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Introduction
This thesis presents a study of satellite links, and in particular of a geometricinvariant of links which is intrinsic in the presentation of certain satellites asclosed braids.As part of their comprehensive study of links via closed braids, Birman andMenasco studied the e�ect of the knot operations of distant union and connectsum on the braid index. Let A � S3 denote the braid axis; the complementS3 � A admits an open book �bration, where the �bres are open halfplanes H�.Let L be a closed braid relative to A, so L intersects each of the H� transversely inthe same number of points. Let S denote the 2-sphere which de�nes the distantunion/connect sum; then S is foliated by the leaves S\H�. Birman and Menascoexamined the foliation of S, and showed that S could be placed in nice positionrelative to the open book �bration, so that the distant union/connect sum wasapparent from the presenting braid.The behaviour of braid index with respect to the more complicated satelliteconstruction could be studied using this work as a foundation. Let T be a hollowtorus in S3: it is known by a theorem of Alexander that T bounds a solid torusV on at least one side. Suppose a link L is completely contained in the interiorof V . If V is knotted then L is called a satellite link. We assume that L is aproper satellite: that is, T is essential (incompressible in S3 � L).The methods of Birman and Menasco, described above, could be appliedto the satellite construction to develop formulae for braid index of satellites;comparable (independent) results are found here and in a further paper of Birmanand Menasco. It is established that satellites, broadly speaking, fall into one oftwo types: reverse string, and non-reverse string. Braid index of the latter isdependent on the braid index of the companion knot. Birman and Menascoconjectured that braid index of the former is dependent on the arc index of thecompanion knot. The apparent dependence is not trivial, and we discuss thishere, giving examples and illustrations.
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A special class of reverse string satellite was a subject of study in the workof Rudolph. The boundary of an oriented knotted annulus (with core knot C,say) is an oriented link: its two components are oppositely oriented copies of C,running parallel to each other. We call this satellite link an antiparallel of C.Rudolph studied the modulus of quasipositivity q(C) of a knot C (introducedin the knot theory of complex plane curves) as it applies to ordinary knot the-ory: q(C) can be characterized in terms of the framing of the antiparallel of C.Rudolph found upper and lower bounds for q(C), and gave a relationship betweenthe Kau�man polynomial of C and the Homy polynomial of the antiparallel ofC. We bring together the theory of general satellites, and the work of Rudolphthrough quasipositive surfaces, to make a number of deductions.The contents of this thesis can be summarized as follows.Chapter 1 covers some of the de�nitions of classical and modern knot theory,which are relevant to this thesis. Further de�nitions appear throughout the thesis.Chapter 2 is an introduction to the arc index: we describe the underlyingconstruction, and a two-dimensional method of representing the construction, thegrid diagram. We de�ne the arc index. Cromwell formalized a set of combinatorialmoves, similar to the Reidemeister moves or the Markov moves, which relate apair of grid diagrams of a link; these moves are covered in some detail in section2.3. We include observations on how arc index relates to other link invariants, anda discussion on the behaviour of arc index under the knot operations of distantunion and connect sum.Chapter 3 can be regarded in two parts. The �rst part (sections 3.1 and3.2) introduces and proves a result concerning braid index of non-reverse stringsatellites. The second part (sections 3.3{3.7) begins by stating the more completeresult of Birman and Menasco, which recognizes the reverse string pattern types.The work continues by employing this result to develop explicit closed braiddiagrams (and hence explicit words in the braid group) for reverse string satellites;this algorithm provides an upper bound for braid index of a reverse string satellite.We see how the framing of the satellite is a factor in determining braid index ofreverse string satellites, and in section 3.7 we prove a relationship between framingof the satellite, and the size of its Homy polynomial. This leads directly to alower bound for braid index of the reverse string satellite, via the well-knownMorton-Franks-Williams inequality; it is observed that, at least in special cases,the upper and lower bounds developed here behave identically with respect toframing.
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In chapter 4 we bring in the work of Rudolph on quasipositive annuli. Wereview some of the necessary de�nitions and observations of Rudolph, and addsome new observations. Section 4.4 brings together the work on quasipositivity,and the work on satellites, with the result that a lower bound for arc index canbe deduced from the Kau�man polynomial. Moreover, this lower bound is re-markably similar, on face value at least, to a result (proved, independently, byMurasugi and by Thistlethwaite) relating crossing index and the Jones polyno-mial: in particular, both inequalities seem to be strict if, and only if, the link isnon-alternating.Chapter 5 returns to the arc index itself. We include a discussion of a com-puter algorithm which is enough to identify all knots of small arc index, via cal-culation of their Homy polynomials. The algorithm is illustrated by inclusionof a pseudocode, and a number of corollaries are deduced.Finally, a note on the organization of this thesis. Titles and labels are abun-dant, and usually they are numbered. For example, 3.7 is the seventh section ofchapter 3, and 3.7.II is the second subsection of section 3.7. Theorems, proposi-tions, lemmas, corollaries and conjectures are all covered under the same indexingsystem: 3.7.2 is the second such to be included in section 3.7 (irrespective of whichsubsection it appears in). Figure 3.5 is the �fth �gure of chapter 3: �gures arenumbered consecutively. References are included at the end of the thesis; in themain body of the thesis, they are referred to within square brackets, e.g. [Ro].The symbol 2 indicates the end of a proof or, if it appears immediately after astatement, that no proof is given.
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Chapter 1Basic de�nitions
Throughout the thesis, N;Z and R denote the natural numbers, the integers andthe reals, respectively.1.1 Knots and linksA knot (usually denoted K) is an embedding of S1 into S3, i : S1 ! S3. A link, L,of jLj components is an embedding of jLj copies of S1 into S3, i : S1[: : :[S1 ! S3.In this work, we refer to smooth or piecewise linear knots and links. Also,we make the distinction between knots and links, since, in some circumstances,terminology for a 1-component link is valuable. Where the number of componentsis immaterial we refer to a link.A link is said to be oriented if it comes with a choice of orientation for eachcomponent.Let L be a link. A diagram of L is the image D(L) of a projection map,D : S3 ! S2 or R2, such that there are �nitely many singular points, and eachsingular point is a transverse double point with its under- and over-crossingsdistinguished.The unknot, denoted U1, is the only knot (1-component link) which can berepresented by a non-singular diagram. Figure 1.1 shows some examples of dia-grams of knots.In a link diagram D, suppose we have p parallel, similarly oriented strings,running alongside each other without intertwining. We can replace this with1



Figure 1.1: Diagrams of unknot, trefoil and �gure-eight
p

Figure 1.2: Weighted string represents p parallel strings in link diagram Da weighted string of weight p, as illustrated in �gure 1.2. This diagrammaticshorthand will be of use in later chapters.Given a link L, its obverse �L is given by reecting L in some mirror plane inS3.1.2 Equivalence of linksLet D, D0 be diagrams of links L, L0. By a theorem of Reidemeister [Re], thelinks L and L0 are equivalent up to ambient isotopy if, and only if, D and D0 arerelated by a sequence D = D0 ! D1 ! : : :! Dr = D0;where each Di is related to Di�1 by one of the Reidemeister moves (illustrated in�gure 1.3).Two link diagrams are said to be equivalent up to regular isotopy if they arerelated by a sequence D = D0 ! : : : ! Dr = D0 where each Di is related toDi�1 by either the second or third Reidemeister moves.
2
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Figure 1.3: The Reidemeister moves
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1.3 BraidsLet f(x; y; z) : z = z0g; f(x; y; z) : z = z1g (with z0 < z1) be parallel planes inR3. Choose m pairs of points (xi; yi; z0); (xi; yi; z1); i = 1; : : : ; m on the planes.An m-braid is a collection of m disjoint strings, each of which joins one of thepoints on f(x; y; z) : z = z0g to one on f(x; y; z) : z = z1g such that (a) each pointis at the end of exactly one string, and (b) each string has transverse intersectionwith every plane f(x; y; z) : z = z0g, for z0 < z0 < z1. An example is shown in�gure 1.4. We study braids, as we study links, via diagrams with �nitely manydouble points and no higher singularities.

z=z

z=z

1

0

Figure 1.4: A 4-braid �Braids are represented algebraically by Artin's braid group [Ar], Bm:Bm = *�1; : : : ; �m�1 : �i�j�i = �j�i�j; ji� jj = 1;�i�j = �j�i; ji� jj � 2: + ;where the generator �i represents the crossing of the ith braidstring and (i+1)thbraidstring, in the sense of �gure 1.5.
i-1 ni1 i+1Figure 1.5: Elementary braid �i 2 BnA closed m-braid �̂ is a union of closed curves in S3, given by joining thepoints (xi; yi; z0); (xi; yi; z1); 8i of an m-braid �, as shown in �gure 1.6.4



Figure 1.6: Closed 4-braid �̂
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Theorem 1.3.1 [Al] Every link can be presented as a closed braid, and everyclosed braid is a link. 2Markov [Ma] described deformations which relate any pair of closed braidrepresentations of the same link L. The Markov moves are illustrated in �gure1.7, where links are assumed to be piecewise linear. The dotted component isreplaced by the full component, or vice versa.
R WFigure 1.7: Markov movesThe Markov moves relate the link representations via the following theorem.Theorem 1.3.2 [Ma] Let �̂ and �̂ 0 be two closed braids in S3, which are com-binatorially equivalent1. Then there exists a �nite sequence�̂ = �̂0 ! �̂1 ! : : :! �̂s = �̂ 0of closed braids in S3 such that for each i = 1; : : : ; s; �̂i is obtained from �̂i�1by a single application of a deformation of type R or type W. (The converse istrivially true.) 2In algebraic terms, this is equivalent to the following. A Markov move replacesa braid � 2 Bn by(R) � 0 2 Bn, where � 0 is conjugate to � in Bn; or(W) ���1n 2 Bn+1; or1The combinatorial equivalence class of a link is its link isotopy type ([Bi] p.39). Twopiecewise linear links L and L0 are said to be combinatorially equivalent if they are related bya �nite sequence of links, such that each link is obtained from its predecessor by a deformationof type R. Since the Reidemeister moves can easily be generated from repeated applicationof move R, then Reidemeister equivalence implies combinatorial equivalence. More trivially,combinatorial equivalence is just ambient isotopy, and so implies Reidemeister equivalence.6



(W�1) � 0 2 Bn�1, where � = � 0��1n�1 2 Bn.Then the algebraic version of theorem 1.3.2 is as follows.Theorem 1.3.3 [Ma] Let �̂ and �̂ 0 be two closed braids in S3, with braid rep-resentations � and � 0. Then �̂ is combinatorially equivalent to �̂ 0 if, and only if,there exists a �nite sequence� = �0 ! �1 ! : : :! �s = � 0of braids, with each �i 2 Bni, such that for each i = 1; : : : ; s, the braid �i is ob-tained from �i�1 by a single application of one of the algebraic moves R; W; W�1described above. 2Detailed proofs of Markov's theorem can be found in [Bi, Mo3, Tr], and out-lined proofs in [Ma, Ha].Finally in this section, we de�ne a special braid. We let �n 2 Bn denote apositive half-twist of n strings, de�ned inductively by�2 = �1;�n = �n�1:(�n�1�n�2 : : : �1), n > 2.1.4 Some standard knot and link invariantsThere are many invariants of links. Here are some of the standard invariants usedin this thesis.Let L be a link, and D a diagram of L. De�ne c(D) to be the number of(double point) singularities of D. The (geometric) crossing index of L, denotedc(L), is de�ned as c(L) = minD=D(L) fc(D)g :Choose an orientation for L. Then the sign of a crossing p of D, denoted "(p)is de�ned as being �1, according to the convention in �gure 1.8. The conventioncomes from the right-hand twist rule. The sign of a crossing coincides with thesign of an elementary braid generator and is preserved by reversal of orientationof all the components of L. 7



-+Figure 1.8: Sign of a crossingThe algebraic crossing number (or writhe) of D is the sum of the signs of thecrossings: w(D) = Xp�D "(p):Let � be a braid whose closure is the link L. Write m(�) for the number ofbraidstrings of �, so that � lives naturally in Bm. The braid index b(L) of L isthe least number of braidstrings over all such braids �:b(L) = min� s:t: �̂=L fm(�)g :There are �nitely many inequivalent links of a given (geometric) crossingindex; they are listed, for small c(L), in [Ro, Th1], and elsewhere. There arein�nitely many inequivalent links of a given braid index. Note that algebraiccrossing number is de�ned on the diagram of a link, not the link itself.1.5 Polynomial invariantsIn this section we de�ne a number of polynomial invariants of links. The Jonespolynomial was discovered in the mid-1980s, and was soon found to generalize intwo di�erent ways, giving the Homy and Kau�man polynomials. All of thesegeneralize the older invariants of Conway and Alexander, and also provide moreinformation about links.1.5.I The Homy polynomialFor each oriented link L there is a Laurent polynomial PL(v; z) in two variablesv; z. The polynomial is uniquely determined by the linear skein rulev�1PD+ � vPD� = zPD0 ;8



where D+; D�; D0 are diagrams of links, which are identical except in the neigh-bourhood of a single crossing ofD+, where they appear as in �gure 1.9. A normal-ization is required: the original versions of P use the normalization PU1(v; z) = 1,where U1 is the unknot. For the purposes of this thesis, we use this normalization.2These relations ensure that PL(v; z) is invariant under the three Reidemeistermoves.
D+ D� D0Figure 1.9: D+; D�; D0 di�er as shownThe polynomial PL(v; z) is commonly referred to as the Homy or two-variable Jones polynomial. There exist several slightly di�erent versions of it,involving di�erent variables and normalization. The version used here follows[Mo2] and [Ru4]. The Lickorish-Millett version is obtained by the substitutionv = �il; z = im, where i = p�1. The Thistlethwaite tabulations [Th4] ofthe Homy polynomial, for knots of up to 13 crossings, require the substitutionv = a; z = x 12 � x� 12 .The polynomial PL is unchanged by reversal of the orientation of all thecomponents of L. There are specializations of the two-variable polynomial. TheJones polynomial VL(t) is given byVL(t) = PL(t; t 12 � t� 12 );and was the inspiration for the two-variable version [F-Y-H-L-M-O, P-T]. TheAlexander polynomial �L(t) is retrieved by the substitution�L(t) = PL(1; t 12 � t� 12 );and in Conway's version by rL(z) = PL(1; z):

2In some contexts, it is more convenient to use P;(v; z) = 1; PU1(v; z) = � (= v�1�vz ), where; denotes the `empty link' { the link with zero components.9



1.5.II The Kau�man polynomialA polynomial invariant for unoriented links was discovered by Kau�man [Kau1].(This de�nition follows [Th2], and coincides with the version given in [Oc].) Firstde�ne the regular isotopy invariant �(a; x) 2 Z[a�1; x�1] by the relations�D+ + �D� = x(�D0 + �D1);�Ds = a�Dtwhere �D+; �D�; �D0 ; �D1 are polynomials of links with diagramsD+; D�; D0;D1 which are identical except in the neighbourhood of a double point, where theyappear as in �gure 1.10, and �Ds; �Dt are polynomials of links with diagramsDs; Dt, which are identical except as described in �gure 1.11.
D+ D� D0 D1Figure 1.10: D+; D�; D0; D1 di�er as shown

Ds DtFigure 1.11: Ds; Dt di�er as shownNow write FL(a; x) = a�k�(a; x), where k = w(D) is the writhe (algebraiccrossing number) of the oriented diagram D. The invariant FL is an invariantof links up to ambient isotopy; � is an invariant up to regular isotopy. Thepolynomial invariant FL is known as the Kau�man polynomial.The Kau�man polynomial also specializes to the Jones polynomial, by thesubstitution FL �t� 34 ;�(t 14 + t� 14 )� = VL(t):
10



1.5.III CommentsObservation of extreme powers of these polynomials is sometimes useful, and soan appropriate notation is required. Let H(x) be a Laurent polynomial in R[x�1],for some ring R. Then writemindegxH(x) = supfn 2 Z : x�nH(x) 2 R[x] � R[x�1]g;maxdegxH(x) = inffn 2 Z : xnH(x) 2 R[x�1] � R[x�1]g:These formal de�nitions follow those of Rudolph, [Ru4], where they are calledordx and degx respectively. Less formally, mindegxH(x) and maxdegxH(x) arerespectively the least and greatest powers of x with non-zero R-coe�cient inH(x).These polynomials are known to predict geometrical properties of knots. Thefollowing theorem will be useful to us.Theorem 1.5.1 Let PL(v; z) be the Homy polynomial of the link L. Let b(L)denote the braid index of L, and jLj denote the number of components of L. Then(i) b(L) � 1 + 12(maxdegvPL �mindegvPL);(ii) jLj = 1�mindegzPL. 2The �rst part of this theorem is known as the Morton-Franks-Williams (MFW)inequality [Mo2, F-W]. The second part is proposition 22 of [L-M].1.6 Composite linksThere are natural ways to construct more complicated links from simpler ones.Some de�nitions and examples follow.Some general topological de�nitions: if space Y is a subspace of space Z, andY is homotopic to a point z 2 Z, then Y is called contractible in Z.Let F be a surface embedded into some 3-manifoldM . Then F is compressibleif either(i) there exists a 2-disc D � M such that D \ F = @D and @D is non-contractible in F ; 11



(ii) F is a 2-sphere in M and F bounds a 3-cell in M .Let L be a link, and S be a 2-dimensional sphere, embedded smoothly orpiecewise linearly, in S3 � L. Then S bounds two 3-balls B1; B2 in S3. Thesphere S is incompressible in S3 � L if, and only if, each of the 3-balls has non-empty intersection with L. In this case we say that L is a distant union of thesub-links L1 = L \ B1 and L2 = L \ B2. We write L = L1 t L2. Sometimes,L1 t L2 is also said to be split. See the example in �gure 1.12.In particular, we de�ne the unlink of n components, denoted Un, to be theunion of n mutually distant unknots.
Figure 1.12: Distant union of trefoil and �gure-eight, with separating 2-sphereSuppose that L is not a distant union. Let S be a 2-sphere, embeddedsmoothly or piecewise linearly in S3, such that S\L consists of exactly two trans-verse intersections, at the points p1; p2. Join p1 to p2 by an arc  � S. Again Sbounds two 3-balls B1; B2 in S3. If, for i = 1; 2, the link Li = (L \ Bi) [  isnot ambient isotopic to the unknot then we say that L is a connected sum withsummands L1 and L2. We write L = L1#L2. If no such S exists then L is calleda prime link, otherwise it is composite. The terminology is based on the fact thatthere exists a prime decomposition theorem for links: this was �rst proved bySchubert, and a good account is given in [B-Z]. Figure 1.13 gives an example ofa connected sum.Let T be a smooth or piecewise linear hollow torus in S3. It is known, by atheorem of Alexander (cited in [B-M7]), that T bounds a solid torus V on at leastone side. Suppose a link L is completely contained in the interior of V . Say thatT is essential if it is incompressible in S3 � L. (Then, there does not exist anymeridional disc D of V with D \ L = ;; also, V is a knotted torus, with its coreambient isotopic to the knot C, say.) Say that T is peripheral if it is parallel to theboundary of a tubular neighbourhood of L. If T is essential and non-peripheralthen L is called a satellite link; C is its companion. A homeomorphism h : V ! VP12



Figure 1.13: Connected sum of trefoil and �gure-eight, with decomposing 2-spheremaps V to an unknotted torus VP ; the decoration (or pattern) P is the inclusionof h(L) in VP . Figure 1.14 clari�es this de�nition.It should be noted that this is not well-de�ned: one is also required to controlmeridional twisting of VC = V by specifying a framing f . This is discussed inchapters 3 and 4.Notation for satellites is as follows. The satellite with companion C, patternP and unspeci�ed framing is denoted C �P ; we specify a framing f by using thenotation C �f P .

Figure 1.14: Satellite construction with essential torus, companion and pattern
13



As a �nal remark, we say that the pattern P � VP is not proper if, and only if,there exists some meridional disc D � VP which has empty intersection with P .If no such disc exists then we say that P is a proper pattern. Note that a `non-proper satellite' C � P constructed from a non-proper pattern P is independentof the choice of companion and framing; in this case the torus T is inessential inS3 � (C � P ).
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Chapter 2Embeddings of links in a book ofhalfplanes
This chapter begins with the de�nition of a presentation of links which we �nd iscentral to the study of certain satellites as closed braids. We go on to investigatesome of the properties of this new presentation.2.1 Basic de�nition and initial remarksOur medium is the space S3. Let the axis A �= S1 be an (unknotted) loop inS3. The complement of A in S3 admits a �bration H, whose �bres are open discsfH� : 0 � � � 2�g.If we consider S3 with cylindrical polar coordinate system (r; �; z) then wemay take A to be the axis r = 0, and the �bres H� to be the half-planes � =constant. We call H the open-book decomposition of S3 �A; the �bres are calledpages. The axis A is also called the binding circle of H.Let � � 2 be a natural number. Choose an orientation for A and � pointsp0; p1; : : : ; p��1 which appear in order with the orientation of A. Choose alsopages fH� : � = 2(��k)�� ; k = 0; : : : ; �� 1g, and label these fh0; : : : ; h��1g.Now join pairs of points (pm; pn) by simple arcs aj in the hj such that(i) each hj contains exactly one arc aj;(ii) each pi is incident to exactly two arcs aj.15



A
03

12Figure 2.1: 4-arc presentation of a Hopf linkThe union S��1j=0 aj is called an arc presentation. An arc presentation with� arcs is called an �-arc presentation. Figure 2.1 gives an example of a 4-arcpresentation.It should be noted that an arc presentation of a link is itself a link, and liesin S3.Proposition 2.1.1 Every arc presentation is a link, and every link has an arcpresentation.Proof. Let L be an arc presentation. Choose an arc aj1 , say. Follow aj1 to oneof its end points, pm1 . By hypothesis, pm1 is incident to exactly one other arc,aj2 , say. Continue by following aj2 to its conclusion, at pm2 , say, and so on. Sincethere are �nitely many arcs, then one must eventually return to aj1. Since thereare exactly two points incident to each arc, it is impossible to return to any ofthe aji; i � 2, before we return to aj1. Hence the arcs traversed in this path forma loop, which is a one-component link (i.e. a knot).16



If there are arcs which were not reached in this loop then choose one of themand repeat the process. If the process needs to be repeated jLj times then thearc presentation is a jLj-component link.To show that every link has an arc presentation it su�ces to give an algorithmto generate one. Methods for this are described in [Cr, C-N]. For example, given alink L � S3, let �(L) = D � S2 be a link diagram. Then D decomposes S2 into anumber of disjoint regions fRig, whose boundaries are sections of D, and whosevertices are double points of D. Let � be a simple closed curve, superposedonto D, such that � has non-empty intersection with each Ri, intersecting Dtransversely, away from the double points of D, at every point of D \ �. Thenone can use a colouring argument (described in detail in the proof of proposition2.5.2) to show that � forms a binding circle for D. The inverse image ��1(D[�)(where the intersection points D \ � are preserved) gives an arc-presentation forL, with binding circle ��1(�). 2Birman and Menasco observed that the arc presentation of a link is centralto the study of certain types of satellite as closed braids. They introduce it intotheir work in [B-M7], and suggest that it is a previously unnoticed manifestationof links. In fact, in 1897, Brunn [Br] used this presentation of a link to establishthat any link has a diagram with a single singular point of high multiplicity.32.2 The arc index, �(L)From this presentation of a link comes a link invariant: the arc index �(L) of alink L is the least number of arcs over all arc presentations of L.There is an easy way to translate the arc presentation to a special diagram-matic form for a link L, which has a number of applications. The diagram iscalled a grid diagram4, because it is constructed on an �� � grid, and made upof parts of loops and lines from the arc presentation. Its construction is describedbelow.Given an arc-presentation L, the �rst step is to isotop the link L away from Aslightly. Choose a solid torus neighbourhoodN(A) ofA such that each componentof L\N(A) is a small arc �j containing exactly one point of L\A. So L\N(A) =f�j : 1 � j � �g. Apply an isotopy of L by projecting the �j radially onto @N(A):denote the image of this projection by �j 0. There are two ways to do this; theyare demonstrated in �gure 2.2. The �j 0 are referred to as semi-loops.3I am grateful to J�ozef Przytycki for introducing me to this work.4In [Cr], Cromwell calls this a loops & lines diagram.17



A A A

A A A
β’ β’βj j jFigure 2.2: Isotopy �j ! � 0j � @N(A)

0 1 2 3 0 1 2 3Figure 2.3: Closed diagram and braided diagram of Hopf link from the griddiagram (compare with �gure 2.1)Now another isotopy takes each of the (slightly trimmed) arcs onto the bound-ary @N(A): there will be a number of double point singularities. If we now cutalong the length of @N(A), we can lay the hollow tube out on a plane, hencegiving a 2-dimensional presentation for the 3-dimensional embedding of L. Thesemi-loops appear as horizontal lines on the grid, and the (trimmed) arcs ap-pear as vertical lines. The double point singularities on @N(A) are resolved ascrossings in the usual way, with one strand under-crossing the other. In fact, topreserve the link we must have the vertical line over-crossing the horizontal lineat each double point.The choice of semi-loops gives us di�erent possible diagrams for L. For ex-ample, it is always possible to choose them to give an ordinary knot diagram ofL, or a braid presentation of L. See �gure 2.3.18



Remark. Recall theorem 1.3.1 (Alexander's theorem), which states that everylink can be represented as a closed braid. The existence of a braided format foreach grid diagram really provides us with an alternative proof of theorem 1.3.1,since it gives us an alternative algorithm for constructing a braid representativefor a given link L. The proof works as follows: given L, we know that L has an arcpresentation (proposition 2.1.1). Then it is enough to take the grid diagramG(L)corresponding to that arc presentation, with one of the two choices of semi-loopswhich present G(L) as a braid.We will also make use of the following notation. The set of links of arc index� is denoted L(�). The set of knots of arc index � is denoted K(�). ThusK(�) � L(�). The set of (� � �) grid diagrams of links is denoted DL(�); theset of (� � �) grid diagrams of knots is denoted DK(�). (It is true that DL(�)contains diagrams of every L 2 L(i), for all i � �. The corresponding fact is trueregarding DK(�). )Finally in this section, let M� be the set of � � � matrices with exactlyone 1 and one �1 in each row and column. It is sometimes helpful to view the(oriented) grid diagram G by a matrix, M(G) 2 M�. We de�ne M(G) byMij(G) = 8><>: 1 if arc ai begins at point pj;�1 if arc ai ends at point pj;0 otherwise:This gives a bijection between the setsM� and DL(�). The example in �gure2.4 should clarify the de�nition.2.3 Equivalence of arc diagramsA given link has in�nitely many arc-presentations; even if we restrict to onlythose diagrams which use the minimum number of arcs, it is not clear whetherthere will be a unique presentation. An example is the (2; 4)-torus link, cited in[Cr] and reproduced in �gure 2.5.When considering equivalence of link diagrams, we refer to the Reidemeistermoves. Similarly, equivalence of closed braids is formulated by the Markov moves.In each case, two representations of a link are related by applying a �nite sequenceof combinatorial moves. Cromwell constructed a similar solution for the problemof equivalent arc-diagrams (i.e. arc-diagrams of the same link). First we need anumber of de�nitions. 19



0 1 2 3 4 50BBBBBBBB@ 1 0 0 0 �1 00 0 1 0 0 �10 1 0 �1 0 00 0 �1 0 1 0�1 0 0 1 0 00 �1 0 0 0 1
1CCCCCCCCAFigure 2.4: One possible G and M(G) for the �gure-eight knot
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0 1 2 3 5

0 1 2 3 4Figure 2.5: Two arc-diagrams of T (2; 4)
21



Let L be a link, and A be a binding circle. Say that two arcs interleave ifthe endpoints of one alternate with the endpoints of the other. Similarly, twopoints of L \ A interleave if the pages which contain the arcs incident to one ofthe points alternate with the pages which contain the arcs incident to the other.Figure 2.6 should clarify the de�nition.
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4

