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1 IntroductionIn previous studies of invariants derived from the Hom
y polynomial, or equiv-alently from the unitary quantum groups, it was noted that no invariant givenby a module over SU(3)q was known to distinguish a mutant pair of knots. In-deed, any quantum group module whose tensor square has no repeated summandsdetermines a knot invariant which fails to distinguish mutants [3]. A table of in-variants which fail to distinguish mutants was drawn up in [3], using this andother evidence. Direct Hom
y polynomial calculations showed that a certainirreducible SU(N)q invariant, coming from the module with Young diagramcould distinguish between some mutant pairs for N � 4, although not for N = 3.These calculations also exhibited a Vassiliev invariant of �nite type 11 whichdistinguishes some mutant pairs. The calculations left open the possibility thatSU(3)q invariants might never distinguish mutant pairs.In this paper we give details of calculations with a speci�c SU(3)q-modulewhich result in di�erent invariants for the Conway and Kinoshita-Teresaka pairof mutant knots. We also consider some features of Kuperberg's skein-theoretictechniques for SU(3)q invariants in the context of mutant knots.1.1 BackgroundThe term mutant was coined by Conway, and refers to the following generalconstruction.Suppose that a knot K can be decomposed into two oriented 2-tangles F andG as shown in �gure 1.�The second author was supported by EPSRC grant GR/J72332.1



F ' GF GK   = K '   =

F '  =  or orF FFFigure 1A new knot K 0 can be formed by replacing the tangle F with the tangle F 0given by rotating F through � in one of three ways, reversing its string orienta-tions if necessary. Any of these three knots K 0 is called a mutant of K.The two 11-crossing knots with trivial Alexander polynomial found by Conwayand Kinoshita-Teresaka are the best-known example of mutant knots. They areshown in �gure 2.
C = ,

KT = .Figure 2It is clear from �gure 2 that the knots C and KT are mutants, and theconsituent tangles F and G are both given from a 3-string braid by closing o�one of the strings.The simplest SU(3)q invariant not previously known to agree on mutant pairsis given by the 15-dimensional irreducible module with Young diagram . TheHom
y polynomial of the 4-parallel with z = s�s�1 and v = sN is a sum of 4-cellinvariants for SU(N)q. When N = 3 it is known that all 4-cell invariants exceptthat for agree on mutants. Thus the Hom
y polynomial of the 4-parallel,with the substitution z = s � s�1 and v = s3, agrees on mutants if and only ifthe SU(3)q invariant for agrees on mutants.2



Equally, the same substitution in the Hom
y polynomial of the satellite con-sisting of the parallel with 3 strings, two oriented in one direction and one inthe reverse direction, gives the sum of certain 4-cell invariants for SU(3)q, be-cause the dual of the fundamental module, used to colour the reverse string, isgiven by using the Young diagram with a single column of two cells. Then theHom
y polynomial of the 3-parallel with one reverse string, after the substitutionz = s� s�1; v = s3 agrees on mutants if and only if the SU(3)q invariant foragrees on mutants.Kuperberg's combinatorial methods for handling SU(3)q invariants seemedto us for a while to o�er a chance that the behaviour of SU(3)q would followthat of SU(2)q. We explored the SU(3)q skein of the pair of pants, based onKuperberg's combinatorial techniques, in the hope of proving this. An analysisof this skein is given later, as it has a geometrically appealing basis, whose �rstlack of symmetry again pointed the �nger at the reversed 3-parallel as the �rstpotential candidate for distinguishing some mutant pairs.We did not pursue the skein calculations for these parallels of Conway andKinoshita-Teresaka, as it is rather harder to use computational aids in dealingwith combinatorial skein diagrams once the number of crossings to be resolvedgrows beyond easy blackboard calculations. Instead we returned to the SU(3)q-module calculations and made explicit computations for the invariants of theknots C and KT when coloured by the 15-dimensional module V , using thefollowing scheme. We give further details of the method later.When each of these knots is coloured by the SU(3)q-module V the two con-stituent tangles F and G will be represented by an endomorphism of the moduleV 
 V . To calculate the invariant of the knot, presented as the closure ofthe composite of the two 2-tangles, we may compose the endomorphisms for thetwo 2-tangles, and then calculate the invariant of the closure of the compositetangle in terms of the resulting endomorphism. Let us suppose that V 
Vdecomposes as a sum L a�V� of irreducible modules, where a� 2 N and a�V�denotes the sum of all submodules which are isomorphic to V� . Any endomor-phism then maps each isotypic piece a�V� to itself. It is convenient to regard eachisotypic piece as a vector space of the form W� 
 V�, where W� has dimensiona�, and can be explicitly identi�ed with the space of highest weight vectors forthe irreducible module V� in V 
 V . Any endomorphism � of V 
 Vmaps each space W� to itself, and is determined by the resulting linear maps�� : W� !W�.Where two endomorphisms � and � of L(W� 
 V�) are composed, the corre-sponding restrictions to each weight spaceW� compose, to give (���)� = �� ���.Now the invariant of the closure of a tangle represented by an endomorphism 
of L(W� 
 V�) is known to be P(tr(
�) � ��), where �� = JO(V�) is the quan-tum dimension of the module V�. The di�erence of the invariants for two knots3



