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The Murphy operators in the Hecke algebra Hn are commuting elements
which arose originally in an algebraic setting in connection with representa-
tion theory. They can be represented diagrammatically in a Homfly skein the-
ory version of Hn. Symmetric functions of the Murphy operators are known
to lie in the centre of Hn. Diagrammatic views of these are given which
demonstrate their algebraic properties readily, and how analogous central
elements can be constructed diagrammatically in some related algebras.

Introduction

This article is based closely on a talk given at the meeting on Differential
Geometric Methods in Theoretical Physics on the occasion of the opening of
the new building for the Nankai Institute of Mathematics in August 2005.
It appears as a chapter in Differential Geometry and Physics, Nankai Tracts
in Mathematics volume 10, (2006). More detailed accounts of the results
described during the talk can be found in the references noted.

I first heard about the Murphy operators on my previous visit to Nankai
ten years ago for a statistical mechanics satellite meeting. At that meeting
Chakrabarti gave a talk about the properties of what he termed the ‘funda-
mental element’ which generated the centre of the Hecke algebra Hn[3].

At that time Aiston and I had been studying geometrically based models
for Hn in terms of the group Bn of n-string braids, and I initially expected
that his fundamental element must be represented by the well-known gen-
erator for the centre of the braid group, namely the full twist braid ∆2.
However it soon became clear that Chakrabarti was referring to a different,
and more useful, element ofHn, with the algebraic feature that it had distinct
eigenvalues on the different irreducible submodules of Hn.
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Chakrabarti then told me that this element was the sum of the Murphy
elements (Murphy operators) in Hn. These are elements which have their
origin in work of Jucys[2] and subsequently Murphy[8].

Having been introduced to these elements, Aiston and I looked at them
in our geometrical model in order to understand them in that context, and
to see if their algebraic properties could be readily established there.

While we were able to understand their basic appearance, and establish
the eigenvalue property quite quickly[5] it was not until a few years later
that I came across a more satisfactory geometric way to represent them,
and a particularly striking way to produce their sum as an obviously central
element in Hn[4].

This in turn led me to a natural description for other central elements,
and similar descriptions of central elements in some natural extensions of the
Hecke algebras.

A further consequence of the eigenvalue property led me also to a very
helpful way of identifying the elements in a natural combinatorial model con-
structing 2-variable knot invariants which correspond neatly to the invariants
produced by irreducible quantum SL(N) modules.

I shall give here a brief account of the Jucys-Murphy elements in an
algebraic context, before describing the geometric models for Hn and for the
further construction.

1 Murphy operators in Hecke algebras

The Hecke algebra Hn is a deformed version of the group algebra C[Sn] of
permutations. Jucys[2] and Murphy[8] studied certain sums of transpositions
m(j) ∈ C[Sn].

m(2) = (1 2)

m(3) = (1 3) + (2 3)

m(4) = (1 4) + (2 4) + (3 4)
... =

m(j) =
j−i∑

i=1

(i j)

... =
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These elements have the following two properties:
1. The elements m(j) commute.
2. Every symmetric polynomial in them, for example their sum, or the

sum of their squares, lies in the centre of the algebra.
Dipper and James[1] found corresponding elements M(j) in Hn which

they named the Murphy operators, having similar properties:
1. The elements M(j) commute.
2. Every symmetric polynomial in them lies in the centre of Hn.

The Hecke algebra Hn can be readily presented as linear combinations
of n-string braids subject to a simple linear relation depending on a single
parameter z.

The elementary braids σ±1
i when composed by placing one below another

will generate all n-braids. Here

σi =
i i+1

is the braid on n strings in which string i crosses string i + 1 once in the
positive sense.

They satisfy Artin’s braid relations

σiσj = σjσi, |i− j| > 1,

σiσi+1σi = σi+1σiσi+1,

Elements of Hn can be regarded as linear combinations of braids on which
we impose the further quadratic relations

σ2
i = zσi + 1.

These relations can be visualised in the form σi − σ−1
i = z as

i i+1

−
i i+1

= z .

Setting the parameter z = 0 gives σi = σ−1
i and reduces each braid

to the permutation defined by following its strings, when σi becomes the
transposition (i i+ 1). The elements M(j) were based on a choice of braids
which each reduce to individual transpositions when z = 0.

3



Ram[9] pointed out that these could be combined into a single braid

T (j) =

j

to represent each M(j), up to linear combination with the identity.
Explicitly T (j) = 1 + zM(j). So long as z 6= 0 the elements T (j) will do

equally well in place of M(j).
The geometric braids T (j) clearly commute. Their product is the full

twist braid ∆2 which commutes with all braids, and so lies in the centre
of Hn. It is not immediately clear however that their sum, or any other
symmetric function of them is central.