Non-interleaved points

Non-interleaved arcs

Interleaved points

Interleaved arcs

Figure 2.6: Interleaving and non-interleaving arcs and pointsTwo points of L \ A are adjacent if there is a section of A which is boundedby the two points, and whose interior contains no intersection with L. Two arcs,contained in the pages H�1; H�2 are adjacent if there is an interval I � S1,bounded by �1 and �2, such that for all � 2 int(I), (H� � A) \ L = ;.Two points of L \ A are consecutive if they are at opposite ends of the samearc. Two arcs of L are consecutive if they are incident to the same point.We are now in a position to describe the four moves on arc-diagrams. Theyare also illustrated in �gure 2.7 and described as follows.
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Figure 2.7: Moves I{IV relating equivalent arc-diagrams
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I. If two adjacent points of L\A do not interleave then they may be interchanged.II. If two adjacent arcs do not interleave then they may be interchanged.III. If two consecutive points of L \ A are also adjacent then the interveningarc can be removed and the points amalgamated. Conversely, an arc canbe inserted between two consecutive arcs by separating the two arcs (thuscreating a new point of L \ A) and joining the split point by a new arc.IV. If two consecutive arcs are also adjacent then they can be amalgamated,removing the intervening point of L \ A. Conversely, an arc can be splitinto two adjacent arcs by the addition of a new intersection point of the arcwith A.Remark. Moves III and IV can both be done in two distinct ways, one of whichpreserves framing. In fact, move IV is redundant: it can be obtained by repeatedapplication of moves I and II until move III can be applied.Remark. There is an easy way to see that these four moves are in fact two dualpairs, by considering the matrix M(G) of the grid diagram G. The columns areindexed by arcs, and the rows by points of L \ A. Then move I says that twoadjacent rows can be interchanged if their non-zero entries are separated. MoveII is the same statement applied to adjacent columns. Move III says that a 1and a �1 in the same column and adjacent rows can be inserted or deleted byexpanding or contracting the matrix. Move IV is the same statement applied toa 1, �1 pair in the same row and adjacent columns.Theorem 2.3.1 [Cr] Any two arc-diagrams of a link L can be related by a �nitesequence of moves I, II and III.Proof. The Markov moves can be described in terms of moves I, II and III; thenMarkov's theorem can be applied. See [Cr]. 2We continue with some observations on arc index of torus links.Proposition 2.3.2 Let L be the torus link T (p; q). We have �(L) � p+ q.Proof. A closed braid presentation for L is L = �̂, where � = (�p�1 : : : �1)q 2Bp. The braid � can be generated by a grid diagram on p + q arcs; the �rstq generate the crossings, and the remaining p provide a vertical `shift' of thebraidstrings, necessary in the grid diagram construction. The top picture in�gure 2.5 illustrates this in the case p = 2; q = 4. 224



Theorem 2.3.3 Let L be the torus link T (2; q); q � 2. We have �(L) � 2 + q.The proof of this is deferred until section 4.6. However, we can deduce thefollowing.Corollary 2.3.4 Let L be the torus link T (2; q); q � 2. We have �(L) = 2 + q.Proof. Obvious from the statements of proposition 2.3.2 and theorem 2.3.3. 2There is a natural comparison here to the stabilization index5, as discussedin [B-M5]. The question arises when relating two arc-presentations by moves I,II, III: can we relate them without increasing the arc number? The followingtheorem answers this question in the case of some torus links.Theorem 2.3.5 Let L be the torus link T (2; q), q � 4. Then there exist arc-diagrams G0(L); Gs(L) of L with �(L) arcs, such that any sequence relating thetwo diagrams by moves I, II, III must contain at least one diagram with �(L)+1arcs.Proof. By corollary 2.3.4, �(L) = 2 + q. The diagrams can be constructed bychoosing di�erent binding circles as in the example in �gure 2.8. The bindingcircle connects the `beads' of the diagram in order in one case, and not in theother. The grid diagrams G0, Gs are easily deduced from these. Notice that, bythe de�nition of the moves, it is impossible to apply either move I or move II toG0. An arc-reducing type III move is also impossible, by de�nition of arc index,since G0 has only �(L) arcs. 25This refers to two closed braid presentations �̂; �̂0 of a link L, where �̂0 is a minimal closedbraid presentation of L (i.e. on b(L) braidstrings) and �̂ is a closed braid presentation onn � b(L) braidstrings. The closed braids �̂ and �̂0 are related by the sequence�̂ = �̂0 ! �̂1 ! : : :! �̂s = �̂0;where each �̂i is obtained from �̂i�1 by a Markov move. It may be necessary to increase thenumber of braid strings during the sequence. The stabilization index s(L; n) is the minimum,over all possible sequences, of the number of braid strings added in the sequence. In [B-M5] itis shown that for all unlinks Ur, for n > r, we have s(Ur; n) = 1.
25
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Figure 2.8: Di�erent binding circles for the link L = T (2; 5)2.4 Behaviour of �(L) under knot operationsThe following results describe the behaviour of arc index under the operations ofdistant union and connect sum.Theorem 2.4.1 Let L1; L2 be links. Then�(L1 t L2) = �(L1) + �(L2);�(L1#L2) = �(L1) + �(L2)� 2:These results are the conclusions of the following set of propositions.Proposition 2.4.2 Let L = L1 t L2. Then �(L) � �(L1) + �(L2).Proof. Construct an arc presentation for L by juxtaposing the presentations ofL1 and L2 on the same axis A, as in �gure 2.9.This is an (�(L1) + �(L2))-arc presentation for L, and by de�nition of arcindex, �(L) is bounded above by �(L1) + �(L2). 226



L1 L2 L1 t L2Figure 2.9: Arc presentation of L1 t L2Proposition 2.4.3 Let L = L1 t L2. Then �(L) � �(L1) + �(L2).Proof. We have an arc presentation of L on �(L) arcs. By a theorem of Birmanand Menasco [B-M4], there exists a 2-sphere S which separates S3 into two 3-balls B1; B2, such that Li = L\Bi. We reconstruct the arc presentation of L1 bytaking ((L [ A) \ B1)[(A \B2). By de�nition of arc index, this is a presentationof L1 on at least �(L1) arcs. Reconstruct L2 in a similar way. Therefore the totalnumber of arcs in the presentation is at least �(L1) + �(L2). 2Proposition 2.4.4 Let L = L1#L2. Then �(L) � �(L1) + �(L2)� 2.Proof. Start with arc presentations for L1 and L2. With each presentation,swivel all the arcs but one, so that they lie in a half-space; delete the remainingarc. Then a presentation of L is obtained by identifying the axes of the twopresentations, so that the loose ends of each link are identi�ed and the otherpoints of (L1 [ L2) \ A remain distinct. See �gure 2.10 for illustration.The number of arcs of this presentation of L is(�(L1)� 1) + (�(L2)� 1) = �(L1) + �(L2)� 2;which is an upper bound for �(L). 2Proposition 2.4.5 [Cr] Let L = L1#L2. Then �(L) � �(L1) + �(L2)� 2.27



L1 L2 L1#L2Figure 2.10: Constructing an arc presentation of L1#L2Proof. The proof is adapted from a result of [B-M4] (part of theorem 3.1.1), andthe reader is referred to that paper and to [Cr] for details. 22.5 Relating �(L) to other link invariantsIt should be noted that there are �nitely many links L with given arc index �(L).In this sense, arc index behaves like crossing index, but not like braid index.The main results of this section concern the relationship between arc index�(L) and crossing index c(L) of a link L: these are covered in subsection 2.5.II.We also include observations on how arc index relates to braid index (subsection2.5.I) and Homy polynomial (subsection 2.5.III).2.5.I Braid indexThe `braided' grid diagram (�gure 2.3) leads us to the following result.Proposition 2.5.1 Let L be a link, �(L) its arc index and b(L) its braid index.Then b(L) � 12�(L).Proof. Let G(L) be a grid diagram of L with � = �(L) arcs. There are preciselytwo choices of semi-loops which make G(L) into a braid: they have b1 and b2braidstrings respectively. Now b1 + b2 = �, so necessarily one of the bi (b1, say)is bounded above by 12�. Then we have b(L) � b1 � 12�(L), as required. 228



2.5.II Crossing indexIn what follows, a twistbox is a sequence of halftwists contained in a rectangularbox, as in �gure 2.11. Recall also the local operation on link diagrams known asa ype, which was introduced by Tait [Ta] and is illustrated in �gure 2.12.
Figure 2.11: A twistbox with 5 halftwists

Figure 2.12: Tait's ype moveProposition 2.5.2 [C-N] Let L be a link, �(L) its arc index and c(L) its (geo-metric) crossing index. Suppose that L has a diagram D(L) which is drawn withminimal crossing number c(L). Suppose further that D can be decomposed into adiagram with n twistboxes, and that this number cannot be reduced by applicationof ypes. Then the inequality �(L) � 2 + c(L) holds in the following cases:(i) n � 8;(ii) n � 9 and D(L) cannot be decomposed into the 4-tangle or 6-tangle structuresof �gure 2.13.Proof. In order to establish this result we will need some graph theory, and sowe begin by recapping some de�nitions, which also provide our notation.All our graphs will be planar graphs embedded in R2. Let V be the set ofvertices of a graph G. An edge of G is a simple curve which joins a pair of vertices[u; v]. A loop is an edge [v; v] which has the same vertex at both ends. An edgee such that G� e is disconnected is called an isthmus. If U � V then span(U) isthe subgraph of G whose edges connect vertices in U :span(U) = f[ui; uj] : for all pairs ui; uj in Ug:29
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Figure 2.13: 4- and 6-tangle structuresIf U � V then G� U denotes the subgraph of G spanned by V � U . Say G� Uis obtained by deleting the vertices in U . The graph is said to be r-connected ifr < jV j and at least r vertices must be deleted from G to disconnect it. A cycle isa simple closed curve which follows the edges of G. An n-cycle contains n edges.A Hamiltonian circuit of G is a simple closed curve which follows the edges ofthe graph and passes through every vertex in V exactly once.Let D be a diagram of a prime link L. A sequence of half-twists in thediagram can be replaced by a rectangular twist-box as shown in �gure 2.14(b).The diagram now consists of a collection of twist-boxes connected by a set ofdisjoint simple arcs. We form a graph G from this diagram as follows. If a twist-box contains only one crossing we replace it by a 4-valent vertex, otherwise wereplace the twist-box by the graph shown in �gure 2.14(c). Thus all vertices inG are 3-valent or 4-valent. The edges of G can be divided into two sets: D-typeedges which contain part of the original diagram, and T-type edges which arecontained in a twist-box.To describe the embedding of L in an open book it su�ces to indicate thepath of the binding circle in the diagram. In order to �nd such a path we take aHamiltonian circuit of the dual graph of G and then deform it so that it toucheseach twist-box once. The existence of such circuits is discussed later in the proof.Let G� denote the topological dual graph of G and let � be a Hamiltoniancircuit of G�. This produces a simple closed curve which passes through everyregion of G exactly once. We convert � into the desired binding circle as follows:if � crosses a T-type edge of G then it passes through a twist-box. The circle� and the m half-twists represented by the box can be arranged as shown in�gures 2.15(a) and (b). Any twist-box that does not meet � is treated as shown30



(b)(a) (c)Figure 2.14: Transforming a twistbox of D into 3-valent vertices of G
A

A

(a) (b) (c) (d)Figure 2.15: Placing the binding circle A on Din �gures 2.15(c) and (d). This is always possible since � passes through everyregion of G and hence can be deformed to lie along one side of the twist-box.The proof continues with a sequence of lemmas.Lemma 2.5.3 The loop � just constructed represents a binding circle for L.Proof. We can isotop D [ � in the plane so, without loss of generality, we canassume that � is a circle. In particular we can take � to be a straight line togetherwith a point f1g. The link L can be embedded inR3 so that there is a projection� which carries L onto D. The faces of the 4-valent graph �(L) are called theregions of D. Notice that all the regions of D have contact with �: either � passesthrough the region or � has point-contact with its boundary.Let P = fp1; : : : ; prg be the set of points where � meets D. The points ��1(pi)divide L into a set of arcs A = fa1; : : : ; arg each of which starts and ends at pointsin ��1(P ) and contains no such points in its interior. Each of these arcs will beembedded in a half-plane. To each arc ai in L there is a corresponding segment�(ai) of the diagram D which we will also refer to as an arc.31



We will colour the arcs, and the order in which they are coloured will deter-mine the position of the half-planes in which they are embedded. The plane isseparated by � into two regions which we will refer to as inside and outside. Wewill colour the arcs in D by taking each region separately. We start with theinside.The colouring process proceeds under the following rules: an uncoloured arccan be coloured if(a) any arc crossing over it is coloured; and(b) any arc crossing under it is uncoloured.The �rst arc to be coloured is labelled 1. Successive arcs are numbered in theorder they are coloured. Repeatedly apply this colouring rule until it cannot beapplied any more. The process stops when all the inside arcs have been colouredor when the conditions are not satis�ed.An arc cannot be coloured if either(c) some arc crossing over it is uncoloured; or(d) some arc crossing under it is coloured.Because of the way the colouring is performed, the second case is impossible.Therefore, if the colouring is un�nished but cannot continue every uncoloured arcmust fail on condition (c). Consequently, every uncoloured arc must cross underan uncoloured arc. This implies that some subset of arcs in D form a sequencein which each passes under the next making a pattern like that shown in �gure2.16. One could compare the loop formed by these arcs to the `ever-descending'staircase in a sketch of M.C. Escher. This sketch has been reproduced in �gure2.17.We now concentrate on the polygonal region formed from this `ever-descending'set of arcs. Its corners are at crossings in D and its sides lie in arcs. There areregions of D which lie on both sides of the polygon and, by construction, � hascontact with every region of D. However, � does not meet the sides of the poly-gon so it cannot touch regions on both sides. This contradiction shows that thecolouring process stops only when all the arcs on the inside of � are coloured.The arcs on the outside of � are coloured using the same process except thatthe �rst arc to be coloured is labelled r, the next r� 1, and so on until every archas been labelled. 32



Figure 2.16: A region bounded by an `ever-descending' set of arcs

Figure 2.17: Reproduction of M.C. Escher's sketch, Descending and Ascending
33



If we now arrange r half-planes around � at angles of (360=r)� and label themfrom 1 to r in order, the arc labelled i can be embedded in the correspondinghalf-plane. 2Lemma 2.5.4 The number of half-planes used in the construction is 2 plus thenumber of crossings in D.Proof. Suppose that D required n tangle-boxes of which r contain a single cross-ing. Then G has (2n � r) vertices, 2n D-type edges and (n � r) T-type edges.From Euler's formula we deduce that it has n + 2 regions (including the un-bounded one). A Hamiltonian circuit of G� passes through n + 2 vertices andtherefore contains n+ 2 edges. Thus � crosses n+ 2 edges of G. When a T-typeedge is replaced by m half-twists as in �gures 2.15(a){(b), a single intersectionof the axis and the diagram is increased to m intersections. (Recall that m > 1for the existence of a T-type edge.) Running � alongside a twist-box containingm twists as in �gures 2.15(c){(d) increases the number of intersections of � withD by m� 1. Therefore the total number of intersections, and hence the numberof half-planes required, isn + 2 + nXi=1(mi � 1) = 2 + nXi=1mi= 2 + the number of crossings in D: 2We must now answer the question, when is the construction applicable? Theexistence of Hamiltonian circuits in planar graphs was studied by Barnette andJukovi�c, and by Tutte. We make use of the following results.Lemma 2.5.5 [Tu] A 4-connected planar graph has a Hamiltonian circuit. 2Lemma 2.5.6 [B-J] A 3-connected planar graph with at most 10 vertices has aHamiltonian circuit. 2We now investigate how the connectedness of G� is related to the diagram D.1. Suppose that G� is 1-connected. This means that there is a vertex v 2 Vsuch that G��v is disconnected. Every region of G� is bounded by three orfour edges, including the in�nite region. This means that G� has one of the34



forms illustrated in �gures 2.18(a){(f). In the �rst �ve cases G� contains aloop c and the corresponding edge e in G is an isthmus. If e were a D-typeedge then the diagram D would cross the closed curve c once but this isnot possible because any loop meeting D transversely must cross it an evennumber of times. So e must be a T-type edge giving D the form shownin �gure 2.18(g). The twist-box is clearly redundant and the diagram doesnot have minimal crossing number. When G� has the form shown in �gure2.18(f) the diagram D again has the form of �gure 2.18(g); the in�niteregion of G� corresponds to a (redundant) twist-box in D, containing asingle crossing.
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Figure 2.18: 1-connected graphs G� with 3- or 4-sided in�nite region2. Suppose that G� is 2-connected. Let u, v be two vertices such that G� �fu; vg is disconnected, and let Ui be the sets of vertices of the resultingcomponents. Let Ai be the subgraph of G� spanned by Ui, u and v de�nedas Ai = span(Ui [ u) [ span(Ui [ v):Note that Ai and Aj have no edges in common when i 6= j, and that edges[u; v] do not belong to any Ai.Let Fi denote the interior of the in�nite face of the graph Ai. We say thatAi and Aj are adjacent if one of the two regions of Fi \Fj does not containa vertex of G�.Now consider a pair of adjacent subgraphs Ai, Aj and let R be the regionbetween them. Suppose for the moment that all the twist-boxes contain at35
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Figure 2.19: 2-connected graph G� and corresponding link diagramleast two crossings. This means that all faces of G� are triangles. BecauseR does not contain any vertices of G�, R must have the form shown in�gure 2.19(a). That is, R must be composed of two triangles bounded byan edge [u; v] and two edges from each of Ai and Aj. Therefore, each pairof adjacent subgraphs are separated by an edge [u; v]. Let c be a 2-cyclecomposed of two of these edges.The original graph Gmeets c in two points. Again, a parity argument showsthat the 2-cycle crosses either two D-type edges or two T-type edges. In the�rst case, the diagram is decomposed into a connected sum of two factors.Since L is prime, one of the factors must be trivial but this contradicts theassumption that the number of crossings in D is minimal. In the secondcase the diagram D has the form shown in �gure 2.19(b) and the numberof twist-boxes can be reduced by a sequence of ypes.We now consider what happens when some twist-boxes in D may containonly one crossing. In this case G� can contain four-sided faces and it maybe that R has empty intersection with G�. This is equivalent to the pre-vious case in which the edge [u; v] is dual to a T-type edge except thatthe corresponding twist-box contains a single crossing; again the diagramadmits a ype that reduces the number of twist-boxes.3. Suppose that G� is 3-connected. Let u, v and w be three vertices suchthat G��fu; v; wg is disconnected, and let Ui be the sets of vertices of the36



resulting components. Each Ui is joined by an edge to u, v and w, and viceversa, otherwise G� would be 2-connected. Therefore the graph obtainedfrom G� by shrinking each Ui to a vertex contains the complete bipartitegraph K3;s. Since G� is planar, and K3;s is non-planar for s � 3, thenthere must be only two components U1 and U2. For i = 1; 2, let Ai be thesubgraph of G� de�ned asAi = span(Ui [ u) [ span(Ui [ v) [ span(Ui [ w):Again A1 and A2 have no edges in common, and do not contain edges [u; v],[v; w] or [w; u].Let Fi denote the interior of the in�nite face of the graph Ai. Now F1 \ F2consists of three regions none of which contain any vertices of G� (otherwiseG� would be 2-connected). As in the case of 2-connected graphs, each ofthese regions has an empty intersection with G� or is composed of twotriangles. If all the twist-boxes contain at least two crossings then theremust be edges [u; v], [v; w] and [w; u] which form a 3-cycle in G�. Thethree edges in G crossed by this 3-cycle must be all T-type edges, or beone T-type and two D-type. The two possibilities for D are shown in �gure2.13. If some twist-boxes contain a single crossing it is possible that some ofthe edges in the 3-cycle may be missing. As in the 2-connected case, thesemissing edges are equivalent to T-type edges except that the correspondingtwist-box contains a single crossing.We are now in a position to complete the proof. If n � 8 then the dualgraph has at most 10 vertices. The hypotheses on the diagram mean that itis 3-connected and hence a Hamiltonian circuit must exist [B-J]. When n > 8we must exclude the diagrams which give rise to 3-connected graphs. These areprecisely those in �gure 2.13. 2Corollary 2.5.7 [C-N] Let L = L1#L2# : : :#Lr be a connected sum of primealternating links L1; L2; : : : ; Lr, each of which satis�es the inequality �(Li) �2 + c(Li). Then �(L) � 2 + c(L).Remark. As an example, corollary 2.5.7 applies when each of the Li satis�esthe hypotheses of proposition 2.5.2.Proof of corollary 2.5.7. For alternating links, c(L1#L2) = c(L1)+c(L2) [Kau2,Mu, Th3]. Also, from theorem 2.4.1, we have that �(L1#L2) = �(L1)+�(L2)�2.37



Hence �(L)� 2 = rXi=1 (�(Li)� 2)� rXi=1 c(Li)= c(L): 2Corollary 2.5.8 [C-N] (i) Let K be a prime knot with c(K) � 10. Then�(K) � 2 + c(K).(ii) Let L be a prime link with c(L) � 9. Then �(L) � 2 + c(L).Proof. The diagrams of these knots and links in [Ro] satisfy the hypotheses ofproposition 2.5.2. 2Corollary 2.5.9 [C-N] If L is a 2-bridge link then �(L) � 2 + c(L).Proof. The curve shown in �gure 2.20 can be made into a binding circle. 2
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Figure 2.20: Schematic diagram of a 2-bridge link, with binding circleThe above discussion provides us with an upper bound for �(L) from c(L),for `most' links L. In section 4.5 we conjecture that this inequality holds for allknots K with equality if, and only if, K is an alternating knot. In the meantimewe go on to explore a lower bound.Proposition 2.5.10 [C-N] Let L be a link; let �(L) be its arc index and c(L)be its minimal crossing number. Then�(L) � 8<: 1 +q1 + 4c(L); �(L) even1 +q4c(L); �(L) odd:38



Proof. Suppose that we have a minimal arc-presentation of L. Construct a griddiagram from this presentation.We now consider how many times each of the horizontal lines can meet avertical line. That is, how many arcs (vertical lines) cross over each loop. Thetopmost loop cannot cross any arcs but two arcs terminate here and these cancross other loops. The next loop down can be crossed by at most two arcs andis the source of at most two more. Continuing in this way we obtain the patternshown in �gure 2.21: the numbers by each loop indicate the maximum number ofarcs which the loop can cross. The total is clearly a function of triangle numbers.
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0Figure 2.21: Counting the number of possible crossings in a grid diagramThe grid diagram is now converted into a conventional link diagram. To dothis notice that each loop is divided naturally into two parts by the endpointsof two arcs. Choosing one part of each loop produces a diagram of L. We canchoose the parts which minimise the number of crossings. So if a loop meets narcs we can ensure that the loop contributes at most n2 crossings to the diagram.Let �(n) = 12n(n + 1) denote the nth triangle number. If �(L) is even,let m = 12(�(L) � 2). Then we see that c(L) can be at most 2�(m). If, onthe other hand, �(L) is odd then let m = 12(�(L) � 1): in this case we obtainc(L) � �(m) + �(m � 1). Substituting for m in each case gives the desiredinequalities. 239



Remark. This lower bound is achieved for the non-trivial (p; p+1)-torus knots.For suppose we have �(L) � 2 + q4c(L), where L = T (p; p + 1), and hencec(L) = p2 � 1 and �(L) � 2jpj + 1. Then we can deduce 2jpj � 1 � 2pp2 � 1,and so after some computation, jpj � 54 . Hence jpj � 1, and L must be trivial.2.5.III Homy polynomialFinally in this section, we make an observation on possible pairs of knots withidentical Homy polynomial. We employ the following result of Kanenobu.Theorem 2.5.11 [Kan] There exist in�nitely many examples of in�nitely manyknots in S3 (which are hyperbolic, �bred, ribbon, of genus 2 and 3-bridge), with thesame Homy polynomial and, therefore, the same Jones polynomial, but distinctAlexander module structures.Proof. The reader is referred to [Kan]. 2Corollary 2.5.12 There exist in�nitely many pairs of knots with the same Hom-y polynomial and distinct arc indices.Proof. There exist only �nitely many knots of a given arc index; therefore anin�nite set of knots with a given Homy polynomial cannot have a constant arcindex. 2In chapter 5, we exhibit a pair of knots K1; K2 with PK1 = PK2 and which canbe distinguished by arc index; we also show that a famous pair of mutant knots,which necessarily have identical Homy polynomial, also have identical arc index.The questions should then be posed of whether arc index is related to Alexandermodule structure, and whether there exist any pairs of mutant links with distinctarc index. As Kanenobu's result suggests, examination of the Alexander modulestructure may be a useful starting point in attacking this problem.There is also a question of whether any similar result relating to the Kau�manpolynomial is realistic.
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Chapter 3Satellite links as closed braids
3.1 MotivationIn their series of papers [B-M1, : : :, B-M7], Birman and Menasco study linksthrough the medium of closed braids. In particular in [B-M4], they consider thee�ects on braid index of the geometric operations of distant union and connectsum. They de�ne a split braid and a composite braid to be one which is `obviously'split or composite. Figure 3.1 illustrates what is meant.
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Figure 3.1: A split braid and a composite braidThen Birman and Menasco's results from [B-M4] are summarized as follows.
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Theorem 3.1.1 [B-M4] Let L be a split (resp. composite) link, and let �̂ bean arbitrary closed n-braid representative of L. Then there exists a split (resp.composite) n-braid �̂ 0 which represents L and a �nite sequence of closed n-braids�̂ = �̂0 ! �̂1 ! : : :! �̂s = �̂ 0;such that each �̂i+1 is obtained from �̂i by either isotopy in the complement of theaxis or an exchange move (�gure 3.2). 2
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Figure 3.2: Exchange moveCorollary 3.1.2 [B-M4] Braid index is additive (resp. additive minus one)under the operation of distant union (resp. connected sum). 2Central to proving these results is an operation on closed braids which theycall the exchange move. This is demonstrated in �gure 3.2. It should be notedthat the exchange move preserves the link type, and the number of braidstrings ofthe braid presentation, but generally alters the conjugacy class of the presentedbraid in the braid group.It is natural then to explore the possibility of a similar result for satellite links.What follows is a discussion of this.3.2 Braid index of satellites: types 0 and 1In [B-M7], Birman and Menasco attempted to �nd a formula for braid index of ageneral satellite L, from geometric features of the pattern and companion. Theirapproach, comparable with their work of [B-M4], is to examine the position of anessential torus T = @V which lives in S3 � L. Before stating this result we �rst42



prove a lesser result, based on the same idea, which was proved independently of[B-M7].It turns out that an important property of the pattern is the existence of, orlack of, a meridional disc D of V whose intersections with the oriented satelliteare all identically oriented. If such a disc D exists then the pattern P �ts into oneof two types (illustrated in �gure 3.3), according as to whether or not it windsmonotonically around the longitude of VP .
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Figure 3.3: Standard patterns, type 0 and type 1Type 0 has this `longitudinal braiding' property, type 1 does not. The fol-lowing theorem is a discussion of the position of the essential torus T = @VC inS3 � L when L is a satellite with a type 0 or type 1 pattern.Theorem 3.2.1 Let L be an oriented satellite link, and �̂ be an n-braid pre-sentation of L (relative to braid axis A). Suppose that T = @V is an essentialnon-peripheral torus in S3 � �̂, such that �̂ is contained in the solid torus V .Suppose also that there exists a meridional disc D of V such that each intersec-tion point of �̂ \ D has the same sign, i.e. �̂ intersects D transversely alwaysfrom the same side of D. Then there exist(i) a closed n-braid �̂� which represents L;(ii) a �nite sequence of closed n-braids�̂ = �̂0 ! �̂1 ! : : :! �̂r = �̂�such that each �̂i is obtained from �̂i�1 by isotopy in S3 � A, or by anexchange move; and(iii) an essential non-peripheral torus T � � S3 � �̂� such that jT � \ Aj = 0 or2. Further, the pattern of L is a type 0 or type 1 pattern, respectively.43