represented respectively by 
 and 
0 is then given in the same way using 
 � 
0in place of 
.The invariants for Conway and Kinoshita-Teresaka arise in this way fromendomorphisms 
 = � � � and 
0 = �0 � �, in which � and �0 represent one of the2-tangles for Conway, and the same tangle turned over for Kinoshita-Teresaka,while the other tangle gives the same � in each case. We can write �0 = R�1���Ras module endomorphisms, where R is the R-matrix for V . Clearly, for those� with dim W� = 1 we will have �0� = ��, and so 
0� � 
� = 0. (As noted in[3], if this happens for all � then the invariant cannot distinguish any mutantpair). The �nal di�erence of invariants will thus depend only on those � wherethe summand V� has multiplicity greater than 1. In the case here there are justtwo such � and in each case the space W� has dimension 2. The calculation thenreduces to the determination of the 2� 2 matrices representing ��; �0� and ��.1.2 Result of the explicit calculationThe di�erence between the values of the invariant on Conway's knot and on theKinoshita-Teresaka knot iss�80(s8 + 1)2(s4 + 1)4(s+ 1)13(s� 1)13(s2 � s+ 1)3(s2 + s+ 1)3(s6 � s5 + s4 � s3 + s2 � s+ 1)(s6 + s5 + s4 + s3 + s2 + s + 1)(s4 � s3 + s2 � s+ 1)(s4 + s3 + s2 + s+ 1)(s4 � s2 + 1)(s2 + 1)6(s46 � s44 + 2 s40 � 4 s38 + 2 s36 + 3 s34 � 4 s32 + 6 s30 � s28 � 3 s26 + 6 s24�4 s22 + 4 s20 + 2 s18 � 5 s16 + 5 s14 � 2 s12 � 2 s10 + 4 s8 � 2 s6 + s2 � 1)up to a power of the variable s.This may be rewritten to indicate more clearly the appearance of roots ofunity as the product of (s46�s44+2 s40�4 s38+2 s36+3 s34�4 s32+6 s30�s28�3 s26+6 s24� 4 s22+4 s20+2 s18� 5 s16+5 s14� 2 s12� 2 s10+4 s8� 2 s6+ s2� 1)with the factors (s8�s�8)2(s7�s�7)(s6�s�6)(s5�s�5)(s4�s�4)2(s3�s�3)2(s2�s�2)(s� s�1)3, and a power of s.When this is written as a power series in h with s = eh=2 the �rst term becomes7 + O(h) and the other factors contribute ch13 + O(h14), where the coe�cient cis c = 82:7:6:5:42:32:2. The coe�cient of h13 in the power series expansion of theSU(3)q invariant for the 15-dimensional irreducible module is thus a Vassilievinvariant of type at most 13 which di�ers on the two mutant knots.1.3 Some background to the calculational methodIn this section we give details of the methods used in our calculations. We feel itis important that others can in principle check the calculations, as we were verymuch aware in setting up our initial data just how much scope there is for error.It can easily cause problems, for example, if some of the data is taken from onesource and some from another which has been normalised in a slightly di�erent4



