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Abstract.

Starting from the existence of the 2-variable polynomial P for oriented links we
develop the linear skein theory approach to give a geometric realisation of the Hecke
algebras. A careful definition of the ring A in which P takes values makes it easier
than usual to study the representations of pieces of a knot diagram in the Hecke
algebras and in specialisations of them such as the group algebras Z[S,].

An analogous method is used to construct algebras based on Kauffman’s polyno-
mial. Here a similarly careful choice of ring, coupled with the use of the Dubrovnik
variant of the polynomial allows a natural specialisation to Brauer’s algebras.

Introduction.

The 2-variable polynomial P(K) of an oriented link K was developed from
two different starting points. One approach was through the Hecke algebras H,,
[J1,J2,0], while the other combinatorial approach was through knot diagrams and
eventually linear skein theory, [FYHLMO,PT]. We use here the linear skein theory
approach based on tangles (pieces of a knot diagram) to give a geometric realisation
of the Hecke algebras, assuming the existence of P(K). One important feature in
the construction as presented here is the definition of the ring A in which P(K)
takes values, to be a subring of the more usual Laurent polynomial ring. This allows
various specialisations of the algebras, which result from specialising A, to be readily
constructed.

We use similar methods, starting with Kauffman’s polynomial in its Dubrovnik
form [K], again keeping a close watch on the ring used, to construct algebras whose
specialisations can be identified with Brauer’s algebras [B] in a very natural way.
Such algebras have been studied in more detail by Birman and Wenzl [BW], and
it was from them that we got to hear of Brauer’s algebras. While their algebras
are essentially isomorphic to the ones constructed here, our choice of ring and the
use of the Dubrovnik variant of the polynomial allow us to make their conjectured
connection with Brauer’s algebras very directly both algebraically and geometrically.
For this reason, and also because of the form of recently discovered connections of
both polynomials with invariants derived from Lie algebras [T], we feel that the
Dubrovnik version, and the version of P which we use, both have a particularly
appropriate choice of variables.
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While this method of geometrically constructing such algebras has been known
to a number of workers in the area, we feel that it is worth expounding here as it
underlines the general strategy for computing invariants by working systematically
with tangles.

This paper is a revised version of one originally called ‘Knots, skeins and algebras’
in which we also described how the direct connections between algebra and geometry
had provided the original basis for our work [MT] on satellites around mutants.

1. The invariant P.

The polynomial P(K) for an oriented link K is normally regarded as lying in
Z[v*!, 2*1]. We shall take the defining skein relation to be v"*P(K*) —vP(K~) =
2zP(KP"), as in [M], rather than the version with all signs positive.

It can be seen from the construction of P, either from the Hecke algebras [M],
or via the skein relation, as in [LM] or [PT], that P always lies in a subring of
Z[vt!, 2*1] isomorphic to the ring A = Z[v*!, 2, 6]/ < v™!—v = 2§ > . This quotient
ring A is mapped injectively to Z[v*!, 2*!] by the assignment 6§ = (v —v)/z.

Recall that when K is the unlink with n components we have P(K) = §"~1.
The combinatorial definition of P using the skein relation then determines P very
explicitly as an element of A in the first instance rather than Z[v*!, z*1] directly,
underlining the considerable restrictions on the appearance of z~! in P.

We may exploit the fact that P lies in A by considering the effect of the homo-
morphism e : A — Z[¢] defined by e(v) = 1,e(z) = 0 and e(d) = 6. From the skein
relation we have e(P(K™)) = e(P(K™)), so that the evaluation e(P(K)) € Z[¢] is
unchanged under any crossing switches in a diagram of K. Since any K can be al-
tered in this way to the unlink on the same number of components, it follows at once
that e(P(K)) = §/XI=1, where |K| is the number of components of K.

This gives a quick confirmation of a result of Yetter.

Theorem. (Yetter)

P(K)(1+ at, Bt) — (—2a/p) K171 as t — 0.

