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Abstract

The arc index α(L) of a link L is shown by a direct combinatorial argument to be

related to spr
v
(F

L
(v, z)), the Laurent degree of its Kauffman polynomial, by the

inequality
α(L)& spr

v
(F

L
(v, z))­2.

Equality is conjectured for alternating links.

1. Introduction

The arc index α(L) of a link L is the smallest number of arcs needed to draw L when

each arc lies with its ends on the axis in a coordinate half-plane for cylindrical polar

coordinates. Such presentations were originally described by Brunn[2], but have

recently been revived by work of Birman and Menasco in connection with finding

braid presentations for reverse-string satellites of L, such as the reverse parallels and

doubles [1], and have been studied further by Cromwell and Nutt[3], [5], [11].

In this paper we find a bound for α(L) in terms of the Laurent degree (spread) of

the Kauffman polynomial F
L
(v, z) in the variable v which is related to the framing

change for the framed version of F. The explicit bound is

α(L)& spr
v
(F

L
(v, z))­2.

We conjecture that equality holds for alternating links, where it is known [14] that

spr
v
(F

L
)¯ c(L), the crossing number of L. This conjecture would follow from the

conjecture of Nutt that α(L)% c(L)­2.

The result bears some resemblance to the Morton–Franks–Williams bound for

braid index in terms of the analogous variable in the Homfly polynomial, [6], [9].

Indeed, Nutt[11], [12] has already used results of Rudolph[13] connecting the

Kauffman polynomial of L and the Homfly polynomial of the reverse parallels of L,

combined with the relation between the arc index of L and the braid index of reverse

parallels, and the MFW bound to give the weaker bound α(L)& spr
v
(G

L
(v, z))­2,

where G
L

is F
L

with coefficients reduced mod2, in the case where L is a knot.

Here we present a simple direct combinatorial proof of our result, which involves

the Kauffman polynomial itself, rather than its mod2 reduction, and holds for all

* Dottorato di ricerca.
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links. We first prove a more general theorem about the framed Kauffman polynomial

for links constructed from a special kind of tangle, in which simple arcs are stacked

inside a disc and connected outside the disc by arcs without further crossings. Such

tangles arise from the arc-presentation of a link, and are also used [10] as basis

elements for the Birman–Wenzl algebra.

As a corollary, the inequality proved in [4] for alternating knots α(K)& c(K)­2,

where c(K) is the crossing number of K, extends to alternating links; the conjecture

made in [5], that α(L)¯ c(L)­2 for all alternating links, is still open.

2. The Kauffman polynomial

We shall consider the Dubrovnik framed version of the Kauffman polynomial. The

Dubrovnik polynomial $ is a function defined on link diagrams with values in the

ring of Laurent polynomials Z[v³
", z³

"]. It is characterized by the following basic

properties [7, 8] :

(SR) skein relation: $
K+

®$
K−

¯ z$
K!

®z$
K¢

, where the diagrams K
+
, K

−
, K

!
, K¢

differ only as shown.

K+ K– K0 K¢

(C) behaviour with curls : $
Kn

¯ v$
K

and $
Kp

¯ v−"$
K
, where K

n
and K

p
are given

from K by adding a negative or positive curl as shown.

Kn K Kp

(N) normalization: $
O

¯ 1, where O is the diagram of the unknot without any

crossings.

The Dubrovnik polynomial is a regular isotopy diagram invariant, and thus a

framed link invariant.

Remark 1. If K¯K«1O is a split link diagram and the component O is the

unknot with no self-crossings then $
K

¯ δ$
K«, where δ¯ 1­(v−"®v) z−".

Remark 2. If U
l
is a diagram of the unlink with l components having no crossings

then $
Ul

¯ δl−".

Let K be a diagram of an oriented link L. The number of crossings in K counted

with their sign ε, as shown, is called the writhe of K, and is denoted by w(K).

ε = +1, ε = –1

Define the Laurent polynomial D
L

by

D
L
(v, z)¯ vw(K)$

K
(v, z).

T 3 (Lickorish[8]). The polynomial D
L

is an oriented link invariant, related

to the Kauffman polynomial F
L

by the equation D
L
(v, z)¯ (®1)rLr−"F

L
(®iv−", iz), where

rLr denotes the number of components of L.
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In particular, notice that the Laurent degree in the variable v, that is the difference

between the highest and lowest powers of v, is the same for each of $, D and F. This

allows us to deal with the framed version of Dubrovnik in place of the Kauffman

polynomial.

3. Stacked tangles

We now consider a particular kind of tangle. Take a simple closed curve and mark

2d points on it. We refer to this marked curve as the frame of the tangle. Imagine d

discs stacked up, each with the frame as boundary, and each containing a simple arc

which joins two of the marked points on the frame. We shall call the resulting tangle

S
d
, viewed from above, a stacked tangle. Such a tangle has d simple arcs inside the

frame, each lying at a different level, as in the example below.

A stacked tangle with 5 arcs.

