite of a (2, 0)-tangle with
a (0, 2)-tangle, and hence factors through the trivial module. It must then be a scalar
multiple of the projection to the trivial summand of V ⊗ V , which we can take to be
V3. It follows that RH = a3H. We can draw a tangle represented by HR which differs
from the tangle represented by H simply by a left-hand curl, and so HR = vH, so that
a3 = v.

Now −zH = R − R−1 − z using the standard Dubrovnik signs and so

(R − R−1 − z)(R − v) = 0.

The other two eigenvalues of R must then be the roots s,−s−1 of the equation R2 −
zR − 1 = 0 where z = s − s−1.

Applications. The structure of the representation ring for the generic quantum group
is the same as that of the corresponding classical Lie group. When G = Sl(k) or SU(k)
the fundamental k-dimensional representation V has the property required in theorem
1. The representation of G on V ⊗ V can be viewed as the representation of G on the
space M of k×k matrices using the map G×M → M defined by (P,A) 7→ P T AP . This
decomposes into two irreducible representations, on the symmetric and skew-symmetric
matrices respectively, of dimension k(k + 1)/2 and k(k − 1)/2.

There exists a corresponding k-dimensional representation V� of the quantum group
G = SU(k)q whose product V� ⊗ V� decomposes as the sum of two irreducible repre-
sentations of dimensions k(k + 1)/2 and k(k − 1)/2. Theorem 1 then yields Turaev’s
well-known result [10] that the invariant V�(L) is given by PL(v, z), after appropriate
normalisation, for some choice of v and z. The endomorphism R of V� ⊗ V� may be
altered by a scalar multiple x to yield one of the variants X for the Homfly polynomial;
this only changes the invariant by a factor depending on the writhe of the diagram, with-
out changing the values of v and z. Turaev uses a multiple R of the universal R-matrix
which satisfies the equation (∗) with x = 1, and has z = s−s−1, v = s−k in our notation.
When working with the endomorphism given by Drinfeld’s universal R-matrix [1] the
parameter x has value x = s−1/k = e−h/2k. In the applications given here it is important
to use the universal R-matrix, to allow accurate calculation of the invariants on parallels
and satellites.

In what follows, for G = SU(k)q, I shall then use the endomorphism R for V� ⊗ V�

which satisfies (∗) with x = s−1/k, z = s − s−1. This endomorphism has eigenvalues xs
and −xs−1. The corresponding eigenspaces are the irreducible submodules of dimension
k(k + 1)/2 and k(k − 1)/2 respectively, since R reduces to the simple interchange of
factors when we put h = 0 and thus x = s = 1 in the quantum group; the symmetric
summand of dimension k(k + 1)/2 in the classical case is the one with eigenvalue 1.
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The tensor product V ⊗V of the fundamental k-dimensional representation of SO(k)
decomposes similarly into three irreducibles corresponding to scalar matrices, symmetric
matrices of trace 0 and skew-symmetric matrices. Theorem 2 then confirms the direct
observation of Turaev; in this case again z = s − s−1 while v = s−(k−1).

5 Two special cases

The conditions of theorem 2 are satisfied also in two special cases besides the fundamental
representations of SO(k). These are both suggested by coincidences in the theory of Lie
algebras, where SU(2) and SO(3) have the same Lie algebra, as do SU(4) and SO(6).
The 3-dimensional irreducible representation of SU(2), and equally the 6-dimensional
irreducible representation of SU(4) in the quantum group setting might then be expected
to be the fundamental representations of SO(3) and SO(6), and thus determine the
corresponding specialisations of the Dubrovnik invariant. Here we use theorem 2, without
attempting to make an explicit identification of the pairs of quantum groups, to show
that this is indeed the case.

The representations in question for SU(2) and SU(4) correspond to one of the two
summands of the 2-fold tensor product of the fundamental representation, and thus
classically to either symmetric 2 × 2 matrices or skew-symmetric 4 × 4 matrices. To
apply theorem 2 it is enough to show that the 2-fold tensor product of each of these
representations decomposes as the sum of three irreducibles, one of which is the trivial
representation.