way. When the goal is to show that some polynomial arising from the calculationsis non-zero any mistake is almost bound to result in a non-zero polynomial evenif the true polynomial is zero.In our work here we have been reassured to �nd that the non-zero di�erencepolynomial above at least has some roots which could be anticipated, since thedi�erence must vanish at certain roots of unity. An error in the calculationswould have been likely to give a di�erence which did not have these roots.1.4 The quantum group SU(3)qWe start from a presentation of the quantum group SU(3)q as an algebra withsix generators, X�1 ; X�2 ; H1; H2, and a description of the comultiplication andantipode. Let M be any �nite-dimensional left module over SU(3)q. The actionof any one of these six generators Y will determine a linear endomorphism YM ofM . We build up explicit matrices for these endomorphisms on a selection of low-dimensional modules, using the comultiplication to deal with the tensor productof two known modules, and the antipode to construct the action on the lineardual of a known module. We must eventually determine the matrices YM for the15-dimensional moduleM = V above, and �nd the 225� 225 R-matrix, RMMwhich represents the endomorphism of M 
M needed for crossings.Knowing YM we can �nd the generators YMM for the module M 
M , andthus identify the highest-weight vectors for this module. We can follow the e�ectof each 2-tangle F and G on the highest-weight vectors when we know how totake account of the closure of one of the strings in forming the 2- tangle from the3-braid. To do this we need the �xed element T of the quantum group, corre-sponding to Turaev's `enhancement' [5], which is used in forming the `quantumtrace'.For the quantum groups coming from the classical Lie algebras there is asimple prescription for T = exp(h�) in terms of a linear form � = P�iHi, withcoe�cients determined by the Cartan matrix for the Lie algebra, [1]. In thecase of SU(3)q we have � = H1 + H2. The quantum dimension of any moduleM is the trace of the matrix TM representing the action of T on M . Moregenerally, the e�ect of closing a string which is coloured by M , to convert anendomorphism of V 
M into an endomorphism of V , can be realised by acting onM by T and then taking the partial trace of the composite linear endomorphismof V 
M . The element T is variously written as u�1v or u�1� where v is Turaev's`ribbon element' representing the full twist and u is constructed directly from theuniversal R-matrix, [6], [1].We follow Kassel in the basic description of the quantum group from [1],chapter 17, using generators H1 and H2 for the Cartan sub-algebra, but withgenerators X�i in place of Xi and Yi. We use the notation Ki = exp(hHi=4), andset a = exp(h=4); s = exp(h=2) = a2 and q = exp(h) = s2, unlike Kassel. The5



elements satisfy the commutation relations [Hi; Hj] = 0, [Hi; X�j ] = �aijX�j ,[X+i ; X�i ] = (K2i � K�2i )=(s � s�1), where (aij) = � 2 �1�1 2 � is the Cartanmatrix for SU(3), and also the Serre relations of degree 3 between X�1 and X�2 .Comultiplication is given by�(Hi) = Hi 
 I + I 
Hi;(so �(Ki) = Ki 
Ki; )�(X�i ) = X�i 
Ki +K�1i 
X�i ;and the antipode S by S(X�i ) = �s�1X�i , S(Hi) = �Hi, S(Ki) = K�1i .The fundamental 3-dimensional module, which we denote by E, has a basisin which the quantum group generators are represented by the matrices YE aslisted here. X+1 = 0B@ 0 1 00 0 00 0 01CA ; X+2 = 0B@ 0 0 00 0 10 0 01CAX�1 = 0B@ 0 0 01 0 00 0 01CA ; X�2 = 0B@ 0 0 00 0 00 1 01CAH1 = 0B@ 1 0 00 �1 00 0 01CA ; H2 = 0B@ 0 0 00 1 00 0 �11CA :For calculations we keep track of the elements Ki rather than Hi, representedby K1 = 0B@ a 0 00 a�1 00 0 11CA ; K2 = 0B@ 1 0 00 a 00 0 a�1 1CAfor the module E.We can then write down the elements YEE for the actions of the generatorsY on the module E
E, from the comultiplication formulae. The R-matrix REErepresenting the endomorphism of E 
 E which is used for the crossing of twostrings coloured by E can be given, up to a scalar, by the prescriptionREE(ei 
 ej) = ej 
 ei; if i > j;= s ei 
 ei; if i = j;= ej 
 ei + (s� s�1)ei 
 ej; if i < j;for basis elements feig of E.We made a quick check with Maple to con�rm that the matrices YEE all com-mute with REE, as they should. It can also be checked that REE has eigenvaluess with multiplicity 6 and �s�1 with multiplicity 3, and satis�es the equationR� R�1 = (s� s�1)Id.The linear dual M� of a module M becomes a module when the action of agenerator Y on f 2 M� is de�ned by < YM�f; v >=< f; S(YM)v >, for v 2 M .6