Proof. The proof is adapted from the proof of theorem 3.1.1, the main resultof [B-M4]. The four lemmas that form part of this proof are analogous with thelemmas of the [B-M4] proof.We have a satellite link L, which is the closure of a braid �, braided withrespect to a braid axis A in S3. We are also given an essential torus T whichrealizes the satellite construction: T bounds a solid torus V on one side, withL completely contained in the interior of V . There is an orientation on L; weassign an orientation to A so that L is oriented in the positive sense about A. Wealso assign an orientation to T , so that at each point of T there is a well-de�nedoutward normal to T . In the most general case T \A consists of many points; theaim, as in [B-M4], is to adjust L, so reducing the number of intersection pointsof T \ A, until the pattern is recognizable as one of our standard forms.We use the standard open-book �bration H of S3 � A, with �bres fHt : 0 �t < 2�g. This induces a (possibly singular) foliation on T : its leaves are thecomponents of T \Ht; 0 � t < 2�. Standard position arguments allow T to beplaced in a nice position relative to H. Thus we may assume:(1) The intersections of A with T are �nite in number, and transverse.(2) There is a solid torus neighbourhood N(A) of A in S3 � L such that eachcomponent of T \N(A) is a disc.(3) The foliation of each component of T \N(A) is the standard radial foliation.(4) All but �nitely many of the �bres Ht meet the torus T transversely, andthose which do not (the singular �bres) are tangent to T at exactly onepoint in the interior of Ht.(5) The tangencies mentioned in (4) are local maxima or minima or saddlepoints.A singular leaf in the foliation is one which contains a singular point; theother leaves are non-singular. The following observations can be made from (4)and (5):(i) Each non-singular leaf is either an arc with its endpoints on A = @Ht, or asimple closed curve (hereafter abbreviated to SCC).(ii) A singular �bre H� contains exactly one singularity.(iii) Each singularity p� is either a centre or a saddle.44



As in [B-M1, B-M4], given a surface F , a complexity function on the pair(F;H) is de�ned as follows. Let jF \ Aj be the number of point intersections ofF with A. Let jH �F j be the number of singular points in the foliation of F . Thecomplexity c(F;H) is the pair (jF \ Aj; jH � F j), with a standard lexicographicordering on the function. We follow [B-M4] by saying that (F;H) is equivalentto (F 0; H) if there is an isotopy taking F to F 0 which takes (F \ Ht; F \ @Ht)to (F 0 \Ht; F 0 \ @Ht), for each t 2 [0; 2�]. This de�nition of equivalence ensuresthat each representative of an equivalence class has the same complexity.A non-singular leaf (a component of T \Ht) naturally splits the �bre Ht intotwo components � and �0. At least one of these components �; �0 is a 2-disc.If � (or �0) is a 2-disc component of Ht, and also has empty intersection withL, then we say that the leaf T \Ht is inessential; otherwise we say that T \Ht isessential. See �gures 3.4 and 3.5. This de�nition is the �rst real departure from[B-M4].
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Ht tFigure 3.4: Possible occurrences of � and �0 on HtNow we investigate the presence and nature of SCCs in T \H. Say that thepair T \H has SCCs if there exists a non-singular �bre Ht such that a componentof T \Ht is a SCC.Lemma 3.2.2 Suppose that (T;H) satis�es the general position assumptions(1){(5) and has inessential SCCs. Then there exists a torus T 0 such that (T 0; H)also satis�es (1){(5) and has no inessential SCCs; moreover, c(T 0; H) < c(T;H).Proof. The proof of this lemma is exactly the same as the proof given in [B-M4],and applies to a disc which is contained in the surface.Suppose there is an inessential SCC (t) in T \ Ht, for some non-singularHt. Follow (t) as it evolves in the �bration; eventually we arrive at some closedcurve (�) which contains a singularity in the foliation. The curve (�) lies onthe �bre H�, and bounds a disc � in H�. The loop (�) is inessential, since (t)is inessential and L is braided around A = @Ht.45
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Figure 3.5: Fig. 4 of [B-M4]If (t) winds meridionally around T then (t) is necessarily essential, since Tis an essential torus. If (t) winds longitudinally around T then Ht must splitV longitudinally into two tori V1 and V2; since L is braided around A then Lintersects Ht always from the same side, so any component of L is completelycontained either in V1 or V2. The link L is hence a distant union of the sublinksL1 = L \ V1 and L2 = L \ V2. By corollary 3.1.2 (braid index under distantunion) we consider each of these sublinks separately. Therefore, we can assumethat (t) is null-homotopic on T , and hence @� is null-homotopic on T .If (int�) \ T = ; then we can surger T along �, giving an essential torus T 0and a 2-sphere S 0. The sphere S 0 splits S3 into two 3-balls B1; B2: if T 0 � B1then L � B1 so that L \ B2 = ;. Therefore, we can remove S 0 without loss.Moreover, the complexity has not been increased. If (int�)\ T 6= ; then we �ndan innermost subdisc � of � whose boundary is a component of T \H� and wesurger T along �. Ultimately we will acquire an essential torus T � whose inducedfoliation has no inessential closed curves, and c(T �; H) < c(T;H). 2By lemma 3.2.2, each component of the intersection of a non-singular Ht withT is either an essential SCC or a simple arc with both ends on A = @Ht. In thelatter case, T \Ht bounds exactly two discs �; �0 on Ht. At most one of thesediscs, say �, is completely contained in V . If, in that case, � \ L = ; then wecan push T inward along a 3-space neighbourhood of � to remove two points ofA \ T . (See �gure 4 of [B-M4], reproduced in �gure 3.5.) Any added SCCs areremoved by lemma 3.2.2. 46



Our de�nition of essential leaves allows an adjustment in our general positionassumptions, as follows:(5a) The tangencies in (4) are saddle points.(6) If Ht is non-singular then each component of T \Ht is essential.We continue to follow the proof of [B-M4]. The torus T is a closed surface,and A pierces T transversely each time, so A\T must consist of an even numberof pierce-points, say 2� of them.If 2� = 0 then A\T = ;. By hypothesis, there exists a meridional disc D of Twhose intersections with L have identical sign. By a small isotopy we can assumethat D lies in a �bre of Ht. This is enough to show that the core of T is braidedaround A; for otherwise there exists a �bre Ht which is tangent to T yielding acentre tangency on the foliation of T , because A\T = ;: this contradicts generalposition assumption (5a).Since, in this case, T is braided around A, each Ht has the same number of(SCC) intersections with T . Each SCC is essential, by lemma 3.2.2. Since L isbraided around A, each SCC bounds a disc D such that D \ L consists of w0points, for some constant w0 > 0. Each disc is a meridional disc of T , and T hasa non-singular foliation in which each leaf is a meridional loop. Therefore, P hasthe form of a type 0 pattern, as in �gure 3.3.Now suppose that 2� > 0. Each non-singular leaf of T \ Ht is either anarc which joins two of the 2� points of A \ T , or an essential SCC. By generalposition assumption (3), and the fact that 2� � 2, there must be singularities inthe foliation of T . Each singularity is assumed to be a saddle. See �gure 3.6.There are two kinds of singularity. The �rst are those caused by an SCCsurgered with an arc, which we call �-singularities, because the singular leaf hasthe topology of an `�'. The second are caused by surgering an arc with anotherarc: these are called X-singularities, because the singular leaf has the topologyof an `X'. A third possibility, that of surgering two SCCs, cannot occur. (If anSCC surgers into two SCCs, both of which are essential, then either one of themis not meridional, and leads to a centre singularity, or both are meridional, whichcontradicts the topology of the torus.)Let p1; p2; : : : ; p2� be the points of A \ T . Let �1; �2; : : : ; �q be the t-valuesat which the singularities of the foliation occur. A singular leaf is then one of thecomponents of T \ H�, for � 2 f�1; : : : ; �qg. The proof now leans towards thecase in [B-M4] in which they consider a connected sum of two links. We adaptthe situation slightly to �t our context. The idea is to reduce the number ofintersections of A with T . 47
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1�-singularity X-singularityFigure 3.6: Saddle singularitiesChoose a pair of �-singularities which are consecutive in the foliation of thetorus. Either these singular leaves are separated only by leaves which are SCCs,or else there is a more complicated foliation involving points of A \ T and arc-leaves. Let our pair of �-singularities satisfy the second description. We surger Talong the discs bounded by our �-singularities, to give two 2-spheres, S and S 0.See �gure 3.7. One of them, S 0 say, is now foliated, near the surgeries, by SCCs,leading to local centre singularities. The other, S, is foliated, near its surgeries,by arcs with ends on A. In what follows we will work with the foliation of S.The 2-sphere S has an even number of point intersections with A, say 2�0 � 2�of them. The foliation is one of arcs only, and each saddle singularity is an X-singularity. Then the complement in S of the singular leaves is a union of regionsRi, each with 4 edges belonging to singular leaves.Choose one (non-singular) leaf ei from each Ri. The union of all these leavesfeig gives a cell decomposition of S; the 0-cells are the point intersections A\S,the 1-cells are the subset feig of the non-singular leaves, and each 2-cell con-tains exactly one singularity of the foliation. Every 2-cell has four vertices andfour edges (see �gure 3.8, for example). We call our 2-cells tiles, and the celldecomposition a tiling.We can choose the tiling so that all the point intersections of L with S occurin two tiles, the so-called `end' tiles that were constructed from the surgery of T .Moreover, the intersections of L with one of these tiles are derived from a numberof parallel strings which are all travelling together, in an arbitrarily tight bunch,around A. They can therefore be treated as a single weighted string.Following [B-M4], we de�ne the sign of a tile. Each tile contains exactlyone singularity of the foliation, at which T is tangent to a �bre H�. At such a48
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tangency the normals of T and H� coincide. The orientations of these normalswill either agree or disagree; the sign of the tile is accordingly positive or negative.A vertex in the tiling is r-valent if it has exactly r tile-edges meeting at thevertex. Notice that an r-valent vertex is adjacent to exactly r regions and r tiles:this point will be of use later.We show that there is always a 2- or 3-valent vertex in the tiling of S.Lemma 3.2.3 A tiling of S with more than 2 tiles always contains a 2- or 3-valent vertex.Proof. Let V; E and F denote the number of vertices, edges and tiles in thetiling of S. The Euler characteristic formula of S is V � E + F = 2.Each tile has exactly four edges, and each edge is an edge of exactly two tiles,so 2F = E, and hence 2V � E = 4. Now if Vi denotes the number of i-valentvertices in the tiling, we have V = P1i=2 Vi. The fact that each edge has twovertices in its boundary means that 2E = P1i=2 iVi, so2V2 + V3 = 8 + V5 + 2V6 + 3V7 + : : : :The terms on each side of this equation are non-negative, and hence there is a 2-or 3-valent vertex. 2We can assume that S has non-null intersection with L, for otherwise T wouldbe an inessential torus. Call a tile of S good if it is not pierced by L.Now we can assume (a small isotopy will oblige us) that the points of L\S liein the complement of the set of singular leaves, that is in regions Ri. Call a regionof S bad if it is pierced by L. We can isotop parallel strings as a single weightedstring, to conclude that there exist at most two bad regions of S (namely the`end' regions of S.) We can assume that the pierce-points also inhabit the sametile: a di�erent choice of tile edge (as in �gure 3.8) will ensure this.Call a vertex good if it is adjacent only to good regions.6 A region is adjacentto exactly two vertices, so there are at most four bad vertices.The next lemma discusses the existence of (possibly good) 2-valent vertices.Lemma 3.2.4 Either the tiling of S has a 2-valent vertex, or else there is anisotopy of S to a new 2-sphere S�, such that the tiling of S� has a good 2-valent6This is another departure from [B-M4], which de�nes good vertices in terms of good tiles.50
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Figure 3.8: Rede�ning the tile edgesvertex. Moreover, the tiles which intersect L are undisturbed by the isotopy, andthe torus T � obtained by replacing S with S� has c(T �; H) � c(T;H).Proof. Suppose there is no 2-valent vertex in the tiling of S. Then by lemma3.2.3 there exists a 3-valent vertex, p, which is adjacent to exactly 3 tiles. Eachtile contains exactly one saddle singularity; necessarily, at least two of the threesingularities (say s and s0) have the same sign. We show that there is an isotopyof S which swaps the order of the two singularities s and s0 in the foliation: theresult reduces p to a 2-valent vertex.We assume, to begin, that the tiles adjacent to p are all good tiles: they arenot pierced by L. The argument for this runs as follows. Recall that a region(bounded by singular leaves, and foliated by non-singular leaves) is said to bebad if it is pierced by L. By construction there are at most two bad regions;since each region is adjacent to two vertices then there can be no more than fourvertices which are adjacent to a bad region. Since there are no 2-valent vertices,then (from the proof of lemma 3.2.3) V2 = 0 implies V3 � 8, so we can �nd a3-valent vertex p which is not adjacent to a bad region. If a tile adjacent to p hasintersection with L then it belongs to a region which is not adjacent to p. Thetile can be rede�ned by choosing a di�erent edge for the tile, which excludes theintersection from the tile, though not the region. See �gure 3.8.The proof of the lemma continues as in [B-M4], and we present only a sum-mary here.The three good tiles adjacent to p are as in �gure 3.9.Birman and Menasco reconstruct the surface around the singularities s and51
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(a) Vertex p is 3-valent; (b) Flow of the tiles;(c) Proposed change to tilingFigure 3.9: Fig. 8 of [B-M4]s0, from analysis of the foliation. They show that the surface can be isotoped sothat the singularities appear in the opposite order in the foliation. The resultingchange in the foliation gives the required end.The �nal observation is that the change of foliation occurs only in two tiles,and the foliation in the remainder of S is unchanged. In particular this meansthat we can reconstruct T from the refoliated 2-sphere because the isotopy occursaway from the bad tiles: we simply undo the surgery that created S in the �rstplace. The foliation of T is as it was, except that it inherits the change in the twotiles performed on S. Since (by [B-M4]) the complexity of S was not increased,the complexity of T is also not increased. 2Lemma 3.2.5 If the tiling of S contains more than two tiles, and also containsa 2-valent vertex p, then L admits an exchange. Further, after the exchange wecan remove points of A \ T , thus reducing the complexity.Proof. We consider �rst the case when p is not good. Recall that Vi denotes thenumber of i-valent vertices in the tiling. There are at most four bad vertices, soif V2 + V3 � 5 then we can always �nd a good 2- or 3-valent vertex (and hence agood 2-valent vertex, via lemma 3.2.4). Assume V2 + V3 � 4, and hence V2 � 4.52



We know V2 + (V2 + V3) � 8, and so V2 � 4; so the only case when we might notbe able to �nd a good 2- or 3-valent vertex is when V2 = 4; V3 = 0.In this case we know that Vi = 0 for i � 5, but V4 is undetermined. [B-M4]discusses only the case V4 = 0, although examples of tilings with V4 > 0 are easilyconstructed.7 The case V4 > 0 is covered here.We consider all possible eventualities, by examining a typical tile t, and inparticular the number of 2-valent vertices adjacent to that tile. We show thateither we can �nd a good 2-valent vertex, or a bad 2-valent vertex which admits acomplexity-reducing exchange move. Note that each tile has exactly four vertices.If t has four 2-valent vertices, then there are only two tiles (and the Eulercharacteristic very quickly gives us V4 = 0). In this case, S has a very specialposition which is described in [B-M4]; it is discussed in the closing section of theproof of theorem 3.2.1.Suppose there is a tile t with three 2-valent vertices. Then t must be as in�gure 3.10.
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2Figure 3.10: Tile with three 2-valent verticesNecessarily there is another tile t0 which has the same three 2-valent vertices.By assumption, t0 has only four vertices; the fourth is the r-valent vertex (r > 2)adjacent to t. Using the notation of lemma 3.2.3, we have 2V2 + V3 = 8 + V5 +2V6 + 3V7 + : : :, and since V2 = 4, V3 = 0 we can deduce that Vi = 0; i � 5and so r = 4. Then e1; e2 are di�erent edges, and therefore t0 has at least sixedges. This contradicts the assumption that every tile has exactly four edges andvertices.Suppose every tile has at most one 2-valent vertex. Each of the 2-valentvertices is adjacent to exactly two regions, each of which is adjacent to an r-valent vertex (r > 2) at its other end (because each tile, and therefore eachregion, is adjacent to at most one 2-valent vertex). Since there are at most twobad regions, there are at most two bad 2-valent vertices, and hence at least twogood 2-valent vertices.7I am grateful to Joan Birman and Bill Menasco for private communications concerning thispoint. 53



We are left with the case when there is at least one tile t with two 2-valentvertices. There are two possibilities for such a tile; these are illustrated in �gure3.11.
p

p

p

p

1. 2.

p

p2 4

13 4

2

p1

p3

Figure 3.11: Tiles t with two 2-valent vertices(Note: If a vertex is adjacent to a bad region then it is necessarily adjacentto a bad tile. The reverse is not true.)There are two cases.1. If p1 and p2 are both adjacent to a bad region, then choose tile edges in thebad regions so that the pierce-points are contained in t. This is enough toensure that the other two 2-valent vertices are both good.Otherwise, p1 (say) is not adjacent to a bad region, and so by de�nition, p1is a good 2-valent vertex.2. By hypothesis, each leaf in the foliation of S is essential, so L is an obstruc-tion to its removal. Figure 3.12, illustrating the embedding of part of S,may be compared with �gure 21 of [B-M4].Since the leaves are essential, L encircles the axis n � 1 times between p1and p2, and also m � 1 times between p3 and p4, inside S; also j � 1 timesbetween p2 and p3, outside S. There is also the possibility of L piercing Sin one or more places of the regions adjacent to p1; : : : ; p4. See �gure 3.13.Clearly, an exchange move is applicable, moving the n strings across the jstrings, down so that they encircle A between p3 and p4. Then the leavesjoining p1 to p2 are inessential, and can be removed, reducing the complexityby removing two points of A \ S.If p is good then the proof is as in lemma 4 of [B-M4]. (In this they explicitlydescribe the position of the sphere S relative to L, and show that an exchange54



p

p

p

p

A

1

2

3

4Figure 3.12: Embedding of S near the 2-valent vertices

p

p

p

p

A

1

2

3

4Figure 3.13: Embedding of part of L, relative to S55



move is applicable.) In this case, the only extra point to note is that, because pis good, all the action occurs away from the bad tiles of S: we can assume thatthe relevant tiles are all good by rede�ning some tile edges (as in �gure 3.8) ifnecessary. Therefore, we can reconstruct T after application of lemma 3.2.5. Thereduction in complexity of the foliation of S implies a reduction in c(T;H). 2Now we can complete the proof of theorem 3.2.1. The essential torus Thas complexity c(T;H) � (0; 0). The case when the complexity is (0; 0) wasconsidered at the beginning of this proof, so assume c(T;H) > (0; 0). Therefore,A \ T � 2, so necessarily there are singularities in the foliation.We take pairs of �-singularities as described, surgering to form a sphere S, andrepeatedly applying lemmas 3.2.3, 3.2.4 and 3.2.5 until S has just four 2-valentvertices in its foliation. Then S is the union of exactly two tiles, each of whichhas a saddle singularity. At least one of them is bad. Following the observationof [B-M4], the sphere has the form of �gure 3.14.
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Figure 3.14: Fig. 21 of [B-M4]If there is a good vertex, then a complexity-reducing exchange move is appli-cable, as described in [B-M4]. If there is no good vertex then all four 2-valentvertices are bad, and we know that S is pierced by L in two `opposite' regions,R1 and R3 say. This case is covered in pages 135{137 of [B-M4]. The positionof S relative to A and L is deduced, and it is shown that an exchange move ispossible, and that two more points of A \ S can be removed. This is done, in56



their words, by `sliding' strings of L so that the pierce-points L \ R3 slide intoR2, and a good 2-valent vertex is created.The 2-sphere S now has a non-singular (North{South) foliation whose leavesare simple arcs with both ends on A. We can reconstruct T from S by recon-structing the �-singularities at either `end' of S from some choice of non-singulararcs of S, and performing the inverse surgery. See �gure 3.15.
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Figure 3.15: Reconstructing TSo we can assume that there are exactly two intersection points of A with Tfor each sphere S. We write jT \Aj = 2m, where m is the number of 2-spheres S.Recall that each singularity in the foliation of T was either an �-singularity or anX-singularity: at this stage we have removed all the X-singularities, so there areonly �-singularities remaining. Each �-singularity corresponds to the surgeringof an SCC with an arc-leaf in the foliation; the only arc-leaves remaining arethose inherited from the foliations of the S, and so the �-singularities correspondto the fusing of an SCC-foliated tube with a 2-sphere S. They must occur as in�gure 3.15, and so we can deduce that there are 2m singularities: the complexityis c(T;H) = (2m; 2m).If m = 1 then the fact that each leaf is essential allows us to see that thepattern has a type 1 foliation, and is as claimed. If m > 1 then the essentialityof the leaves allows us to construct part of the torus, together with four pointsof A \ T , as in �gure 3.16.In particular, note that by assumption, the leaf boundary of the shaded disc is57
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Figure 3.16: Part of the torus relative to L and Aessential, and so the disc itself has non-empty intersection with L. An exchangemove will remove that intersection (as illustrated in �gure 3.16), and so we canisotop T in a 3-space neighbourhood of the disc to remove two intersections of Awith T , hence reducing the value of m and the complexity c(T;H). This step isrepeated until m = 1, and the proof of theorem 3.2.1 is complete. 2Corollary 3.2.6 Let C � P be a type 0 or type 1 satellite, constructed by em-bedding a type 0 or type 1 pattern P � VP into the torus neighbourhood VC ofcompanion knot C. Then C � P has braid indexb(C � P ) = ( b(C):w0 (type 0)b(C):w0 + w1 (type 1)where w0; w1 are the minimum weights of the strings as shown in the pattern P(�gure 3.17), and b(C) is the braid index of the companion.Remark. The signi�cance of w0; w1 in the diagrams is as follows. The integerw0 is the least number of intersections P \D, over all meridional discs D � VP .The integer w1, in the type 1 case, is the least number of extra strings needed topresent the pattern in this braided format.58
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Figure 3.17: Standard patterns, type 0 and type 1Proof of corollary 3.2.6. Take a closed braid presentation �̂ of C �P , of min-imal braid number. If C � P is a type 0 satellite, then by theorem 3.2.1 we canmove TC = @VC to intersect the �bration of S3�A in the standard way. Thus TChas no intersection with A. Since C � P is braided around A, then so is VC , andso the core of VC is a closed braid representing C, on b0 braidstrings. Therefore,each page H� of the �bration H has exactly b0:w0 intersections with C �P . By theminimality of b(C), we have b0 � b(C). If b0 > b(C) then an isotopy of the coreof VC in S3 gives a presentation of C on fewer braidstrings. The same isotopyapplied to VC preserves both C � P and its braidedness about A, and so gives apresentation of C � P on fewer braidstrings. Thus, we can assume b0 = b(C). Adiagram for a braid presentation of C � P is shown in �gure 3.18.If C � P is a type 1 satellite, then by theorem 3.2.1 we may assume A inter-sects TC in precisely two points. Then a typical �bre H� has b0 clusters of w0intersections, along with one cluster of w1 intersections. The two ways that thiscan happen in a non-singular �bre are illustrated in �gure 3.19. Then, by thesame argument, b0 = b(C). 2
3.3 Reverse string satellitesIn fact, Birman and Menasco have provided a more complete result than theorem3.2.1, by identifying another class of patterns. The same method of proof isemployed.
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Theorem 3.3.1 [B-M7] Let T be an essential, non-peripheral torus in S3 � L,where L is a link which is represented as a closed braid relative to the braid axisA and �bration H. Assume that T has type 0, 1 or k foliation. Let V be thesolid torus which T bounds, where in the situation of type 0, if T bounds on bothsides we choose V so that A \ V is empty. Then the inclusion of (L [A) \ V inV in the three cases is as depicted in �gure 3.20. Here, each component of A\Vis an arc, illustrated in these projections as a point. In particular, the number ofsuch arcs is 0, 1 and k in the three cases. 2
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Figure 3.20: Standard positions of pattern P � VP when essential torus T = @Vhas foliation type 0, 1, k (k > 2)Remark. The formal de�nitions of foliation types 0, 1 and k of theorem 3.3.1are found in [B-M7]. In fact, the type 0 and 1 foliations are the torus foliationsdeduced by theorem 3.2.1: a type 0 foliation of a torus is a foliation by meridionalcircles (SCCs), and a type 1 foliation is the mixed foliation with SCCs andessential arcs, two saddle singularities and two points of T \A. These correspondto the type 0 and type 1 patterns respectively.The type k foliation occurs in the case when every meridional disc of T in-tersects the satellite link L, with both positively and negatively oriented inter-sections. The foliation is a singular foliation in which each nonsingular leaf is asimple arc with its endpoints on A. In their proof of theorem 3.3.1, Birman andMenasco show that the foliation on T in this case induces a tiling of T , in whicheach 2-cell consists of four edges and contains exactly one saddle singularity; the61



0-cells are the points of TC \ A and the 1-cells are some choice of non-singularleaves. They go further, deducing from restrictions on the signs of the singulari-ties that there is a `fundamental domain' for T , consisting of (2� k) tiles, withopposite sides identi�ed.The patterns corresponding to the type k foliations have the property thatevery meridional disc D of the essential torus V has both positive and negativeintersections with L. Accordingly, we have dubbed them reverse string patterns(or rs patterns).Theorem 3.3.2 [B-M7] With the above notation, the pattern P having stringsof weight wi as shown in �gure 3.20, and b(L) denoting braid index of L, thenb(L) = w0:b(C) if T has type 0 foliation;b(L) = w0:b(C) + w1 if T has type 1 foliation;b(L) = w1 + w2 + : : :+ wk if T has type k foliation, k � 2. 2Remark. The equations of theorem 3.3.2 are stated exactly as they appear in[B-M7]. It is of some importance to draw the reader's attention to the addendumto [B-M7], regarding the type k case, as well as to the following discussion.In order to deduce the next corollary, we de�ne the special braid�pn = pYj=1 nYk=1��1p�j+k! :�(�1; : : : ; �n�1):�(�n+1; : : : ; �n+p�1);where �(�1; : : : ; �n�1) = �(�1; : : : ; �n�2):�n�1 : : : �1; the whole braid is as shownin �gure 3.21.The signi�cance of this is that if we have an antiparallel pair of weightedstrings of weights p; n, a halftwist on them can be represented as a braid �pnin a pattern. Schematically, this is illustrated in �gure 3.22. So we can controlframing via the �i in the pattern.
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pFigure 3.22: Using the pattern to control framingCorollary 3.3.3 (A classi�cation of reverse string patterns) Let L be asatellite link with a reverse string pattern. Then the pattern, up to some choiceof framing, is of the form of the type ` k' diagram above (the bottom diagram of�gure 3.20), where(i) k is even and non-negative (but could be zero)8;(ii) each braidcell �i consists of a braidword;(iii) at most one of the �i, with weighted input strings pi; ni is conjugate to �pinior its inverse.Proof. Let A be the axis which realizes L as a closed braid, and H be the�bration of S3 � A by halfplanes. Let T � S3 � L be the essential torus whichrealizes the satellite construction of L. By theorem 3.3.1, we can assume that thefoliation of T induced by H is the standard type k foliation, and the pattern isas in �gure 3.20. Notice that k must be even: a choice of orientation forces that.Further, suppose that �i; �j were congugate to �pini; �pjnj . By a series of ypes(see �gure 3.23, and [Ta] for more detail), we can assume that ji� jj = 1.8See the remark following this proof. 63



