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AbstratHomy skeins and the Hopf linkSasha LukaThis thesis exhibits skeins based on the Homy polynomial and their relationsto Shur funtions. The losures of skein-theoreti idempotents of the Hekealgebra are shown to be speializations of Shur funtions. This result is appliedto the alulation of the Homy polynomial of the deorated Hopf link. A losedformula for these Homy polynomials is given. Furthermore, the speializationof the variables to roots of unity is onsidered.The tehniques are skein theory on the one side, and the theory of symmetrifuntions in the formulation of Shur funtions on the other side. Many previouslyknown results have been proved here by only using skein theory and without usingknowledge about quantum groups.
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W�ahrend meiner Shulzeit versuhteih den Grund zu �nden, weshalb �1multipliziert mit �1 wirklih +1ergibt. Da 0 das neutrale Nihts ist,mu� �1 etwas Fehlendes sein, daseiner Erg�anzung bedarf. Die Summevon zwei negativen Zahlen ist immernegativ. Die Multiplikation jedohsheint die Ordnung von negativ,neutral und positiv zu transzendieren:Das Negative multipliziert mit demNegativen wird positiv.Nah meiner Promotion erkannte ih,wie wihtig der �Ubergang vomUnverst�andnis zum Wunsh nahVerst�andnis ist. Die Analogie zwishender uns umgebenden Welt und derMathematik ist begrenzt. Vielleihtverl�auft diese Grenze bereits durh dieGleihheit von �1 � �1 und +1.

Whilst at shool I tried to understandwhy �1 multiplied by �1 beomes +1.If 0 is the neutral nothing then �1 issomething missing whih requires aompletion. The sum of two negativenumbers is always negative. But themultipliation seems to transend theorder of negative, neutral and positive:The negative multiplied by the negativebeomes positive.On ompletion of my thesis I realizedhow important the transition is fromnot understanding to the wish tounderstand. The analogy between oursurrounding world and Mathematis islimited. Perhaps this limit alreadypasses through the equality of �1 � �1and +1.
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IntrodutionThis work exhibits skeins based on the Homy polynomial and their relationsto Shur funtions. The results are applied to the alulation of the Homypolynomial of the deorated Hopf link. Furthermore, the speialization of thevariables to roots of unity is onsidered.The tehniques are skein theory on the one side, and the theory of symmetrifuntions in the formulation of Shur funtions on the other side.Part of the results are new. For the other results, the approah is new by usingskein theory rather than information about quantum groups. This approah hasthe bene�t of generalizing previously known results in many ases.The �rst two hapters desribe the neessary bakground of symmetri fun-tions and Homy skeins. The skeins are based on framed tangles whih an beinterpreted either as ribbons and annuli with oriented ores or as tangle diagramswith the blakboard framing.The Homy skein of the dis with 2n boundary points (with suitable `ori-entations') beomes an algebra by de�ning the multipliation as staking twodiagrams one above the other. This algebra Hn is isomorphi to the Heke al-gebra whih is a deformation of the group algebra of the symmetri group on nletters. Idempotents of Hn indexed by Young diagrams with n ells our in anatural way as desribed e.g. in [9℄, [11℄, [2℄, [3℄ and [25℄. I give an aount ofBlanhet's expliit semi-simple deomposition of Hn and remark in lemma 2.5.6that the basis elements behave in a nie way under the inlusion Hn
 1 � Hn+1.The losure of the idempotent of Hn indexed by a Young diagram � beomesan element Q� of the skein of the annulus. It is natural to expet that the map� 7! Q� from the algebra of Young diagrams to the skein of the annulus is aninjetive algebra homomorphism. This has been proved e.g. in [1℄, but Aiston'sproof used results about quantum groups. The skein-theoreti proof given inhapter 3 was motivated by Kawagoe's ideas in [14℄. I interpret the Qdi 's as thei-th omplete symmetri funtion, and I show that the �-Shur funtion in thefQdig has the same eigenvalue as Q� under some linear map. This eventuallyleads to the identi�ation of s�(fQdig) with Q�.1



In hapter 4 I desribe the Homy polynomial h�; �i of the Hopf link withdeorations Q� and Q� on its omponents. The results are new. The determi-nantal formula in theorem 4.4.2 for h�; �i in the ase of the substitution v = s�Nfor some integer N � 2 was motivated by the results for speial ases. It wassuggested by a formula in the ase N = 2 by [19℄, and in the ase N � 2 and sand x substituted by ertain roots of unity it was motivated by the formula forthe modular transformation matrix S at the end of setion 2.3 in [16℄. If � and� have at most N rows then the formula expresses h�; �i after the substitutionv = s�N as the quotient of two (N � N)-minors of the in�nite Vandermondematrix V = (s2(i�1)(j�1))i;j�1. The denominator is the prinipal minor, and thenumerator is given by hoosing rows �N�i+1 + i and olumns �N�j+1 + j fori; j = 1; : : : ; N .In theorems 4.3.4 and 4.3.6 I give a ompat formula for the power series1h�i Pi�0h�; iiX i, where i denotes the olumn diagram of length i, and h�i =h�; ;i is the Homy polynomial of Q�. From this, h�; �i an be alulated diretlyas a Shur funtion.In hapter 5 we substitute the variables x; v and s of the Homy polynomialby roots of unity, s2(l+N) = 1, xN = s�1, and v = s�N . In this setting, it turnsout that the Homy polynomial of any deorated link does not hange when wereplae the deoration Q� by Q�0 whenever ���0 lies in the ideal IN;l of the ring ofYoung diagrams that is generated by 0�N ; N+1; N+2; : : : and dl+1; : : : ; dl+N�1.This ideal IN;l and the quotient ring Y=IN;l are onsidered in hapter 6 whihis an algebrai aount independent of any skein alulations. It is known thatthe quotient Y=IN;l has a basis onsisting of the Young diagrams that lie in the(N � 1) � l-retangle. This has been proved by Aiston [1℄ by using algebraigeometry. I prove the result using only the Littlewood-Rihardson rule. Thenew ingredient here is the algorithm in setion 6.4 that produes for any Youngdiagram � an element � of Y suh that �� � lies in IN;l, and either � is equal tozero, or it is up to a sign a Young diagram in the (N � 1)� l-retangle.Chapter 7 interprets the results of the previous hapter in a disrete lattiemodel of YN = Y=IN , where IN � IN;l is an ideal of Y. The elements of YNthat lie in IN;l form a loally �nite family of hyperplanes. Quotienting YN byIN;l is the same as quotienting the lattie model by a disrete group of Eulideanisometries generated by the reetions in this family of hyperplanes. The Youngdiagrams in the (N � 1)� l-retangle orrespond to a fundamental simplex nextto the origin. The sign appearing in � is seen to be the parity of the numberof reetions that are needed to bring the lattie point � to this fundamentalsimplex.In hapter 8 I desribe the multipliation in YN;l. In partiular, I show thatthe empty Young diagram appears as a summand of the produt of two Young2



diagrams in the (N � 1)� l-diagrams if and only if the two Young diagrams aredual to eah other, i.e. they are up to a rotation the omplement of eah otherin a N � k-retangle for some k � 1. This result enables us to show in theorem8.2.9 that the matrix H indexed by Young diagram in the (N � 1)� l-retangleand having the value of the Homy polynomial of the Hopf link deorated by Q�and Q� at the position (�; �) is quasi-Hermitian, i.e. HH is a salar multiple ofthe identity matrix after the substitutions s = x�N , v = s�N , and x by a rootof unity of order 2N(l+N). Previously known proofs used the knowledge aboutmodular ategories, e.g. as in [1℄ and, more skein-theoretially, in [3℄.The Young diagram �(�) derives from � by adding an initial row of length land removing then all initial olumns of length N . One an show that �N (�) =�. Hene, the yli group ZN operates on the set of Young diagrams in the(N � 1) � l-retangle. In hapter 9 I give a skein theoreti proof of a resultby Kohno and Takata [16℄ about the Homy polynomial after the substitutionof its variables by roots of unity. The result is that knowledge of the Homypolynomial of a link L with deorations Q�; : : : ; Q� on its omponents and thelinking matrix of L is suÆient to alulate the Homy polynomial of L deoratedwith Q�a1 (�); : : : ; Q�at(�) on its omponents for any integers ai.The seond part of hapter 9 explains two approahes that relate the Homypolynomial of a link L deorated withQ�; : : : ; Q� on its omponents to the Homypolynomial of L deorated with Q�_; : : : ; Q�_ on its omponents. Here, �_ derivesfrom � by interhanging rows and olumns. Provided one substitutes the variablesof the Homy polynomial by suitable roots of unity, these two Homy polynomialsturn out to be the omplex onjugate of eah other. One of the two approahesis new, the other approah appeared in [16℄ in a non-skein-theoreti formulation.In hapter 10 I lassify the ring homomorphisms from YN;l to C . In lemma10.2.1 I haraterize these ring homomorphisms by (N � 1)-tuples of omplexnumbers alled Young-solutions. In setion 10.3 I assign to every Young-solutiona �-orbit of Young diagrams in the (N � 1)� l-retangle in a anonial way. Itturns out that the number of ring homomorphisms that are assigned the same �-orbit is equal to the number of Young diagrams in this orbit. The number of ringhomomorphisms from YN;l to C is thus equal to the number of Young diagramsin the (N � 1)� l-retangle. At the end of this hapter, I relate Young-solutionsand the Homy polynomials of the deorated Hopf link.Chapter 11 explains the relation between Homy polynomials of links deo-rated by Q�'s and the Uh(sl(N))-invariants. This has been done in [1℄, but theproof given there had some gaps whih are �lled here. The results in this hapterare an appliation of the general theory of quantum-link-invariants as explainede.g. in [22℄, [15℄, [12℄, [13℄, and [4℄. Earlier hapters are independent of thisaount on quantum groups, thus keeping skein theory and quantum groups ontheir own grounds. 3