A stacked tangle has no closed components, the individual arcs are unknotted and

can be totally ordered by the depth of the leaves in which they lie. We will consider

such tangles up to regular isotopy. They are then determined by the pairs of

endpoints joined by the arc in each level. If the endpoints of two arcs interleave on

the frame then we can draw the tangle so that these arcs cross in only one point; if

their endpoints do not interleave then we can arrange that the arcs do not cross at

all.

Given a tangle T with d arcs, we will refer to a link diagram K as a simple closure

of T when it consists of T and d arcs outside the frame having no further crossings.

Here is a picture of a simple closure of the stacked tangle shown earlier.
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We say that one of the arcs lying outside the frame is a cap if it joins two consecutive

marked points on the frame. A simple closure always has at least one cap.

T 4. Let K be a simple closure of a stacked tangle S
d

with d arcs. Write its

framed Dubrovnik polynomial as $
K
(v, z)¯3M

i=m
a
i
(z) vi, with a

M
1 0, a

m
1 0. Then

M% d®1, m& 1®d.

Proof. By induction on (d,n), where n is the number of crossings in K.

B   . If d¯ 1 then K is the unknot without crossings, so M¯
m¯ 0.

I . Assume the theorem is true for (d«,n«)! (d,n) and let K be a

simple closure of a stacked tangle S
d

with n crossings. Let f be a cap outside S
d
,

joining points P,Q of the frame. Consider the arcs in S
d

with P and Q as end points.

There are two possible cases.

(i) A single arc g joins P and Q. Then K¯K«1O, where O is made from f and g,

and K« is a simple closure of a stacked tangle with d®1 arcs. The result will follow

by the induction hypothesis and Remark 1.

(ii) There are two arcs, a joining P to P« and b joining Q to Q«. We may suppose

that a lies at a higher level than b, which we will write as a" b. In this case,

either (I) a and b are at adjacent levels, or (II) there are other arcs between them,

a" h
"
"…" h

r
" b.

(I) Replace the part of the diagram consisting of a, f and b, which will look like one

of the three pictures here,

f

b

a
f

b

a
f

b

a

by a simple arc inside the frame joining P« to Q« at the same level as a, as indicated.

The new diagram K« is now a simple closure of a stacked tangle with d®1 arcs, so the

inductive hypothesis applies to give $
K«(v, z)¯3M«

i=m« ai
(z) vi, with M«% d®2, m«&

2®d. If the arcs a and b do not cross then K« is regularly isotopic to K and so $
K« ¯

$
K
. Otherwise a, f and b form a curl, and so $

K
¯ v³

"$
K« by property (C). In either

case the result will follow.

(II) Use a subsidiary induction on the difference in level between the arcs a and

b joined by a cap. The base of the induction is established by (I). For the induction

step consider the arc h
r
1 a in the level immediately above b. If b and h

r
do not

interleave then we may interchange their levels without altering K, and the result

follows from the subsidiary induction, since a and b are now closer.
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Otherwise, write K¯K
+

and write K
−

for the diagram in which the levels of b and

h
r
are interchanged. Because the arcs lie in adjacent levels in K these two diagrams

simply differ in the neighbourhood of one crossing, as for the skein relation at this

crossing. The diagrams K
!
and K¢ also arise as simple closures of stacked tangles with

d arcs, differing from K by the choice of two arcs in adjacent levels in place of b and

h
r
as shown.

K+ = K K– K0 K¢

hr

b

In K
−

the arcs joined by the cap f are closer than in K, while K
!
and K¢ have fewer

crossings than K, so the inequalities hold for each of these by the induction

hypotheses. Since $
K+

¯$
K−

­z($
K!

®$
K¢

) the inequality for $
K

follows.

4. Arc-presentation and arc index

We consider an open book decomposition of S$ which has discs as pages and an

unknotted circle as binding. An arc-presentation of a link L is an embedding of L in

a set of finitely many of these discs so that it meets each of them in a single simple

arc whose endpoints are on the binding circle. In the illustration given here the

binding circle is drawn as the axis for cylindrical polar coordinates.

Hθ

1

2

3

4

5

The minimum number of pages, or equivalently the minimum number of intersections

between L and the binding, required to present L in this way is a link invariant called

the arc index of L, and is denoted by α(L).

We can convert an embedding like that shown into a planar diagram, illustrated

below, by proceeding as follows. Orient the binding and label the pages using polar

coordinates in order to give S$ the right-hand orientation. Choose a page Hθ at angle

θ, which does not contain arcs of L. Draw the binding as a simple loop γ on the plane,

orient it clockwise and mark the points of its intersection with L on γ. Draw the arcs

inside γ, starting with the one next to Hθ and proceed consecutively around the

binding, passing successive arcs under previous ones, if necessary. The diagram that
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appears is what you can see on the plane by closing the open book in which L is

embedded with Hθ as cover.

12

3 5

4

γ

Now modify this diagram slightly to obtain a simple closure of a stacked tangle.

Take a simple closed curve φ inside γ, but near enough to it so that no crossings lie

between them. The circle φ is the frame of a stacked tangle S
d
, where d is the number

of arcs in the starting arc-presentation of L.