Let V be one of these two summands in the case of the general unitary quantum
group G = SU(k)q. The representation ring of G is isomorphic to that of SU(k) itself,
so we can use classical information to determine how tensor products of G-modules
decompose. The irreducible representations of SU(k) are described classically by Young
diagrams, which are suitably arranged arrays of cells. The fundamental representation
corresponds to the diagram �, while the symmetric and skew-symmetric summands of

its 2-fold tensor product correspond to and respectively. We need to know the

decomposition of the tensor products ⊗ and ⊗ into irreducible summands.
Classical procedures show that each can be decomposed as the sum of three irreducibles,
with Young diagrams as shown

⊗ = + +

⊗ = + + .

For a given k, not all Young diagrams correspond to distinct irreducibles. Any
diagram with more than k rows of cells gives the zero representation, the diagram with
1 column and k cells gives the trivial (scalar) representation, while any column with k
cells can be removed from a diagram without altering the corresponding irreducible.

We can then see that for k = 2 the product ⊗ contains one trivial summand

, while ⊗ contains the trivial summand in the case k = 4. The conditions
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for theorem 2 are then satisfied in each case, and the corresponding quantum invariants
are each specialisations of the Dubrovnik invariant.

We can be more specific and identify the values of the parameters v and z in terms
of s by the following theorem.

Theorem 3 The invariant V (L) = G(L;V, . . . , V ) satisfies

(1) V (L) = DL(s−4, s2 − s−2)

when G = SU(2)q and V = V is the 3-dimensional irreducible,

(2) V (L) = DL(s−5, s − s−1)

when G = SU(4)q and V = V is the 6-dimensional irreducible.

Proof : As noted above, theorem 2 applies to show that V (L) = DL(v, z) for some v
and z in each of these cases. To identify the parameters v and z it is enough to find the
three eigenvalues of the endomorphism R of V ⊗ V . By the remark following theorem 2
the eigenvalue associated with the trivial representation will be v, while the sum of the
other two, whose product is −1, will give z.

It will be enough to identify the eigenvalues up to sign; this will determine v and z
up to sign. We may then confirm the theorem by checking in the case when L is a simple
closed curve.

As part of the proof I shall now discuss some features of the invariants when G is any
of the unitary quantum groups SU(k)q, using further properties of the classical repre-
sentation theory of SU(k). As mentioned in the previous section, irreducible G-modules
(representations of G) are indexed by Young diagrams. Write Vλ for the irreducible G-
module with Young diagram λ. Then the fundamental module is V� and its symmetric
square and exterior square are respectively V and V . The tensor product (V�)⊗n of n

copies of V� decomposes as a direct sum of modules
∑

Wλ ⊗Vλ, where the sum is taken
over all admissible Young diagrams with n cells, and each Wλ is a trivial G-module of
dimension dλ. This dimension dλ is independent of k and can be determined classically.
It is given inductively by dλ =

∑

dλ′ , where λ′ runs over Young diagrams derived from
λ by removing one cell.

Representation of coloured tangles, and thus coloured braids, by G-module endomor-
phisms determines a representation of the n-string braid group Bn by G-module endo-
morphisms of (V�)⊗n. Each elementary braid σi is represented by the tensor product of
suitable identity endomorphisms and the endomorphism R : V�⊗V� → V�⊗V�, whose
eigenvalues have the form xs and −xs−1, with x = s−1/k when dealing with SU(k)q, as
noted above. The corresponding eigenspaces are V and V respectively.