Figure 3.23: Tait's ype moveThen, if �i = ��1j , the half twists cancel out (see �gure 3.24). Otherwise, thepair contribute a full twist to the satellite, and an extra �1 to the framing. Sincewe are working up to framing, they can both be removed (see �gure 3.25). 2
Figure 3.24: �i = ��1j
Figure 3.25: �i = �jRemark. It is important to make a clear distinction between `foliation type' (ofan essential torus T � S3 � L) and `pattern type' (of a satellite C � P ). Thefoliation type, the chief tool of theorem 3.3.1, will tell us what pattern type weare working with, as described in the caption accompanying �gure 3.20. Patterntypes resulting from a type 0 or type 1 foliation are precisely the non-reversestring type 0 and 1 patterns respectively. Pattern types resulting from a type kfoliation (k 2 N; k � 2) are the reverse string type k0 patterns, where k0 is thenumber of braidboxes in a planar diagram of P , and is not unique. In particular,k0 2 2N. The particular case k0 = 4 is illustrated in �gure 3.20, and the casek0 = 0 (hereafter called the (x; y)-antiparallel pattern) has x and y strings runningin an antiparallel fashion around the longitude of V , as shown in �gure 3.27. IfP is an antiparallel then C � P is an antiparallel satellite.
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One problem with their statement of theorem 3.3.1 is that, for a reverse stringsatellite L, it seems to rule out the possibility that any essential torus T in S3�Lhas foliation type k with k odd. The fact that Birman and Menasco's example(�gure 7 of [B-M7], reproduced in �gure 3.26) has essential torus with foliationtype 5 presents an apparent conict.This is explained by the observation that the foliation type and the patterntype are, to some extent, independent of each other. More accurately, the foliationtype is controlled by four factors:(i) the pattern (and in particular the pattern type, which in the reverse stringcase must be even);(ii) the writhe w(C);(iii) the arc index, �(C); and(iv) the choice of framing, f .The last three factors between them force the foliation type to have eitherodd or even parity, as we shall see.Some of these factors are interrelated; for example, an arc diagram of a com-panion comes with an implicit `meridional twisting' (the writhe), which inuencesthe framing. A good way to see this is to consider the most simple of reversestring patterns, namely the (1; 1)-antiparallel. The discussion in the followingparagraphs, in particular taking P = (1; 1)-antiparallel, makes the meridionaltwisting quite apparent. (The (1,1)-antiparallel has also been referred to as the`British Rail' parallel, after the British Rail logo .)Before closing this section, we make some observations on the braid index ofreverse string satellites, which will be built on in later sections.Proposition 3.3.4 Let C be a knot with arc index � = �(C). Let L be a satellitewhich has C as a companion, the pattern being reverse string; let L be braided ina positive sense around braid axis A. Then an essential torus T � S3 � L hasfoliation type at least �, with respect to the open-book �bration of S3 � A.Proof. Suppose TC is such an essential torus: its core is C, and TC bounds asolid torus VC with L � VC . Let H = fH� : � 2 [0; 2�]g be the open bookdecomposition of S3 � A by half-planes; this induces the foliation of TC , of typek, with leaves fH� \ TCg. We show that �(C) � k.65
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Figure 3.26: Whitehead double of a trefoil with its essential torus, from [B-M7]
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Figure 3.27: The (x; y)-antiparallel pattern
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Since L is a reverse string satellite, it does not have a type 0 or type 1 pattern,and we may deduce by general position arguments and using theorem 3.2.1 thatno leaf of the foliation is a simple closed curve. The general position assumptionsalso tell us that every non-singular leaf must be a simple arc, which joins twopoints of TC \ A. By the proof of theorem 3.3.1, the foliation on TC induces atiling of TC : the tiling comes from a fundamental domain of (2� k) tiles, whereeach tile is 4-valent, and opposite sides of the fundamental domain are identi�ed.9We choose a path  on TC , which traverses the longitude of TC exactly once,constructed by following some tile-edges. We can see by examination of thefundamental domain of TC that such a path exists, and consists of exactly kedges.It follows that  is ambient isotopic to the core of TC , and hence to C itself.Moreover,  is an arc presentation of C, since it is constructed of non-singularleaves, each of which is a simple arc contained in some �bre H�. There are k arcsin this arc presentation. Then, by de�nition of arc index, we have �(C) � k. 2Corollary 3.3.5 Let C �P be a reverse string satellite of a companion C. Thenthe braid index of C � P is at least �(C).Proof. Most easily seen by considering the grid diagram, given by projectingC � P onto the boundary of a cylindrical neighbourhood of A. There is at leastone braidstring for each of the point intersections A \ C of the arc presentationof C. Further discussion of this construction follows in section 3.5. 2It is a fact that for any knot C, there exist in�nitely many inequivalent satel-lites C � P of C with braid index b(C � P ) = �(C). For example, an in�nitefamily of patterns fPkg is given in �gure 3.28; for a given companion C, thesepatterns give rise to an in�nite family of satellites C � Pk, each with the sameframing and the same braid index. Explicit braid presentations of these satellitescan be constructed as in the example at the end of section 3.4.There also exist (probably �nitely many) satellites of C with pattern the(1; 1)-antiparallel, and braid index �(C). These di�er by virtue of a choice offraming. A discussion of this will follow in sections 3.5 and 3.6.9See the remark following theorem 3.3.1, and also [B-M7].
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Figure 3.28: An in�nite family of patterns, fPkg, constructed by setting �1 =�21 2 B2 and �2 = �2k+11 2 B2; k 2 Z3.4 Braid presentations of reverse string satel-litesWe have already considered presenting braids of type 0 and type 1 (non-reversestring) satellites in section 3.2. The following proposition, and its proof, are ofsome help in understanding the embedding of a reverse string satellite and itsessential torus in S3, relative to A.Proposition 3.4.1 Let G = G(C) be an arc presentation of a knot C with �0 ��(C) arcs. Let VC be a tubular neighbourhood of C with type �0 foliation. Let Pbe a reverse string pattern of type k, with k � �0, as described in corollary 3.3.3,P living in an unknotted solid torus VP . Then there exists an embeddinge : VP ! VC � S3such that the inclusion of P in S3�A induced by the embedding is a closed braidwith braid axis A.Proof. The �0 arcs are embedded in half-planesH = �H� : � = 2n��0 ; n = 1; : : : ; �0� :VC has type �0 foliation, so the set fVC \ Ag consists of precisely �0 subarcsa1; a2; : : :, a�0 of A. If we think of VC as homeomorphic to S1 �D2, then we can�bre VC by discs D2 such that the subarcs ai bisect �0 of the �bres (denoted DCi )as shown in �gure 3.29. The DCi dissect VC into �0 solid tubes Zi, bounded in VCby DCi [DCi+1. 68
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Figure 3.29: Dissecting disc DCiThe torus VP containing P is dissected into �0 solid tubes Yj by consideringa similar �bration of VP . For j = 1; : : : ; k, each Yj will contain a braidcell andfour weighted strings. For j = k+ 1; : : : ; �, each Yj carries two parallel weightedstrings as in �gure 3.31. The dissecting discs DPj are positioned as shown in �gure3.30; they will be bisected by the preimages e�1(ai), which separate the pointsof P \DPj into algebraically positive and negative intersections. The embeddingwill be such that e(Yj) = Zj. Let Pj = P \ Yj.
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Figure 3.30: Dissecting discs DPj of VPNotice that if Zj1 \ Zj2 6= ;; j1 6= j2 (say j1 < j2 without loss of generality),then necessarily jj2�j1j � 1(mod �0), so Zj1 \Zj2 = DCj2; the intersection of e(P )with the disc consists of point intersections only. Therefore e(Pj1) and e(Pj2) donot interweave, so we need only show that we can choose e so that the inclusione(Pj) in S3 � A is transverse to the pages of the open book decomposition, foreach j = 1; : : : ; k.
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Figure 3.32: Dissecting disc DCi+1 lies in the plane Ri+1The exact position of the DCi are as follows. The arc contained inH�i 2 H hasa tubular neighbourhood, which we call Zi. The Zi appear in numerical orderas we traverse VC , so the arcs of C corresponding to Zi; Zi+1 meet at a pointxj 2 C \A. Tubular neighbourhoods Zi and Zi+1 themselves intersect in the discDCi+1; we choose this disc to lie in a plane Ri+1 that bisects the angle betweenH�i and H�i+1. See �gure 3.32.Arcs (in particular, consecutive arcs) must lie in distinct half-planes, byconstruction of arc presentation. Therefore, Ri and Ri+1 can coincide only if�i�1 = �i � � = �i+1. (In this case, strictly, Ri and Ri+1 di�er by an angle �.)Then, if �i is the angle between Ri and Ri+1, we can say 0 < �i < 2�.So Zi is as shown in �gure 3.33, with the planes Ri; Ri+1 indicating the bound-aries of Zi.We embed the pattern transversely into the pages of the open-book decom-position as shown in �gures 3.34 and 3.35. The set P \ DCi consists of pointintersections only, and so is transverse to the pages of the decomposition. 2The proof of proposition 3.4.1 leads to a direct approach for constructing apresenting braid for a reverse string satellite C � P . We place the companion C,and then dress it with P , in such a way that a braid whose closure representsC � P becomes apparent. The `sizes' of the pattern and companion diagramsshould be compatible: the number of arcs on which the companion is presentedshould be at least as big as the pattern type.70
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(a) �i 2 (0; �) (b) �i = � (c) �i 2 (�; 2�)Figure 3.35: Embedding of Pj, for k + 1 � j � �0The algorithm begins with an arc presentation D(C) for C, and a diagram ofthe pattern P in standard form in the torus, as in corollary 3.3.3.We must recall some terminology and de�nitions. A pair of arcs in a diagramare said to be consecutive if they meet at a point of A. The �0 arcs of D(C)are embedded in �bres H�1 ; : : : ; H��0 of S3 � A. Each joins two of the �0 pointsx1; : : : ; x�0 of A. The xi are indexed in ascending order around A. We have an�0-cycle � 2 S�0 , such that �(1) = 1, and �(j) = i, H�i is the jth plane visitedif we traverse C following its orientation.The arc presentationD(C) leads (as described in section 2.2) to a grid diagramG(C) for C, which may be chosen to be a closed braid diagram of C. Essentially,this is given by choosing a cylindrical neighbourhood N(A) of A such that no arcof C is completely contained in N(A); then projecting C \ N(A) radially onto@N(A). Then, if we slice along the length of @N(A) we can lay it at on theplane.We may assume that D(C), and therefore the grid diagram G(C), each hasat least k arcs. If not, then G(C) forms the basis from which we can generate anew grid diagram G0(C) which satis�es this property: this is discussed in moredetail in the sections on framing (sections 3.5 and 3.6).(In the grid diagram G(C), we can assume that the xi are represented by thehorizontal lines, with x1 highest, and x�0 lowest. Also we have the halfplanesrepresented by the vertical lines with H�1 left-most, and H��0 right-most.)72



At any rate, in G(C) we get a number of vertical and horizontal lines. Thevertical lines are the (slightly trimmed) arcs, with both ends on the plane, andbridging out over the plane. The horizontal lines lie in the plane, and simplyidentify the appropriate ends of consecutive arcs, as they would have met at A.See �gure 3.36.
Figure 3.36: Two consecutive arcs bridging over the planeFrom G(C) we can construct a diagram of how VC lies relative to @N(A).Each arc is thickened into a solid cylinder; its endpoints thicken into the discsDCi . Figure 3.37 helps to illustrate this. These discs lie embedded in @N(A), andthere are two copies of each DCi . The pair have oppositely oriented boundariesas they appear on @N(A) (one clockwise, one counter-clockwise, inherited fromthe orientation of VC); identi�cation of corresponding pairs will reconstruct VC .
Figure 3.37: A thickened arc Zi bridging over the planeMeanwhile, the pattern is dissected as in the proof, using dissecting discs DPj ,to give tubes Yj containing sections of the pattern. The �rst k of the Yj eachcontain a braid cell Bj; 1 � j � k, and the remainder carry a pair of oppositelyoriented parallel weighted strings pi and ni. The reader is referred to �gure 3.31in the proof of proposition 3.4.1.The �rst k of the Yj are embedded into the cylindrical neighbourhoods of the�rst k consecutive arcs, as shown. The choice of `�rst arc' is not unique, butthe satellite is independent of this choice. The horizontal `identifying' semi-loopsof G(C) are replaced by weighted parallel strings pi, and the opposite choice ofsemi-loops replaced by weighted parallel strings ni. If we declare that the pifollow the chosen orientation of C in order of their indices, then there is only oneway to embed each of the following Yj; j � k. See �gure 3.38.73



Figure 3.38: The embedding Yj � Z�(j); 1 � j � kThe remaining Zj; k + 1 � j � �0, each have embedded a completion tubeYj, carrying the two antiparallel weighted strings. They project onto @N(A) asin �gure 3.39.

Figure 3.39: The embedding Yj � Z�(j); k + 1 � j � �0There are two choices for this embedding: the crossing of pi with ni ensuresbraidedness, but the braidedness is independent of the choice of crossing. Thischoice is discussed further under consideration of framing (sections 3.5 and 3.6).
74



Example. Figure 3.40 shows a reverse string satellite of a trefoil, with a `type 4'reverse string pattern as shown. Note that the framing has been chosen implicitlyso that the number of braidstrings of the satellite is equal to the arc index of thecompanion. The essential non-peripheral torus in the complement of this satellitehas foliation type 5.
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3.5 Concerning the framing of satellite linksSo far in this discussion of satellites as closed braids we have consciously chosento ignore one vital concept, namely that of framing. In this section we discusshow the framing �ts into our theory.Recall that the satellite C � P is constructed by an embeddinge : VP ! VC � S3of an unknotted torus VP into the toroidal neighbourhood VC of a companionknot C. The satellite C � P itself is the image e(P ) � S3. The embedding isnot unique: e may introduce any whole number of meridional full-twists intothe torus, and still be a continuous embedding. Therefore, there is a bijectionbetween the set of possible embeddings e : VP ! VC and the set Z of integers.The following examples illustrate how this non-uniqueness is manifested inbraid presentations of e(P ).Example. Let C � P be a satellite link with companion C = 31, and a type 1pattern. To construct a braid for C � P , begin with a closed braid presentationof C, as in �gure 3.41.

Figure 3.41: Closed braid presenting C = 31Closed braid presentations of C �P are then easily constructed, as in �gure 3.42.Both are equally good satellites, in so far as they satisfy the de�nition of asatellite. They are, however, di�erent links, distingishable by comparing Homy76
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fC* PPFigure 3.42: Closed braids presenting two possible satellites C �f P and C �f�1 Por Jones polynomials. As an example, consider the case where each string is ofweight 1, and � is the trivial braid on three strings10:PC�fP (v; z) = z�2 (v�16 � 6v�14 + 13v�12 � 12v�10 + 4v�8)+ (�5v�14 + 26v�12 � 40v�10 + 19v�8)+z2 (�v�14 + 22v�12 � 57v�10 + 36v�8)+z4 (8v�12 � 36v�10 + 28v�8)+z6 (v�12 � 10v�10 + 9v�8)+z8 (�v�10 + v�8),PC�f�1P (v; z) = z�2 (v�14 � 6v�12 + 13v�10 � 12v�8 + 4v�6)+ (v�14 � 46v�12 + 19v�10 � 26v�8 + 12v�6)+z2 (�v�12 + 8v�10 � 22v�8 + 15v�6)+z4 (v�10 � 8v�8 + 7v�6)+z6 (�v�8 + v�6).Example. Let us construct two satellites C �f P , C �f+1 P , for some f , whereC is the knot 31, and P is the (1,1)-antiparallel pattern. Construct each satelliteas a closed braid, via the algorithm of section 3.4.Begin with a grid presentation G(C) of C with 5 arcs, as in �gure 3.43.This is then dressed with the pattern, as described in the previous section, andillustrated in �gure 3.44.10In this case, both links are both distant unions, and so have Conway polynomial 0.77



43210Figure 3.43: Grid presentation G(C); C = 31

0 1 2 3 4Figure 3.44: Closed braid presentation for C �f P
78



0 1 2 3 4Figure 3.45: Closed braid presentation for C �f+1 PThere is no unique way to do this. A full twist of the torus manifests itself asa full twist of a cylindrical neighbourhood Yj of one of the arcs. This induces inthe presentation a change of sign of a crossing, located in the projection of thatYj. See �gure 3.45. This change of framing is discussed further in section 3.6.Again, each of these links satis�es the de�nition of `satellite link', but theyare inequivalent links, as their Homy polynomials con�rm:PC�fP (v; z) = z�1 (4v�3 � 8v�1 + 5v � v3)+z (4v�3 � 15v�1 + 10v � v3 � v5)+z3 (v�3 � 7v�1 + 6v)+z5 (�v�1 + v),PC�f+1P (v; z) = z�1 (4v�5 � 8v�3 + 5v�1 � v)+z (4v�5 � 15v�3 + 9v�1 � v � v3)+z3 (v�5 � 7v�3 + 6v�1)+z5 (�v�3 + v�1).The �rst of these examples illustrates how, for a type 0 or type 1 satelliteC � P , the braid index b(C � P ) is independent of framing.For a reverse string satellite C � P , the dependence of b(C � P ) on framingwas conjectured by Birman and Menasco in [B-M7]. This dependence is analysedbelow. Observations, based on the explicit braid presentations of C � P , provideus with an upper bound for b(C � P ). Analysis of the Homy polynomial givesus a lower bound for b(C � P ), via the MFW inequality.79



3.6 A formal de�nition for framingSince we are working via our 2-dimensional representations of links, our de�nitionof framing is also based on these diagrams.Recall the de�nition of the writhe wr(D(C)) of a link diagram D(C): it isthe algebraic crossing number of the diagram. More explicitly, we �rst assign anorientation to C, and hence to D(C). Then each crossing c of D(C) has a sign"(c), according to �gure 3.46. The writhe of the diagram iswr(D(C)) = Xc�D(C) "(c):
-+"(c) = +1 "(c) = �1Figure 3.46: Sign of a crossingGiven a diagram D(C) of a link C, there is a natural way to draw a diagramof the (1,1)-antiparallel satellite, based on D(C). Simply, one draws in anotherstrand which runs along the side of D(C). This is known as the blackboardantiparallel, for obvious reasons, and its framing is called the blackboard framing.Generally, we can de�ne the framing of such a satellite as being the writhe ofthe underlying companion diagram. Equally, this is given by �nding the windingnumber of one component around the other (this is counted by summing the signsof all crossings in which one component of the link crosses over the other), andtaking the negative of this result.As an example of this, consider �gure 3.47. Here, the diagram of the trefoilhas writhe 3. Constructing its blackboard (1,1)-antiparallel, we �nd that theblackboard framing is 3.Proposition 3.6.1 In this case, the framing of the (1,1)-antiparallel of D(C)with blackboard framing is wr(D(C)).Proof. The only crossings that can possibly contribute to the winding numberof the two components occur near the crossings of D(C). A positive crossing80



Figure 3.47: Trefoil and its blackboard antiparallelof D(C) contributes �1 to the winding number; a negative crossing of D(C)contributes +1. 2In particular, if the diagram D(C) of C is a grid diagram G(C), then propo-sition 3.6.1 still holds.Example.

0 1 2 3 443210wr(G(C)) = 3 Blackboard antiparallelwith framing 3Figure 3.48: Grid diagram G(C) and its blackboard antiparallelThe (1,1)-antiparallel of C �P (P is the (1,1)-antiparallel) has two oppositelyoriented components, L1 and L2, say. Suppose that the orientation of L1 agreeswith that of C. Each of these components, when considered alone, is a braidedgrid diagram for C. If we take the opposite choice of semi-loops for one of them,then they are braided in the same direction. This is equivalent to pushing theexisting semi-loops of this component down, through a point at in�nity, andback up into their alternative positions. Compare �gures 3.48 and 3.49. Sincethe horizontal lines in the grid never over-cross another part of the link, this moveis an ambient isotopy of C � P in S3 and the link type is preserved. Since thelink type of C � P is preserved, the framing of the companion is also preserved.81



1 2 3 40Figure 3.49: Braided diagram of the blackboard antiparallelWe conclude that at each embedded tube Yj, the components L1 and L2 cross;and if L1 crosses over L2 at each of these singularities, then the framing is equalto wr(G(C)).We can preserve the satellite form of the diagram, and yet change the framing,by altering one of the crossings, as previously described. It is equivalent to a fulltwist (in an appropriate meridional direction) of the cylindrical neighbourhoodof the corresponding arc. For example, the operation illustrated in �gure 3.50will increase the framing by 1. The reverse operation will decrease the framingby 1.We can construct a braided diagram of a reverse string satellite C �f P withcompanion C, pattern P � VP and framing f 2 Z, in the following way. Firstconstruct some grid diagram G(C) of C with writhe wr(G(C)). In order toachieve the correct framing, we will need a number of `completion tubes' of theappropriate type: they should number at least jf � wr(G(C))j. To ensure thatG(C) has su�ciently many arcs, we can apply Cromwell's moves III and IV ifnecessary. See section 2.3.Dress the diagram G(C) as described in section 3.5. Finally, alter the sign ofthe crossing of su�ciently many of the completion tubes, so that the framing iscorrect.In the example of �gures 3.48 and 3.49, there is su�cient possibility to easilyproduce braidwords for framings 1 � f � 6. If C �f P were a satellite withframing f outside this range, then we would need to start with an alternativegrid diagram G(C). For example, see �gure 3.51.So for a certain grid diagram G(C), we can construct satellites with framing82
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0 1 2 3 4 5 0 1 2 3 4 5allows framings allows framings1 � f � 7 0 � f � 6Figure 3.51: Some other grid diagrams for C83



f inside a certain range. Outside that range, a di�erent choice of grid diagramfor C will su�ce.Hence, more extreme framings give us a larger upper bound for b(C �f P ). Inthe case of the example cited, we havef 2 [1; 6] ) b(C �f P ) � 5f = 1� korf = 6 + k 9>=>; ; k � 1 ) b(C �f P ) � 5 + k:p1;where p1 is the weight of one of the weighted strings in the diagram of P (�gure3.53). In fact, we can choose p1 to be the minimum, over all i, of the weights ofthe weighted strings pi in the diagram.Therefore the upper bound is linear in f for f outside a special range, withcoe�cient p1. Figure 3.52 describes the relationship.
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Figure 3.53: General diagram of a reverse string pattern3.7 A linear relation between framing and Hom-y polynomialFor a lower bound for b(C �f P ) we can turn to the Homy polynomial, and inparticular to the MFW inequality (see theorem 1.5.1(i)). It would be satisfying to�nd that the upper bounds (from the explicit diagrams of the previous section)and the lower bounds (from MFW) are su�ciently close that the braid indexof a given satellite can be accurately deduced from either of these methods.There is certainly evidence to support this, in some cases: section 3.8 discussesa preliminary result.In this section, we see how the linear dependence of the upper bound onframing is also exhibited in the lower bound, at least for an in�nite subclass ofreverse string satellites.Recall that for a general link L, we de�ne sprv (PL(v; z)) to be the di�erencebetween the greatest and least powers of v in PL(v; z). We study a subclass ofreverse string satellites C �f P whose patterns have geometric winding number 2around the longitude of V (C).11 That is to say, there exists a meridional discD of VP which intersects P exactly twice (and those intersections have oppositesigns).Let us project VP to an annulus, and examine the resulting diagram of P (see�gure 3.53). The above paragraph is then equivalent to saying that, for some i,we have pi+ni = 2, and so pi = ni = 1. We say that P has geometric intersectionnumber pi + ni = 2 with D, and algebraic intersection number pi � ni = 0 withD. An application of skein theory allows us to deduce the linear dependence ofsprv �PC�fP (v; z)� on the framing f of C �f P . This leads to a conjecture that11So in particular, this applies when P is the (1,1)-antiparallel: the �rst result is therefore ageneralization of proposition 4.3.1, which is a theorem of Lee Rudolph.85
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Figure 3.54: Replacing ~D to give P1such linear behaviour extends to all reverse string satellites.In order to state the �rst theorem, we need the following de�nition. Let thepattern P � VP , and the disc D � VP be as described in the previous paragraph.Let ~D be a cylindrical neighbourhood of D, as in �gure 3.54 (top). We constructP1 by removing ~D from VP , and replacing it with a cylindrical neighbourhoodof D in VP as in �gure 3.54 (bottom), such that the orientations of strings on thedisc boundaries are coincident. Notice that P1 is not a `proper' pattern.There are two results here: the �rst is a general result relating the Homypolynomials of two satellites that di�er only by a choice of framing. The secondresult employs this relation, to make an observation about how sprvPC�fP (v; z)relates to framing.Theorem 3.7.1 Let C be a knot, and P � VP be a reverse string pattern. Sup-pose there exists a meridional disc D of VP such that D\P consists of two points,of opposite signs. Also, for f 2 Z, let C �f P be the satellite with companion C,pattern P and framing f . Let C �1 P be the satellite with companion C and pat-tern P1 (notice that C �1 P is independent of framing, since P1 is not proper).Then for any f; s 2 Z,�PC�fP (v; z)� PC�1P (v; z) = v2s ��PC�f+sP (v; z)� PC�1P (v; z)� :Theorem 3.7.2 With the hypotheses of theorem 3.7.1, suppose also that the twopoints of D \ P belong to di�erent components of P . Then there exist integersm; M and d with m � M and d > 0, independent of f , such thatf � m ) sprv �PC�fP (v; z)� = d+ 2jm� f jm � f �M ) sprv �PC�fP (v; z)� = dM � f ) sprv �PC�fP (v; z)� = d+ 2jM � f j:86



3.7.I Development of the toolsSkein theory is the key to these results, and some important de�nitions are cov-ered now. The reader is also referred to chapter 1, and to Morton's NATO lecturenotes [Mo1].We study the links involved via their projections onto planar surfaces. Let Fbe a planar surface, with a �nite (possibly empty) set of speci�ed points on itsboundary, if it has one. In this section, our discussion deals �rst with general F ,and then specializes to the cases F = S2, and F = R22 (to be de�ned below).A diagram in F is a number of closed curves on F , together with arcs joiningthe speci�ed points of @F , such that(i) there are �nitely many singular points, and that they are double points;(ii) the double points are crossings with an under- and over-crossing;(iii) every one of the speci�ed points of @F is at the end of some arc.Let � denote the ring Z [v�1; z�1]; then de�ne D(F ) to be the set of �-linearcombinations of diagrams in F .Let Rmn denote a rectangular disc with m speci�ed points on the top edge,and n on the bottom. A diagram in Rmn is an (m;n)-tangle. Let R22 denote theset of diagrams in R22, with the extra structure that for any D 2 R22, the curvesof D have the choice of orientation at the boundary as illustrated in �gure 3.55.
Figure 3.55: Orientation in R22In particular, we de�ne special tangles in R22 as in �gure 3.56.There is a natural multiplication in R22, given by juxtaposition of the tangles,as in �gure 3.57.Note that X:I = X, for all X 2 R22, and also that � has a natural multiplicativeinverse ��1 2 R22. 87



ΣHIFigure 3.56: Special tangles I; H; � 2 R22

Figure 3.57: Multiplication in R22The Homy skein S(F ) of F is the quotient of D(F ) by the Homy relationsD+ = v2D� + vzD0 (3.1)D t O = �D (3.2)where t denotes distant union, � = v�1�vz , andD+; D�; D0 2 D(F ) are diagramswhich are identical except in the neighbourhood of a double point, in which theyappear as in �gure 3.58.
D+ D� D0Figure 3.58: The three diagrams of the Homy skein relationWe need one more de�nition. Given a diagramD 2 D(F ), let each componenthave a unique label si; 1 � i � jDj. Let each si have a base point pi � si; thesi are oriented, so if si has intersection with the boundary of F , we let pi be the88



initial point of si on the boundary. We follow a path along s1; : : : ; sjDj in order,following each si in the direction of its orientation starting from pi.Now say that the diagramD is descending if there exists a choice of si; pi suchthat, as one travels the path described, each crossing of D is �rst encountered asan overpass.Remark. It is well-known (for example, [L-M] p.113) that any descending dia-gram in D(S2) is a diagram of an unlink.We continue with a sequence of lemmas.Lemma 3.7.3 S(F ) is spanned, as a �-module, by descending diagrams with nonull-homotopic closed curves.Proof. By induction, �rst on the number of crossings in a diagram, and secondon the number of null-homotopic closed curves.Let D be a non-descending diagram in D(F ); so every choice of labels fsig ofthe components gives a crossing (c, say) of D which is �rst met as an underpass.We use the Homy skein relation to write D as a linear combination (over �)of diagrams D0; D00, which are identical to D except in a neighbourhood ofc. In D0, the sign of c is negated, and so is �rst met as an overpass. In D00,the crossing is smoothed over. Therefore, D is expressible in S(F ) as a linearcombination of descending diagrams and diagrams with fewer crossings. Whenthere are no crossings, a null-homotopic closed curve is removable at the expenseof multiplying by �. 2The following two lemmas can then be deduced.Lemma 3.7.4 S(S2) is spanned, as a �-module, by the empty diagram. 2Lemma 3.7.5 S(R22) is spanned, as a �-module, by the diagrams I; H. 2Now, we are studying diagrams of satellites in D(S2) via (2; 2)-tangles inD(R22), as will become apparent. The following (general) de�nition describeshow we relate D(R22) to D(S2). 89