Proof: In A C Z[v*!, 2*1] the element P —e(P) — 0 as (v,2z) — (1,0), while
b=((1+at)™ ' —(1+at))/Bt — —2a/B3 as t — 0. O

Remark. The homomorphism e, which is not defined on the whole of the ring
Z[v*!, 21, has the effect of passing from a knot diagram to its projection where
under- and over-crossings are not distinguished. In the version of P with positive
signs in the skein relation this process requires the use of the complex number ¢ in
the specialisation.



2. Tangles.

We shall use the language of tangles, slightly altered from Conway’s original
descriptions, to denote pieces of knot diagram lying inside a rectangle in the plane
and meeting its boundary in a prescribed way.

Definition. An (m,n)-tangle is a piece of knot diagram in a rectangle R in the
plane, consisting of arcs and closed curves, so that the end points of the arcs consist
of m points at the top of the rectangle and n points at the bottom, in some standard
position.

An example of a (4,2)-tangle is shown in figure 1.
|
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Figure 1

Definition. Two tangles are ambient isotopic if they are related by a sequence of
Reidemeister’s moves I, IT and III, (see figure 2), together with isotopies of R fixing
its boundary.

They are regularly isotopic if Reidemeister move I is not used.

Figure 2



Notation. Write ™ for the set of (m,n)-tangles up to regular isotopy, and U up
to ambient isotopy.

Remark. A tangle may be regarded as a sideways view of part of a knot lying in
a cylinder D? x I, meeting only its top and bottom. Ambient isotopy of tangles
corresponds to ambient isotopy of the knot within D? x I.

We shall be concerned here with two classes of tangles.

The first, studied in connection with Kauffman’s polynomial, is simply the set U,* of
all (n,n)-tangles up to regular isotopy.

In working with P we need to handle oriented diagrams. We shall confine our
attention to those (n,n)-tangles in which each arc joins a point at the top of R to
a point at the bottom. We shall further suppose that the strings have been oriented
to run from top to bottom.

Notation. Write 7, for the set of such oriented tangles up to regular isotopy, and
T, up to ambient isotopy.

Remark. 7, naturally defines a subset of ¢’ by ignoring orientation. Two elements
of 7,, may yield the same element of /]’ , since altering the orientation on a closed
component of an oriented tangle will in general give a different element of 7,.

Each of the four classes of tangles 4", U™, 7, and 7, admits an associative
multiplication, defined by placing representative tangles one below the other.

A well-known subset B, C 7, consists of geometric braids - in this context
represented by tangles (necessarily without closed components) where the height co-
ordinate in R increases monotonically on each component. It can be shown that B,
is the full group of units in 7,, under the multiplication.

The closure, T, of an (n,n)-tangle T, is defined, by analogy with the closure of
a braid, to be the link diagram (or (0,0)-tangle ) given from 7' by joining the points
on the top of R to those on the bottom by arcs lying outside R with no further
crossings.

We shall also write A(T) for the closure T, defining a closure map A : U”* — UY
etc. for each of the classes above.

3. The Dubrovnik invariant.

The invariant P described above gives a map P : 7o — A.

Kauffman’s polynomial, in its Dubrovnik form, comes from a map D : UJ — A’,
for a ring A’, i.e. a function on diagrams which is unaltered by regular isotopy.

This function D has the basic properties:
(1)  DET) - D(K™) = 2D(K°) - D(K*))
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where the diagrams K+, K and K differ only as in figure 3, and
(2) DK = \D(K), D(rTIEM) = \1D(K),

where K1t and K180t are given from K by adding a left or right hand curl as in
figure 4.

) (

Kt = , K- = », K= )(, K==
Figure 3

right hand curl = Lp , left hand curl = b .
[

Figure 4

It is usually normalised by

3)  DO)=1,

where O is the diagram of the unknot without any crossings.
It also satisfies

(4) D(KIIO) =6D(K),
where K I O is the union of K and a circle having no crossings with K or with
itself, and § € A’ satisfies A™1 — X = 2(§ — 1).

We shall take A’ to be the ring A’ = Z[A*!, 2,6]/ <A1 —A=2(6 1) >.