Chapter 1Symmetri funtions and Youngdiagrams
1.1 Symmetri funtionsThis exposition of symmetri funtions is based on the �rst hapter of [17℄.We denote by Z[x1; : : : ; xn℄ the ring of integer polynomials in n variables.It ontains the subring �n of symmetri polynomials, i.e. polynomials that areinvariant under any permutation of the variables x1; : : : ; xn. We have�n =Mk�0�knwhere �kn is the Z-submodule of �n that onsists of the homogeneous polynomialsof degree k, together with the zero polynomial.For any m � n � 0 we have a ring homomorphismZ[x1; : : : ; xm℄! Z[x1; : : : ; xn℄whih maps xn+1; : : : ; xm to zero and keeps any other xj invariant. This restritsto a module homomorphism �km ! �kn for any m � n � 0 and k � 0. Thesemaps are always surjetive, and are bijetive for m � n � k. We thus de�ne theZ-module �k to be the inverse limit of the Z-modules �kn,�k = lim �n �kn:An element of �k is a sequene f = (fn)n�0, where eah fn = fn(x1; : : : ; xn) isa homogeneous symmetri polynomial of degree k, and fm(x1; : : : ; xn; 0; : : : ; 0) =fn(x1; : : : ; xn) for any m � n � 0. We de�ne the ring � of symmetri funtions4



in ountably many variables x1; x2; : : : by� =Mk�0�kwhere the multipliation is omponentwise, i.e.(f0; f1; : : :)(g0; g1; : : :) = (f0g0; f1g1; : : :):The ring � is ommutative sine Z[x1; : : : ; xn℄ is ommutative for any n. Theword `funtion' is used in the ontext of the inverse limit, instead of `polynomial'.The r-th elementary symmetri funtion er is de�ned by its generating fun-tion E(t) =Xr�0 ertr = Yi�1(1 + xit):The r-th omplete symmetri funtion hr is de�ned by its generating funtionH(t) =Xr�0 hrtr = Yi�1(1� xit)�1:We thus have H(t)E(�t) = 1;or, equivalently, nXr=0(�1)rerhn�r = 0 (1.1.1)for any n � 1. We de�ne er = hr = 0 for r < 0.Lemma 1.1.1 � is freely generated by e1; e2; : : : as a ommutative algebra. It isalso freely generated by h1; h2; : : :.A pre-partition is a non-empty (�nite or in�nite) sequene of non-negativeintegers � = (�1; �2; : : :)in weakly dereasing order �1 � �2 � � � �suh that only �nitely many terms are non-zero. We de�ne an equivalene relationon the set of pre-partitions by saying that two pre-partitions are equivalent if theydi�er by a (possibly in�nite) number of zeros. An equivalene lass is alled apartition. We shall onsider partitions but we will mainly use pre-partitions inour arguments. The easy exerise that the statements are orret for partitionsis left to the reader in eah ase. 5



A Young diagram denotes both a partition and a graphial desription of thispartition. We represent a Young diagram � = (�1; : : :) by an array of squareells (of the same size) with �i ells in the i-th row, for i = 1; 2; : : : where weenumerate the rows from top to bottom and the olumns from left to right. Thej-th ell in the i-th row has the oordinates (i; j). The ontent n() of the ell = (i; j) is de�ned to be j � i. The hook length hl() of the ell  is de�ned tobe 1 plus the number of ells to the right of  plus the number of ells below .The number of ells of a Young diagram is denoted by j�j. The length l(�) is thenumber of rows of �, i.e. �l(�) 6= 0 and �i = 0 for i > l(�). The empty Youngdiagram ; is the partition (0).A standard tableau of a Young diagram � is a labelling of the ells of � bythe integers 1; 2; : : : ; j�j whih is inreasing along eah row from left to right,and inreasing along eah olumn from top to bottom. The number of standardtableaux for a Young diagram � is denoted by d�. We have d� � 1 for any Youngdiagram �.We write � � � for Young diagrams � and � if the graphial desription of� is a subset of the graphial desription of �, i.e. if �i � �i for all i. For suhYoung diagrams, �n� denotes the set of ells of � that do not lie in �.Given a Young diagram �, we de�ne the transposed Young diagram �_ to bethe Young diagram that derives from � by the reetion in the main diagonal, i.e.the ell (i; j) lies in �_ if and only if the ell (j; i) lies in �. We have (�_)_ = �for any Young diagram �. We have hl(i; j) = �i � i+ �_j � j + 1.The single row Young diagram with i ells is denoted by di, and the singleolumn Young diagram with i ells is denoted by i. We have di_ = i and0 = d0 = ;.We onsider a Young diagram � and an integer n � l(�). We de�ne a sym-metri polynomial sn� in n variables x1; : : : ; xn bysn�(x1; : : : ; xn) = det(x�j+n�ji )1�i;j�ndet(xn�ji )1�i;j�n :The numerator and denominator are anti-symmetri, hene the quotient sn� issymmetri in the variables x1; : : : ; xn. It is a polynomial, indeed. We de�nesk� = 0 for 0 � k � l(�). The �-Shur funtion s� = (sn�)n�0 lies in � beausesm� (x1; : : : ; xn; 0; : : : ; 0) = sn�(x1; : : : ; xn) for any m � n (whih is easily heked).Lemma 1.1.2 The set of Shur funtions s� for all Young diagrams � is a Z-basis of �. The set of Shur funtions s� suh that j�j = k is a Z-basis of �k forany k � 0.The next lemma is sometimes alled the Giambelli (or Jaobi-Trudi) formula.6



Lemma 1.1.3 For any n � l(�) and m � l(�_)s� = det(h�i�i+j)1�i;j�n= det(e�_i �i+j)1�i;j�m:This implies that si = ei and sdi = hi for any integer i � 0.The following multipliation rule for Shur funtions is alled Littlewood-Rihardson rule. A proof is given in hapter I.9 of [17℄. The onept of a stritextension as given here is equivalent to Madonald's desription.Theorem 1.1.4 For any Young diagrams � and � we haves�s� =X� a���s�where a��� = 0 unless � � � and j�j + j�j = j�j, in whih ase a��� denotes thenumber of strit extensions of � by � to �.We have to know what a strit extension is.Let �, � and � be Young diagrams suh that � � � and j�j = j�j + j�j. Anextension � of � by � to � is a labelling of the ells of �n� with the integers1; : : : ; l(�) suh that the label i appears �i times, i = 1; : : : ; l(�). Furthermore,an extension has to satisfy the following two onditions. First, the labels arestritly inreasing downwards along every olumn of �. Seond, the set of ells�(j) whih derives from � by removing all ells with labels greater than or equalto j has to be a Young diagram for any j = 1; : : : ; l(�).An extension � determines a word w(�) whih is the sequene of labels of �read from right to left and top-down.An extension is alled strit if for any label i and any pre�x (i.e. initialsubword) of w(�) the number of ourrenes of the label i is not less than thenumber of ourrenes of i+ 1.For example, the two extensions of (3; 1) by (3; 2) to (4; 4; 1) in �gure 1.1determine the words 1; 2; 2; 1; 1 resp. 1; 2; 1; 1; 2. The seond extension is thereforestrit whereas the �rst extension is not strit.Remark The rows of any extension are weakly inreasing when read from left toright. This is beause of the ondition that �(i) is a Young diagram for any labeli.Remark Let k � 1 be any integer. The number of extensions of (k; k�1; : : : ; 2; 1)by (k; 1) to (k+ 1; k; : : : ; 2; 1) is equal to k. Hene, any non-negative integer anour as a value for a��� for suitable �, � and �.Remark Instead of heking all pre�xes of w(�), one an, equivalently, hek allsubwords of w(�) that arise as the set of ells that lie above and to the right ofsome labelled ell of �. This alternative de�nition has been used in [1℄.7