Write |λ| for the number of cells in the Young diagram λ. The representation of Bn

determines a representation of Bn on each space Wλ with |λ| = n since the summands
Wλ ⊗ Vλ in the tensor product must be preserved by the module endomorphisms. Each
elementary braid σi is then represented on Wλ with eigenvalues xs and −xs−1. Write
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aλ for the number of eigenvalues xs and bλ (= dλ − aλ) for the number of eigenvalues
−xs−1; these numbers are independent of i since all the braids σi are conjugate in Bn.
Set σλ = aλ − bλ, the signature of the representing matrix when x = s = 1. When
we put h = 0 and thus x = s = 1 the representation of Bn becomes a representation
of the symmetric group Sn, and then σλ is the signature of any matrix representing a
transposition. The signatures σλ can be determined classically. Since a transposition
acting on V� ⊗ V� classically preserves the symmetric tensors, and acts with eigenvalue

−1 on the skew symmetric tensors we will have aλ = 1 and bλ = 0 when λ = ,

corresponding to the symmetric case, while aλ = 0 and bλ = 1 when λ = . The
signature satisfies an inductive relation as for dλ, namely that σλ =

∑

σλ′ where λ′

again runs over Young diagrams given from λ by removing one cell. The induction
starts with σ = 1 and σ = −1. The endomorphism of Wλ representing each σi

then has determinant xdλsσλ(−1)bλ , and hence the full-twist braid ∆2
n acting on Wλ has

determinant (xdλsσλ)n(n−1).

The simple curl when coloured with the irreducible module Vλ is represented

by some multiple, cλ say, of the identity on Vλ. The endomorphism of (V�)⊗n which
represents the tangle

when coloured by V� restricts to an endomorphism of the summand Wλ⊗Vλ which may
be seen, using the behaviour of quantum invariants on parallels, to be scalar multipli-
cation by cλ. On the other hand, this tangle can be altered by removing one curl from
each string to become the braid ∆2

n and it is thus represented as an endomorphism of
(V�)⊗n by (c�)n∆2

n. Calculating the determinant of this endomorphism on Wλ in two
different ways gives

(cλ)dλ = (c�)ndλ(xdλsσλ)n(n−1).

Now c� = xv−1 with v = s−k, x = s−1/k for SU(k)q and we may then take dλ-th roots
to write (up to a root of unity)

cλ = x|λ|2v−|λ|sσλ|λ|(|λ|−1)/dλ .

We can now construct the following table for d, σ and c up to a d th root of unity,
starting from the data that d = 1 and σ = 1, while d = 1 and σ = −1.
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λ d σ c
1 1 x4v−2s2

1 −1 x4v−2s−2

2 0 x16v−4

3 1 x16v−4s4

3 −1 x16v−4s−4

1 1 x16v−4s12

1 −1 x16v−4s−12 .

Write Rµµ : Vµ ⊗ Vµ → Vµ ⊗ Vµ for the endomorphism representing the elementary

tangle when coloured with Vµ. A similar argument shows that R2
µµ, representing the

2-braid σ2
1 = ∆2

2, acts by scalar multiplication on any of the irreducible summands Vν

of Vµ ⊗ Vµ, and that the scalar is c−2
µ cν . The endomorphism Rµµ of Vµ ⊗ Vµ then has

eigenvalues, up to sign, of c−1
µ

√
cν .

To identify the parameters v and z in cases (1) and (2) of the theorem we must find

the eigenvalues of Rµµ when µ = , G = SU(2)q for (1) and when µ = , G = SU(4)q

for (2). We know in each case that v = c−1
µ will be one eigenvalue, and that the sum of

the other two eigenvalues, whose product is −1, will give us the value of z.
We can find the three eigenvalues, up to sign, as c−1

µ
√

cν where ν runs through

the three summands of µ ⊗ µ. For µ = the table above gives eigenvalues, up to

sign, of x4s−2, x4 and x4s4, which have values s−4, s−2 and s2 for SU(2)q. In this case
v = c−1

µ = s−4 and so z = ±(s2−s−2). Similarly, when µ = , the eigenvalues, again up
to sign, are x4s2, x4 and x4s−4, which have the values s, s−1 and s−5 for SU(4)q. Here
we can calculate c−1

µ = s−5 from the table, and so v = s−5, while z = ±(s − s−1).
It then only remains to identify the choice of sign for z in each case, which we do

by considering the invariant Vµ(U), where U is the unknot with framing 0. We could
use the results from [4], as in the next theorem, to calculate Vµ(U) and compare it with
DU (v, z).