For planar surfaces F , F 0, we de�ne a wiring W of F into F 0 to be a choiceof inclusion of F in F 0, together with a �xed diagram of closed curves and arcsin F 0 � F whose endpoints are the speci�ed points of @F and @F 0. The wiringW then determines a linear mapDW : D(F )! D(F 0)by the inclusion D 7!W [D.We choose a wiring W of R22 into S2 by wiring a (2; 2)-tangle into a link.Lemma 3.7.6 A wiring W of R22 into S2 induces a linear mapSW : S(R22)! S(S2);de�ned on a diagram T in R22 by T 7! W [ T .Proof. Specialization of theorem 1.5 of [Mo1], using a di�erent skein relation. 2Composition X1:X2: : : : :Xn in D(R22) induces a multilinear mapS(R22)� S(R22)� : : :� S(R22)! S(R22);via a wiring.Given a reverse string satellite C �f P , let us begin with a diagram D(C �fP ) 2 D(S2) which has the property that the companion and the pattern areeasily discernible: for example, if L was a Whitehead double of the trefoil, thenD(C �f P ) might be as in �gure 3.59.Since C �f P has pattern P which has geometric winding number 2, thereexists a rectangle � in S2 which decomposes S2 into two planar areas F1 and F2,in such a way that the part of D(C �f P ) in F1, say, is the (2; 2)-tangle I 2 R22.Such a rectangle � is illustrated in �gure 3.59.We study framing via S(R22), since a change in framing (which is inducedby meridional full-twists of the essential torus VC) is represented in D(L) byreplacing I � F1 by some power of �. The sub-diagram D(L) \ F2 gives us awiring W of the (2; 2)-tangle into S2; results in S(R22) are extended to results inS(S2) via the linear map SW : S(R22)! S(S2).The Homy relations in S(R22) quickly give us the following relations:� = v2I + vzH (3.3)90



RFigure 3.59: Diagram D(C �f P ) of satellite C �f P��1 = v�2I � v�1zH: (3.4)The �rst thing to check in S(R22) is the e�ect of multiplying � by the basiselements I and H.Lemma 3.7.7 In S(R22), we have �I = � and �H = H.Proof. Multiplication of pure tangles is by juxtaposition; the lemma is obviousfrom the diagrams. 2By equation 3.3 and lemma 3.7.7, we can say that multiplication by � inS(R22) has a 2� 2 matrix  v2 0vz 1 !with respect to basis fI;Hg of S(R22). That is, if X = a1I + a2H 2 S(R22) iswritten as a column vector  a1a2 !, then� a1a2 ! =  v2 0vz 1 ! a1a2 ! :The matrix is diagonalized by choosing the basis f��1H; I � ��1Hg.Lemma 3.7.8 In S(R22), ��1H and I � ��1H are idempotent and mutually or-thogonal. Therefore f��1H; I � ��1Hg is an orthogonal basis for S(R22).91



Proof. Diagrams con�rm that H2 = H:H = �H, and hence ��2H2 = ��1H.Now write g = ��1H and h = I � ��1H = I � g 2 S(R22). Thenh2 = (I � g)2 = I2 � 2I:g + g2 = I � 2g + g = I � g = h:Also, gh = g(I � g) = g � g2 = g � g = 0. Similarly, hg = 0.Since S(R22) is a 2-dimensional module (by lemma 3.7.5), fg; hg forms anorthogonal basis for S(R22). 2We retain the notation g and h for ��1H; I � ��1H in what follows. We cannow write the composite tangles �:I; �:H; ��1:I and ��1:H in terms of theorthogonal basis. For example,�:I = v2I + vzH= v2I + 1�v2� H= ��1H + v2 (I � ��1H)= g + v2h:Similarly, ��1:I = g + v�2h. Also, ��1:H = H = �:��1H = �g. The followinglemma now comes easily.Lemma 3.7.9 In S(R22), we have �n = g + v2nh.Proof. By induction. This is certainly true for jnj � 1, by the above. Further,if we assume the result for indices m and n then�m+n = �m�n= (g + v2mh)(g + v2nh)= g + v2(m+n)h: 2It is easy to check that �g = g, and �h = v2h. We can interpret this as sayingthat multiplication by � has been diagonalized. Now writing X = a1g + a2h 2S(R22) as a column vector  a1a2 !, we get� a1a2 ! =  1 00 v2 ! a1a2 !with respect to basis fg; hg. 92



Now we apply lemma 3.7.9, via the linear map DW : D(R22)! D(S2), whereW is the wiring de�ned (as previously described) by the diagram of C �f P . IfC�fP = DW (I) has framing f , then the satelliteDW (�n) = C�f�nP has framingf � n.The linear map DW induces a linear skein map SW : S(R22)! S(R2), so thatSW (�n) gives us the Homy polynomial of the framing (f � n) satellite. Fromlemma 3.7.9, and the linearity of SW , we have for n 2 Z,SW (�n) = SW (g) + v2nSW (h):3.7.II Proof of theorems 3.7.1 and 3.7.2Proof of theorem 3.7.1. We choose a diagram Df of C �f P in D(S2), suchthat we can pick out a rectangle � as described; � bounds two rectangular discsF1 and F2 on S2. The wiring diagram W is Df \ F2, and Df \ F1 = I 2 R22.Therefore, by the work in the previous subsection,SW (�n) = SW (g) + v2nSW (h):By the linearity of the skein map, we deduceSW (�n) = SW (��1H) + v2nSW (I � ��1H)= ��1SW (H) + v2n �SW (I)� ��1SW (H)� :The theorem follows easily from the observation that, in S(S2), the term SW (I)equally represents the satellite link C �f P , and also its Homy polynomialPC�fP (v; z). Notice that SW (�n) corresponds to C �f�n P , and SW (H) corre-sponds to C �1 P . 2Proof of theorem 3.7.2. Assume for the moment that SW (g) and SW (h) areboth non-zero. Write SW (g) = RXi=rviZi(z)SW (h) = SXi=sviYi(z)such that Zi(z); Yi(z) 2 Z[z�1], and Zr(z); ZR(z); Ys(z) and YS(z) are all non-zero. Then we can deducesprv (SW (�n)) = max(R; S + 2n)�min(r; s+ 2n):Then there are two cases to consider.93



1. R� r � S � s. Thensprv (SW (�n)) = 8><>: R� (s+ 2n) if n � r�s2R� r if R�S2 � n � r�s2(2n+ S)� r if n � R�S2In this case, d = R� r; m = r�s2 ; M = R�S2 .2. R� r � S � s. Thensprv (SW (�n)) = 8><>: R� (s+ 2n) if n � R�S2S � s if R�S2 � n � r�s2(2n+ S)� r if n � r�s2 :In this case, d = S � s; m = R�S2 ; M = r�s2 .One can easily check that these equations are then those of the theorem.We only have to check that SW (g) and SW (h) are both non-zero in S(S2).Since F2 \Df is another (2; 2)-tangle in R22, then W 2 D(R22), and so within theskein module S(R22) we may writeW = a1:g + a2:hwith a1; a2 2 �, since S(R22) is a 2-dimensional module spanned by g; h. Nowuse the bilinear mapS(R22) � S(R22) ! S(R22)W � �n 7! W:�n= (a1:g + a2:h)(g + v2n:h)= a1:g + v2na2:h:Finally we wire them together into S(S2) using the wiring WI as in �gure3.60. The corresponding linear map S(WI) : S(R22)! S(S2) givesSWI (W:�n) = SWI (a1:g + v2na2:h)= a1SWI (g) + v2na2SWI (h):Now SWI (W:�n) = SW (�n), so the triviality of SW (g) and SW (h) comes downto the triviality of a1; a2; SWI (g) and SWI (h). We discuss three of them in thefollowing lemma.Lemma 3.7.10 In S(S2), we have a1; SWI (g) and SWI (h) are all non-zero.94



Figure 3.60: Wirings WI and WHProof. Let Un denote the unlink of n components. Then working in S(S2),SWI (g) = ��1SWI (H)= ��1:U1= ��16= 0and SWI (h) = SWI (I)� ��1SWI (H)= U2 � ��1:U1= � � ��16= 0:Also, W = a1:g + a2:h = (a1 � a2):g + a2(g + h) = (a1 � a2)��1:H + a2:I, sousing the wiring WH ,SWH (W ) = SWH ((a1 � a2)��1:H + a2:I)= (a1 � a2)��1SWH (H) + a2SWH (I)= (a1 � a2)��1:U2 + a2U1= (a1 � a2)��1:� + a2= a1:So we see that a1 is the Homy polynomial of a link, and hence is non-zero. 2Finally, we must deal with a2. Note that in S(R22),W:h = (a1g + a2h):h= a2h;and therefore in S(S2),SWI (W:h) = SWI (a2h)95



Figure 3.61: Orientation of W at boundary= a2SWI (h)= a2SWI (I � ��1H)= a2SWI (I)� a2��1SWI (H)= a2:U2 � a2��1:U1= a2(� � ��1):Now � � ��1 6= 0, soa2 = 0 , SWI (W:h) = 0, SWI (W:(I � ��1H)) = 0, SWI (W:I)� ��1SWI (W:H) = 0, �SWI (W )� SWI (W:H) = 0, SWI (W:I t U1) = SWI (W:H):Now recall that as a (2; 2)-tangle,W 2 D(R22) has orientation at the boundaryas in �gure 3.61.Consider the component W1 (say) of W which enters the rectangle � at thetop-right corner. Now by consideration of orientation, W1 must exit � at eitherthe bottom-right or top-left corner, but not the bottom-left corner. Since thetwo point intersections of P with D come from di�erent components of P , W1must exit R22 at the bottom-right corner. In this case, DWI (W:I) has one morecomponent than DWI(W:H). See �gure 3.62.Therefore, DWI (W:I t U1) has two more components than DWI(W:H). Bytheorem 1.5.1(ii), mindegzPL = 1 � jLj; and therefore, the Homy polynomialsof these links cannot be equal. Hence, for patterns which satisfy the hypotheses,a2 6= 0.The proof of theorem 3.7.2 is now complete. 2There are in fact many patterns for which the result of theorem 3.7.2 holds,although they do not satisfy the hypotheses of the theorem; the Whitehead dou-96
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Figure 3.62: DWI (W:I) and DWI (W:H)bles are an example of such. The only problem is in asserting that a2 is non-zero,as in the proof of theorem 3.7.2. There may be a number of ways around this:for example, a positive assertion that (for a general link L) �n divides PL(v; z)if, and only if, L = Un t L0, for some other link L0, would be enough. In fact, wetake the conjecture one step further.Conjecture 3.7.11 Let P be a general reverse string pattern, and let D be ameridional disc which intersects P in p1 positive intersections and n1 negativeintersections. We may suppose without loss of generality that p1 � pi; ni for alli. Then I conjecture that the coe�cient of linearity in the theorem in the casesf � m and f � M is equal to 2p1. In other words, there exist integers m; Mand d with m �M , independent of f , such thatf � m ) sprv �PC�fP (v; z)� = d+ 2p1jm� f jm � f �M ) sprv �PC�fP (v; z)� = dM � f ) sprv �PC�fP (v; z)� = d+ 2p1jM � f j:Such a conjecture is supported by theorem 3.7.2, which shows it to be true ina special case; also from the fact that sprv �PC�fP (v; z)� provides a lower boundfor the braid index b(C �f P ), from the MFW inequality, and its upper bound(from construction of explicit braids, in sections 3.5 and 3.6) behaves similarly.
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3.8 Comparing upper and lower bounds for braidindex of reverse string satellitesWe have upper and lower bounds of the braid index of a reverse string satelliteC �f P . What is more, we know about the linear behaviour of the upper bound(from explicit braid representations of C �f P ) and of the lower bound (for certainpatterns, from examination of the Homy polynomial) as the framing f varies inZ. The question remains as to how well these bounds compare: is it possiblefor the upper and lower bounds to be equal, and hence give a precise value forb(C �f P )? Preliminary experimentation has produced the following result.Theorem 3.8.1 Let K be a knot with �(K) � 9, and K 6= 10132. Let P be the(1,1)-antiparallel pattern. Then there exists f+; f� 2 Z such that f+ � f� =�(K), and f 2 [f�; f+] , 1 + 12sprv �P(K�fP )(v; z)� = �(K):Remark. In the case K = 10132, we �nd that there exists f+; f� 2 Z such thatf+ � f� = �(K)� 1, andf 2 [f�; f+] , 1 + 12sprv �P(K�fP )(v; z)� = �(K)� 1:It may be of some interest to note that K = 10132 is the only knot with arc index�(K) � 9 which shares its Homy polynomial with a knot of smaller arc index.Proof of theorem 3.8.1. By observation, following the computation of explicitHomy polynomials. All knots K of arc index �(K) � 9 are positively identi�edby the computer algorithm in chapter 5. Arc presentations are also generatedby the algorithm, and so braid presentations of K �f P (as in the example in�gures 3.44 and 3.45), for variable f , can be easily generated using a simplePASCAL algorithm. Then Short's polynomial program [M-S] is employed tocompute P(K�fP ). 2Remark. It remains unknown whether there exists a family fK �f P : f 2 Zg ofreverse string satellites, and a constant k for which b(K �f P ) < k, for all f 2 Z.
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Chapter 4The modulus of quasipositivity
4.1 IntroductionThe work of Rudolph [Ru2, Ru3, Ru4] provides us with material which compareswell with the constructions seen so far in this thesis. Some of his ideas can beexploited here.The property of quasipositivity of a knot K, and an associated knot invariant,the modulus of quasipositivity q(K), were used as tools in the study of complexplane curves. Rudolph studies quasipositivity, as it occurs in ordinary knot the-ory, via a certain type of satellite, the (1,1)-antiparallel.In section 4.2 we make a number of important de�nitions, and a connectionis made between the (1,1)-antiparallels of chapter 3 and Rudolph's quasipositiveannuli [Ru4]. In section 4.3 we state some results relating to polynomial invariantsfrom the context of Rudolph's work: in section 4.4 these are used to deduce alower bound for arc index from the Kau�man polynomial FL(a; x), which bears astriking similarity to a result relating crossing index to Jones' polynomial VL(t).Further comments and observations serve to reinforce this similarity.4.2 Quasipositivity and arc indexRudolph de�nes the (1,1)-antiparallel satellite of a knot C with framing f asfollows. Let A(C; f) be an oriented annulus in S3 with C � @A(C; f), andlk (C; @A(C; f)� C) = �f . It should be noted that the orientation on A(C; f)induces an orientation on its boundary, so that @A(C; f) is the (1,1)-antiparallel99



satellite of C with framing f . Rudolph's notation for this will be of use throughoutthis chapter.A positive embedded band �i;j 2 Bn is a braid�i;j = (�i�i+1 : : : �j�2)�j�1(��1j�2 : : : ��1i+1��1i ); 1 � i < j � n:A negative embedded band is the inverse of a positive embedded band:��1i;j = (�i�i+1 : : : �j�2)��1j�1(��1j�2 : : : ��1i+1��1i ):This is illustrated in �gure 4.1.
i j ni-1 +1i j-11Figure 4.1: A positive embedded band �i;j 2 BnIn particular, every elementary braid generator �i is a positive embedded band�i;i+1, so every link has an embedded band representation.We say that a braid representation � = Qks=1 �"(s)i(s) is positive if each "(s) = 1;similarly we say that an embedded band representation � = Qks=1 �"(s)i(s);j(s) isquasipositive if each "(s) = 1. Naturally, � is quasinegative if each "(s) = �1. So� positive ) � quasipositive, but the reverse is not true.A link L is quasipositive if there exists a quasipositive braid � whose closure�̂ is ambient isotopic to L.At this point, we make the observation that the braid representations of (1,1)-antiparallel satellites generated in section 3.5 were all embedded band represen-tations. For example, the trefoil antiparallel was presented as the closure of thebraid given in �gure 4.2.This braid can be written in B5 as � = �3;4�2;3�1;2��12;4��11;3 . The `change offraming' description of �gure 3.50, section 3.6 (and also illustrated in �gures 3.44100



0 1 2 3 4Figure 4.2: Braid representing trefoil antiparalleland 3.45) amounts to reversing the sign of an embedded band ��1i;j . By changingthe signs of the last two factors of � we get � = �3;4�2;3�1;2�2;4�1;3, which is a braidrepresenting a quasipositive antiparallel of the trefoil. Similarly, a quasinegative-framed antiparallel of the trefoil is given by the closure of � = ��13;4��12;3��11;2��12;4��11;3.Both are shown in �gure 4.3.The modulus of quasipositivity q(K) of a knot K isq(K) = sup ff 2 Z : @A(K; f) is quasipositiveg :Similarly, the modulus of quasinegativity r(K) is de�ned asr(K) = infff 2 Z : @A(K; f) is quasinegativeg:Theorem 4.2.1 [Ru2, Ru4] For any knot K, 1 > q(K) > �1. 2The �rst of these inequalities is deduced from an observation of the Homypolynomial (see theorem 4.2.6). The second is a corollary of the following.Theorem 4.2.2 [Ru2] Let � 2 Bn be a braid on n strings, with exponent sume, and closure �̂ = K. Then q(K) � e� n. 2Using the braid diagrams of sections 3.5 and 3.6, we can now make a directrelation between arc index and modulus of quasipositivity.Proposition 4.2.3 For any knot K, �(K) � r(K)� q(K).101
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(a) quasipositive; (b) quasinegativeFigure 4.3: Quasipositive and quasinegative antiparallels of the trefoil
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Remark. In theorem 4.2.7 we shall see that for all knots K, the value of r(K)�q(K), and hence of �(K), is at least 2.Proof of proposition 4.2.3. Let G(K) be a grid diagram of K, based on anarc presentation of K using �(K) arcs. By the description in section 3.6 (�gures3.48 and 3.49), we can use G(K) to construct an embedded band presentation of@A(K; f) (for some f), similar to �gure 4.2. From this, we can easily constructa quasipositive-framed antiparallel (call it @A(K; f+)) and also a quasinegative-framed antiparallel, @A(K; f�) (compare to �gure 4.3). From the construction,�(K) = f� � f+. By the de�nitions of q(K) and r(K) we know that f+ � q(K)and f� � r(K). The result follows easily. 2The following proposition allows us to write this inequality using the modulusof quasipositivity only. It highlights the inuence of mirror images in comparingquasipositive and quasinegative links.Proposition 4.2.4 Let �K denote the obverse (mirror image) of K. Then wehave q(K) = �r( �K).Corollary 4.2.5 Let K be any knot. Then �(K) � � �q( �K) + q(K)�.Proof. Combining propositions 4.2.3 and 4.2.4,�(K) � r(K)� q(K) = �q( �K)� q(K)= � �q( �K) + q(K)� : 2Proof of proposition 4.2.4. It su�ces to show that(i) the obverse of a quasipositive link is quasinegative;(ii) the framing is negated by reection.Then @A (K; q(K)) is quasinegative by (i), and has framing �q(K) by (ii). Sowe can write @A (K; q(K)) = @A � �K;�q(K)�.Now if �q(K) 6= r( �K) then we must have r( �K) < �q(K), because r( �K) isthe least value of f which ensures that @A( �K; f) is quasinegative. In particu-lar, we can deduce that @A � �K;�q(K)� 1� is quasinegative. This implies that@A(K; q(K) + 1) is quasipositive; but we have thatq(K) + 1 > sup ff : @A(K; f) is quasipositiveg ;103



giving a contradiction.To prove (i): let L be a quasipositive link, and � be a quasipositive embeddedband representation of L. Then � = Qks=1 �i(s);j(s). Now the obverse of a positiveembedded band is a negative embedded band:�i;j = ��1n�j;n�i 2 Bn:A quick sketch will convince the reader of this. The obverse, �L, is represented by��, which is given by �� = kYs=1 �i(s);j(s) = kYs=1��1n�j(s);n�i(s);and hence �L is quasinegative.To prove (ii): note that the framing is extracted by a count of the signs ofcertain crossings. By reecting, the signs of all the crossings, and in particularthose relevant to the framing, are negated. We deduce that framing is negatedby reection. 2Remark. Using theorem 4.2.2, we can quickly deduce that the inequality ofproposition 4.2.3 (and corollary 4.2.5) is sometimes strict. Writing � = Qks=1 �"(s)i(s) 2Bn, and K = �̂, we have by theorem 4.2.2q(K) �  kXs=1 "(s)!� n;and q( �K) �  kXs=1 (�"(s))!� n� � kXs=1 "(s)!� n:Putting these together we get� �q(K) + q( �K)� � 2n:Now let us suppose that the inequality is never strict, i.e. for any knot K, wehave �(K) = � �q(K) + q( �K)�. This implies �(K) � 2b(K). We already know(by proposition 2.5.1) that �(K) � 2b(K), and so we conclude that for all knots,�(K) = 2b(K):This we know not to be true. A rich source of counter-examples are the (l; m)torus links, for l 6= m. 104



Rudolph's study of upper bound for q(K) allows us to relate q(K) and r(K).We de�ne the polynomial RK(v) 2 Z[v�1] byRK(v) = zjKj�1PK(v; z)jz=0:Since mindegzPK(v; z) = 1 � jKj, we know RK(v) must be non-zero, and sosprvRK(v) � 0.Theorem 4.2.6 [Ru4] For any knot K, we have q(K) � �1 + mindegvRK: 2We can deduce the following.Theorem 4.2.7 For any knot K, we have r(K) > q(K) + 1.Proof. By theorem 4.2.6,q(K) � �1 + mindegvRK :Also, q( �K) � �1 + mindegvR �K) q( �K) � �1�maxdegvRK :Therefore q(K) + q( �K) � �2� (maxdegvRK �mindegvRK)� �2� sprvRK� �2:So q(K)� r(K) � �2, by proposition 4.2.4. 2Corollary 4.2.8 Let K be any knot. Then(i) there exists f 2 Z; 1 > f > �1 such that @A(K; f) is quasipositive;(ii) there exists f 2 Z; 1 > f > �1 such that @A(K; f) is quasinegative;(iii) there does not exist any f 2 Z such that @A(K; f) is both quasipositive andquasinegative; further,(iv) there exists f 2 Z such that @A(K; f) is neither quasipositive nor quasineg-ative.Proof. These statements are deduced directly from theorems 4.2.1 and 4.2.7. 2105



4.3 The framed polynomialIn this section we meet a polynomial which is an invariant of links up to regularisotopy, introduced into the work of Rudolph in [Ru5]. We also state a couple ofresults of Rudolph, pertaining to this polynomial invariant, which are of use inthe following section.Recall the de�nition @A(C; f) for the (1,1)-antiparallel of C. We extend itslightly, so that for a general link L, A(L; f) is a choice of disjoint annuli, suchthat L � @A(L; f), and also lk (Li; @A(Li; fi)) = fi, where Li are the componentsof L. So A(L; f) de�nes a choice of parallel to each component of L, which iscompletely determined by the fi.Since both Kau�man and Homy polynomials are used here, it is useful toadopt the notation �F (a; x) = FU2(a; x) = a�1�x+ax , �P(v; z) = PU2(v; z) = v�1�vz .The framed polynomial is de�ned to beAL;f(v; z) = (�1)jLj  1 + �PXL0 (�1)jL0jP@A(L0;f jL0)!where L0 runs through the non-empty sublinks of L.Proposition 4.3.1 [Ru4] Given an antiparallel satellite @A(L; f), de�ne its to-tal framing �(L; f) to be �(L; f) = Pi fi. ThenAL;f(v; z) = v�2�(L;f)AL;0(v; z): 2In the case jLj = 1, then AL;f(v; z) = �PP@A(L;f)(v; z) � 1, and �(L; f) = f .So the case jLj = 1 is a corollary of theorem 3.7.1.The second proposition is a rather curious result which relates the Homyand Kau�man polynomials via the framed polynomial.Proposition 4.3.2 [Ru5] Given a link L with components Li; i = 1; : : : ; jLj,de�ne its total linking number �(L) to be �(L) = Pi<j lk(Li; Lj). Then�F (v�2; z2)FL(v�2; z2) � v4�(L)AL;0(v; z); mod 2: 2106



The apparent complexity of this congruence is reduced if it is rewritten interms of Kau�man and Homy polynomials with the alternative normalizationsFO(a; x) = �F (a; x); PO(v; z) = �P(v; z). However, for reasons of continuity wewill stay with Rudolph's version, corresponding to the normalization FO(a; x) =1 = PO(v; z).When jLj = 1 this reads�F (v�2; z2)FL(v�2; z2) � �PP@A(L;f)(v; z)� 1; mod 2:4.4 A lower bound for arc index from the Kau�-man polynomialIn this section we discuss and prove a relationship between Kau�man's polyno-mial FL(a; x) and the arc index �(L). The proof draws together a number ofresults already presented in this thesis. In section 4.5 we make a conjecture,based on this bound and also on strong observational evidence, linking arc indexand crossing number as an extension of theorem 2.5.2.De�ne GL(a; x) = FL(a; x) mod 2, i.e. Kau�man polynomial with coe�cientsreduced modulo 2. Note that Rudolph uses the notation G to denote somethingelse in [Ru4].Theorem 4.4.1 Let K be a knot. Then �(K) � 2 + spraGK(a; x).Proof. Let G(K) be a grid diagram of K, based on an arc-presentation of K on�(K) arcs. From G(K), we can construct, for some f �, an embedded band dia-gram of @A(K; f �) on exactly �(K) braidstrings: we deduce that b (@A(K; f �)) ��(K). By the MFW inequality (theorem 1.5.1(i)),�(K) � b (@A(K; f �)) � 1 + 12sprv �P@A(K;f�)(v; z)� :Notice that 2 + sprv �P@A(K;f�)(v; z)� = sprv ��PP@A(K;f�)(v; z)�, since �P =v�1�vz . Therefore,�(K) � b (@A(K; f �)) � 12sprv ��PP@A(K;f�)(v; z)� : (4.1)By proposition 4.3.1, we have �PP@A(K;0) � 1 = v2f ��PP@A(K;f) � 1� for allf 2 Z. In particular this is true when f = m, the `least framing' of theorem107



3.7.2. We write �PP@A(K;m) = DXi=dZi(z)vi;where Zi(z) 2 Z[z�1] and Zd 6= 0 6= ZD.We show that d = 0, and also that Zd(z) 6= 1, and hencesprv ��PP@A(K;m) � 1� = sprv ��PP@A(K;m)� = D � d:Then we deduce, using proposition 4.3.1, that for all f 2 Z,sprv ��PP@A(K;f) � 1� = D � d:In particular, we deduce sprv ��PP@A(K;0) � 1� = D � d: (4.2)By theorem 3.7.2, for all f , we havesprv ��PP@A(K;f)� � D � d; (4.3)and then it follows from equations 4.1, 4.3 and 4.2 respectively that�(K) � 12sprv ��PP@A(K;f�)(v; z)�� 12(D � d)� 12sprv ��PP@A(K;0) � 1� : (4.4)Using equation 4.4, and then the `mod 2' congruence of proposition 4.3.2, wehave �(K) � 12sprv ��PP@A(K;0) � 1�� 12sprv �(�PP@A(K;0) � 1) mod 2�= 12sprv ��FGK(v�2; z2)� :The �nal step is to note that�(K) � 12sprv (�FGK(v�2; z2)) = 12sprv �v�2�z2+v2z2 GK(v�2; z2)�= spra �a�1�x+ax GK(a; x)�= 2 + spra (GK(a; x)) :108