1 1 12 2 1 1 2 21 , 2 1 1 21
Figure 1.1: The two extensions of (3; 1) by (3; 2) to (4; 4; 1).1.2 The ring of Young diagramsDe�nition The ring of Young diagrams Y is the Z-module whose basis is theset of all Young diagrams. The multipliation is de�ned by�� = Xj�j=j�j+j�ja����where the oeÆients a��� are given by the Littlewood-Rihardson rule as statedin theorem 1.1.4.Sine the Shur funtions s� are a linear basis for � by lemma 1.1.2, we get aring isomorphism from � to Y by mapping s� to �. This implies in partiular thatY is a ommutative ring. Furthermore, the ring Y is the free ommutative ringgenerated by all olumn diagrams 1; 2; : : : whih follows from lemma 1.1.1 andthe observation the si = ei. Similarly, Y is the free ommutative ring generatedby the row diagrams d1; d2; : : :. We remark that the empty Young diagram ; isthe neutral element for the multipliation. In Y, we de�ne i = di = 0 for integeri < 0.The Giambelli formula from Lemma 1.1.3 beomesLemma 1.2.1 For any n � l(�) and m � l(�_)� = det(d�i�i+j)1�i;j�n= det(�_i �i+j)1�i;j�m:Equation (1.1.1) now takes the formnXr=0(�1)rrdn�r = 0 (1.2.2)for any n � 1. Equivalently, 1Xr=0(�1)rrXr! 1Xi=0 diX i! = 1 (1.2.3)where X is a variable. 8



Transposing indues a linear map from Y to Y. This map (alled transposingas well) is bijetive beause (�_)_ = �.Lemma 1.2.2 Transposing is a ring automorphism of Y.Proof Sine Y is spanned by Young diagrams and generated by olumn diagrams,it is suÆient to prove that (�i)_ = �_(i)_ for any Young diagram � and anyolumn diagram i, i � 1. We remark that (i)_ = di.The strit extensions of � by a olumn i of length i are in bijetion with theset of Young diagrams that derive from � by adding i (unnumbered) ells so thatat most one ell is added to eah row of �. To turn suh a Young diagram intoa strit extension, one has to number the added ells with suessive numbers1; 2; : : : ; i going the rows downwards.Similarly, the strit extensions of � by a row di of length i are in bijetionwith the set of Young diagrams that derive from � by adding i (unnumbered)ells so that at most one ell is added to eah olumn of �.This desription of strit extensions is symmetri with respet to olumns androws. Sine transposing interhanges olumns and rows, it indues a bijetion ofthe strit extensions of � by i and the strit extensions of �_ by di. |1.3 The ring YNWe �x an integer N � 1.1.3.1 De�nitionWe denote by IN the ideal of Y generated by the element 0� N and all olumndiagrams of length at least N + 1,IN = hh0 � N ; N+1; N+2; : : :ii:We denote YN = Y=IN ;and we shall denote the image of a Young diagram � under the quotient mapY ! Y=IN by �, too.De�nition For a Young diagram � = (�1; : : : ; �N) with N rows we de�ne �0 tobe the Young diagram derived from � by removing all olumns of length N ,�0 = (�1 � �N ; : : : ; �N�1 � �N ):9



Lemma 1.3.1 For a Young diagram � with N rows we have � � �0 2 IN . If �has more than N rows then � 2 IN .Proof For a Young diagram � we have by the Giambelli formula that� = det(�_i �i+j)1�i;j�b= ���������� �_1 �_1+1 � � � �_1+b�1�_2�1 �_2 � � � �_2+b�2... ... . . . ...�_b �b+1 �_b �b+2 � � � �_b
���������� (1.3.4)where b denotes the length of �_ (whih is equal to �1). If � has N rows then the�rst row of the above determinant reads N ; N+1; : : : ; N+b�1. Sine N = 1 andi = 0 for i > N in YN , we an remove the �rst row and the �rst olumn of thedeterminant without hanging its value in YN . Hene� = �������� �_2 � � � �_2+b�2... . . . ...�_b �b+2 � � � �_b ��������in YN . The determinant on the right hand side is the Giambelli formula for theYoung diagram that derives from � by removing the �rst olumn (of length N).By applying this argument �N -times we get � = �0 in YN .If � has more than N rows, i.e. its length is greater than N , then eah entryof the �rst row of the determinant in equation (1.3.4) is equal to zero in YN .Hene � = 0 in YN . |We de�ne the Z-submodule LN of Y to be linearly spanned by all Youngdiagrams with more than N rows and by the elements (�� �0) 2 Y for all Youngdiagrams � with N rows,LN = h�� �0; � j Young diagrams � and � with l(�) = N and l(�) � N + 1i:We learly haveY = LN � h� j Young diagrams � with l(�) < Ni: (1.3.5)Lemma 1.3.2 LN is an ideal in Y.Proof Sine Y is generated by all the olumn diagrams 1; 2; : : : it is suÆientto verify thati(�� �0) 2 LN for any i � 1 and any Young diagram � with l(�) = N10



and i� 2 LN for any i � 1 and any Young diagram � with l(�) > N:Let i > N and let � be any Young diagram. Sine i is a subdiagram of anysummand of i�, we have that i� is a linear ombination of Young diagrams withmore than N rows. Hene i� lies in LN .Let i � 1 and let � be a Young diagram with more than N rows. Then i�is a linear ombination of Young diagrams with more than N rows sine � is asubdiagram of eah summand. Hene i� lies in LN .Let 1 � i � N and � be a Young diagram with N rows. We denote by k thenumber of initial olumns of length N of �. By the multipliation rule for Youngdiagrams we observe a bijetion between the summands of i� with N rows andthe summands of i�0 with at most N rows. The bijetion being the removal ofk initial olumns of length N . Hene i(�� �0) is a linear ombination of Youngdiagrams with more thanN rows and terms (���) where � and � di�er by k initialolumns of length N . The Young diagrams with more than N rows lie in LN .The terms (���) lie in LN beause �0 = � 0, hene ��� = (���0)�(��� 0) 2 LN .Hene, i(�� �0) 2 LN . |Corollary 1.3.3 We have LN = IN . The (images of the) Young diagrams withless than N rows are a basis of YN .Proof The submodule LN of Y is a subset of IN by lemma 1.3.1. Sine LN is anideal, we have LN = IN . The Young diagrams with less than N rows are a basisof YN beause of the deomposition of Y in equation (1.3.5). |1.3.2 DualityWe introdue the onept of duality for Young diagrams with respet to a �xedinteger N � 1. We onsider a Young diagram � = (�1; : : : ; �N�1). The omple-ment of � in the N��1-retangle is not a Young diagram. But after rotating thisomplement through 180Æ it beomes a Young diagram denoted by �� as depitedin �gure 1.2. We denote the dual of the olumn diagram i by �i rather than(i)�. We have �i = N�i for i = 1; : : : ; N � 1. We have �0 = 0.We have ��i = �1 � �N�i+1 for i = 1; 2; : : : ; N . It is lear that (��)� = � forany Young diagram � with less than N rows. Therefore, taking the dual is apermutation of the Young diagrams with less than N rows.We de�ne �� = 8><>: �� if l(�) � N � 1;(�0)� if l(�) = N;0 if l(�) � N + 1:Hene, the map � 7! �� indues a linear map YN ! YN .11



Figure 1.2: The dual of the Young diagram � = (6; 4; 3; 3; 1) with respet toN = 8 is equal to �� = (6; 6; 6; 5; 3; 3; 2).Lemma 1.3.4 The map � 7! �� indues a ring automorphism of YN .Proof Sine YN is spanned by all Young diagrams with less than N rows andgenerated by the olumn diagrams 1; : : : ; N�1, it is suÆient to prove that(�k)� = ���k for any Young diagram with less than N rows and any olumndiagram k, 1 � k � N � 1.We have �k = N�k in YN for any integer k, (with the onvention that k = 0for k < 0), and we thus have to prove that(�k)� = ��N�kfor any Young diagram � with at most (N � 1) rows, and any integer k =1; : : : ; N � 1.By " and � we denote variables whih are to have values zero or one. Thestrit extensions of � by k that have at mostN rows are all those Young diagrams(�1 + "1; : : : ; �N�1 + "N�1; "N) for whih "1 + : : :+ "N = k.The strit extensions of �� by N�k that have at most N rows are all thoseYoung diagrams (��1+�1; : : : ; ��N�1+�N�1; �N) for whih �1+ � � �+�N = N � k.Let us onsider the sequene of integers(�1 + "1; : : : ; �N�1 + "N�1; "N) (1.3.6)for some integers "1; : : : ; "N whih are either equal to zero or one, and suh that"1+� � �+"N = k. This is not neessarily a Young diagram. To eah suh sequenewe assoiate the sequene of integers given by(��1 + (1� "N); ��2 + (1� "N�1); : : : ; ��N�1 + (1� "2); (1� "1)): (1.3.7)We laim that the sequene in equation (1.3.6) is a Young diagram (i.e. weaklydereasing) if and only if the sequene in equation (1.3.7) is a Young diagram.12