A quicker check however can be made as follows. We know that the value of a general
quantum group invariant G(L;Vµ) for a knot L when we put h = 0 is the dimension of the
module Vµ. Now DU (v, z) = 1+(v−1−v)/z. In case (1) we have v = s−4, z = ±(s2−s−2)
and so DU (v, z) = 1± (s2 − s−2), while dim V = 3 for SU(2). We must therefore take

z = s2 − s−2. In case (2) we have v = s−5, z = ±(s − s−1) and then

DU (v, z) = 1 ± s5 − s−5

s − s−1
= 1 ± (s4 + s2 + 1 + s−2 + s−4),

while dim V = 6 for SU(4). Thus we must take z = s− s−1. This completes the check

so the theorem follows. �

Remark. It is established [7, 11] that the invariants V (L) for the unitary quantum
groups can be calculated in terms of Homfly polynomials of suitable satellites of L. An
explicit account in [4] relates the cases V = V and V = V to the Homfly polynomials
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of simple 2-cables about L, with the variables v and z replaced, for SU(k), by s−k and
s− s−1 respectively. Consequently there is a relation between these Homfly polynomials
and the specialisations of the Dubrovnik polynomial in theorem 3.

In the first case this yields Yamada’s result [12] relating the Jones polynomial of the
2-parallel of L to the specialisation of the Dubrovnik polynomial DL(s4, s−2 − s2) where
s2 = t for the parameter in the Jones polynomial.

The second case gives a new relation, which I state here for the case of an oriented
framed knot C, but which extends naturally to the case of a link.

Theorem 4 Let C be a framed knot. Then

DC(s−5, s − s−1) = s15w(C) 1

1 + s−2

(

PC(2,0)(s
−4, s − s−1) − s3PC(2,1)(s

−4, s − s−1)
)

,

where w(C) is the writhe of a correctly framed diagram of C, and C(2, 0), C(2, 1) denote
the (2, 0) and (2, 1) cables about C relative to the chosen framing of C.

Proof : The quantum invariant G(C;Vλ) for a unitary irreducible module Vλ is related
explicitly in [[4]] to the Homfly polynomials of cables with |λ| strings about C. From a
braid β on n strings we may construct a satellite C(β) of C by taking n parallel strings
which follow the framing around the diagram of C and inserting the braid β as indicated.

C = , C(β) =

β

When n = 2 and β = σ1 this satellite is called the (2, 1)-cable about the framed
knot C; with β = 1, the identity braid, we get the (2, 0)-cable consisting of two parallel
strands about C.

Write PC(β̂) for the Homfly polynomial of C(β), and extend this notation to linear
combinations of braids β =

∑

aiβi in place of β to mean the linear combination of
Homfly polynomials, so that PC(β̂) =

∑

aiPC(β̂i). For G = SU(k)q it is shown in [4]
that

G(C;V ) = (xv−1)4w(C)PC(ê ),

where e = (1 − s−1v−1σ1)/(1 + s−2), and the substitutions v = s−k, z = s − s−1 and

x = s−1/k are made on the right-hand side.
Here we have k = 4 and so we get

G(C;V ) = s15w(C) 1

1 + s−2

(

PC(1̂) − s3PC(σ̂1)
)

.
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The result of theorem 3(2) allows the left-hand side to be replaced by the specialisation
of the Dubrovnik polynomial as claimed. �

Remark. The detailed formulae in theorems 3 and 4 have been amended from an
earlier version of the paper in which substitutions v = sk and x = s1/k were used. These
did not tally exactly with the results of Turaev and Drinfeld, and were more suited to
the choice s = −1 rather than s = 1 when making the specialisation q = 1.
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