For the dual module F = E� we then have matrices for YF , relative to the dualbasis, as follows. X+1 = 0B@ 0 0 0�s 0 00 0 01CA ; X+2 = 0B@ 0 0 00 0 00 �s 01CAX�1 = 0B@ 0 �s�1 00 0 00 0 01CA ; X�2 = 0B@ 0 0 00 0 �s�10 0 0 1CAK1 = 0B@ a�1 0 00 a 00 0 11CA ; K2 = 0B@ 1 0 00 a�1 00 0 a1CA :The most reliable way to work out the R-matrices REF ; RFE and RFF is tocombine REE with module homomorphisms cupEF , cupFE, capEF and capFEbetween the modules E 
 F , F 
 E and the trivial 1-dimensional module, I,on which X�i acts as zero and Ki as the identity. For example, to represent ahomomorphism from I to E
F the matrix for cupEF must satisfy YEF cupEF =cupEF YI , which identi�es cupEF as a common eigenvector of the matrices YEF ,with eigenvalue 0 or 1 depending on Y . The matrices are determined up to ascalar by such considerations; when one has been chosen the scalar for the othersis dictated by diagrammatic considerations. They are quite easy to write downtheoretically, although to be careful about compatibility and possible miscopyingit is as well to get Maple to �nd them in this way for itself. Once these matriceshave been found they can be combined with the matrix R�1EE to construct theR-matrices REF ; RFE; RFF , using the diagram shown in �gure 3, for example, todetermine REF . This givesREF = 1F 
 1E 
 capEF � 1F 
 R�1EE 
 1F � cupFE 
 1E 
 1F :
E F

E F

E FEF

F E E F

F E

F E

=

Figure 3The module structure of M = V can be found by identifying M as a 15-dimensional submodule of E 
 E 
 F . We know that there will be a direct sumdecomposition of E
E
F asM�N , and indeed that N will decompose furtherinto the sum of two copies of a 3-dimensional module isomorphic to E and one6-dimensional module with Young diagram . The full twist element on the7



three strings coloured by E;E and F acts by a scalar on each of the irreduciblesubmodules of E
E
F . It can be expressed as a 27�27 matrix in terms of theR-matrices above. Maple can then produce a basis for each of the eigenspaces,one of dimension 15 and the other two each of dimension 6. Write P and Q forthe 27� 15 and 27� 12 matrices whose columns are made of these basis vectors.Then P and Q give bases for M and N respectively. The partitioned matrix(P jQ) is invertible. When its inverse, found by Maple, is written in the form�RS � we have a 15� 27 matrix R which satis�es RP = I15 and RQ = 0. RegardP as the matrix representing the inclusion of the module M into E 
 E 
 F .Then R is the matrix, in the same basis, of the projection from E
E
F to M .The module generators YM satisfy YM = RYEEF P , giving the explicit action ofthe quantum group on M .We use the injection and projection further to �nd the 152 � 152 R-matrixRMM . First include M 
M in (E 
 E 
 F )
 (E 
 E 
 F ), then construct theR-matrix for E 
E 
 F from the crossing of three strings each coloured with Eor F over three others using the various matrices REF from above, and �nallyproject to M 
M .The calculations can be completed in principle from here. Represent the 3-braid in the 2-tangle F by an endomorphism of M 
M 
M , using RMM and itsinverse. Then use TM and the partial trace to close o� one string, hence givingthe endomorphism FMM of M 
 M determined by F . A similar calculationgives the endomorphism GMM . The invariant for one of the knots is given bythe trace of TMMFMMGMM . The other is given by replacing GMM with theconjugate R�1MMGMMRMM . Some calculation can be avoided by using GMM �R�1MMGMMRMM in place of GMM , to get the di�erence of the invariants directly.A considerable shortcut can be made at this point by concentrating on thee�ect of FMM and GMM on certain highest weight vectors inM 
M , rather thanconsidering the whole of the module. A highest weight vector v of a module Vis a common eigenvector of H1 and H2 (or equally K1 and K2) which satis�esX+1 (v) = X+2 (v) = 0. The submodule of V generated by a highest weight vectoris irreducible. Its isomorphism type is determined by the eigenvalues of H1 andH2, which are non-negative integers. It follows easily from the relations in thequantum group that any module homomorphism f : V ! W carries highestweight vectors to highest weight vectors of the same type.Calculation in Maple determines the linear subspace of M 
 M which isthe common null-space of X+1 and X+2 . This turns out to have dimension 10,spanned by two highest weight vectors of type (3; 1), two of type (1; 2) and sixfurther highest weight vectors each of a di�erent type. Then the endomorphismF restricts to a linear endomorphism F� of the space of highest weight vectorsof type �, for each �. We remarked earlier that weight spaces of dimension 1will not contribute to the di�erence of the invariants on two mutant knots, so weneed only calculate the maps F� and G� for the two 2-dimensional weight spaces8