To see this, we note that the sum of the i-th entry of the �rst sequene and the(N � i+1)-st entry of the seond sequene is independent of i for all i = 1; : : : ; Nbeause (�i + "i) + (��N�i+1 + (1� "i)) = �i + �N�i+1 + 1= �1 + 1:Hene, the �rst sequene is weakly dereasing if and only if the seond sequeneis weakly dereasing.Remark that (1� "N )+ : : :+(1� "1) = N � k. We thus get a bijetion of thestrit extensions of � by k and strit extensions of �� by N�k, and assoiatedstrit extensions orrespond to dual Young diagrams. Therefore, (�k)� = ���k,and thus (��)� = ���� for any Young diagrams � and �. |
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Chapter 2Skein theory
2.1 Framed Homy skeinsOur view is pieewise linear. We denote the interior of a manifold M by int(M)and the boundary of M by �M . We always onsider proper submanifolds N ofa manifold M , i.e. int(N) � int(M). By an isotopy of a submanifold N of amanifold M we always understand that it is indued by a homeomorphism of Mwhih is isotopi to the identity relative to the boundary �M .Let F by a surfae (with or without boundary) with a �xed orientation. Let� = �1 ℄ �2 = f�1; : : : ; �kg ℄ f�k+1; : : : ; �2kg be a olletion of disjoint orientedars in the boundary �(F) suh that the orientation of eah ar �i of �1 (resp.�2) agrees (resp. does not agree) with the indued orientation of �i by F .A ribbon tangle T in (F�(0; 1);�) is a (possibly empty) olletion of pairwisedisjoint disks fD1; : : : ; Dkg (also alled ribbons) and �nitely many oriented annulifAjg in F � (0; 1) with oriented ores suh that�F � (0; 1) \Di = �i1 � �12� [ �i2 � �12� ; for some �i1 2 �1; �i2 2 �2;�F � (0; 1) \ k[i=1Di = �� �12�Aj 2 int(F)� (0; 1) for all j:We all any ar � in Di that joins points of �i1 and �i2 a ore. We orient eah ore� `from � \ �i1 to � \ �i2 '. The set �Din(�Di \ F) onsists of two ores �1 [ �2.The orientations of �1 and �2 are indued by di�erent orientations of Di.We write (F � (0; 1)) for (F � (0; 1); ;).Let A be a ommutative ring. We denote by A0 the polynomial ring over A inthe variables x, x�1, v, v�1, s, s�1 and Æ, quotiented by the relation Æ(s� s�1) =v�1 � v. 14



The framed Homy skein S(F ;�) is the free A0-module over the set of allribbon tangles in (F ;�) quotiented by the following relationsT = T 0 if T and T 0 are isotopi ribbon tangles,and the loal relations in �gures 2.1 and 2.2.x�1 � x = (s� s�1)Figure 2.1: De�ning relation for S(F � (0; 1);�).
= xv�1 = ÆFigure 2.2: More de�ning relations for S(F � (0; 1);�).We an isotope any ribbon tangle T suh that it lies at in F � [12 � "; 12 + "℄for some " > 0 whih means that the projetion of T to F � 12 is an embeddingaway from �nitely many sets T \ (Ni � (0; 1)) � int(F)� (0; 1) eah onsistingof two loal diss of T parallel to a dis Ni in F .It is straightforward to translate framed Homy skeins into the language oforiented diagrams by relating `at' ribbon tangles with diagrams of ars and losedurves. To a at ribbon tangle T in (F � (0; 1);�) we assoiate the diagram thatis given by the ontration of the ribbons and the annuli to their ores. Thisis well de�ned up to isotopy. The ores inherit an orientation from the ribbontangle.Eah ar of � beomes a point under this ontration, and � = �1 ℄ �2 =f1; : : : ; kg ℄ fk+1; : : : ; 2kg derives from � = �1 ℄ �2 by making some hoiei 2 �i.Let F be a surfae and � = �1℄�2 = f1; : : : ; kg℄fk+1; : : : ; 2kg be a set of�nitely many points of �F . A diagram in (F ;�) is a (possibly empty) olletionof pairwise disjoint (but we allow rossings) k oriented ars eah joining a point of�1 and �2, and �nitely many oriented losed urves in F . The ars without theirendpoints and the losed urves have to lie in int(F). The ars are oriented fromtheir intersetion with �1 to their intersetion with �2. We denote the emptydiagram by ;. 15



We all diagrams D1 and D2 regularly isotopi if they di�er by a sequeneof moves inside a dis where the moves are the identity on the boundary of thisdis. The allowed moves are Reidemeister moves II and III and an orientationpreserving homeomorphism of the dis as shown in �gure 2.3. We all a sequeneof these moves a regular isotopy. Note that this has no relation with the usualmeaning of isotopy, it is a onept only for diagrams.= = =Figure 2.3: Regular isotopy onsists of Reidemeister moves II and III, and `wig-gling urves'.Reall that we denote by A0 the polynomial ring in x; x�1; v; v�1; s; s�1 and Æ,quotiented by the relation Æ(s� s�1) = v�1 � v.The framed Homy skein S(F ;�) is the free A0-module over the set of alldiagrams in (F ;�) quotiented by the following relationsT = T 0 if T and T 0 are regularly isotopi,and the loal relations in �gures 2.4 and 2.5.x�1 � x = (s� s�1)Figure 2.4: De�ning relation for S(F ;�).
= xv�1 = ÆFigure 2.5: More de�ning relations for S(F ;�).Whenever (here and in the following) the orientation of the ores is not shownthen the diagrams represent all possible orientations.The Whitney-trik is a regular isotopy that relates a straight ar with an arhaving two urls. It is depited in �gure 2.6. We an remove one of the urls16



= = =Figure 2.6: The Whitney-trik realizes a anellation of urls via a regular isotopy.
= x�1vFigure 2.7: A derived relation in S(F ;�).at the expense of the additional fator xv�1, and we thus get the loal relationdepited in �gure 2.7 whih is valid in S(F ;�).Let G1 and G2 be diagrams in (F ;�) and denote the assoiated ribbon tanglesin F � (0; 1) by T1 and T2 (determined up to isotopy). We laim that G1 and G2are equal in S(F ;�) if and only if T1 and T2 are equal in S(F � (0; 1);�). Theonly non-trivial part of this laim is that if H1 and H2 are isotopi ribbon tanglesin F � (0; 1) then G1 and G2 are equal in S(F ;�). If H1 and H2 are isotopithen G1 derives from G2 by regular isotopy and the loal moves shown in �gure2.8 with any orientations on the omponents. The moves annot be realized by aregular isotopy in general. (But, e.g. in the sphere S2 they are regularly isotopi).But the diagrams beome equal in S(F ;�) sine the urls an be removed at theexpense of the salars whih anel. One has to rotate in some instanes thediagrams (or oneself) in order to apply the above loal skein relations.

= = =Figure 2.8: Moves in order to handle urls in diagrams.17



In what follows we shall be mainly onerned with skeins over the salarsZ[x�1; v�1; s�1; Æ℄=hhÆ(s� s�1) = v�1 � vii. But learly, a skein makes sense forany extension of this ring. We shall onsider as well the subring of the rationalfuntions Q(x; v; s) generated by x�1; v�1; s�1; f(si � s�i)�1 j i 2 Ig for somesubset I � Z. Note that the term (si � s�i)�1 may ause problems when s issubstituted by some root of unity.2.1.1 Useful mapsThere are some interesting maps of a Homy skein to itself without being modulehomomorphisms.  : x 7! x; v 7! v; s 7! �s�1; Æ 7! Æ� : x 7! �x; v 7! �v; s 7! s�1; Æ 7! Æ� : x 7! x�1; v 7! v�1; s 7! s�1; Æ 7! Æ:, � and � extend to isomorphisms of the rational funtions in x, v, s and Æ. Theyindue isomorphisms of the salars we are onsidering sine (s� s�1)Æ� (v�1�v)is invariant under these maps.We get maps from the Homy skein to itself when we leave the diagramsinvariant and alter the salars by  (resp. �) beause this preserves the skeinrelations. In the ase of �, one has to hange all rossings of the diagram in orderthat the skein relations are preserved.2.2 The Homy polynomialAny diagram D in the skein S(R2) of the plane an be transformed via the skeinrelations to a salar multiple t of the empty diagram ;. An important resultstates that the S(R2) is isomorphi to its salars, i.e. the salar t is well de�ned.This salar is denoted as the Homy polynomial �(D) of D. The word Homyis derived from the initial letters of some of the mathematiians who disoveredthis invariant ([6℄, [21℄).A framed link in F � (0; 1) is an oriented link together with a parallel urveto eah omponent, i.e. a longitude in the boundary of a regular neighbourhoodof eah omponent. Every oriented link diagram determines a framed link byhoosing the blakboard parallel for eah omponent. We shall onsider onlydiagrams of framed links whose blakboard framing gives the framing of the link.Ribbon tangles in S(F � (0; 1)) that onsist only of embedded annuli withoriented ores are an equivalent view of framed links, where, for eah annulusA, the ore of A determines a link omponent, and a boundary urve of A (it18