An invariant D of oriented links up to isotopy, also lying in A’, is readily con-
structed from D as follows. Suppose that an oriented diagram K is given. We put
D(K) = A*5)D(K), where w(K) is the number of crossings in K counted with
sign, to get an invariant under Reidemeister moves I, II and III. The invariant does
depend on the choice of orientations of the components of K, but only marginally so.
A ‘neutral’ choice could be made by counting only ‘pure’ crossings in the signed cross-
ing number, that is crossings of each component with itself only, to give an isotopy
invariant which is independent of string orientations.

The ring A’ is isomorphic to a subring of Z[A*!, z*1] but as with A above it
admits a homomorphism e : A’ — Z[§] with e(z) =0, e(A\) =1 and e(§) = 4.

Proposition. e(D(K)) = e(D(K)) = §/KI-1,
Proof: As in the previous case. O

Corollary. (Wenzl)
D(K)(1 +~t,8t) — (1 —2y/B)KI=1 as t — 0. O

Remark. The invariant D is equivalent to Kauffman’s original invariant F. This
was proved by Lickorish shortly after Kauffman proposed the invariant D.



Theorem. (Lickorish [L])
D(K)(\, z) = (—1)IEIZTF(K) (i), iz). O

While this theorem effectively removed the need to consider D, it now appears
that D is more natural than F' in a number of contexts, in that the use of ¢ can
frequently be avoided. The regular isotopy invariant D behaves particularly well
[T,Y], especially when the alternative normalisation D(0) = ¢ is used, i.e. D(0) =1
by use of (4).

Lickorish uses the notations A* for D and F* for D, while Turaev uses Q_ for
D.

4. Algebras.

From P and 7, we show how to construct an algebra L, isomorphic to the
Hecke algebra H,,. A similar approach, using D and U,’ gives an algebra M,, which
we call Kauffman’s algebra. It is isomorphic to the algebra produced by Birman
and Wenzl [BW], but certain features, for example its dimension, and its relation
to Brauer’s algebra [B], which were not directly proved in their original approach,
appear here very simply, by use of the homomorphism e and the Dubrovnik invariant
D.

The two constructions and their properties follow very similar lines. We treat the
case of P in more detail first, but eventually concentrate on the less familiar ideas
related to D.

Factor out two types of relation from A[7 ], the set of all A-linear combinations
of tangles in 7,,, to give a A-module L,,.

These relations are:
(1) vt — T~ = 2T°,
where T* and T° are represented by tangles differing only as in figure 5.

=, = N\, T0:><.

Figure 5

(2) TIHO = 46T,
where T II O consists of T' and a disjointly embedded unknotted component.

Proposition 4.1. The map PoA : 7,, — A calculating the polynomial of the closure
of a tangle induces a A-linear map L, — A.

Proof: Immediate from (1) and (2). 0

Proposition 4.2. Composition of tangles induces a A-bilinear multiplication on L,
making L,, an algebra over A.



Proof: Check that the relations carry down under the multiplication in A[7,]. O

We now show how to find a free basis for L,, with n! elements corresponding to
permutations in 5,,. The proof that the elements selected form a generating set for
L,, is an easy consequence of the relations (1) and (2), using the methods of Lickorish
and Millett. To prove independence we need to use the existence of P; we use the
homomorphism e to finish the proof very quickly.

We develop the notation and techniques to handle this case and the other algebra
M, at the same time.

Definition. Given a tangle T, choose a sequence of base-points, consisting firstly of
one end point of each arc, and then one point on each closed component. Say that T
is totally descending (with this choice of base points) if on traversing all the strands
of T, starting from the base point of each component in order, each crossing is first
met as an overcrossing.

We shall make a convention about the order of base-points for the arcs of an
(n,n)-tangle as follows. Order the 2n end points of the arcs, starting with the
bottom left point on the boundary of the rectangle, and reading anticlockwise round
the boundary. Assign base-points successively in this order, skipping any end point
whose arc has already been numbered.

An example of a totally descending (3, 3)-tangle is shown in figure 6, with base-points
numbered according to this convention.

1 2

Figure 6

Remark. With this convention the base-points for the tangles used in 7,, will start
with the n ‘inputs’ on the bottom taken in order.

Theorem 1. L, is linearly generated by totally descending tangles.