� = (3; 1) and � = (1; 2). We thus choose two spanning vectors for one of thesespaces and follow each of these through the 2-tangle F , taking the tensor productwith M and mapping to M 
M 
M as above (using repeated operations of the225�225 R-matrix on a vector of length 225�15) before applying the matrix TMand taking a partial trace to �nish in M 
M . Since the result in each case mustbe a linear combination of the two chosen weight vectors it is not di�cult to �ndthe exact combination. This determines a 2 � 2 matrix representing F� for theweight space of type �. Similar calculations for the other weight space and forG, along with a quick calculation of the 2� 2 matrix representing RMM on eachweight type gives enough to �nd the contribution of each of these weight types tothe di�erence. The �nal di�erence comes from multiplying the trace of the 2� 2di�erence matrix for each type � by the quantum dimension of the irreduciblemodule of type � for each of the two types and then adding the results.Up to the same power of s in each case the contribution from the weight spaceof type (3; 1) was found to bet31 = (s8 + 1)2(s2 + 1)4(s4 + 1)3(s+ 1)13(s� 1)13s6(s2 � s+ 1)(s2 + s+ 1)(s4 � s3 + s2 � s+ 1)(s4 + s3 + s2 + s+ 1)(s6 � s5 + s4 � s3 + s2 � s+ 1)(s6 + s5 + s4 + s3 + s2 + s+ 1)(2 s20 + s18 + s14 � s12 + 2 s8 � s6 � 1)(s22 � s20 + s16 � 2 s14 + 3 s12 + 2 s10 � s8 + 2 s6 + 2)= (2 s20 + s18 + s14 � s12 + 2 s8 � s6 � 1)(s22 � s20 + s16 � 2 s14 + 3 s12 + 2 s10 � s8 + 2 s6 + 2)�(s8 � s�8)2(s7 � s�7)(s5 � s�5)(s4 � s�4)(s3 � s�3)(s2 � s�2)(s� s�1)6s49;and the contribution from type (1; 2) to bet12 = (s6 � s5 + s4 � s3 + s2 � s + 1)2(s6 + s5 + s4 + s3 + s2 + s+ 1)2(s4 � s2 + 1)(s8 + 1)2(s4 + 1)5(s2 + 1)8(s2 + s + 1)(s2 � s+ 1)(s� 1)14(s+ 1)14(s10 � s8 + s4 � s2 + 1)(s18 � s16 � s14 + 2 s12 � 2 s10 + 2 s6 � 2 s4 � s2 + 1)= (s18 � s16 � s14 + 2 s12 � 2 s10 + 2 s6 � 2 s4 � s2 + 1)(s10 � s8 + s4 � s2 + 1)�(s8 � s�8)2(s7 � s�7)2(s6 � s�6)(s4 � s�4)3�(s2 � s�2)2(s� s�1)4s56:The quantum dimension for the irreducible module of type (3; 1), which hasYoung diagram , is a product of quantum integers [6][4] = (s6 � s�6)(s4 �s�4)=(s � s�1)2. For the module of type (1; 2), with Young diagram , it is[5][3] = (s5 � s�5)(s3 � s�3)=(s� s�1)2.The di�erence between the SU(3)q invariants with the module V for theConway and Kinoshita-Teresaka knots is then given, up to a power of s = eh=2,by [5][3]t12 + [6][4]t31. This yields the polynomial quoted earlier.9