" = 1 " = �1Figure 2.9: The sign assigned to a rossing.is irrelevant whih one) determines a longitude in a regular neighbourhood N ofthis link omponent.A rossing of an oriented diagram in an oriented surfae is given a sign " = �1as shown in �gure 2.9 where we use the ounterlokwise orientation of the loaldis. The sum of the signs is denoted as the writhe wr(D) of the diagram D. Itis a invariant under regular isotopy.Let D be a diagram. One gets an invariant �u that does not involve thevariable x by setting �u(D) = (xv�1)�wr(D)D.2.3 The Heke algebra HnWe denote by Hn the skein of the dis [0; 1℄� [0; 1℄ with the set � = �1 ℄ �2 =f( jn+1 ; 1)g1�j�n ℄ f( jn+1 ; 0)g1�j�n and the standard (anti-lokwise) orientation.We all the point ( jn+1 ; 1) the j-th point at the top and ( jn+1 ; 0) the j-th point atthe bottom.The multipliation for diagrams D1 and D2 is given by staking D1 aboveD2. This extends linearly to Hn. The multipliation is assoiative but not om-mutative. Every diagram D in Hn determines an element �D of the symmetrigroup Sn on n letters, by saying that the j-th point at the top of the square[0; 1℄ � [0; 1℄ is joined by an ar of D to the �D(j)-th point at the bottom. Wehave �D1D2 = �D1�D2 in Sn sine we read the produt of permutations from leftto right.Hn is known to be isomorphi to the Heke algebra.For every permutation � 2 Sn there exists a unique braid w� (alled a positivepermutation braid) suh that w� determines � 2 Sn, and strings starting at thepoints i and j at the top with 1 � i < j � n do not ross if �(i) < �(j), and theyross only one (with the string starting at j overrossing the string starting ati) if �(i) > �(j).It turns out that the set fw� j � 2 Sng is a basis for Hn (see [20℄ for a shortproof).The juxtaposition of putting a diagram D1 2 Hn to the left of D2 2 Hmindues an inlusion Hn 
Hm ! Hn+m.19



2.4 Idempotents in the Heke algebraThis setion desribes the interpretation of Gyoja's results [9℄ by Aiston andMorton [2℄.2.4.1 The building bloks an and bnWe denote by l(�) the writhe of w�, whih an also be expressed as the minimalnumber of transpositions to form the permutation �. We de�nean = X�2Sn(x�1s)l(�)w�in Hn for any integer n � 0.We denote by �i the elementary positive braid in whih only strings i andi + 1 ross one positively. The next lemma an be found as Lemma 8 in [2℄.Lemma 2.4.1 We have �ian = xsan and an�i = xsan for any 1 � i � n� 1.Sine Hn is generated as an algebra by the elementary braids �1; : : : ; �n�1, wededue that an lies in the entre of Hn. Even more, for any element h of Hn wehave han = anh = �an for some salar �.In partiular, anan is a salar multiple �n of an. Lemma 2.4.2 shows that �n isnon-zero. We de�ne [n℄ = (sn�s�n)=(s�s�1) = sn�1+sn�3+ � � �+s�n+3+s�n+1for any integer n � 0. We de�ne [n℄! = [n℄[n� 1℄ � � � [1℄.Lemma 2.4.2 We have �n = s (n�1)n2 [n℄! for any integer n � 1.Proof Using lemma 2.4.1 we get thatanan = an X�2Sn(x�1s)l(�)w�= an X�2Sn(x�1s)l(�)(xs)l(�)= an X�2Sn s2l(�):We an write any permutation � from Sn uniquely as the produt of a permutation� from Sn�1 and the yle (�(n) (�(n)+1) : : : n) of length n��(n)+1. Therefore,X�2Sn s2l(�) = X�2Sn�1 n�1Xi=0 s2(l(�)+i)= X�2Sn�1  s2l(�) n�1Xi=0 s2i!20



=  n�1Xi=0 s2i! X�2Sn�1 s2l(�)= sn�1 sn � s�ns� s�1 X�2Sn�1 s2l(�)= sn�1[n℄ X�2Sn�1 s2l(�):We get by indution that X�2Sn s2l(�) = s (n�1)n2 [n℄!: |The proof of lemma 2.4.2 suggests a deomposition of an+1 given byan+1 = (an 
 11)(1n+1 + (x�1s)�n + (x�1s)2�n�n�1 + � � �+ (x�1s)n�n�n�1 � � ��1)(2.4.1)This is beause we an draw any positive permutation braid w� on n+ 1 stringsin a unique way as the produt of a positive permutation braid having a vertial(n + 1)-st string and the braid �n�n�1 � � ���(n+1).We reall from subsetion 2.1.1 the isomorphism  of the rational funtionsin x, v and s given by x 7! x, v 7! v and s 7! �s�1. We get a map fromHn to Hn that is the identity on any diagram and behaves on the salars as. We denote this map by  as well. It satis�es (w + y) = (w) + (y) and(wy) = (w)(y) for any elements w and y of Hn but we remark that it is notan algebra homomorphism sine it hanges the salars. We have that 2 is equalto the identity. We denote bn = (an)and �n = (�n). We remark that (an) = �(an), and (�n) = �(�n) where � wasde�ned in subsetion 2.1.1.Lemma 2.4.3 We have bnbn = �nbn for any integer n � 0.Proof We have anan = �nan. Applying the map  we get (an)(an) =(�n)(an), hene bnbn = �nbn. |We reall the isomorphism � of the rational funtions in x, v and s given byx 7! x�1, v 7! v�1 and s 7! s�1. We immediately dedue from the skein relationsof Hn that the map whih reets any diagram in the plane and that behaves on21



the salars as � indues a map from Hn to Hn. We denote this map by � as well.It satis�es �(w+ y) = �(w)+ �(y) and �(wy) = �(w)�(y) for any elements w andy of Hn but we remark that it is not an algebra homomorphism. We have that�2 is equal to the identity.When we onsider Hn as an algebra over a subring of the rational funtionsin x, v and s in whih �n is invertible then (1=�n)an is an idempotent.Lemma 2.4.4 We have �( 1�nan) = 1�nan for any integer n � 0.Proof We have�i�(an) = �(��1i )�(an) = �(��1i an) = �((xs)�1an) = xs�(an)for any 1 � i � n� 1. Hene, an�(an) = �n�(an):Applying the map � to this equation we get�(an)an = �(�n)an:The element an is entral in Hn, and therefore an�(an) = �(an)an. Therefore,the terms on the right hand sides of the above two equations are equal, i.e.�n�(an) = �(�n)an. We thus get�� 1�nan� = 1�nan: |Sine � and  ommute, we getCorollary 2.4.5 We have � � 1�n bn� = 1�n bn for any integer n � 0.2.4.2 The quasi-idempotent e�Here, we �x an integer n � 0 and onsider only Young diagrams with n ells. Forany Young diagram � (with n ells) we onstrut a quasi-idempotent e� in Hn inthe following way.We number the ells of any Young diagram � with the integers 1; 2; : : : ; nfrom left to right and from top to bottom (as reading in a book). The map(i; j) 2 � ! (j; i) 2 �_ determines therefore a permutation �� on n letters. Welearly have ��_ = ��1� . We de�neE�(a) = a�1 
 a�2 
 � � � 
 a�l(�) 2 Hn22



and E�(b) = b�1 
 a�2 
 � � � 
 
b�l(�) 2 Hnfor any Young diagrams � and �. We de�nee� = E�(a)w��E�_(b)w�1�� 2 Hnwhere w�1�� is the inverse braid of w��. We note that edn = an and en = bn.It follows from Lemma 11 in [2℄ that for any element T 2 Hn there exists asalar t suh that E�(a)TE�_(b) = tE�(a)w��E�_(b): (2.4.2)Hene, e2� = ��e�for some salar ��. The salar �i from lemma 2.4.2 is by de�nition equal to �di(this is a slight abuse of notation). One an also prove thate�e� = 0 if � 6= � (2.4.3)(of ourse under the ondition that j�j = j�j).Remark It might seem more natural to de�ne e� = E�(a)w��E�_(b). The abovestatements would remain true, but of ourse with some di�erent salars ��. Thisis the point. If we de�ne e� = E�(a)w��E�_(b) then e2� = 0 unless � is a singlerow or olumn diagram. This is beause e2� ontains the fator E�_(b)E�(a) fromwhih on an extrat a fator a2 
 1n�2 from E�(a) and a fator b2 
 1n�2 fromE�_(b) if �1 � 2 and l(�) � 2. One an verify by a diret skein alulation thatb2a2 = 0 in H2, and therefore we dedue that E�_(b)E�(a) = 0 in Hn.Another reason is that the elements e� = E�(a)w��E�_(b)w�1�� speialize toquasi-idempotents of the group algebra C [Sn ℄ after the substitutions x = v = s =Æ = 1. (One has to onsider C instead of Z.) This is explained in detail in [1℄.The elements e� 2 Hn and the salars �� are non-zero. This follows e.g. fromtheir speialization to C [Sn ℄. The expliit formula for �� is�� = Y2� sn()[hl()℄: (2.4.4)A proof is given in [26℄ (see [3℄ for an exposition).We de�ne y� = 1�� e� 2 Hnwhih is an idempotent.The standard losure of a braid (or a tangle) indues a linear map from Hn tothe skein of the plane. We give a short skein-theoreti proof that e� is non-zero.In fat, we even prove more. 23