It remains to show that, if �PP@A(K;m) = PDi=d Zi(z)vi, then (i) d = 0, and (ii)Zd(z) 6= 1. The arguments for these run as follows.To prove (ii), we assume that (i) is true, i.e. d = 0. From theorem 4.3.1, wehave �PP@A(K;m) � 1 = v2�PP@A(K;m+1) � v2;and hence DXi=dZi(z)vi � 1 + v2 = v2�PP@A(K;m+1):Suppose, for a contradiction, that Zd(z) = 1. Since d = 0, we can quickly deducethat the polynomial on the left has spread at most D � d � 2 in the v-variable,and hence the same is true of the polynomial on the right. That is,sprv ��PP@A(K;m+1)� � D � d� 2:But by theorem 3.7.2, we know that for all f 2 Z,sprv ��PP@A(K;f)� � sprv ��PP@A(K;m)� = D � d;and so we have a contradiction.To prove (i), we make some very careful observations of the restrictions onmindegv ��PP@A(K;f)� and maxdegv ��PP@A(K;f)�, for f = m�1; m; m+1. Fromtheorem 3.7.2 we knowsprv ��PP@A(K;m�1)� = D � d+ 2;sprv ��PP@A(K;m)� = D � d;sprv ��PP@A(K;m+1)� = D � d or D � d+ 2:To compare the least and greatest powers of v in these polynomials, we write�PP@A(K;m�1) = v2�PP@A(K;m) � v2 + 1= v2 DXi=dZi(z)vi � v2 + 1= DXi=dZi(z)vi+2 � v2 + 1= EXj=eYj(z)vj; say; (4.5)and �PP@A(K;m+1) = v�2�PP@A(K;m) � v�2 + 1109



= v�2 DXi=dZi(z)vi � v�2 + 1= DXi=dZi(z)vi�2 � v�2 + 1= GXj=gXj(z)vj; say: (4.6)By comparison of the last two lines of equation 4.5,E � maxfD + 2; 2; 0g = maxfD + 2; 2ge � minfd+ 2; 2; 0g = minfd+ 2; 0g:In fact, we have E = maxfD + 2; 2g or D = 0;e = minfd+ 2; 0g or d = �2: ) (4.7)A similar comparison in equation 4.6 givesG � maxfD � 2;�2; 0g = maxfD � 2; 0gg � minfd� 2;�2; 0g = minfd� 2;�2g:Again this simpli�es toG = maxfD � 2; 0g or D = 2;g = minfd� 2;�2g or d = 0: ) (4.8)We consider the four possible combinations for E and e in equations 4.7,for di�erent values of d, generating contradictions. Some cases are excluded byfurther considering the four possible combinations for G and g in equations 4.8,as we will see.Suppose �rstly that d > 0. Therefore d > �2, and sinceD > d we have D > 0.Referring to equations 4.7, there is only one case to consider: E = maxfD+2; 2g,e = minfd+2; 0g. Now D > 0 implies D+2 > 2, and d > �2 implies d+2 > 0,and so E = D + 2;e = 0:Therefore E � e = D+ 2. By theorem 3.7.2, we have E � e = D� d+2, andequating these we have D + 2 = D � d + 2. This gives us d = 0, contradictingthe assumption that d is strictly positive.Now suppose that d < 0. The four cases of equations 4.7 are consideredseparately below. 110



1. D = 0 and d = �2. ThereforeE � maxfD + 2; 2g;e � minfd+ 2; 0g:Therefore, E� e � 2�0 = 2, implying D�d+2 � 2 and hence D�d � 0.But D � d = 2 > 0, so we have a contradiction.2. D = 0 and e = minfd+ 2; 0g. Therefore, E � 2, soD � d+ 2 = E � e � 2�minfd+ 2; 0g:(i) If e = 0 then D � d+ 2 � 2, so D � d � 0, so D � d. We know D � d,so we conclude D = d = 0, which is a contradiction since d < 0.(ii) If e = d+2 then D� d+2 � �d, so D � �2 which contradicts D = 0.3. E = maxfD + 2; 2g and d = �2. Therefore, e � 0, soD � d+ 2 = E � e � maxfD + 2; 2g:(i) If E = D+2 then D�d+2 � D+2, so d � 0 which contradicts d = �2.(ii) If E = 2 then D � d + 2 � 2, so D � d � 0, and so D � d. Again, weknow D � d, so we conclude D = d = �2. In this case, recall equations4.8. We deduceG = maxfD � 2; 0g = 0; g = minfd� 2;�2g = �4:We know G� g � D � d + 2. Therefore D � d � G� g � 2 = 4� 2 = 2,which contradicts D = d (= �2).4. E = maxfD + 2; 2g and e = minfd+ 2; 0g. There are four subcases here.� E � e = (D+ 2)� 0 = D+ 2) D� d+ 2 = D+ 2) d = 0, which isa contradiction since d < 0.� E � e = (D + 2) � (d + 2) = D � d which is a contradiction, sinceE � e = D � d+ 2.� E � e = 2� (d + 2) = �d) D � d + 2 = �d) D = �2. This givesus D 6= 2; also d � D, so d 6= 0. Recalling equations 4.8,G = maxfD � 2; 0g = 0; g = minfd� 2;�2g = d� 2:Therefore G� g = �(d� 2); we know G� g � D � d + 2, and so wehave D � d+ 2 � G� g = �d + 2) D � d + 2 � �d + 2) D � 0,which contradicts D = �2. 111



� E � e = 2� 0 = 2) D � d+ 2 = 2) D � d = 0) D = d: We haved � �2; D � 0, and therefore d = �1 or �2. Recalling equations 4.8,we know D 6= 2; d 6= 0, and so(i) d = D = �2) G = 0; g = �4) G� g = 4; or(ii) d = D = �1) G = 0; g = �3) G� g = 3.In each case we have G�g � D�d+2, soD�d � G�g�2 � 3�2 = 1,which contradicts D = d.Thus we conclude that d = 0, and the proof of theorem 4.4.1 is complete. 24.5 A conjecture for alternating knotsWe see from the discussion so far that Rudolph's work �ts quite neatly intothe study of arc index. Theorem 4.4.1 adds to a list of similar results relatinggeometric properties of knots to features of polynomial invariants.We can analyse the inequality of theorem 4.4.1, to see just how tight a boundit is. Calculation of FL(a; x) is possible via Ochiai's rather nice polynomialsprogram [Oc]: from this it is possible to extract spra (GK(a; x)) using a simplePASCAL procedure.Having generated all knots of arc index at most 9 (see chapter 5), we test ourinequality on this set. We discover that for all knots K with �(K) � 9,spra (GK(a; x)) + 2 = �(K) , K is an alternating knot:Also available [Th1] is a complete table of FK(a; x) for all knots K withc(K) � 13.12 We recall theorem 2.5.2, which says that for certain knots K,�(K) � c(K) + 2. Again we extract spra (GK(a; x)), using another simple PAS-CAL procedure. We �nd that for K with c(K) � 13,spra (GK(a; x)) = c(K) , K is an alternating knot:So for knots satisfying the hypothesis of theorem 2.5.2, and with at most 13crossings, spra (GK(a; x)) + 2 � �(K) , K is an alternating knot;and hence theorem 4.4.1 yields equality for these alternating knots.12Thanks are due to Morwen Thistlethwaite for making these tables available.112



We can also make observations on the alternating knots which do not sat-isfy the hypothesis of theorem 2.5.2. The existence of such a knot K withspra (GK(a; x)) 6= c(K) would be quite revealing. On one hand,spra (GK(a; x)) > c(K) ) �(K) > c(K) + 2;via theorem 4.4.1. Therefore, K would be a counter-example to the conjecture of[C-N], namely, that for all non-trivial links, �(L) � c(L)+2. On the other hand,spra (GK(a; x)) < c(K) ) spra (GK(a; x)) + 2 < c(K) + 2:Then if we suppose that the inequality �(K) � spra (GK(a; x)) + 2 (theorem4.4.1) yields equality for all alternating links, we would have �(K) < c(K) + 2.There is no alternating knot for which this is known to be true, and indeed theopposite has been conjectured for alternating knots.In view of the partial results found here, we make the following conjectures.Conjecture 4.5.1 Let K be a knot. Then�(K) � spra (GK(a; x)) + 2;with equality if, and only if, K is an alternating knot.This is an extension of theorem 4.4.1, and should be compared (on face valueat least) with the following result, proved independently by Murasugi and byThistlethwaite.Theorem 4.5.2 [Mu, Th3] Let K be a knot. Thenc(K) � sprt (VK(t)) ;with equality if, and only if, K is an alternating knot. 2The second conjecture is intended as a generalization of theorem 2.5.2.Conjecture 4.5.3 Let K be a knot. Then�(K) � 2 + c(K);with equality if, and only if, K is an alternating knot.113



4.6 Proof of theorem 2.3.3We are now in a position to prove theorem 2.3.3, which stated that, for a (2; q)torus link L, q � 2, we have �(L) � 2 + q.Proof of theorem 2.3.3. Let L be the torus knot T (2; q). We show thatspra(GL(a; x)) = q;then by theorem 4.4.1,�(L) � 2 + spra(GL(a; x)) = 2 + q;and the result follows.So what follows is a proof that spra(GL(a; x)) = q. We use an inductivetechnique, developed from application of the Kau�man skein relation (subsection1.5.II). The relation quickly gives us, for q � 2,�T (2;q) = x ��T (2;q�1) + a1�q�� �T (2;q�2);and so aqFT (2;q) = x �aq�1FT (2;q�1) + a1�q�� aq�2FT (2;q�2);which we simplify toFT (2;q) = x �a�1FT (2;q�1) + a1�2q�� a�2FT (2;q�2):Now note thatFT (2;0) = FU2 = a�x+a�1x ,FT (2;1) = FU1 = 1,and soFT (2;2) = a�1(x� x�1) + a�2 + a�3(x� x�1),FT (2;3) = a�2(x2 � 2) + a�3x + a�4(x2 � 1) + a�5x,FT (2;4) = a�3(x3 � 3x+ x�1) + a�4(x2 � 1) + a�5(x3 � 2x + x�1)+a�6x2 � a�7x.First, we show that mindega �FT (2;q)� = 1 � 2q; maxdega �FT (2;q)� = 1 � q,and then we show that the coe�cients of these extreme powers of a are non-zerowhen reduced modulo 2. We can then deduce thatspra(GL(a; x)) = maxdega �FT (2;q)��mindega �FT (2;q)�= (1� q)� (1� 2q)= q: 114



To see that mindega �FT (2;q)� = 1 � 2q, notice that this is true in the casesq = 2; 3; 4: For q > 4, we use the inductive relation:FT (2;q) = x �a�1FT (2;q�1) + a1�2q� � a�2FT (2;q�2)= x (a2�2qx + O(a3�2q)) + a1�2qx � a�2 (a5�2qx+ O(a6�2q))= (a2�2qx2 + O(a3�2q) + a1�2qx � (a3�2qx+ O(a4�2q))= (a1�2qx + O(a2�2q)).Further, the coe�cient of a1�2q in FT (2;q) is x, which is non-zero when reducedmodulo 2.We deduce that maxdega �FT (2;q)� = 1� q, in a similar way. Notice that thisis true in the cases q = 2; 3; 4; and accordingly for these cases we can writeFT (2;q) = 1�qXi=1�2qZqi (x)ai; (4.9)where Zqi (x) 2 Z[x�1]. For q > 4, the inductive relation givesFT (2;q) = x �a�1FT (2;q�1) + a1�2q� � a2FT (2;q�2)= xa�1 �P2�qj=3�2q Zq�1j (x)aj�+ xa1�2q � a�2 �P3�qj=5�2q Zq�2j (x)aj�= x �P2�qj=3�2q Zq�1j (x)aj�1�+ xa1�2q � �P3�qj=5�2q Zq�2j (x)aj�2�.Then maxdega �FT (2;q)� is seen by observing that, on the right-hand side, thehighest possible a-power with non-zero coe�cient is a1�q. Therefore, we can writeFT (2;q) = P1�qi=1�2q Zqi (x)ai, for all q � 2; and further,Zq1�q(x) = xZq�12�q (x)� Zq�23�q (x):Finally, we note thatZ2�1(x) = x� x�1,Z3�2(x) = x2 � 2,Z4�3(x) = x3 � 3x+ x�1.So, for q = 2; 3; 4, we have Zq1�q(x) = xq�1 + L:O:T:. For general q,Zq1�q(x) = xZq�12�q (x)� Zq�23�q (x)= x �xq�2 + L:O:T:�� �xq�3 + L:O:T:�= �xq�1 + L:O:T:�� �xq�3 + L:O:T:�= xq�1 + L:O:T:;which is non-zero when reduced modulo 2. 2115



Chapter 5Extended computations for knotswith small arc index
5.1 IntroductionLet � be a natural number. Recall, from section 2.2, that K(�) denotes the setof knots K with arc index �(K) = �. By considering the construction of arc-presentations, it is easy to see that jK(�)j, the number of knots in K(�), is �nite;for there are only a �nite number of ways of connecting a �nite set of pointspairwise by simple planar arcs, as our construction allows. When � is su�cientlysmall, we can apply computational techniques to help generate an exhaustive listof the elements of K(�).Recall that DK(�) denotes the set of all �-arc diagrams of knots. As � growswe �nd �� jK(�)j � jDK(�)j:We generate knots of arc index at most � by numerical representation of allpossible diagrams. Due to the relative sizes of jDK(�)j and �, the number ofsuch diagrams under consideration soon gets very large. Since there are manydiagrams generated which represent a given knot, we employ a number of sievesto detect some of this repetition, and remove redundant examples.With the �nal `sieved' list of diagrams, the following occurs. The diagramshave been represented in such a way that a representing braidword is easily com-puted. The braidword forms the input to a procedure (adapted from a programof Short, [M-S]) which calculates the Homy polynomial invariant. These poly-nomials are sorted modulo mirror image, and listed in a well-de�ned order.116



Each polynomial in turn can then be referred, by hand, to Thistlethwaite'stabulations of Homy polynomials, [Th4] (subject to a change of variable whichcan be implemented with a simple Maple program13). The tabulations arerestricted to knots of crossing number at most 13; our code includes a device tocalculate an upper bound for crossing number for each knot, thus warning whena candidate knot may be too large for the tabulation.Reference to [Th4] gives us a number of candidate knots for each polynomial.In the event of there being more than one candidate, observation of crossingnumber or other invariants will usually resolve the ambiguity.Of the �nal list of knots, each one has arc index at most �. Comparison ofthis list with the results of experiments for smaller values of � will give the listof elements of K(�).5.2 Constructing the knotFirst, we briey recall that a link can be constructed from the union of a �xednumber of simple arcs in a controlled way.Let A �= S1 � S3 be a binding circle in S3; the complement S3 � A admits a�bration H = fH� : 0 � � < 2�g by open half-planes H� with @H� = A. Choosehalf-planes nH� : � = 2(��k)�� ; k = 0; : : : ; �� 1o, and denote these fh0; : : : ; h��1g.Note that for reasons of convenience in later de�nitions, the indices are orderedin the direction of decreasing �.Choose an orientation for A, and � distinct points fp0; p1; : : : ; p��1g on A,which appear in order of their indices as we follow the orientation of A.Now perform the following construction: join pairs of points fpig by simplearcs fajg in the fhjg such that(i) each hj contains exactly one arc aj;(ii) each pi is incident to exactly two arcs aj.The union S��1j=0 aj is a knot or link, denoted L.13Maple will also detect the incidence of polynomials that factorize, allowing us to identifypossible connected sums.
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5.3 Representing the knotWrite Sn for the set of permutations of n elements f0; 1; : : : ; n� 1g. Let m � n;an m-cycle � 2 Sn has the obvious de�nition, i.e. for all i, �k(i) = i, mjk. Wewrite an m-cycle in the form � = (i1; i2; : : : ; im), so that �(ij) = ij+1, �(im) = i1.Suppose we have a diagram D of a link L which has the form of the constructiondescribed above. The diagram D can be reduced to a pair of permutations of S�in the following way.For some component Lr of L, choose an orientation. Choose one of the pointsof Lr \A: this is the starting point of a path round Lr. Let �r be the cycle givenby the subscripts of the hj encountered as we follow the orientation of Lr. Let �rbe the cycle of the subscripts of the pi encountered as we follow the orientationof Lr. Perform this for each of the components of L in turn. Then de�ne thepermutations � = Q �r; � = Q �r. Note that the �r are distinct, the �r aredistinct, and �; � 2 S�; also, for i = 0; : : : ; n� 1, �(i) 6= i and �(i) 6= i.In general, we write (�; �) for the knot or link L constructed in this way.Lemma 5.3.1 Let L be an arc presentation of a link on � arcs. Then L is aknot (i.e. a 1-component link) , � is an �-cycle , � is an �-cycle.Proof. If L is a knot then each of the pi is encountered exactly once as L istraversed, so that � is a product of one cycle of length �. Conversely, if � isan �-cycle then all the points pi must lie on the same component of the link;since each component is composed of at least 2 arcs then there can be only onecomponent.A similar argument holds for �. 2Example. In �gure 5.1, with starting point and orientation as indicated, onecan easily verify that � =(4, 0, 3, 1, 5, 2), � =(0, 3, 1, 5, 2, 4).Our classi�cation is of knots (i.e. 1-component links). For a given �, the �rsttask is to generate all relevant �-cycles; knot diagrams are then formed by takingpairs of �-cycles in an ordered way, and using the construction just described.5.4 Preliminary sieves on the list of �-cyclesAs mentioned at the beginning of the chapter, the number of possible diagramsgrows very quickly with �, so a number of sieves are employed to keep the work118
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4Figure 5.1: �=(4, 0, 3, 1, 5, 2), �=(0, 3, 1, 5, 2, 4)down to a minimum. We describe these in sections 5.4 and 5.5.5.4.I Base points and arc-reducing movesBy the use of a couple of simple observations we can greatly reduce the numberof �-cycles relevant to the experiment.Proposition 5.4.1 Let K be a knot, and �; � 2 S� the permutations giving K. Ifthere is an i 2 [0; �� 1] such that j�(i)� ij � 1 (mod �) or j�(i)� ij � 1 (mod �)then the arc index of K is strictly less than �.Proof. We use Cromwell's moves (section 2.3), which relate two arc-presentationsof the same link. If j�(i)� ij � 1 (mod �) then a pair of consecutive arcs are alsoadjacent, and an arc-reducing type IV move is applicable. If j�(i)�ij � 1 (mod �)then a pair of consecutive points pi; pj are adjacent, and the diagram admits anarc-reducing type III move. 2Let h0 be the base page of the �bration H; let p0 be the base point of A.Collectively they are called the base pair, and they de�ne the starting point ofour path around K. We make the following observation.Proposition 5.4.2 A knot is independent of the choice of base page and basepoint. 2119



Proposition 5.4.1 means that we can ignore any �-cycle for which two adjacententries di�er by 1 (modulo �). Proposition 5.4.2 means that we can choose ourstarting point to be p0, meeting the arc a0 on �bre h0 �rst, and so our �-cycleshave 0 as their �rst entry. Proposition 5.4.2 reduces the number of relevant�-cycles by a factor of �.As an illustration of the use of proposition 5.4.2, consider the pair of permu-tations as a �� � matrix M , as described in section 2.2. There is exactly one 1and one �1 in each row and column. By choosing di�erent base pairs there are�2 possibilities for M , given by cycling the rows and columns. Proposition 5.4.2says that we can assume M00, the top-left entry of M , is +1; the �(�� 1) caseswhere M00 = 0 or �1 can be rejected. (The remaining � cases have a +1 in thetop-left corner.) In the previous example, we change � to (0, 2, 5, 3, 1, 4) byadding 2 to each entry, modulo � (where in this example � = 6). Then the newdiagram representing the knot is the one in �gure 5.2.

Figure 5.2: �=(0, 2, 5, 3, 1, 4), �=(0, 3, 1, 5, 2, 4)5.4.II Sieving mirror imagesGiven an �-cycle �, de�ne its reection � by replacing each entry in the cycle byits additive inverse modulo �: thus, for example, if � = (0; 3; 1; 5; 2; 4) then� = (0, 6-3, 6-1, 6-5, 6-2, 6-4) = (0, 3, 5, 1, 4, 2).Lemma 5.4.3 Let K = (�; �). Then (�; �) = (�; �) = K, where K denotes theobverse of K. Also (�; �) = K.Proof. We show that (�; �) = K: the approaches for the other two claims aresimilar. 120



Consider the grid diagramG ofK inR2 generated by (�; �), where the arcs areall drawn parallel to the y-axis, and the semiloops parallel to the x-axis. Supposethat G lies entirely in the half-plane f(x; y) : y < 0g. Let G0 denote the imageof G when reected in the line y = 0; so G0 is a diagram of K. The reectionpreserves the pi, and so preserves � ; it sends arc aj to arc a��1�j, and so sends �to a new �-cycle �0, where the ith entries of � and �0 are additive inverses modulo��1. We have (�0; �) = K. Now by proposition 5.4.2 we can change the labels ofthe hj without altering the knot: we use the labels h0j0, where h0(j+1) mod � = hj.This has the e�ect of adding 1 to each entry of �0 modulo �, giving �00. Hence,(�00; �) = K. Now we have that the ith entries of � and �00 are additive inversesmodulo �; so �00 = �. 2By lemma 5.4.3, if K = (�; �) then there are four pairs of �-cycles which arerelated by reections, and represent either K or K. They are (�; �); (�; �); (�; �)and (�; �). They correspond to the four quadrants of R2 when dissected by theaxes; �gure 5.3 demonstrates this.Up to mirror image, we need only consider one of these four diagrams. Thefollowing de�nition and proposition allow us to do that.Let � be an �-cycle. We say that � is proper if �(0) � �2 , with �(�(0)) � �2 if�(0) = �2 .Proposition 5.4.4 If K can be represented by a pair (�; �) of �-cycles, then itcan be represented (modulo mirror image) by a pair of proper �-cycles.Proof. From the de�nition of �, we have that � is proper , � is not proper.It follows that exactly one of the four diagrams (�; �); (�; �); (�; �) and (�; � ) hasthe property that both de�ning �-cycles are proper. 2Since �(K) = �(K), and we can easily establish the presence of K in a list byits Homy polynomial or the Homy polynomial of K,14 then we opt to search forknots modulo mirror image. We therefore employ a sieve to remove all non-proper�-cycles.14This is because PK(v; z) = PK(v�1; z).
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Figure 5.3: Four pairs of �-cycles generated by reection
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Example. Consider K = (�; �) when � = (0, 3, 5, 1, 4, 2), � = (0, 4, 2, 5, 1, 3).In this case, � = 6. The matrix M (as de�ned in section 2.2) is0BBBBBBBB@ 1 0 �1 0 0 00 �1 0 0 1 00 0 0 �1 0 10 0 1 0 �1 0�1 0 0 1 0 00 1 0 0 0 �1
1CCCCCCCCA :

Now, �(0) = 3 = �2 and �(�(0)) = 5 > �2 , so � is not proper. We choose toreplace � by its reection, � = (0, 3, 1, 5, 2, 4). Now we have a new grid diagramof K, represented (up to mirror image) by (�; �), and the corresponding matrixM is 0BBBBBBBB@ 1 0 0 0 �1 00 0 1 0 0 �10 1 0 �1 0 00 0 �1 0 1 0�1 0 0 1 0 00 �1 0 0 0 1
1CCCCCCCCA :

Next, note that �(0) = 4 > �2 , so � is not proper. We take the proper cycle� = (0, 2, 4, 1, 5, 3) in place of � . Then K is represented by (�; �), and Mbecomes 0BBBBBBBB@ 1 0 0 0 �1 00 �1 0 0 0 1�1 0 0 1 0 00 0 �1 0 1 00 1 0 �1 0 00 0 1 0 0 �1
1CCCCCCCCA :

5.4.III Rotating the grid diagramIn proposition 5.4.2 we stated that given an grid diagram G, the knot K thuspresented is independent of the the choice of labels of the points pi � A andthe half-planes hj. We can rotate the indices, i 7! i + s mod �, j 7! j + t mod� without a�ecting the resulting knot or link. In terms of the matrix M , thesechanges of base pair correspond to cyclic permutations of the rows and columnsof M . 123



Consider such a matrixM , given by (�; �), withM00 = 1 and �; � both propercycles. We can, by such a cyclic permutation of rows and columns, generate anew matrix M 0 from M such that M 000 = 1. There are � matrices M 0 whichcan be generated in this way, one for each column (some of them may be equal).Consider one such M 0, and let the de�ning �-cycles of M 0 be �0; � 0; they are notnecessarily proper cycles.We obtain �0 from � by adding (modulo �) a rotation index x�, say, to eachentry of �, then cyclically rotating the entries until the �rst entry is 0. We obtain� 0 from � in a similar way: the rotation index is x� , say. The rotation indices x�and x� are not necessarily equal. We denote �0 by cyc(�; x�) and � 0 by cyc(�; x� ).Given an �-cycle �, de�ne its class [�] to be the setfcyc(�; x) : x = 0; 1; : : : ; �� 1g :Lemma 5.4.5 Let �; �0 be �-cycles. Then �0 2 [�], � 2 [�0].Proof. From the de�nition of [�], we have that �0 is obtained from � by addinga rotation index x� to each entry of �, and then cycling the entries until the�rst entry is 0; that is, �0 = cyc(�; x�). Now de�ne the rotation index x�0 asx�0 = �� x�. One can easily check that cyc(�0; x�0) = �. 2Lemma 5.4.6 Let K be a knot. ThenK 2 f(�0; � 0) : �0 2 [�]; � 0 2 [� ]g , K 2 f(�0; �) : �0 2 [�]g :Proof. `If' is trivial. `Only if': suppose K = (�0; � 0) with �0 2 [�]; � 0 2 [� ]. Since� 0 2 [� ] then � 2 [� 0], so (�0; � 0) = (�00; �) for some �00 2 [�0], and hence �00 2 [�]since it merely means adding the same integer to each entry and rotating. 2This means that each knot obtainable by pairing a cycle of [�] with a cycle of[� ] is also presentable by pairing a cycle of [�] with � itself.The next step is to check that we can still assume that the de�ning cycles areproper. Given a cycle �, de�ne its bi-class as the union of classes [�] [ [�].Lemma 5.4.7 Let �; �0 be �-cycles. Then �0 2 [�], �0 2 [�].
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Proof. We claim that for each x, there exists y such that cyc(�; x) = cyc(�; y).For if we write � = (�0; �1; ; �2 : : : ; ���2; ���1), thencyc(�; x) = (0; �i+1 � �i; : : : ; �i�1 � �i)) cyc(�; x) = (0; �� (�i+1 � �i); : : : ; �� (�i�1 � �i))= (0; �� �i+1 + �i; : : : ; �� �i�1 + �i)where �i + x � 0 mod �, while� = (0; �� �1; : : : ; �� ���1)) cyc(�; y) = (�� �i + y; �� �i+1 + y; : : : ; �� �i�1 + y)where y � �i mod �.Then we deduce that for some x; y,�0 2 [�] ) �0 = cyc(�; x)) �0 = cyc(�; x)) �0 = cyc(�; y)) �0 2 [�]: 2Proposition 5.4.8 Let �; � be proper �-cycles. Let K be a knot such thatK 2 f(�0; � 0) : �0 2 [�] [ [�]; � 0 2 [� ] [ [� ]g. Then K can be represented, modulomirror image, by (�00; �) with �00 2 [�] [ [�] and �00 proper.Proof. Write K = (�0; � 0), with �0 2 [�][ [�]; � 0 2 [� ][ [� ]. There are four casesto consider.1. �0 2 [�]; � 0 2 [� ]. By lemma 5.4.6, K = (�00; �) for some �00 2 [�]. If �00 isproper then we have no more to prove. If �00 is not proper then K = (�00; �);�00 is proper by proposition 5.4.4, and �00 2 [�] by lemma 5.4.7.2. �0 2 [�]; � 0 62 [� ]. In this case � 0 2 [� ]; write K = (�0; � 0). By lemma 5.4.6,K = (�00; �) for some �00 2 [�]. If �00 is proper then there is no more to prove.If �00 is not proper write K = (�00; �), with �00 proper by proposition 5.4.4,and �00 2 [�] by lemma 5.4.7.3. �0 62 [�]; � 0 2 [� ]. In this case �0 2 [�]; write K = (�0; � 0). By lemma 5.4.6,K = (�00; �) for some �00 2 [�]. If �00 is proper then there is no more to prove;else write K = (�00; �), with �00 proper by proposition 5.4.4, and �00 2 [�] bylemma 5.4.7. 125