Proof: Use the techniques of Lickorish and Millett [LM]. Let T' be a tangle rep-
resenting an element of L,. Choose base points for T' as above. Use relation (1)
at the first non-descending crossing of T to write T as a linear combination of two
tangles, one with fewer crossings, the other with fewer non-descending crossings. The
theorem follows by induction, firstly on the number of crossings, then on the number
of non-descending crossings. O

Corollary. L, is linearly generated by totally descending tangles without closed
components.



Proof: If T is totally descending, with r closed components, then these components
are unknotted curves stacked below the arcs of T, so that by (2), T'=6"T" in L,,
where T' consists simply of the arcs of T. O

5. Permutations and connectors. To each tangle T' in 7, we can associate a
permutation perm(7T) € S,, by comparing the bottom and top points of the n arcs.

For a general tangle we extend the idea of a permutation to that of an n —
connector, defined to be a pairing of 2n points into n pairs. The set C,, of n-
connectors has (2n)!/2™n! elements, the product of the first n odd integers.

Take the set of 2n points to be the end points of (n,n)-tangles. The arcs of any
T € U]} pair these end points to give a connector, which we write as conn(T') € C,,.

Brauer’s algebra. Brauer [B] uses C,, as the basis for an algebra over Z[6], (writing
n in place of § and f in place of n). He divides the 2n points to be connected into two
subsets t1,...,t, and by,...,b,, arranged along the top and bottom of a rectangle,
and views a connector ¢ as a set of n intervals with these 2n points as endpoints,
which join the points paired by c¢. Two connectors c¢; and co are composed by placing
one rectangle above the other, giving n arcs whose endpoints are the new top and
bottom points, together with some number r > 0 of closed curves.

Brauer sets cico = 6"d, where d is the connector defined by the new arcs. This
defines an associative multiplication on Z[6][C),] = A, making it an algebra over
Z[6], called Brauer’s algebra.

Having divided the 2n points in this way there is a natural embedding S,, C C,,.

Theorem 2. Let S and T be totally descending (n,n)-tangles, without closed
components, such that conn(S) = conn(7T). Then S and T are ambient isotopic.

Proof: Number the arcs of S and T according to the order of their base points.
Since conn(S) = conn(T'), the ith arc in each tangle joins the same pair of end
points. The arcs can be arranged to lie in disjoint levels 1 to n above the plane of
R, since arc ¢ lies above arc j at every crossing when ¢ < j. Each individual arc is
unknotted, because the tangle is descending, so it can be isotoped to an arc without
self-crossings in its level. The resulting tangles are then isotopic by level-preserving
isotopy. O

Remark. If the arcs of § and T have no self-crossings initially then S and T are
regularly isotopic.

Construction. For each connector ¢ € (), construct a totally descending tangle
with connector ¢ such that any two arcs cross at most once. (Start from such a
diagram of the connector, and make it descending, by choosing the sense of each
crossing.) The element T, € U]’ represented by this tangle then depends only on ¢
by Theorem 2.



Remark. For ¢ € S,, the resulting tangles 7. have been studied, [E], under the
name ‘positive permutation braids’. They can be represented by a braid in B,, with
positive crossings and permutation ¢ in which any two strings cross at most once.

These braids have also been used in [MS1,2], to give easily handled generators
for the Hecke algebra H,.

6. The Kauffman algebra.

Definition. The Kauffman algebra, M,, is constructed from A’[U?] by factoring
out three sets of relations:

(1) TT —T7 = 2(T° — T*)

(2) pright _ A-IT, pleft _ \p

(3) TIHO = 46T,

where T#, T°, T° and TII1 O are related as for link diagrams.

As in the case of L,, we have a A’-linear map M,, — A’ induced by Do A :
U — A’ and a bilinear multiplication induced from tangle product making M, an
algebra over A’.

Theorem 3. M, is linearly generated by the finite set {T.}, ¢ € C,,.

Proof: A direct analogue of theorem 1 and its corollary shows that M,, is generated
by tangles which, using theorem 2, are ambient isotopic to T, for various c. By use
of relation (2), any tangle ambient isotopic to T, represents AT, in M, for some
k. O

Theorem 3'. L, is linearly generated by {T.}, ¢ € S,.
Proof: Immediate. O

Theorem 4. The set {T.}, ¢ € C,, forms a free A’-basis for M,,.