Lemma 2.4.6 The Homy polynomial of the losure of e� is non-zero for anyYoung diagram �.Proof We denote the number of ells of � by n. We speialize x = v = s = 1. Thesalars are now Z[Æ℄ where Æ is an indeterminate. We shall onsider the Homypolynomial of the losure of e�. The skein relations for x = v = s = 1 imply thatwe an swith any rossings and remove any urls without altering the Homypolynomial. Therefore, the Homy polynomial of a diagram in the plane is equalto Æ where  is the number of omponents of the diagram. We laim that thelosure of e� is a linear ombination of diagrams with at most n omponents, andthat exatly one diagram ours with n omponents (and non-zero oeÆient).This implies that the Homy polynomial of the losure of e� is a polynomial in Æof degree n and is thus non-zero. Hene, e� is non-zero.Clearly, the number of omponents of the losure of an (n; n)-braid is givenby the number of yles in the yle deomposition of the permutation of Sndetermined by this braid. Sine e� is a linear ombination of (n; n)-braids, all theappearing diagrams in the losure of e� have at most n omponents. It remainsto prove that exatly one summand of e� determines the identity permutation ofSn.By simply using distributivity, we an write e� as a linear ombination ofbraids, e� = E�(a)w��E�_w�1�� =X� t��where � = w��0w�1��for some braids  and 0 whih appear as a summand in E�(a) resp. E�_(b).First, we onsider strings of � that belong to the same omponent a�i ofE�(a). They do not ross in w�� sine the r-th string of the omponent a�i isjoined to some string of the omponent b�_r whih appear in order from left toright in E�_(b) and the ondition on positive permutation braids ensures thatthese strings of w�� do not ross. Furthermore they do not ross in 0 sine theybelong to di�erent omponents b�_j and b�_k of E�_(b). Finally, they do not rossin w�1�� sine they do not ross in w��.Similarly, strings of � that belong to the same omponent b�_j of E�_(b) donot ross in either , w��, or w�1�� .Hene, if two strings of � ross in either  or 0 then � = w��0w�1�� annotdetermine the identity permutation. Sine every a�i and b�_j ontains the identitybraid as a summand (with oeÆient 1), we see that the identity braid � = idnis the only summand of the losure of e� that has n omponents. Furthermore,its oeÆient is 1 as laimed. |24



Figure 2.10: The n-string braid T (j) for n = 7 and j = 4.By equation 2.4.2 there exists for every entral element B of Hn a salar bsuh that Be� = be�. We shall be interested in the tangle T (n) depited on theleft of �gure 2.12 whih is the identity braid (on n strings) with a simple losedurve enirling it. It is learly entral in Hn.Lemma 2.4.7 We have T (n)e� = �e�in Hn for any Young diagram � with n ells. The salar � is given by� = x2n0�v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k)1A :Proof We denote by T (j) the n-string braid �j � � ��2�1�1�2 � � ��j as depited in�gure 2.10. By equation (5.1) of the proof of theorem 17 in [2℄ we haveE�(a)w��T (j)E�_(b)w�1�� = x2(j�1)s2n(p(j))e�in Hn where p(j) is the ell of � numbered j in the standard tableau that reads1; 2; 3; : : : ; n from left to right and top to bottom.We remark that the formula given in [2℄ di�ers from this one by a fram-ing fator xv�1 beause they have used a framing di�erent from the blakboardframing.The equation in �gure 2.11 follows from the skein relation x�1�i�x��1i = z id(where z = (s� s�1)) whih is applied to the upper right rossing. An equivalentrelation is depited in �gure 2.12. Indutively, we an therefore write T (n) as thelinear ombinationT (n) = x2n v�1 � vs� s�1 idn + zx2v�1 nXj=1x2(j�1)T (n� j + 1):
25



x�1 �x = z
Figure 2.11: A relation in the Heke algebra Hn.

= x2 +zx2v�1
Figure 2.12: An equivalent depition of the equation in �gure 2.11.Hene, T (n)e� = �e� with� = x2n v�1 � vs� s�1 + v�1z nXj=1x2jx2(n�j)s2n(p(j))= x2n 0�v�1 � vs� s�1 + v�1z nXj=1 s2n(p(j))1A :Now nXj=1 s2n(p(j)) = l(�)Xk=1 �kXi=1 s2n(k;i)= l(�)Xk=1 �kXi=1 s2(i�k)= l(�)Xk=1 �k�1Xi=0 s2(i�k+1)= l(�)Xk=1 s2(�k+1) �k�1Xi=0 s2i26



= l(�)Xk=1 s2(1�k) s2�k � 1s2 � 1= ss� s�1 l(�)Xk=1(s2(�k�k) � s�2k):Hene, � = x2n0�v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k)1A : |Lemma 2.4.8 The salars � are pairwise di�erent and non-zero for all Youngdiagrams �.Proof The statement is even true for x = 1. We have� = v�1 � vs� s�1 + v�1s l(�)Xk=1(s2(�k�k) � s�2k):We an onsider � as a Laurent polynomial in v. The oeÆient of v in � is(s� s�1)�1, and therefore � is non-zero. Hene, � is non-zero.Let � and � be Young diagrams with � = �. Sine s2(�k�k) � s�2k = 0 fork � l(�), we dedue from � = � thatmXk=1(s2(�k�k) � s�2k) = mXk=1(s2(�k�k) � s�2k);where m = max(l(�); l(�)). HenemXk=1 s2(�k�k) = mXk=1 s2(�k�k):The sequenes (�k � k) and (�k � k), 1 � k � m, are stritly dereasing. Theabove equality implies therefore that �k = �k for k = 1; : : : ; m, hene � = �. |2.5 Semi-simple deomposition of HnThis exposition follows the aount of Blanhet in [3℄. He desribes an expliitisomorphism fromHn to a disjoint sum of matrix algebras by generalizing Wenzl'sresults of [25℄. We use the three-dimensional version H� of the Heke algebra asintrodued in [2℄ where the ars end at the entres of the ells of a Young diagram27



rather than along a straight line. This model supports the understanding of theonstrution.It is helpful but not neessary to know the value of the salar �� from equation(2.4.4). The knowledge of �� allows to have a better ontrol of the salars inlemma 2.5.4.We �x the index n of Hn throughout this setion. Given standard tableaux tand � of the same Young diagram � with n ells we onstrut an element �t� ofHn. In this ontext we say that standard tableaux s and � are suitable for �s� ifs and � belong to the same Young diagram.We denote by Mi�i the algebra of (i � i)-matries over the same ring as thering of salars for Hn. We reall that d� denotes the number of standard tableauxfor the Young diagram �.To simplify our notation, we denote the Young diagram that underlies a stan-dard tableau t by �(t). We use the notation of the Kroneker-delta Æ�s whih isde�ned by Æss = 1 and Æ�s = 0 if � 6= s. We shall prove that �t��s� = Æ�s�t� forany (suitable) standard tableaux t, � , s and �. This implies that the linear mapMj�j=nMd��d� ! Hnmapping the basis element Et� (that has all entries equal to zero exept the entry1 at the position (t; �)) to �t� is an algebra homomorphism.Being areful, we have to onsider the salars of Hn. First of all, we anonsider the �eld Q(x; v; s) of rational funtions in x, v and s. But we anrestrit the salars to the subring of the �eld of rational funtions in x, v ands generated by x�1, v�1, s�1, and (si � s�i)�1 for i = 1; : : : ; n. This is beausethe idempotent y� = (1=��)e� an be de�ned in this ring sine the denominatorof �� is by equation (2.4.4) a produt of terms (sj � s�j) for j being the hooklength of some ell of �. Sine � has n ells in total, it is suÆient to onsiderj = 1; : : : ; n.We denote by y� the three-dimensional version of the idempotent orrespond-ing to �. Given a Young diagram � we an remove one of its extreme ells to geta Young diagram � with one ell less. Given a standard tableau t of � there isa anonial way to hoose an extreme ell by hoosing the ell with the highestnumber in t. We denote the resulting standard tableau by t0. We denote by tkthe k-fold appliation of this removal of ells.There is an obvious inlusion of the three-dimensional Heke algebra H� inthe Heke algebra H� by adding a straight ar that onnets the boundary pointsbased at the removed ell. We denote this inlusion by g 7! g 
 1.Given a standard tableaux t of a Young diagram � we de�ne �t in H� by�t = (y�(tn�1) 
 1n�1)(y�(tn�2) 
 1n�2) � � � (y�(t0) 
 11)y�(t)28



where 1k is the identity braid on k strings. We remark that ytn�1 
 1n�1 is theidentity braid. We de�ne 
t in H� similarly as
t = y�(t)(y�(t0) 
 11) � � � (y�(tn�2) 
 1n�2)(y�(tn�1) 
 1n�1):Given standard tableaux t and � of a Young diagram � we de�ne an element �t�in Hn by �t� = Ft�t
�F��where Ft resp. F�� is a tangle that onnets upwards resp. downwards the npoints arranged along the ells of � to the n points arranged along a line. Wenumber the points along the line by 1; 2; : : : ; n from left to right. The standardtableau t desribes a numbering of the upper boundary points of H�. We desribein a reursive way the projetion of this braid to the plane that ontains the uppern points of H�. For i = 1; : : : ; N we onnet the points numbered N � i + 1 bya line that goes only towards right and upwards, that is disjoint to all i � 1previously drawn lines, and that is disjoint to the standard tableaux ti.F�� is de�ned as the mirror image of F� .Lemma 2.5.1 We have �t��s� = Æ�s�t� for any (suitable) standard tableaux t,� , s and �.Proof We denote by � and � the Young diagrams given by the standard tableaux� resp. s. We �rst onsider the ase that � and � are di�erent. We have in thethree-dimensional piture of �t��s� a produt in whih the fator y� appears in
� and the fator y� appears in �s. Any produt ontaining these fators is equalto zero beause of the three-dimensional equivalent of equation (2.4.3).If the Young diagrams � and � are equal but � and s are di�erent then thereexists a maximal integer k so that �(�k) = �(sk) but �(�k+1) 6= �(sk+1). By thesame argument as above we dedue that 
�F�� Fs�� is equal to zero beause wehave a produt ontaining y�(�k+1) and y�(sk+1). The other strings do not interferebeause of our de�nition of the onneting braids F�� and Fs.Finally, if � and s are equal, we have that�t���� = Ft�t
�F�� F���
�F��= Ft�t
���
�F��= Ft�t
�F��= �t�where we used that 
��� = y�(�). This is true beause y�(y� 
 1)y� = y� in H�for any Young diagram � and subdiagram �, j�j = j�j + 1. We �nally show thisequality. 29