4. �0 62 [�]; � 0 62 [� ]. In this case �0 2 [�]; � 0 2 [� ]; write K = (�0; � 0). Bylemma 5.4.6, K = (�00; �) for some �00 2 [�]. If �00 is proper then there is nomore to prove; else write K = (�00; �), with �00 proper by proposition 5.4.4,and �00 2 [�] by lemma 5.4.7. 2Proposition 5.4.8 means that all knots that can be presented by a pair ofproper �-cycles can also be presented by pairing a cycle from the list of propercycles with a cycle from the list of proper bi-class representatives.5.4.IV Initial discussion of the pseudocodeThe algorithm is implemented in SUN PASCAL. This allows for ready use andadaptation of Short's package [M-S], which was written in the same language.For the reasons of ordering, speed and storage space, we store the permuta-tions as integers I� and I� : in the example in subsection 5.4.I, I� = 403152 andI� = 31524.This method of storage is convenient provided � � 10. For larger experi-ments, we may write the permutation in `base �', and store as an integer base 10,recovering the permutation when necessary. As � grows, the size of the experi-ments (in terms of computer time and memory needed) may begin to outweighthe usefulness of the results, since Thistlethwaite's polynomial tabulations arenecessarily �nite.A self-calling procedure nextstep generates �-cycles by building up a cycleone entry at a time. It runs lexicographically through all the possibilities, build-ing up a list of �-cycles that are not sieved out by the sieves corresponding topropositions 5.4.1, 5.4.2 and 5.4.4. That is, � appears in the list if, and only if,(i) the �rst entry of � is 0 (proposition 5.4.2);(ii) for each i = 0; : : : ; �� 1, j�(i)� ij > 1 (proposition 5.4.1); and(iii) � is a proper �-cycle (proposition 5.4.4).This list is denoted C� in the pseudocode.We use the result of proposition 5.4.8 to compile a second list, SC�, which isa subset of C�. The list SC� contains exactly one proper representative � of each126



bi-class; that is, for each bi-class we choose a proper element of the bi-class torepresent it in SC�. Then proposition 5.4.8 can be interpreted as saying thatK 2 f(�; �) : � 2 C�; � 2 C�g, K 2 f(�; �) : � 2 C�; � 2 SC�g :This is performed as follows: once a complete �-cycle � has been successfullygenerated, it is �rst added to the list C�. Then we use a function isnewperm tosystematically check for the presence in SC� of the cycles cyc(�; x�) and theirreections as x� passes through the values 0; : : : ; � � 1. If such a cycle is foundthen isnewperm returns the negative: the bi-class is already represented in SC�.Otherwise � is the �rst element of its bi-class to be generated, and it is added tothe list SC�.5.5 More sieves on the list of diagramsWe will now cover details of other sieves used in our computations.5.5.I The transpose of an arc-diagramBy this point, the sieves described in section 5.4 have been employed to producethe lists C� and SC� of �-cycles. A grid diagram G composed of � 2 C�; � 2 SC�has � arcs, and so represents a knot K of arc index at most �.We now begin to compile the list of such diagrams G; they are stored in anarray denoted G. We examine each possible pair of �-cycles in turn. The followingde�nition and propositions help us to detect reducibility of some diagrams.Suppose � is an �-cycle. Let the reverse of �, denoted rev �, be given byreversing the entries entries of �, and cycling so that the �rst entry is 0: so�i(j) = (rev �)�i(j). For example, if � = (0; 2; 5; 3; 1; 4) then rev � =(0; 4; 1; 3; 5; 2).Proposition 5.5.1 Let K = (�; �). Then (rev �; rev �) also represents K.Proof. Let G be the diagram of K obtained from the cycle-pair (�; �). Weassume that it lies in the plane z = 0 in R3 and is viewed from the positive endof the z-axis. Recall that the arcs lie parallel to the y-axis, and the semi-loopsparallel to the x-axis. 127



Let GT be the `transpose' 15 ofG obtained by rotating the plane z = 0 through180� about the line x + y = 0 = z, and reversing the orientation. It is a fairlyeasy exercise to check that if this diagram is given by (�0; � 0) then, traversing theknot from the same starting point, the order of the planes encountered in GTis the opposite to the order of the points encountered when traversing G; i.e.,� 0 = rev �. By a similar observation, �0 = rev � . 2It should be noted at this point that given a pair of �-cycles �; � , the knots(�; �); (�; rev �); (�; �)may be inequivalent knots. For example consider � = (0; 4; 2; 5; 7; 1; 3; 6),� = (0; 2; 5; 3; 7; 1; 4; 6), and hence rev � = (0; 6; 4; 1; 7; 3; 5; 2). Thenthese cycle-pairs represent the knots 62; 31 and U1 respectively, as seen in �gure5.4.We can de�ne a natural total ordering on the set of �-cycles, by a lexographicalmethod. Given two �-cycles �1; �2, we write �1 > �2 if there exists an m suchthat �i1(0) = �i2(0) for i < m,�m1 (0) > �m2 (0).For example, it is easy to see that (0; 3; 5; 1; 4; 2) > (0; 3; 1; 5; 2; 4).The following lemma allows us to deduce proposition 5.5.3. This gives usanother simple sieve, which is discussed in the opening paragraph of subsection5.5.II.Lemma 5.5.2 The operations of reverse and reection on an �-cycle � are com-mutative. That is, rev � = rev (�) :Proof. Write � = (�0; �1; �2; : : : ; ���2; ���1). Then by de�nition,rev � = (�0; ���1; ���2; : : : ; �2; �1 )) rev � = (�0; �� ���1; �� ���2; : : : ; �� �2; �� �1 )) rev (rev �) = (�0; �� �1; �� �2; : : : ; �� ���2; �� ���1 ):Now note that � = (�0; �� �1; �� �2; : : : ; �� ���2; �� ���1). 215This is so-called because the matricesM and MT corresponding to G and GT are mutuallytranspose. 128



(a)

(b)

(c)

(a) (�; �) = 62; (b) (�; rev�) = 31; (c) (�; �) = U1Figure 5.4: Di�erent compositions of a pair of �-cycles129



Proposition 5.5.3 Let K be a knot. We haveK 2 f(�; �) : � 2 C�; � 2 SC�; rev � 2 SC�g :) K 2 f(�; �) : � 2 C�; � 2 SC�; � � rev �g :Proof. If K is written (�; �) with � � rev � then no work needs to be done. Sosuppose that K is written as the pair (�; �) with � > rev �. We need to �nd anexplicit pair �0; � 0 such that (�0; � 0) = K; �0 2 C�; � 0 2 SC� and � 0 � rev �0.By proposition 5.5.1, we know that K = (rev �; rev �). It may be thatrev � 62 C�. We consider two distinct cases.1. rev � 2 C�. Write �0 = rev � , � 0 = rev �, and K = (�0; � 0). Now we haverev � < � , rev � < rev (rev �), � 0 < rev �0;as required.2. rev � 62 C�. We replace rev � by its reection rev � ; so �0 = rev � , � 0 = rev �and K = (�0; � 0). Now notice that � < � because � is proper. Therefore,we haverev � < � ) rev � < � lemma5:5:2, rev � < rev (rev � ), � 0 < rev �0: 25.5.II Further discussion of the pseudocodeBy proposition 5.5.3, if K = (�; �) with rev � 2 SC� and � > rev �, then we canwrite K = (�0; � 0) or K = (�0; � 0) with � 0 � rev �0. Therefore, if rev � 2 SC�, weonly need to check those pairs (�; �) with � � rev �. This sieve is manifested inthe linesfor 8� 2 C� do begin� := �;if min(rev�; rev�) 62 SC� thenVSC�(�) := f 2 SC� :  � min(rev�; rev�)gelseVSC�(�) := SC�;for 8 2 VSC�(�) do begin... 130



at lines 6{12 of the pseudocode. The set VSC�(�) is de�ned, for each �, accordingto whether the proper cycle rev � (or rev �) is contained in SC�. Then we lookat knots composed of the pair (�; �) where � 2 C�, � 2 VSC�(�).First, the loop looks for ways of reducing the number of arcs in the diagram.Recall that two arcs of a knot which are joined by a point of the binding circleare called consecutive; and two arcs which lie on half-planes hi; hj with ji� jj �1 mod � are called adjacent.A function canbeignored takes each pair of consecutive arcs in the diagramand judges whether type II moves can be applied to arrange the arcs to beadjacent: if so an arc-reducing type IV move can be applied, and the knot hasarc index strictly less than �. If such a reduction is discovered then the pairis discarded and the next pair is called. This is evident in lines 16{27 of thepseudocode.Note that the procedure is performed twice: we can attempt to apply type Imoves in order to �nd a diagram which allows a type III move. In fact, we dothis by applying the function canbeignored to the pair (rev �; rev �). This isseen in lines 28{39 of the pseudocode.If a pair (�; �) does not fall through this sieve then it is stored in an arrayG. For each � 2 C�, when the pairs f(�; �) : � 2 SC�g have been checked bycanbeignored, a procedure findduplicates applies type II moves to the dia-gram (�; �), searching for pairs (�; � 0); (�; � 00) which represent the same knot. Ittakes � 0 and applies type II moves, updating � 0 as it goes; then if � 0 = � 00 at anypoint, one of the representative pairs is deleted, for only one is needed. This isshown in lines 44{52.The result is a list of pairs of cycles (�; �). A �nal sieve compares knots(�0; �); (�00; �) by applying type I moves and updating �0, deleting one of thepairs if �0 = �00. In practical terms this is done by compiling a second listGT = f(rev �; rev �) : (�; �) 2 Gg, and applying canbeignored to that list (lines59{71). The resulting list of pairs of cycles (�; �) is no bigger than before, andwill usually be considerably smaller.A procedure braidword takes a pair of cycles, and generates a braidword inthe braid groupB7 = *�1; : : : ; �6 : �i�j�i = �j�i�j; ji� jj = 1;�i�j = �j�i; ji� jj � 2: + ;which closes to the knot K = (�; �). By proposition 2.5.1, we can assume thatthe number of braidstrings is bounded above by 12�. The method for obtaining abraid presentation from an arc presentation is described in section 2.2, and also131



covered independently in [Cr]. The resulting braidword is fed into the procedurepolys, which is adapted from a program of Short [M-S] to produce the Homypolynomial of a closed braid and some of its specializations from a braid input.Our version delivers only the Homy polynomial. The resulting polynomialsPK(v; z) are sorted and stored in an array Polys(�), and are eventually printed.Knots can be identi�ed from a combination of the Homy polynomial (refer-ring to Thistlethwaite's tables of polynomial invariants [Th4]), and bounds oncrossing number.5.6 Size of outputThe following table gives an indication of the size of storage required to executethe program. � jC�j jSC�j jGj jGj jPolys(�)j(largest) (�nal)5 1 1 1 1 16 3 1 1 1 17 23 5 15 11 38 177 27 292 196 139 1553 175 6594 4046 4410 14963 1533For the case � = 10, the number of cycle-pairs generated exceeds the availablestorage space. For this reason, we split the entire set of cycle-pairs into smallerbatches, by partitioning G into a number of smaller lists at the stage where webegin to search for duplicates of knots. A number of cycle-pairs which wouldnormally be excluded as duplicating another cycle-pair then are included; moreimportantly, no knots are lost.The pseudocode for this program is listed in appendix A.5.7 ResultsFor arc index up to 9, we can completely classify all knots. For arc index 10, itis possible to list all Homy polynomials of knots, but since the Thistlethwaitetables are limited to knots of 13 crossings or less, a complete classi�cation ofknots is harder. There are, however, some positive results. For example, we can132



deduce that both the Conway and Kinoshita-Teresaka knots have arc index 11(see corollary 5.8.4).The classi�cation is included below: complete for � � 9, partial for � = 10.The key to reading the tables is as follows. The integers represent the coe�cients,and are bracketed into like powers of z. The least powers of v are indicated insmall numbers before each bracket. For example,2 (0 2 0 � 1)(1 2 1 0) = v2 �(v2 � v6) + z2(1 + 2v2 + v4)� :Knots are sorted �rst into groups of like arc index, so knots appear in exactly oneset K(�). Within these sets, the polynomials are ordered, �rst by the breadth ofthe polynomial (i.e. the di�erence between least and greatest powers of v), thenin order of coe�cients themselves, starting with the least, in lexicographic order.Since we are working up to mirror image, and we know PK(v; z) = PK(v�1; z),the polynomials have been listed so that powers of v are positively biased. Thenotation for the knots themselves comes from Thistlethwaite's listing [Th4], andthe Rolfsen [Ro] notation is also given where applicable.Remark. Table 5.3 contains PK(v; z) for all K with �(K) � 10. Some of thepolynomials also appear in tables 5.1 and 5.2. The knots indicated in brackets intable 5.3 are known to have arc index 10: however, they are not necessarily theonly knots of arc index 10 to have the given polynomial.5.8 CommentsWe can make the following observations.Corollary 5.8.1 If K is an alternating knot with c(K) = 8, then �(K) = 10. 2Corollary 5.8.2 If K is an alternating knot with c(K) = 9, then �(K) = 11.Proof. By corollary 2.5.8, we have �(K) � 11 for all these knots. Since for eachK, PK(v; z) is not listed in tables 5.1, 5.2 or 5.3 then we deduce �(K) � 11. 2Corollary 5.8.3 Let K = 5:2 and K 0 = 10:136. Then we havePK(v; z) = PK0(v; z);�(K) = 7 6= 9 = �(K 0): 2133



Remark. The knots 5:2 and 10:136 are the smallest pair of knots to be distin-guishable by arc index, but not by Homy polynomial. Compare with corol-lary 2.5.12.Corollary 5.8.4 The Conway and Kinoshita-Teresaka knots, denoted as 11:403and 11:411 respectively, each have arc index 11, and so can be distinguished nei-ther by Homy polynomial nor by arc index.Proof. It is well known (for example, [L-M] p.111) that these two knots, whichare mutants, have identical Homy polynomial, namelyv�2 ((�2 + 7v2 � 6v4 + 2v6) + z2(�3 + 11v2 � 11v4 + 3v6)+z4(�1 + 6v2 � 6v4 + v6) + z6(v2 � v4)) :Note that this polynomial does not appear in tables 5.1, 5.2 or 5.3, so we concludethat each knot has arc index at least 11. Figures 5.5 and 5.6 give presentationsof each knot on 11 arcs, so we conclude that the arc index of each knot is exactly11. 2
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Figure 5.5: An 11-arc presentation of the Conway knot 11:403

Figure 5.6: An 11-arc presentation of the Kinoshita-Teresaka knot 11:411135



�(K) vr PK(v; z) K [Th4] K [Ro]5 2 (2 � 1)(1 0) 3:1 316 -2 (1 � 1 1)(0 � 1 0) 4:1 417 4 (3 � 2)(4 � 1)(1 0) 5:2 512 (1 1 � 1)(1 1 0) 5:1 526 (5 � 5 1)(10 � 5 0)(6 � 1 0)(1 0 0) 8:21 8198 -2 (�2 5 � 2)(�1 4 � 1)(0 1 0) 3:1#3:1 31#31-2 (�1 3 � 1)(�1 3 � 1)(0 1 0) 6:1 630 (�1 4 � 2)(�1 4 � 1)(0 1 0) 8:19 820-2 (2 � 3 2)(1 � 4 1)(0 � 1 0) 9:45 9420 (2 � 2 1)(1 � 3 1)(0 � 1 0) 6:2 622 (3 � 3 1)(2 � 3 1)(0 � 1 0) 8:20 8214 (4 � 4 1)(4 � 2 0)(1 0 0) 3:1#3:1 31#318 (7 � 8 2)(21 � 14 1)(21 � 7 0) 10:144 10124(8 � 1 0)(1 0 0)-2 (1 0 � 1 1)(0 � 1 � 1 0) 6:3 610 (2 � 1 � 1 1)(0 � 1 � 1 0) 9:46 946Table 5.1: Knots of arc index at most 8, listed by their Homy polynomials
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�(K) vr PK(v; z) K [Th4] K [Ro]9 4 (3 � 2)(4 � 1)(1 0) 10:136 101326 (4 � 3)(10 � 4)(6 � 1)(1 0) 7:7 714 (0 4 � 3)(2 6 � 2)(1 2 0) 9:49 9494 (1 2 � 2)(3 3 � 1)(1 1 0) 7:5 734 (2 0 � 1)(3 2 � 1)(1 1 0) 7:3 756 (3 � 1 � 1)(9 � 1 � 1)(6 0 0)(1 0 0) 10:155 101618 (6 � 6 1)(21 � 13 1)(21 � 7 0)(8 � 1 0)(1 0 0) 10:150 1013910 (9 � 11 3)(39 � 31 4)(57 � 27 1) 12:1530(36 � 9 0)(10 � 1 0)(1 0 0)0 (0 0 3 � 2)(1 � 1 3 0)(0 � 1 0 0) 9:47 948-2 (0 2 � 2 1)(�1 2 � 2 0)(0 1 0 0) 7:1 772 (0 2 0 � 1)(1 2 1 0) 7:6 74-2 (1 � 2 3 � 1)(0 � 2 3 � 1)(0 0 1 0) 9:42 944-2 (1 � 2 3 � 1)(1 � 3 2 0)(0 � 1 0 0) 10:126 101360 (1 � 2 4 � 2)(0 � 1 4 � 1)(0 0 1 0) 10:152 101400 (1 � 1 2 � 1)(1 � 2 2 0)(0 � 1 0 0) 7:2 762 (1 0 1 � 1)(1 1 1 0) 7:4 722 (1 0 1 � 1)(3 � 3 3 0)(1 � 4 1 0)(0 � 1 0 0) 10:154 10160-2 (1 1 � 3 2)(0 0 � 4 1)(0 0 � 1 0) 11:4050 (1 1 � 2 1)(�2 4 � 3 0)(�1 4 � 1 0)(0 1 0 0) 9:48 9476 (1 4 � 5 1)(6 7 � 5 0)(5 5 � 1 0)(1 1 0 0) 10:151 101420 (2 � 3 3 � 1)(1 � 3 2 0)(0 � 1 0 0) 3:1#4:1 31#412 (2 � 2 2 � 1)(2 � 2 2 0)(0 � 1 0 0) 9:43 9454 (2 � 1 1 � 1)(4 0 1 0)(1 0 0 0) 10:137 101456 (2 2 � 4 1)(6 6 � 5 0)(5 5 � 1 0)(1 1 0 0) 10:145 101280 (3 � 5 4 � 1)(4 � 10 5 0)(1 � 6 1 0)(0 � 1 0 0) 11:3862 (3 � 4 3 � 1)(4 � 7 4 0)(1 � 5 1 0)(0 � 1 0 0) 9:44 9434 (3 � 3 2 � 1)(6 � 5 3 0)(2 � 4 1 0)(0 � 1 0 0) 11:4614 (4 � 5 3 � 1)(7 � 8 4 0)(2 � 5 1 0)(0 � 1 0 0) 11:4868 (4 � 1 � 3 1)(17 � 3 � 4 0)(20 � 1 � 1 0) 12:1879(8 0 0 0)(1 0 0 0)12 (14 � 21 9 � 1)(70 � 70 15 0)(133 � 84 7 0) T (4; 5)(121 � 45 1 0)(55 � 11 0 0)(12 � 1 0 0)(1 0 0 0)Table 5.2: Knots of arc index 9, listed by their Homy polynomials
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sprvPK(v; z) vr PK(v; z) (K [Ro])1 0 (1)2 2 (2 � 1)(1 0)4 (3 � 2)(4 � 1)(1 0)6 (4 � 3)(10 � 4)(6 � 1)(1 0)3 -2 (�5 11 � 5)(�7 19 � 7)(�2 11 � 2)(0 2 0)-2 (�3 7 � 3)(�4 11 � 4)(�1 6 � 1)(0 1 0) (10125)0 (�3 8 � 4)(�6 16 � 6)(�2 10 � 2)(0 2 0)0 (�3 8 � 4)(�4 12 � 4)(�1 6 � 1)(0 1 0) (31#51)2 (�3 9 � 5)(�5 17 � 6)(�2 10 � 2)(0 2 0)-2 (�2 5 � 2)(�3 8 � 3)(�1 5 � 1)(0 1 0)-2 (�2 5 � 2)(�1 4 � 1)(0 1 0)0 (�2 6 � 3)(�5 13 � 5)(�2 9 � 2)(0 2 0)0 (�2 6 � 3)(�3 9 � 3)(�1 5 � 1)(0 1 0) (810)2 (�2 7 � 4)(�3 12 � 4)(�1 6 � 1)(0 1 0) (10126)-2 (�1 3 � 1)(�3 7 � 3)(�1 5 � 1)(0 1 0)-2 (�1 3 � 1)(�1 3 � 1)(0 1 0)-2 (�1 3 � 1)(1 � 1 1)(1 � 3 1)(0 � 1 0) 818)0 (�1 4 � 2)(�3 8 � 3)(�1 5 � 1)(0 1 0) (87)0 (�1 4 � 2)(�1 4 � 1)(0 1 0)2 (�1 5 � 3)(�4 13 � 5)(�2 9 � 2)(0 2 0)2 (�1 5 � 3)(�2 9 � 3)(�1 5 � 1)(0 1 0) (10148)0 (0 2 � 1)(�2 5 � 2)(�1 4 � 1)(0 1 0) (10156; 816)2 (0 3 � 2)(�2 8 � 3)(�1 5 � 1)(0 1 0) (10143)4 (0 4 � 3)(2 6 � 2)(1 2 0)-2 (1 � 1 1)(0 � 1 0)-2 (1 � 1 1)(2 � 5 2)(1 � 4 1)(0 � 1 0) (817)0 (1 0 0)(2 � 4 2)(1 � 4 1)(0 � 1 0)2 (1 1 � 1)(�1 5 � 2)(�1 4 � 1)(0 1 0) (10159)2 (1 1 � 1)(1 1 0)4 (1 2 � 2)(3 3 � 1)(1 1 0)-2 (2 � 3 2)(1 � 4 1)(0 � 1 0)-2 (2 � 3 2)(3 � 8 3)(1 � 5 1)(0 � 1 0) (89)0 (2 � 2 1)(1 � 3 1)(0 � 1 0)0 (2 � 2 1)(3 � 7 3)(1 � 5 1)(0 � 1 0) (10141)2 (2 � 1 0)(3 � 4 2)(1 � 4 1)(0 � 1 0) (10150)4 (2 0 � 1)(3 2 � 1)(1 1 0)4 (2 0 � 1)(5 � 2 1)(2 � 3 1)(0 � 1 0) (10157)Table 5.3: Table of PK(v; z) for all knots K of arc index at most 10; (i)138



sprvPK(v; z) vr PK(v; z) (K [Ro])3 0 (3 � 4 2)(3 � 8 3)(1 � 5 1)(0 � 1 0) (10155)2 (3 � 3 1)(2 � 3 1)(0 � 1 0)2 (3 � 3 1)(4 � 7 3)(1 � 5 1)(0 � 1 0) (82)4 (3 � 2 0)(6 � 5 2)(2 � 4 1)(0 � 1 0)6 (3 � 1 � 1)(9 � 1 � 1)(6 0 0)(1 0 0)-2 (4 � 7 4)(4 � 12 4)(1 � 6 1)(0 � 1 0)0 (4 � 6 3)(4 � 11 4)(1 � 6 1)(0 � 1 0)2 (4 � 5 2)(4 � 8 3)(1 � 5 1)(0 � 1 0) (85)2 (4 � 5 2)(6 � 12 5)(2 � 9 2)(0 � 2 0)4 (4 � 4 1)(4 � 2 0)(1 0 0)4 (4 � 4 1)(6 � 6 2)(2 � 4 1)(0 � 1 0) (10149)4 (4 � 4 1)(8 � 10 4)(3 � 8 2)(0 � 2 0)2 (5 � 7 3)(7 � 15 6)(2 � 10 2)(0 � 2 0)4 (5 � 6 2)(7 � 9 3)(2 � 5 1)(0 � 1 0) (10127)6 (5 � 5 1)(10 � 5 0)(6 � 1 0)(1 0 0)6 (5 � 5 1)(12 � 9 2)(7 � 5 1)(1 � 1 0)2 (6 � 9 4)(7 � 16 6)(2 � 10 2)(0 � 2 0)4 (6 � 8 3)(9 � 14 5)(3 � 9 2)(0 � 2 0)6 (6 � 7 2)(11 � 8 1)(6 � 2 0)(1 0 0) (31#51)6 (6 � 7 2)(13 � 12 3)(7 � 6 1)(1 � 1 0)8 (6 � 6 1)(21 � 13 1)(21 � 7 0)(8 � 1 0)(1 0 0)4 (7 � 10 4)(10 � 17 6)(3 � 10 2)(0 � 2 0)6 (7 � 9 3)(13 � 13 3)(7 � 6 1)(1 � 1 0)8 (7 � 8 2)(21 � 14 1)(21 � 7 0)(8 � 1 0)(1 0 0)6 (8 � 11 4)(16 � 20 6)(8 � 11 2)(1 � 2 0)8 (8 � 10 3)(22 � 17 2)(21 � 8 0) (10152)(8 � 1 0)(1 0 0)10 (9 � 11 3)(39 � 31 4)(57 � 27 1)(36 � 9 0)(10 � 1 0)(1 0 0)10 (10 � 13 4)(39 � 32 4)(57 � 27 1)(36 � 9 0)(10 � 1 0)(1 0 0)10 (11 � 15 5)(40 � 35 5)(57 � 28 1)(36 � 9 0)(10 � 1 0)(1 0 0)12 (12 � 16 5)(66 � 60 10)(132 � 78 6)(121 � 44 1)(55 � 11 0)(12 � 1 0)(1 0 0)Table 5.3: (ii)
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sprvPK(v; z) vr PK(v; z) (K [Ro])4 -2 (�5 11 � 5 0)(�10 26 � 12 1)(�6 22 � 7 0)(�1 8 � 1 0)(0 1 0 0)-2 (�5 12 � 7 1)(�10 26 � 13 1)(�6 22 � 7 0)(�1 8 � 1 0)(0 1 0 0)0 (�5 13 � 8 1)(�10 27 � 13 1)(�6 22 � 7 0)(�1 8 � 1 0)(0 1 0 0)2 (�5 14 � 9 1)(�10 30 � 14 1)(�6 23 � 7 0)(�1 8 � 1 0)(0 1 0 0)2 (�5 15 � 11 2)(�10 30 � 15 1)(�6 23 � 7 0)(�1 8 � 1 0)(0 1 0 0)-2 (�4 9 � 4 0)(�7 17 � 5 � 1)(�2 11 � 1 0)(0 2 0 0)0 (�4 9 � 3 � 1)(�7 18 � 4 � 1)(�2 11 � 1 0)(0 2 0 0)0 (�4 10 � 5 0)(�9 24 � 11 1)(�6 21 � 7 0)(�1 8 � 1 0)(0 1 0 0)2 (�4 12 � 8 1)(�9 27 � 13 1)(�6 22 � 7 0)(�1 8 � 1 0)(0 1 0 0)4 (�4 14 � 11 2)(�8 31 � 16 1)(�5 24 � 7 0)(�1 8 � 1 0)(0 1 0 0)-2 (�3 6 � 1 � 1)(�4 10 � 1 � 1)(�1 6 0 0)(0 1 0 0) (10153)0 (�3 7 � 2 � 1)(�5 14 � 4 0)(�2 9 � 2 0)(0 2 0 0)0 (�3 7 � 2 � 1)(�4 11 � 1 � 1)(�1 6 0 0)(0 1 0 0)0 (�3 9 � 6 1)(�9 23 � 12 1)(�6 21 � 7 0)(�1 8 � 1 0)(0 1 0 0)2 (�3 10 � 7 1)(�9 26 � 13 1)(�6 22 � 7 0)(�1 8 � 1 0)(0 1 0 0)2 (�3 10 � 7 1)(�7 22 � 11 1)(�5 18 � 6 0)(�1 7 � 1 0)(0 1 0 0)4 (�3 12 � 10 2)(�7 28 � 15 1)(�5 23 � 7 0)(�1 8 � 1 0)(0 1 0 0)-2 (�2 2 4 � 3)(�3 5 6 � 3)(0 3 3 0)-2 (�2 2 4 � 3)(�2 2 9 � 4)(0 1 6 � 1)(0 0 1 0)-2 (�2 3 2 � 2)(�4 8 2 � 2)(�1 6 1 0)(0 1 0 0)-2 (�2 3 2 � 2)(�2 4 4 � 2)(0 2 2 0)-2 (�2 4 0 � 1)(�3 8 � 2 0)(�1 5 � 1 0)(0 1 0 0)-2 (�2 4 0 � 1)(�2 5 1 � 1)(0 2 1 0) (10135)-2 (�2 5 � 2 0)(�4 9 � 2 � 1)(�1 6 0 0)(0 1 0 0)0 (�2 5 � 1 � 1)(�4 10 � 1 � 1)(�1 6 0 0)(0 1 0 0)0 (�2 5 � 1 � 1)(�3 9 � 2 0)(�1 5 � 1 0)(0 1 0 0)0 (�2 5 � 1 � 1)(�2 6 1 � 1)(0 2 1 0)Table 5.3: (iii)140