2 The Kuperberg skein for mutantsLetK andK 0 be the mutants shown schematically earlier. AsK andK 0 are knots,precisely one of F or G must induce the identity permutation on the endpoints,while the other induces the transposition, by following the strings through thetangle. We will consider these two cases separately.In [2] Kuperberg gives a skein-theoretic method for handling the SU(3)q in-variant of a link when coloured by the fundamental module, which he denotes by<>A2. Knot diagrams are extended to allow 3-valent oriented graphs in whichany vertex is either a sink or a source. Crossings can be replaced locally in thisskein by a linear combination of planar graphs, and any planar circles, 2-gons or4-gons can be replaced by linear combinations of simpler pieces.In using skein-based calculations it is helpful when dealing, for example, withsatellites to regard the pattern as a diagram in an annulus, and note that it canbe replaced by any equivalent linear combination of diagrams in the skein of theannulus. Thus we should consider the Kuperberg skein of the annulus, namelylinear combinations of admissibly oriented 3-valent graph diagrams subject tolocal relations as before. A similar de�nition can be made for the skein of othersurfaces. Notice that the relations ensure that the skein is spanned by orientedgraphs lying entirely in the surface, without simple closed curves, 2-gons or 4-gonswhich bound discs in the surface.In the case of the annulus this shows that the skein is spanned by unionsof oriented simple closed curves parallel to the boundary of the annulus, withorientations in either direction.When a mutant knot K is made up from two 2-tangles F and G as above thenone of F and G, let us suppose G, must be a pure tangle, in the sense that thearcs of G connect the entry point at top left with the exit at bottom left, and topright with bottom right. Then K can be viewed as made from the diagram in thedisc P with two holes, shown in �gure 4, by embedding the planar surface P sothat the two `ears' are tied around the arcs of G. Turning the diagram in P overalong the axis indicated before embedding it in the same way, and reversing allstring orientations, will give one of the mutants K 0 of K. Any satellites of K andK 0 are related in a similar way, for we can view a satellite of K as constructed bydecorating the diagram in P with the required pattern, and then tying the earsof P around G as before. The corresponding satellite of K 0 is given by turning Pover, with the decorated diagram, reversing all strings, and then using the sameembedding of P .
10



P = 1 2

3

F

Figure 4If we could show that the Kuperberg skein of P is spanned by elements whichare invariant under turning over and reversing orientation then we could deducethat satellites of mutants such as K and K 0 would have the same SU(3)q invari-ants, by considering the decorated diagram in this skein. A proof for all mutantswould need a similar analysis for the skein of the once-punctured torus, to dealwith one of the other mutation operations, and the third case would then fol-low, using a similar argument to [4], where the truth of the corresponding resultsin the Kau�man bracket skein showed that satellites of mutants have the sameSU(2)q invariants.We shall now describe a spanning set for the Kuperberg skein of P , whichhas some nice symmetry properties, but not enough to give the invariance above.Indeed a diagram coming from a 3-fold parallel with one reversed string will givea linear combination of basis elements in the skein in which all but at most onepair are invariant. (Diagrams from 2-fold parallels of any orientation determineelements of the invariant subspace.)Theorem 1 The Kuperberg skein of a disc with two holes is spanned by diagramsconsisting of the union of simple closed curves parallel to each boundary compo-nent and a trivalent graph with a 2-gon nearest to each of the three boundarycomponents and 6-gons elsewhere.Proof: Use the skein relations to write any diagram as a linear combination ofadmissibly oriented trivalent graphs in the surface. We can assume that there areno simple closed curves or 2-gons or 4-gons with null-homotopic boundary. Theremay be a number of simple closed curves parallel to each of the boundary compo-nents. The remaining graph must be connected, otherwise one of its componentslies in an annulus inside the surface, and can be reduced further to a linear com-bination of unions of parallel simple closed curves. Consider the graph as lyingin S2, by �lling in the three boundary components of the surface. It dissects S2into a number of n-gons, with n even, and n � 6 except possibly for the threen-gons containing the added discs. Now calculate the Euler characteristic of theresulting sphere S from the dissection by the graph. As vertices are trivalentand each edge now bounds two faces, we can count the Euler characteristic as asum over the n-gons, in which each vertex contributes 1=3 and each edge �1=2.11