φ

The result is a diagram K of L which is a simple closure of a stacked tangle with d

arcs, where the arcs outside the frame consist of d caps. Write $
K
(v, z)¯3M

i=m
a
i
(z) vi.

Theorem 4 then shows that M% d®1 and m& 1®d so that spr
v
($

L
)¯M®m%

2d®2. By taking a minimal arc presentation we get spr
v
($

L
)% 2α(L)®2. We can

improve this bound considerably by further application of Theorem 4.

T 5. For every link L we have spr
v
(F

L
)%α(L)®2.

Proof. Consider an arc-presentation of L on d arcs, leading to a diagram K which

is a simple closure of a stacked tangle on d arcs, as described above. The curves in

K outside the frame consist of d caps.

Let f be any of these caps and let a and b be the arcs inside φ that meet f, with

a" b. Alter the arcs a and b without changing their levels, so that they each meet

the other end of the cap f. This will introduce an overcrossing of a over b, giving a

new diagram K«, which is again a simple closure of a stacked tangle with d arcs.

f
b

a

f

a

b
f

a

b

f
b
a

Moreover K« is still a diagram of L and differs from K only by a curl, positive or

negative. Each of the d caps in K will permit a similar modification. Suppose that p
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of the caps yield a positive curl, and the remaining d®p yield a negative curl. Write

K
pos

for the diagram obtained by inserting the p positive curls in K as above, and

K
neg

similarly by inserting the d®p negative curls. Then $
Kpos

¯ v−p$
K

and $
Kneg

¯
vd−p$

K
.

Now the diagrams K
pos

and K
neg

are still simple closures of stacked tangles with

d arcs. Theorem 4 applied to K
neg

then gives M­d®p% d®1 and applied to K
pos

gives m®p& 1®d. Subtract these, to get M®m% d®2. Choose a presentation with

d¯α(L) to complete the proof, since spr
v
(F

L
)¯ spr

v
($

L
)¯M®m. *

Using Theorem 5 and an observation [4] from Thistlethwaite’s work on alternating

links, we can deduce the following:

C 6. Let L be an alternating link with crossing number c(L) ; then α(L)&
c(L)­2.

Remark 7. Consider the minimal arc-presentation of the right trefoil T on α(T)¯
5 arcs shown above. It produces a diagram K with writhe, or equivalently blackboard

framing, w(K)¯­3. The framed Dubrovnik polynomial of K has M¯ 2, m¯®1. By

adding curls to K we can change its framing, but only a small number of framed

diagrams of the knot T can be realized as a simple closure of a stacked tangle with

this minimum number of arcs. For example the polynomial $ for the diagram of T

with framing 0 has m¯ 2 and M¯ 5"α(T)®1¯ 4, and hence we need at least 6

arcs, by Theorem 4, (this number of arcs is actually enough, as seen in the picture

below).

Similar restrictions arise for any link L. Write s
v
(L) for spr

v
(F

L
)¯ spr

v
($

L
) and

suppose that L can be presented as the simple closure K of a stacked tangle with d

arcs, closed with d caps. This diagram has framing determined (for a knot at least)

by the writhe w(K) and will arise from some arc-presentation on d arcs. If we present

L by some other stacked tangle K« again with d arcs we can alter the framing, but

over a restricted range only. Write W
d
(L) and w

d
(L) for the maximum and minimum

values which can be obtained for presentations using d arcs. Then the range

W
d
(L)®w

d
(L) satisfies

d%W
d
(L)®w

d
(L)% 2d®2®s

v
(L).

The first part of the inequality comes from the difference of d in framing between

the diagrams K
pos

and K
neg

constructed above by inserting suitable curls near the

caps in K.

The second part comes from the control on W
d
(L) given by Theorem 4, namely

that the highest degree in $
K« cannot exceed d®1. In terms of one known polynomial

$
K

with highest degree M
K

(and lowest degree m
K

¯M
K
®s

v
(L)) we have

M
K
­(W

d
(L)®w(K))% d®1. This gives an upper bound for W

d
(L), which is

complemented by the bound m
K
®(w(K)®w

d
(K))& 1®d. Subtract these, to get the

second part of the inequality.
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Given a diagram K for L which is a simple closure of a stacked tangle on d arcs with

writhe w(K) it is easy to add an extra arc and cap to get presentations of L on d­1

arcs, with any of the choices w(K), w(K)³1 for writhe. It follows from the bounds

just established that W
d
(L)¯C­d and w

d
(L)¯ c®d when d& d

!
&α(L), for some

constants C, c and d
!

depending on L. This may be compared with the form of the

restrictions established by Nutt for the braid index of a reverse parallel for a knot in

terms of its framing, using the Homfly polynomial, [11]. His result requires a non-

triviality assumption for some Homfly polynomial, while our result holds for all

knots. It may thus be possible to strengthen his result by a more precise inspection

of the nature of the arc presentation of L derived from a braid presentation of a given

reverse parallel.
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