Proof: Write b: M, x M,, — A’ for the bilinear form defined on tangles by b(S,T) =
D(A(ST)). Represent b in terms of the generating set {T.} by a |C},|x|C,,| matrix A,
with entries a.q = b(T.,T;). We show that b is non-degenerate, and in addition, since
A’ has no zero-divisors, that {T.} is a free basis of M,,, by proving that det A # 0.

The link A(T.Ty) has r components, say. Each component contains at least one
arc from each of T, and Ty, so r < n. When r = n each component has exactly
one arc from each, so that the connector d is the ‘mirror image’ of ¢, given by
interchanging the roles of the top and bottom points. Set ¢ = d in this case, so that
we have r = n if and only if d = ¢.

Now apply the homomorphism e to the entries in A. Then e(a.q) = 6"7%, r < n,
and r = n if and only if d = & The matrix e(A) has then one entry 6”1 in each row
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and column, so e(det A) = det(e(A)) € Z[§] has a non-zero coefficient for §™(»=1),
Thus e(det A) # 0, so det A # 0. O

Theorem 4'. The set {T.}, ¢ € S, forms a free A-basis for L.

Proof: The A-bilinear form on L, constructed analogously using P is non-
degenerate, by a similar proof using e : A — Z[4]. O

Remark. The actual entries in the matrix A can be quite complicated. Use of e
makes an enormous simplification.

We now look at M,, and L,, as algebras, and compare them with Brauer’s algebra
A,, or with Z[S,,] respectively.

We can modify the map conn : U — C,, to give a multiplicative homomorphism
c: Uy — A,, which extends to ¢ : M,, — A, as follows. For T € U} set ¢(T) =

81T conn (T') € A,,, where |T| is the number of closed components of T. Now extend
to c: N'[UT] — A, by setting c(> NT;) = > e(Ai)e(T;).

Theorem 5. There is an induced homomorphism ¢ : M,, — A,,.

Proof: The relations (1)-(3) defining M,, are respected. O

Remark. In fact A, is exactly the algebra M, /(5\9 Z[6] given from M, by replacing

the coefficients A’ with Z[4], using the homomorphism e.

Theorem 6. There is an isomorphism of Z[é]-algebras induced by ¢ between
M, ® Z[§] and A,.
AI

Proof: The map c: M, — A, factors through a Z[§]-homomorphism M,, % Z[6] —
A,,. Since M, % Z[6] is generated over Z[6] by {T.} which maps onto a basis of A,

of the same cardinality, this set must be a Z[6]-basis in the specialisation, and the
map is hence an isomorphism. O

Remark. The existence of ¢ : M,, — A, can be viewed as the consequence of
specialising the coefficients so that the relations no longer distinguish under- from
over-crossings. Then tangles pass to their projections, retaining only the information
of their connectors. The crucial technical feature here is that we can specialise A’

so as to retain 9, while fixing A and z. Complications arise if we simply work with
Z[)\il, Zil].
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The algebra L, admits a similar map ¢ : L,, — Z[6][S,] taking tangles to their
permutations, which similarly gives an isomorphism of L, ® Z[§] with Z[6][S,], and
A

further, putting 6 = 1, and isomorphism of L, ® Z with Z[S,,].
A

7. Algebra generators.

As an algebra, L,, can be generated by the elementary braids o; € 7,,, since each
T., c€ S, is a composite of these. It is immediate that the generators o; satisfy the
braid relations o;0; = 00y, |i — j| > 1, and 0;04410; = 0j+10;0;+1. In addition, the
lg; —vo; ' = z comes from applying the relation (1) in L, to the only

crossing in o; = T, when we have T~ = o 1 and T° = identity tangle.

relation v~

The algebra defined abstractly by these generators and relations is known as a
Hecke algebra, H,,, so that L, is automatically a quotient of H,. It is not difficult
to establish that H, has a set of n! linear generators which map to {7.}; see [M] for
a description of these generators in terms of ¢; = v='o;. The independence of {T.}
already established in L, then ensures that the quotient map is an isomorphism,
without having to show directly that these generators of H,, are independent. Thus
L, may be regarded as a concrete realisation of H,. From this point of view the
trace funtion on the algebra H, used in [M] can be recovered from the evaluation
map L, — A by taking Tr(S) = P(A(S))/6" L.