First, we note that we an extrat a fator E�_(b) 
 1 from E�_(b) at theexpense of a salar �. This is beause the quasi-idempotent bi of Hi satis�esbibi = �ibi for a non-zero salar �i. We thus getE�_(b)(E�_ 
 1) = �E�_(b)where � = l(�_)Yj=1 ��_j :Similarly, (E�(a)
 1)E�(a) = �E�(a)where � = l(�)Yi=1��i :Seond, we have that E�_(b)E�(a) is a quasi-idempotent of H� with the samesalar �� as for E�(a)E�_(b). This follows frome2� = (E�(a)E�_(b))2 = ��E�(a)E�(b) = ��e�by reading the involved diagrams from bottom to top whih is an anti homomor-phism that leaves the ai and bj invariant.Hene,y�(y� 
 1)y� = 1�2���E�(a)E�_(b)((E�(a)E�_(b))
 1)E�(a)E�_(b)= 1�2�����E�(a)E�_(b)(E�_(b)
 1)((E�(a)E�_(b))
 1)�(E�(a)
 1)E�(a)E�_(b)= 1�2�����E�(a)E�_(b)((E�_(b)E�(a))
 1)2E�(a)E�_(b)= 1�2���E�(a)E�_(b)((E�_(b)E�(a))
 1)E�(a)E�_(b)= 1�2�E�(a)E�_(b)E�(a)E�_(b)= 1��E�(a)E�_(b)= y�: |30



Lemma 2.5.2 The losure of �t� in the skein of the annulus is equal to zero ift and � are di�erent tableaux of the same Young diagram. The losure of �tt isequal to the losure of y�(t).Proof The losure of �t� = Ft�t
tF�t is equal to the losure of 
�F�� Ft�t be-ause we an move the fators around in the annulus, i.e. permute them ylially.By the same argument as in the proof of lemma 2.5.1 we have therefore that thelosure of �t� is equal to zero if t and � are di�erent, and the losure of �tt isequal to the losure of y�(t). |Lemma 2.5.3 The elements f�t�g of Hn are linearly independent where t and �range over all suitable standard tableaux of Young diagrams with n ells.Proof Assume that Xt;� �t��t� = 0for some salars �t� . Let s and � be any suitable Young tableaux. Then multi-pliation of the above equation by �ss on the left and multipliation by ��s onthe right leads to �s��ss = 0by lemma 2.5.1. In order to dedue that �s� is equal to zero for all suitable Youngtableaux s and �, we have to show that �ss is non-zero in Hn for any standardtableaux s.As shown in lemma 2.5.2, the losure of �ss in the skein of the annulus isequal to the losure of y�(s) in the skein of the annulus. Even the inlusion of thelosure y�(s) in the skein of the plane is non-zero by lemma 2.4.6. Hene, �ss isnon-zero in Hn. |Lemma 2.5.4 The elements �t� for any suitable standard tableaux t and � area basis for Hn when the salars are the �eld of rational funtions in x; v and s.Proof We reall that d� is the number of standard tableaux for the Young dia-gram �. The number of elements �t� in Hn is therefore given by Pj�j=n d2� whihis known to be equal to n! by an argument about the standard deomposition ofthe group algebra C [Sn ℄ into a diret sum of matrix algebras.Sine the elements �t� are linearly independent, and the dimension of Hn isn!, they form a basis. |In order to de�ne the �t� we only need the terms (si � s�i) to be invertiblefor all i � 1. The question is: If r is a subring of the �eld of rational funtionsin whih all the (si � s�i) are invertible, are the �t� a basis for Hn? They arelinearly independent over r, but do they span Hn over r? Blanhet laims in hispaper that this already follows from lemma 2.5.1. But it seems that the followingadditional argument is neessary. 31



Lemma 2.5.5 Let k be a �eld, and r be a subring of k. Let  be an algebraautomorphism ofMn�n over the �eld k. If  restrits to an algebra endomorphism of Mn�n over the ring r then  is an automorphism of the algebra Mn�n overthe ring r.Proof We have to show that �1 is an algebra endomorphism over the ring r.By the Noether-Skolem-Theorem (see e.g. [10℄), we have that the automorphism of Mn�n over the �eld k is the onjugation by some invertible element G ofMn�n whose entries lie in k.That  restrits to an endomorphism over the ring r means that GDG�1 hasentries in r for any (n�n)-matrix D whose entries lie in r. We have to show thatthe entries of G�1DG lie in r as well sine �1 is the onjugation with G�1.We denote by Eij the (n � n)-matrix that di�ers from the zero-matrix onlyby the entry (i; j) whih is equal to 1. For any (n�n)-matries A and B we haveAEijB = 0BBBB� (A1iBj1) (A1iBj2) � � � (A1iBjn)(A2iBj1) (A2iBj2) � � � (A2iBjn)... ... ...(AniBj1) (AniBj2) � � � (AniBjn) 1CCCCA = (AkiBjl)1�k;l�nfor any i; j = 1; : : : ; N . Similarly,BEijA = (BpiAjq)1�p;q�n:This means that all the entries of AEijB for all 1 � i; j � n are a permutation ofall the entries of BEijA for all 1 � i; j � n. Hene, if all the entries of GEijG�1for 1 � i; j � n lie in the ring r then all the entries of G�1EijG for 1 � i; j � nlie in r. Sine the matries Eij are a linear basis over r, we have that G�1DGhas entries in r for any matrix D whose entries lie in r. |We reall that for a standard tableau t we de�ned t0 to be the standard tableauderived from t by deleting the ell with the highest label. Blanhet observes intheorem 1.13 in [3℄ thaty� 
 1 = X���j�j=j�j+1 (y� 
 1)y�(y� 
 1):By applying this result to the term (y�
 1) in the middle of �t� 
 1 2 Hn+1, onegets in Hn+1Lemma 2.5.6 We have �t� 
 1 = Xs0=t;�0=� �s�:for any (suitable) tableaux t and � . 32



Chapter 3Closures of idempotents areShur funtions
3.1 IntrodutionThe Heke algebra Hn interpreted as the Homy skein of the disk with 2n bound-ary points with top-down orientation ontains idempotents (1=��)e� that are in-dexed by Young diagrams with n ells. Their losures Q� are known to be a basisfor the image of Hn under the losure map in the skein of the annulus.Previous works have shown that the map from the algebra of Young diagramsto the skein of the annulus mapping � to Q� is an algebra isomorphism. Buteither the proofs used results beyond the sope of skein theory like [1℄ or theywere skethy and had gaps like [14℄.In theorem 3.5.6 we shall give a self ontained proof solely based on skeintheory. The idea is to onsider an element S� = det(Qd�i+j�i)1�i;j�l(�) and toshow that it behaves in the same way as Q� under the addition of a meridianloop of the annulus. This is suÆient to dedue that S� = Q�.The skein of the annulus C 0 with two boundary points has been onsiderede.g. in [14℄, [8℄ and [18℄. The version used here and in [18℄ enables us to de�nea ommutative multipliation for C 0 beause the boundary points lie on di�erentboundary omponents of the annulus.3.2 The skein C of the annulusThe Homy skein of the annulus shall be denoted by C. We furthermore hoose anorientation for the ore of the annulus. In all our depitions, the annulus is giventhe standard anti-lokwise orientation, and the ore is oriented anti-lokwise aswell. 33



Figure 3.1: The multipliation in the skein of the annulus C.