Therefore each n-gon will contribute 1 � n=6, so the only positive contributionto �(S) can come from 2-gons or 4-gons. These can only arise from the originalthree boundary components, where the maximum possible total positive contri-bution is 2 when each boundary component gives a 2-gon. Since the total mustbe 2 and the only other contributions are negative or zero, we must have three2-gons forming the original boundary components and 6-gons elsewhere.If we start with a 3-parallel of a tangle F inside the planar surface P , withtwo strands in one direction and one in the other, and write it in the Kuperbergskein we will get a linear combination of graphs as above, each having at most 3strings around each `ear'. Some of these will be the union of some simple closedcurves around the punctures and trivalent graphs. In �gure 5 we show one suchtrivalent graph which fails to be symmetric under the order 2 operation of turningthe surface over (and reversing edge orientations).
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Figure 5Note however that this graph is symmetric under the operation of order 3 inwhich the three boundary components are cycled. This is a general feature of theconnected trivalent graphs which arise in our construction, as appears from thefollowing description, where we replace P by a 3-punctured sphere.We call a trivalent graph in the 3-punctured sphere admissible if it is orientedso that each vertex is either a sink or a source, and every region not containinga puncture is a hexagon.Theorem 2 Every admissible graph in the 3-punctured sphere is symmetric, upto isotopy avoiding the punctures, under a rotation which cycles the punctures.It can be constructed from the hexagonal tesselation of the plane by choosing anequilateral triangle lattice whose vertices lie at the centres of some of the hexagonsand factoring out the translations of the lattice and the rotations of order 3 whichpreserve the lattice.Proof: Let � be the admisible graph. By our Euler characteristic calculationswe know that each puncture is contained in a 2-gon. There is a 3-fold branched12



cover of S2 by the torus T 2 with three branch points each cyclic of order 3.The inverse image of � in T 2 then consists of hexagonal regions, with threedistinguished regions containing the branch points. This inverse image is invariantunder the deck transformation of order 3 which leaves each distinguished regioninvariant. The further inverse image under the regular covering of T 2 by the planeis a tesselation of the plane by hexagons, and the inverse image of the centre of oneof the distinguished regions determines a lattice in the plane. We want to showthat this is an equilateral triangle lattice, when the hexagonal tesselation is drawnin the usual way. We need only lift the deck transformation to a transformationof the plane keeping the tesselation invariant and �xing one of the lattice pointsto see that it must lift to a rotation of the tesselation about the centre of adistinguished hexagon. Since the lattice is invariant under this transformation itfollows that the lattice must be equilateral. The inverse image of each of the othertwo branch points will also form an equilateral lattice, invariant under the �rstrotation, and so their vertices lie in the centres of the triangles; by constructionthey also lie in the middle of hexagons. Although the equilateral lattice need notlie symmetrically with respect to re
ections of the tesselation, as in the exampleshown below, it does follow that the rotation which permutes the three latticeswill also preserve the tesselation. This rotation induces the symmetry of thesphere which cycles the branch points and preserves �.Figure 6 shows such an equilateral triangle lattice superimposed on a hexagontesselation.
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1Figure 6The resulting graph in the 3-punctured sphere, whose fundamental domainis indicated, is the graph shown in �gure 5 as a non-symmetric skein elementin the disk with two holes. The labelling of the puncture points as 1, 2 and 3corresponds to that of the boundary components. The 3-fold symmetry of thegraph in the surface when the boundary components are cycled is evident fromthis viewpoint.The Kuperberg skein of the punctured torus does not appear to have sucha simple spanning set. The region around the puncture may be a 2-gon or a4-gon, giving the following possible combinations: (i) a 2-gon, two 8-gons and6-gons elsewhere, (ii) a 2-gon, one 10-gon and 6-gons elsewhere, (iii) a 4-gon,13



one 8-gon and 6-gons elsewhere, (iv) 6-gons only. We did not try to analyse thecon�gurations further, in view of the results of our quantum calculations.References[1] C.Kassel. Quantum groups. Graduate Texts in Mathematics, Springer-Verlag, 1995.[2] G.Kuperberg. The quantum G2 invariant, International J. Math. 5 (1994),61-85.[3] H.R.Morton and P.R.Cromwell. Distinguishing mutants by knot polynomi-als, J. Knot Theory Ramif. 5 (1996), 225-238.[4] H.R.Morton and P.T.Traczyk. The Jones polynomial of satellite links aroundmutants. In `Braids', ed. Joan S. Birman and Anatoly Libgober, Contemp.Math.78, Amer. Math. Soc. (1988), 587-592.[5] V.G.Turaev. The Yang-Baxter equation and invariants of links. Invent.Math. 92 (1988), 527-553.[6] V.G.Turaev. Quantum invariants of knots and 3-manifolds. W. de Gruyter,1994.
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