sprvPK(v; z) vr PK(v; z) (K [Ro])4 2 (�2 7 � 4 0)(�4 15 � 7 1)(�4 13 � 5 0)(�1 6 � 1 0)(0 1 0 0)2 (�2 8 � 6 1)(�6 19 � 10 1)(�5 17 � 6 0)(�1 7 � 1 0)(0 1 0 0)4 (�2 9 � 7 1)(�4 21 � 11 1)(�4 18 � 6 0)(�1 7 � 1 0)(0 1 0 0)-2 (�1 0 5 � 3)(�1 � 1 10 � 4)(0 0 6 � 1)(0 0 1 0)-2 (�1 0 5 � 3)(�1 1 6 � 2)(0 1 2 0)-2 (�1 1 3 � 2)(�2 3 4 � 2)(0 2 2 0)-2 (�1 1 3 � 2)(�1 2 3 � 1)(0 1 1 0) (31#52)-2 (�1 2 1 � 1)(�3 6 0 � 1)(�1 5 0 0)(0 1 0 0)-2 (�1 2 1 � 1)(�1 2 2 � 1)(0 1 1 0) (10129; 88)0 (�1 2 2 � 2)(�1 3 3 � 1)(0 1 1 0) (10130)-2 (�1 3 � 1 0)(�2 4 0 � 1)(0 2 1 0) (10165)0 (�1 3 0 � 1)(�3 7 0 � 1)(�1 5 0 0)(0 1 0 0)0 (�1 3 0 � 1)(�2 6 � 1 0)(�1 4 � 1 0)(0 1 0 0) (10151)-2 (�1 4 � 3 1)(�3 7 � 4 0)(�1 5 � 1 0)(0 1 0 0)2 (�1 4 � 1 � 1)(�2 9 � 2 0)(�1 5 � 1 0)(0 1 0 0)2 (�1 6 � 5 1)(�6 18 � 10 1)(�5 17 � 6 0)(�1 7 � 1 0)(0 1 0 0)4 (�1 7 � 6 1)(�4 20 � 11 1)(�4 18 � 6 0)(�1 7 � 1 0)(0 1 0 0)6 (�1 9 � 9 2)(�1 24 � 15 1)(0 22 � 7 0)(0 8 � 1 0)(0 1 0 0)-2 (0 � 2 6 � 3)(�1 � 2 10 � 4)(0 0 6 � 1)(0 0 1 0)-2 (0 � 1 4 � 2)(�1 0 5 � 2)(0 1 2 0)0 (0 � 1 5 � 3)(�1 1 6 � 2)(0 1 2 0)-2 (0 0 2 � 1)(�1 1 2 � 1)(0 1 1 0) (813)0 (0 0 3 � 2)(1 � 1 3 0)(0 � 1 0 0)-2 (0 1 0 0)(�1 1 1 � 1)(0 1 1 0) (10146)0 (0 1 1 � 1)(�1 2 2 � 1)(0 1 1 0)-2 (0 2 � 2 1)(�1 2 � 2 0)(0 1 0 0)2 (0 2 0 � 1)(�1 6 � 1 0)(�1 4 � 1 0)(0 1 0 0)2 (0 2 0 � 1)(1 2 1 0)2 (0 3 � 2 0)(�3 11 � 6 1)(�4 12 � 5 0)(�1 6 � 1 0)(0 1 0 0)4 (0 5 � 5 1)(�3 17 � 10 1)(�4 17 � 6 0)(�1 7 � 1 0)(0 1 0 0)-2 (1 � 4 7 � 3)(0 � 5 11 � 4)(0 � 1 6 � 1)(0 0 1 0)Table 5.3: (iv)141



sprvPK(v; z) vr PK(v; z) (K [Ro])4 -2 (1 � 2 3 � 1)(0 � 2 3 � 1)(0 0 1 0)-2 (1 � 2 3 � 1)(1 � 3 2 0)(0 � 1 0 0)0 (1 � 2 4 � 2)(0 � 1 4 � 1)(0 0 1 0)0 (1 � 2 4 � 2)(3 � 6 5 0)(1 � 5 1 0)(0 � 1 0 0)-2 (1 � 1 1 0)(1 � 2 � 1 1)(0 � 1 � 1 0) (10147)0 (1 � 1 2 � 1)(�1 2 0 0)(�1 3 � 1 0)(0 1 0 0) (10164)0 (1 � 1 2 � 1)(0 � 1 3 � 1)(0 0 1 0)0 (1 � 1 2 � 1)(1 � 2 2 0)(0 � 1 0 0)2 (1 � 1 3 � 2)(1 0 4 � 1)(0 0 1 0)-2 (1 0 � 1 1)(0 � 1 � 1 0)-2 (1 0 � 1 1)(0 1 � 5 2)(0 1 � 4 1)(0 0 � 1 0)-2 (1 0 � 1 1)(1 � 2 � 2 1)(0 � 1 � 1 0)-2 (1 0 � 1 1)(1 0 � 6 3)(0 0 � 5 1)(0 0 � 1 0)0 (1 0 0 0)(1 � 1 � 1 1)(0 � 1 � 1 0) (814)2 (1 0 1 � 1)(1 1 1 0)2 (1 0 1 � 1)(3 � 3 3 0)(1 � 4 1 0)(0 � 1 0 0)-2 (1 1 � 3 2)(0 0 � 4 1)(0 0 � 1 0)-2 (1 1 � 3 2)(0 2 � 8 3)(0 1 � 5 1)(0 0 � 1 0)-2 (1 1 � 3 2)(1 � 1 � 5 2)(0 � 1 � 2 0)0 (1 1 � 2 1)(�2 4 � 3 0)(�1 4 � 1 0)(0 1 0 0)0 (1 1 � 2 1)(1 � 1 � 2 1)(0 � 1 � 1 0) (811)0 (1 1 � 2 1)(1 1 � 6 3)(0 0 � 5 1)(0 0 � 1 0)2 (1 1 � 1 0)(�2 8 � 5 1)(�4 11 � 5 0)(�1 6 � 1 0)(0 1 0 0)2 (1 1 � 1 0)(2 0 � 1 1)(0 � 1 � 1 0) (10166)-2 (1 2 � 5 3)(1 1 � 10 4)(0 0 � 6 1)(0 0 � 1 0)0 (1 2 � 4 2)(0 3 � 8 3)(0 1 � 5 1)(0 0 � 1 0)0 (1 2 � 4 2)(1 2 � 9 4)(0 0 � 6 1)(0 0 � 1 0)2 (1 2 � 3 1)(1 2 � 3 1)(0 0 � 1 0) (10133)2 (1 2 � 3 1)(2 � 1 0 0)(1 � 3 1 0)(0 � 1 0 0)2 (1 3 � 5 2)(2 3 � 9 4)(0 0 � 6 1)(0 0 � 1 0)4 (1 3 � 4 1)(2 5 � 3 0)(1 2 0 0) (815)6 (1 4 � 5 1)(6 7 � 5 0)(5 5 � 1 0)(1 1 0 0)6 (1 5 � 7 2)(3 13 � 9 0)(4 10 � 2 0)(1 2 0 0)0 (2 � 3 3 � 1)(1 � 3 2 0)(0 � 1 0 0)-2 (2 � 2 0 1)(1 � 3 � 2 1)(0 � 1 � 1 0) (84)-2 (2 � 2 0 1)(2 � 6 1 0)(1 � 4 1 0)(0 � 1 0 0) (10158)-2 (2 � 2 0 1)(3 � 7 0 1)(1 � 5 0 0)(0 � 1 0 0)0 (2 � 2 1 0)(2 � 4 0 1)(0 � 2 � 1 0)2 (2 � 2 2 � 1)(2 � 2 2 0)(0 � 1 0 0)Table 5.3: (v)142



sprvPK(v; z) vr PK(v; z) (K [Ro])4 -2 (2 � 1 � 2 2)(1 � 3 � 3 1)(0 � 1 � 1 0)0 (2 � 1 � 1 1)(0 � 1 � 1 0)0 (2 � 1 � 1 1)(1 � 2 � 2 1)(0 � 1 � 1 0) (86)0 (2 � 1 � 1 1)(2 � 3 � 3 2)(0 � 2 � 2 0)2 (2 � 1 0 0)(2 � 1 � 1 1)(0 � 1 � 1 0)4 (2 � 1 1 � 1)(4 0 1 0)(1 0 0 0)2 (2 0 � 2 1)(2 � 1 � 2 1)(0 � 1 � 1 0) (10131)4 (2 0 � 1 0)(6 � 5 4 � 1)(5 � 10 5 0)(1 � 6 1 0)(0 � 1 0 0)4 (2 1 � 3 1)(3 2 � 2 0)(1 1 0 0) (31#52)4 (2 1 � 3 1)(4 1 � 3 1)(1 0 � 1 0)6 (2 2 � 4 1)(6 6 � 5 0)(5 5 � 1 0)(1 1 0 0)6 (2 2 � 4 1)(8 2 � 3 0)(6 1 0 0)(1 0 0 0)8 (2 4 � 7 2)(11 12 � 13 1)(15 15 � 7 0)(7 7 � 1 0)(1 1 0 0)-2 (3 � 5 3 0)(4 � 10 2 1)(1 � 6 0 0)(0 � 1 0 0)0 (3 � 5 4 � 1)(4 � 10 5 0)(1 � 6 1 0)(0 � 1 0 0)-2 (3 � 4 1 1)(2 � 6 � 1 1)(0 � 2 � 1 0)-2 (3 � 4 1 1)(3 � 9 2 0)(1 � 5 1 0)(0 � 1 0 0)0 (3 � 4 2 0)(2 � 5 0 1)(0 � 2 � 1 0) (10144)0 (3 � 4 2 0)(4 � 9 2 1)(1 � 6 0 0)(0 � 1 0 0)2 (3 � 4 3 � 1)(4 � 7 4 0)(1 � 5 1 0)(0 � 1 0 0)0 (3 � 3 0 1)(2 � 5 � 1 1)(0 � 2 � 1 0) (10163)0 (3 � 3 0 1)(4 � 9 1 1)(1 � 6 0 0)(0 � 1 0 0)2 (3 � 3 1 0)(3 � 4 0 1)(0 � 2 � 1 0)4 (3 � 3 2 � 1)(6 � 5 3 0)(2 � 4 1 0)(0 � 1 0 0)0 (3 � 2 � 2 2)(2 � 4 � 4 2)(0 � 2 � 2 0)2 (3 � 2 � 1 1)(2 � 2 � 2 1)(0 � 1 � 1 0)2 (3 � 2 � 1 1)(4 � 6 0 1)(1 � 5 0 0)(0 � 1 0 0)4 (3 � 1 � 2 1)(4 0 � 3 1)(1 0 � 1 0)4 (3 � 1 � 2 1)(5 � 3 0 0)(2 � 3 1 0)(0 � 1 0 0)6 (3 0 � 3 1)(7 3 � 4 0)(5 4 � 1 0)(1 1 0 0) (10134)6 (3 1 � 5 2)(9 0 � 5 1)(6 0 � 1 0)(1 0 0 0)8 (3 2 � 6 2)(11 11 � 13 1)(15 15 � 7 0)(7 7 � 1 0)(1 1 0 0)2 (4 � 7 6 � 2)(10 � 21 13 � 1)(6 � 21 7 0)(1 � 8 1 0)(0 � 1 0 0)0 (4 � 5 1 1)(3 � 7 � 2 2)(0 � 3 � 2 0)Table 5.3: (vi)
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sprvPK(v; z) vr PK(v; z) (K [Ro])4 2 (4 � 5 2 0)(5 � 9 2 1)(1 � 6 0 0)(0 � 1 0 0)4 (4 � 5 3 � 1)(7 � 8 4 0)(2 � 5 1 0)(0 � 1 0 0)4 (4 � 5 3 � 1)(10 � 15 9 � 1)(6 � 16 6 0)(1 � 7 1 0)(0 � 1 0 0)0 (4 � 4 � 1 2)(2 � 6 � 2 1)(0 � 2 � 1 0)2 (4 � 4 0 1)(3 � 5 � 1 1)(0 � 2 � 1 0)2 (4 � 4 0 1)(4 � 6 � 2 2)(0 � 3 � 2 0)4 (4 � 3 � 1 1)(5 � 3 � 2 1)(1 � 1 � 1 0)4 (4 � 3 � 1 1)(7 � 7 0 1)(2 � 5 0 0)(0 � 1 0 0)6 (4 � 2 � 2 1)(9 � 2 � 2 0)(6 0 0 0)(1 0 0 0) (10154)8 (4 � 1 � 3 1)(17 � 3 � 4 0)(20 � 1 � 1 0)(8 0 0 0)(1 0 0 0)0 (5 � 10 8 � 2)(10 � 25 14 � 1)(6 � 22 7 0)(1 � 8 1 0)(0 � 1 0 0)2 (5 � 8 5 � 1)(7 � 15 7 0)(2 � 10 2 0)(0 � 2 0 0)2 (5 � 8 5 � 1)(10 � 22 12 � 1)(6 � 21 7 0)(1 � 8 1 0)(0 � 1 0 0)4 (5 � 7 4 � 1)(9 � 13 6 0)(3 � 9 2 0)(0 � 2 0 0)4 (5 � 7 4 � 1)(10 � 16 9 � 1)(6 � 16 6 0)(1 � 7 1 0)(0 � 1 0 0)2 (5 � 6 1 1)(5 � 10 1 1)(1 � 6 0 0)(0 � 1 0 0)4 (5 � 6 2 0)(10 � 16 8 � 1)(6 � 16 6 0)(1 � 7 1 0)(0 � 1 0 0)4 (5 � 5 0 1)(7 � 8 0 1)(2 � 5 0 0)(0 � 1 0 0)6 (5 � 5 1 0)(13 � 12 5 � 1)(10 � 12 5 0)(2 � 6 1 0)(0 � 1 0 0)8 (5 � 3 � 2 1)(18 � 6 � 3 0)(20 � 2 � 1 0)(8 0 0 0)(1 0 0 0)10 (5 � 1 � 5 2)(29 � 6 � 10 1)(51 � 5 � 6 0)(35 � 1 � 1 0)(10 0 0 0)(1 0 0 0)4 (6 � 9 5 � 1)(10 � 16 7 0)(3 � 10 2 0)(0 � 2 0 0)4 (6 � 9 5 � 1)(11 � 19 10 � 1)(6 � 17 6 0)(1 � 7 1 0)(0 � 1 0 0)6 (6 � 8 4 � 1)(16 � 19 9 � 1)(11 � 17 6 0)(2 � 7 1 0)(0 � 1 0 0)6 (6 � 7 2 0)(14 � 15 6 � 1)(10 � 13 5 0)(2 � 6 1 0)(0 � 1 0 0)Table 5.3: (vii)
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sprvPK(v; z) vr PK(v; z) (K [Ro])4 8 (6 � 5 � 1 1)(18 � 7 � 3 0)(20 � 2 � 1 0)(8 0 0 0)(1 0 0 0)4 (7 � 11 6 � 1)(13 � 24 12 � 1)(7 � 21 7 0)(1 � 8 1 0)(0 � 1 0 0)6 (7 � 10 5 � 1)(17 � 22 10 � 1)(11 � 18 6 0)(2 � 7 1 0)(0 � 1 0 0)6 (7 � 9 3 0)(16 � 20 8 � 1)(11 � 17 6 0)(2 � 7 1 0)(0 � 1 0 0)8 (7 � 7 0 1)(21 � 14 0 0)(21 � 7 0 0)(8 � 1 0 0)(1 0 0 0)4 (8 � 13 7 � 1)(12 � 23 11 � 1)(6 � 18 6 0)(1 � 7 1 0)(0 � 1 0 0)6 (8 � 12 6 � 1)(17 � 23 10 � 1)(11 � 18 6 0)(2 � 7 1 0)(0 � 1 0 0)10 (8 � 8 0 1)(33 � 17 � 5 1)(52 � 11 � 5 0)(35 � 2 � 1 0)(10 0 0 0)(1 0 0 0)6 (9 � 14 7 � 1)(18 � 26 11 � 1)(11 � 19 6 0)(2 � 7 1 0)(0 � 1 0 0)8 (9 � 13 6 � 1)(28 � 31 11 � 1)(26 � 24 6 0)(9 � 8 1 0)(1 � 1 0 0)8 (10 � 15 7 � 1)(25 � 25 6 0)(22 � 13 1 0)(8 � 2 0 0)(1 0 0 0)8 (10 � 15 7 � 1)(28 � 32 11 � 1)(26 � 24 6 0)(9 � 8 1 0)(1 � 1 0 0)8 (11 � 17 8 � 1)(29 � 35 12 � 1)(26 � 25 6 0)(9 � 8 1 0)(1 � 1 0 0)10 (12 � 18 8 � 1)(43 � 42 9 0)(58 � 33 2 0)(36 � 10 0 0)(10 � 1 0 0)(1 0 0 0)12 (14 � 21 9 � 1)(70 � 70 15 0)(133 � 84 7 0)(121 � 45 1 0)(55 � 11 0 0)(12 � 1 0 0)(1 0 0 0)12 (15 � 23 10 � 1)(70 � 71 15 0)(133 � 84 7 0)(121 � 45 1 0)(55 � 11 0 0)(12 � 1 0 0)(1 0 0 0)14 (19 � 31 15 � 2)(115 � 130 35 � 1)(279 � 211 28 0)(339 � 165 9 0)(221 � 66 1 0)(78 � 13 0 0)(14 � 1 0 0)(1 0 0 0)Table 5.3: (viii)
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sprvPK(v; z) vr PK(v; z) (K [Ro])5 -4 (1 � 2 3 � 2 1)(0 � 2 2 � 2 0)(0 0 1 0 0) (41#41)-4 (1 � 2 6 � 8 4)(0 � 4 10 � 15 4)(0 � 1 6 � 7 1)(0 0 1 � 1 0)-4 (1 � 1 1 � 1 1)(0 � 2 1 � 2 0)(0 0 1 0 0) (812)-4 (1 � 1 1 � 1 1)(0 0 � 3 0 0)(0 1 � 3 1 0)(0 0 � 1 0 0)-4 (1 � 1 2 � 3 2)(0 � 1 0 � 4 1)(0 0 0 � 1 0)-2 (1 � 1 2 � 2 1)(0 � 2 2 � 2 0)(0 0 1 0 0) (10137)-4 (1 0 � 1 0 1)(0 � 1 � 2 � 1 0) (83)-4 (1 0 0 � 2 2)(0 � 1 � 1 � 4 1)(0 0 0 � 1 0)-2 (1 0 0 � 1 1)(0 � 1 � 1 � 1 0) (81)-2 (1 0 1 � 3 2)(0 � 1 0 � 4 1)(0 0 0 � 1 0)-4 (1 1 � 3 1 1)(0 1 � 7 1 0)(0 1 � 4 1 0)(0 0 � 1 0 0)-2 (1 1 � 2 0 1)(0 1 � 6 1 0)(0 1 � 4 1 0)(0 0 � 1 0 0)0 (1 1 � 1 � 1 1)(0 0 � 1 � 1 0)0 (1 1 0 � 3 2)(0 0 0 � 4 1)(0 0 0 � 1 0)-4 (2 � 4 5 � 4 2)(1 � 8 10 � 8 1)(0 � 5 12 � 5 0)(0 � 1 6 � 1 0)(0 0 1 0 0)-4 (2 � 3 2 � 1 1)(1 � 4 0 � 1 0)(0 � 1 0 0 0)-4 (2 � 3 3 � 3 2)(1 � 6 5 � 6 1)(0 � 4 8 � 4 0)(0 � 1 5 � 1 0)(0 0 1 0 0)-2 (2 � 3 3 � 2 1)(1 � 6 5 � 3 0)(0 � 2 4 � 1 0) (10138)(0 0 1 0 0)-4 (2 � 2 0 0 1)(1 � 4 � 1 � 1 0)(0 � 1 0 0 0)-4 (2 � 2 1 � 2 2)(0 � 3 0 � 3 0)(0 0 1 0 0)-2 (2 � 2 1 � 1 1)(0 � 3 1 � 2 0)(0 0 1 0 0)-2 (2 � 2 1 � 1 1)(1 � 4 0 � 1 0)(0 � 1 0 0 0)0 (2 � 2 2 � 2 1)(0 � 2 2 � 2 0)(0 0 1 0 0)0 (2 � 2 2 � 2 1)(1 � 5 5 � 3 0)(0 � 2 4 � 1 0)(0 0 1 0 0)-4 (2 � 1 � 1 � 1 2)(0 � 3 � 1 � 3 0)(0 0 1 0 0)-2 (2 � 1 � 1 0 1)(0 � 2 � 2 � 1 0)0 (2 � 1 0 � 1 1)(1 � 3 0 � 1 0)(0 � 1 0 0 0)2 (2 0 � 1 � 1 1)(1 0 � 1 � 1 0)Table 5.3: (ix)
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sprvPK(v; z) vr PK(v; z) (K [Ro])5 -2 (3 � 4 2 � 1 1)(2 � 8 3 � 2 0)(0 � 3 3 � 1 0)(0 0 1 0 0)0 (3 � 4 3 � 2 1)(2 � 8 6 � 3 0)(0 � 3 4 � 1 0)(0 0 1 0 0)-2 (3 � 3 0 0 1)(1 � 5 � 1 � 1 0)(0 � 1 0 0 0)0 (3 � 3 1 � 1 1)(1 � 4 0 � 1 0)(0 � 1 0 0 0)2 (3 � 2 0 � 1 1)(2 � 3 0 � 1 0)(0 � 1 0 0 0)-4 (4 � 8 6 � 2 1)(4 � 15 10 � 4 0)(1 � 7 6 � 1 0)(0 � 1 1 0 0)-2 (4 � 7 5 � 2 1)(4 � 14 8 � 3 0)(1 � 7 5 � 1 0)(0 � 1 1 0 0)0 (4 � 6 4 � 2 1)(4 � 13 8 � 3 0)(1 � 7 5 � 1 0)(0 � 1 1 0 0)2 (4 � 5 3 � 2 1)(3 � 8 6 � 3 0)(0 � 3 4 � 1 0)(0 0 1 0 0)0 (5 � 8 5 � 2 1)(5 � 16 9 � 3 0)(1 � 8 5 � 1 0)(0 � 1 1 0 0)2 (5 � 7 4 � 2 1)(5 � 13 8 � 3 0)(1 � 7 5 � 1 0)(0 � 1 1 0 0)4 (6 � 8 4 � 2 1)(8 � 14 8 � 3 0)(2 � 7 5 � 1 0)(0 � 1 1 0 0)Table 5.3: (x)

147



Appendix APseudocode
In this pseudocode, there is certain notation, which is also used in chapter 5. LetC� denote the set of �-cyclesC� = (� : �k(i) = i , �jk;j�(i)� ij 6= 1: )

The set SC� is the set of proper bi-class representatives of elements of C�.The set VSC�(�), for each � 2 C�, is a subset of SC�, de�ned within the code.The set G is de�ned as a set f(�; �)g of pairs of �-cycles, and is updated as newpairs of �-cycles are found. The set Polys(�) is the set of Homy polynomialsgenerated by the code.It should be noted that the pseudocode is representative of a real computeralgorithm: as such, the variables used (including those de�ned above) have avalue at any given time during the execution of the algorithm, which is completelydetermined by all the preceding steps in the algorithm.beginreadln(�);if � = 10 then readln(subcase)1;<initializations>;<generate sets C� and SC�>2;for 8� 2 C� do begin3� := �;1See section 5.6.2See section 5.4.3Goes through elements of C� in a well-de�ned order.148



if min(rev�; rev�) 62 SC� then4VSC�(�) := f 2 SC� :  � min(rev�; rev�)g5elseVSC�(�) := SC�;for 8 2 VSC�(�) do begin6� := ;<count number of crossings c ((�; �)) of grid diagram (�; �)>;if c ((�; �)) < �� 2 then <move to next  2 VSC�(�)>;for i := 1 to � do beginwhile <we can move arc ai to the right by a type II move>7 do<type II move on ai> ;while <we can move arc a�(i) to the left by a type II move> do<type II move on a�(i)> ;if <ai or a�(i) is adjacent to a consecutive arc> then goto 100 8;while <we can move arc ai to the left by a type II move> do<type II move on ai> ;while <we can move arc a�(i) to the right by a type II move> do<type II move on a�(i)> ;if <ai or a�(i) is adjacent to a consecutive arc> then goto 100 8;end; fnext igfor i := 1 to � do beginwhile <we can move point xi upwards by a type I move> do<type I move on xi> ;while <we can move point x�(i) downwards by a type I move> do<type I move on x�(i)> ;if <xi or x�(i) is adjacent to a consecutive point> then goto 100 9;while <we can move point xi downwards by a type I move> do<type I move on xi> ;while <we can move point x�(i) upwards by a type I move> do<type I move on x�(i)> ;if <xi or x�(i) is adjacent to a consecutive point> then goto 100 9;end; fnext igG := G [ f(�; �)g;100: end; fnext  2 VSC�(�)g
4Note that min(rev�; rev�) is necessarily proper.5See proposition 5.5.3.6Goes through elements of VSC�(�) in a well-de�ned order.7Recall the type I{IV moves of section 2.3.8If two arcs are both consecutive and adjacent then an arc-reducing type IV move isapplicable.9If two points are both consecutive and adjacent then an arc-reducing type III move isapplicable. 149



G� := f(�; ) 2 G :  2 VSC�(�)g;for (�; �) 2 G� do begin10while <we can move arc ai to the right by a type II move> do begin<move ai to the right by type II move>;<recalculate �>;while <we can move arc a�(i) to the left by a type II move> do begin<move a�(i) to the left by type II move>;<recalculate �>;if (�; �) 2 G� then G� := G� � f(�; �)g;end; fwhilegend; fwhilegend; fnext (�; �)gend; fnext �gG := S�2C�fGg;GT := f(�; ) : (rev ; rev �) 2 Gg;GT� := f(�; ) 2 GT : � = �g;for <each GT� > do beginfor (�; �) 2 GT� do beginfor i := 1 to � do beginwhile <we can move arc ai to the right by a type II move> do begin<move ai to the right by type II move>;<recalculate �>;while <we can move arc a�(i) to the left by a type II move> do begin<move a�(i) to the left by type II move>;<recalculate �>;if (�; �) 2 GT� then GT� := GT� � f(�; �)g;end; fwhilegend; fwhilegend; fnext igend; fnext (�; �) 2 GT� gend; fnext GT� gGT := S�: rev�2SC�fGT� g;

10Goes through elements of G� in a well-de�ned order.150



for (�; �) 2 GT do begin11<calculate braidword for (�; �) from grid diagram>;<calculate PK(v; z) using [M-S]>;<possibly replace PK(v; z) with P �K(v; z)>12;if PK(v; z) 62 Polys(�) then Polys(�) := Polys(�) [ PK(v; z) ;end; fnext (�; �) 2 GTgfor PK(v; z) 2 Polys(�) do13 write(PK(v; z));end.

11Goes through elements of GT in a well-de�ned order.12We work up to mirror image. See section 5.4.13Goes through elements of Polys(�) in a well-de�ned order.151
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