In the case of the Kauffman algebras we can similarly find generators and rela-
tions, as in [BW], although this task is simplified by knowing a linear basis already.
The tangles s;, si_1 and h; shown in figure 7 satisfy the relations s; — si_1 = z(1—hy)
in M,,.

| N -1 I N

S = y S - ’ hl =
i+l i+l

TN
N
i i+l
Figure 7

Since the basis elements {T.} of M,, can be written as monomials in slil and h;
then M,, can be generated by s; and h; as an algebra over A’. The elements s; satisfy
the braid relations while the elements h; satisfy Kauffman’s bracket relations, h? =
6hi, hihj = hjh;, |t —j| > 1, and h;h;y1h; = h;. They also satisfy further relations
between h; and s;, in particular s;h; = Ah;. Inclusion of enough of these to allow
all products Tys; and Tyh; to be written as A’-combinations of {T.} will then give
an explicit presentation of M,, as an algebra.

The braid group B, appears to play a slightly ambivalent role in M,,. It can
clearly be represented in M,, by taking o; to As;. Its image does not linearly generate
the whole of M,,, since on composition with ¢ : M,, — A,, the image only contains
combinations of permutations S,, C C,,. However it is possible to write all tangles in
M, as linear combinations of braids if the coefficient ring is extended to include z~!.
(In this setting the algebra can be generated linearly by sfE1 by solving the relations
for h;. ) Birman and Wenzl make use of this representation of B,, in describing the

algebra over the ring Z[A\*1, z+1].
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Remark. This representation entails a cubic polynomial relation for s;, since s?—1 =
z(s; — sihi) = z(s; — Ahi) = zs; + A(s; — si_l — z). Then s; satisfies the polynomial
equation s3—(z+M)s2+(Az—1)s+X = 0, withroots X\,q~! and —q, where z = ¢~ —q.
While it is now possible to construct a linear basis of M,, over Z[A*!, 21| consisting

of braids, it does not seem to be straightforward to find any particularly natural choice
of |Cy,| braids which will work.

For calculations M,, can be used to find D, and hence Kauffman’s polynomial,
for a link presented as the closure of an (n,n)-tangle. The tangle must be written as
a linear combination of generators during the course of the calculation; this will be
helped if it can be presented as a monomial in sfl or sfl and h;. A recursive cal-
culation, knowing only the products of the linear generators with slil or with s; and
h; will then be enough to allow quick mechanical computation. The tangles 7T, lend
themselves to reasonably simple expressions when composed with s; or h;, although

not so simple as for the positive permutation braids used in L, for calculating P,
[MS2].

8. Related ideas.

We close with some remarks about a very satisfying relation between tangles and
algebras. In his beautiful work on the bracket polynomial, a near equivalent of the
original Jones polynomial, Kauffman describes an algebra in terms of diagrams. This
is the subalgebra of M,, generated (as an algebra) by the elements h;, or equally,
generated linearly by those T, without any crossings (of which there are (27?) /(n+1),
the nth Catalan number). This algebra is essentially isomorphic to its image in A,,,
and to the original algebra used by Jones. It depends on n and 6, and it gave rise to
an early connection with ideas from theoretical physics, where it has been known as
a Temperley-Lieb algebra.

The geometrical view described here can be used for example in finding natural
ideals of the algebras.

Definition. The rank of an (m,n)-tangle T is the least k for which T is the
product of an (m, k) and a (k,n) tangle. (Cf. rank of m x n matrices.)

Clearly, rank(ST) < rank(S), rank(T).

Corollary. The submodule MT(Lk) of M, generated by tangles of rank < k is an
ideal. O

This construction, applied to the Temperley-Lieb algebras, for example, gives all
their ideals, except when the ring is specialised with certain choices of . See also
[HW], where such ideas are used for A,. It underlines the benefits when working
with an algebra of having some geometrical model available.
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