2 A skein theory version

I shall now construct a model of Hn based on more general diagrams which
will provide a simple representative for the sum. In this wider context, known
as skein theory, we work with pieces of oriented knot diagrams, lying with
some prescribed boundary conditions in a fixed surface F . Diagrams consist
of arcs respecting the boundary conditions along with further closed curves,
and may be altered by sequences of the standard Reidemeister moves RII and
RIII . The moves can be interpreted as the natural physical moves allowed
on pieces of ribbon representing the curves.

The skein S(F ) consists of formal linear combinations of diagrams in F

(sometimes known as tangles) modulo two linear relations

(1) − = (s− s−1)

and (2) = v−1

between diagrams which differ only as shown. The coefficient ring can be
taken as Λ = Z[v±1, s±1] with powers of sk − s−k in the denominators.
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Theorem 2.1. (Morton-Traczyk[7]) The skein of the rectangle with n input
points at the bottom and n output points at the top is the Hecke algebra Hn,
with scalars extended to Λ and z = s− s−1.

Any diagram in the rectangle can be reduced to a Λ-combination of braids
by use of relations (1) and (2). For braids, the relation (1) becomes the
algebraic relation σi = σ−1

i = z.
The algebra composition in the skein version of Hn is given by placing

diagrams one below the other, as for braids. We can then exhibit lots of
diagrams which belong to the centre of Hn in this model.

For a start the diagram

T (n) =

is central.
This can be readily seen, since any diagram A can be passed through

using only Reidemeister moves II and III.

A

=

A

.

Theorem 2.2. (Morton[4]) T (n) is the sum of the variant Murphy operators
T (j), up to linear combination with the identity.

This result depends essentially on a repeated application of the skein
relation (1), leading to the equation

T (n) − = v−1z
n∑

j=1

T (j).
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Replacing the encircling curve in T (n) by a more complicated combination
of diagrams

X

gives a huge range of further central elements.
The choices for X are best thought of as elements in the skein C of the

annulus without prescribed boundary points, for example

X = .

There is a nice choice Xm for each m which gives the sum of the mth
powers of the Murphy operators T (j) in Hn no matter what n may be[4]. It
is then possible to produce any symmetric polynomial in T (j) from a suitable
choice of X .

In the same spirit, algebras Hn,p can be constructed as the skeins based
on the rectangle with inputs and outputs arranged as shown,

n p

where elements are again composed by placing one below the other. There
is again a large choice of similarly constructed elements

X

in the centre of the algebra. These can all be expressed as supersymmetric
polynomials in two families of commuting elements in the algebra which can
be considered as an analogue of Murphy elements in this setting.
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Even where the basic skein relation is altered, for example to Kauffman’s
4-term relation on non-oriented diagrams, similar diagrams to these will give
central elements. In this setting too these central elements may be interpreted
as polynomials in some form of Murphy elements.

3 The annulus

Representation theory of Hecke algebras also leads naturally to the skein of
the annulus. We are interested in finding trace functions on Hn, namely
linear functions tr to a commutative algebra such that tr(AB) = tr(BA).
The character of a matrix representation has this property, but we need not
restrict the image of the function to be the scalars.

Any diagram T in Hn can be closed to give a diagram T̂ in the annulus,
as shown, with the property that ÂB = B̂A. This procedure respects the
skein relations, and so determines a Λ-linear map ̂ : Hn → C to the skein
of the annulus. Now C is a commutative algebra, so the closure map is
a trace function on Hn, and its composite with any linear function on C
will determine further trace functions. Indeed it is possible to construct all
irreducible characters of Hn by suitable linear functions on C.

Write Cn ⊂ C for the image of Hn, and define the meridian map ϕ : Cn →
Cn diagrammatically by

ϕ(X) =
X

.

Thus if X = Â then ϕ(X) = ̂AT (n). If AT (n) = cA then Â is an eigenvector
of ϕ with eigenvalue c.

Theorem 3.1. The meridian map ϕ has no repeated eigenvalues.

Aiston and I[5] gave a direct proof of this by exhibiting suitable choices
of A. The result can be interpreted as a different angle on Chakrabarti’s
observation about the action of the sum of the Murphy operators on Hn.

Indeed when the meridian map is extended over all diagrams in the an-
nulus to give ϕ : C → C it still has no repeated eigenvalues[6]. In Cn the
eigenvectors correspond to partitions of n, and the subspace of C spanned
by the union of Cn for all n can be interpreted as the representation ring of
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SL(N) for large N . In this context the eigenvectors match up well with the
irreducible representations, and give well-adapted skein theoretic elements
Qλ for each λ ⊢ n. These can be used to provide a 2-variable invariant of
a knot for each partition λ that yields the irreducible 1-variable quantum
SL(N) invariants for each N by a simple substitution. Eigenvectors for the
meridian map in the whole skein of the annulus correspond to pairs λ, µ

of partitions, and again give natural 2-variable invariants which are well-
adapted to quantum group interpretations[6].
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