Figure 3.2: The losure map from Hn to C.Let D1 and D2 be two diagrams in the annulus S1 � [0; 1℄. We an bring D1into S1�[0; 1=2), and D2 into S1�(1=2; 1℄ by a regular isotopy. Then the produtofD1 andD2 is de�ned as the diagramD1[D2. The produt is ommutative sineD1D2 and D2D1 di�er by regular isotopy. The empty diagram is the identity.The produt of D1 and D2 is depited as putting the inward irle of theannulus ontaining D1 next to the outward irle of the annulus ontaining D2as shown in �gure 3.1.Figure 3.2 depits an annulus with a set of n oriented ars. A dis is removedfrom the annulus in suh a way that we an insert a diagram from Hn suh thatthe orientations of the ars math. This fators to a map from Hn to C, denotedby � : D 7! D̂. This is a speial ase of a wiring. We de�ne Q� to be the losureof the idempotent y� of Hn where n is the number of ells of �,Q� = ŷ� 2 C:We denote the image of Hn in C of the losing map by Cn. By C+ we denotethe submodule of C spanned by all C0; C1; : : :,C+ = *[n�0Cn+ :34



Figure 3.3: Enirling a diagram in the annulus.We de�ne a linear map � from C+ to C+ that is the enirling of any diagramin C+ by a single loop as shown in �gure 3.3. Similarly, ~� is the same map butwith the opposite orientation of the additional loop.X+i 2 Ci is de�ned as the losure of the braid �i�1�i�2 : : : �1. X�i derives fromthe diagram X+i by reversing the orientation. Any diagram D in the annulusan be written in the skein of the annulus C as a linear ombination of totallydesending urves. It thus follows thatX+i andX�j for all integers i and j generateC. In fat, Turaev proved in [23℄ that they generate C freely as a ommutativealgebra. We shall prove the weaker result that X+1 ; X+2 ; : : : generate C+ freely asa ommutative algebra. The weighted degree of a monomial (X+i1 )j1 � � � (X+ik)jk isde�ned as i1j1 + � � � ikjk.Lemma 3.2.1 The dimension of Ck is equal to the number of partitions of k.The elements X+1 ; X+2 ; : : : are algebraially independent in C+.Proof Indutively one proves that Ck is spanned by the monomials in fX+i g ofweighted degree k for any integer k � 0. Hene, the dimension of Ck is at mostp(k) by whih we denote the number of partitions of k. We denote by C�n thesubmodule of C+ whih is spanned by all elements of Ck, 0 � k � n. Therefore,the dimension of C�n is at most pn = p(0) + p(1) + � � �+ p(n).On the other hand, all the losures of e� lie in C�n provided that the Youngdiagrams � have at most n ells. The losures of the e� are non-zero by lemma2.4.6, and they are linearly independent sine they have di�erent eigenvalues un-der the map �. Hene, the dimension of C�n is at least pn. Hene, the dimensionof C�n is equal to pn. Sine every element of C�n is a linear ombination of mono-mials in fX+i g of weighted degree lower than or equal to n, these monomials haveto be linearly independent. Sine this is true for all n � 0, we have that all themonomials in fX+i g are linearly independent. |
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Figure 3.4: The multipliation in C 0.3.3 The variant skein C 0 of the annulusWe require an orientation of the ore of the annulus. The orientation of theannulus indues an orientation on eah of its boundary urves. We all 1 theboundary urve for whih this orientation agrees with the orientation of the par-allel ore. We all 2 the other boundary omponent. We pik points 1 2 1 and2 2 2. We denote by C 0 the skein S(S1 � [0; 1℄;� = f1g ℄ f2g).When we embed the annulus in the plane with the standard ounter-lokwiseorientation and the ore oriented ounter-lokwise as well, then 1 is the outerboundary omponent, and 2 the inner.Similarly to C, we turn C 0 into an algebra. In the standard piture, the innerboundary point of a diagram � omes together with the outer boundary point ofa diagram � as shown in Figure 3.4.The single straight ar e onneting the two marked points is the identityelement, as shown in �gure 3.5. The ommutativity is not immediate but nev-ertheless turns out to be true as we shall see in lemma 3.3.3 and in the remarkfollowing it.The skein used in [14℄ has both of its two boundary points on the outerboundary irle of the annulus. Furthermore, they lie at the right. There is amap from C 0 to this variant skein. First, one turns the annulus over to itselfkeeping a vertial line �xed. Then one adds the ar from �gure 3.6 from below.We have two operations of C on C 0. If � is an element of C and x is an elementof C 0 we de�ne �x as staking � above x as shown in Figure 3.7. Similarly x� isde�ned as putting � below x.We de�ne a losing operation r 7! r̂ from C 0 to C whih means adding thear in �gure 3.8 from above to a diagram r. In order that this is possible, theannulus for C has to be slightly larger than C 0. The framing of the diagram r̂ isde�ned to be its blakboard framing. We remark that this losing operation isnot an algebra homomorphism. The linear map from Hn to C given by losing atangle t is denoted by t 7! t̂ as well. This should not lead to onfusion.36



Figure 3.5: The identity e in C 0. Figure 3.6: A map between dif-ferent skeins of the annulus afterturning the annulus over.
�x

Figure 3.7: Operation of C on C 0 from the left.
Figure 3.8: The additional ar for the losure.

x x
Figure 3.9: Map �0 from Hn to C 0.37



Figure 3.10: The ar a (at the left) and its inverse a�1 (at the right).For any integer n � 1 we have a linear map �0 : Hn ! C 0 as shown in �gure3.9. We denote the image of Hn under this map by C 0n. We de�ne C 0+ to be thesubmodule of C 0 spanned by all C 00; C 01; : : :,C 0+ = *[n�0C 0n+ :We shall use the notation �0n : Hn ! C 0 if it is neessary to emphasize n.We shall denote by a the element of C 0 that is the image of the identity braid12 of H2 under the map �0. It is the ar that joins the two boundary points ofC 0 as shown on the left in �gure 3.10.Lemma 3.3.1 For any integer n � 1 we haveC 0n = *n�1[k=0Cn�k�1ak+ :Proof We have h[n�1k=0Cn�k�1aki � C 0n beausêak = �0n[( 
 idk+1)�k�k�1 � � ��1℄for any  2 Hn�k�1.Sine Hn is spanned by braids, C 0n is spanned by the images under �0n ofbraid diagrams. We prove for any n-string braid diagram � that �0n(�) 2h[n�1k=0Cn�k�1aki by indution on the number of rossings of �.If � has no rossings then it is the identity braid on n strings, hene �0n(�) isequal to an�1.Let � have r � 1 rossings. Let ~� be another braid diagram on n strings thatdi�ers from � by swithing some rossings from under- to overrossings or vie-versa. Then � � ~� is in the Heke algebra a linear ombination of diagrams withless than r rossings beause of the skein relation. We may assume indutivelythat the image under �0n of eah of those summands lies in h[n�1k=0Cn�k�1aki.Hene �0n(�) 2 h[n�1k=0Cn�k�1aki if and only if �0n( ~�) 2 h[n�1k=0Cn�k�1aki:38



We hange the rossings of � in suh a way to a new braid ~� so that the ar of �0n( ~�) whih onnets the boundary points is totally desending along itsorientation, and  lies below any other omponent of �0n( ~�). Then  is regularlyisotopi to a power of a, say al; l � 0.The other omponents of �0n( ~�) are the losure of the braid that derives from~� by deleting the (l+1) strings that belong to . Hene �0n( ~�) 2 Cn�l�1al, hene�0n(�) 2 h[n�1k=0Cn�k�1aki. |We immediately dedueCorollary 3.3.2 C 0+ is a graded ommutative subalgebra of C 0.We have thus proved that C 0+ is linearly spanned as a left-module over C+ by thepowers of a. We an prove even more.Lemma 3.3.3 C 0+ is the polynomial algebra in a with the ation of C+ on theleft.Proof We have to show that the powers of a are linearly independent for oeÆ-ients in C+. So let us assume that0e+ 1a+ 2a2 + � � �+ mam = 0 (3.3.1)for m � 0 and oeÆients 0; 1; : : : ; m in C+. The losure of e is equal to Æ timesthe empty diagram ;. The losure gi of ai is very similar to X+i , and the gi arealgebraially independent in C+ by essentially the same argument as in the proofof lemma 3.2.1.Taking the losure transforms the equation (3.3.1) in C 0+ into the followingequation in C+ 0Æ;+ 1g1 + 2g2 + � � �+ mgm = 0:If we �rst multiply equation (3.3.1) by ak for some 1 � k � m then we get aftertaking the losure that0gk + 1gk+1 + 2gk+2 + � � �+ mgk+m = 0:We an summarize these (m + 1) equations in matrix form as0BBBBBBB� Æ; g1 g2 � � � gmg1 g2 g3 � � � gm+1g2 g3 g4 � � � gm+2... ... ... . . . ...gm gm+1 gm+2 � � � g2m
1CCCCCCCA0BBBBBBB� 012...m

1CCCCCCCA = 0BBBBBBB� 000...0
1CCCCCCCA :

39



[i+1℄�i+1 ai+1 = x�i�i ai + s�1[i℄�i ai
Figure 3.11: Depition of lemma 3.4.1.When we express the determinant of the (m + 1) � (m + 1)-matrix as a sumvia the Leibniz rule we see that the monomial g2g4 � � � g2m appears only one andits oeÆient is equal to Æ. Sine C+ is freely generated by the empty diagramand g1; g2; : : :, the determinant is non-zero. Sine C+ is an integral ring, we anembed it into a �eld k. Therefore the linear module endomorphism of C�n+ givenby the matrix an be extended to a endomorphism of a vetor spae over the�eld k. Sine the determinant of this vetor spae endomorphism is equal to thedeterminant of the module endomorphism, the module endomorphism is �nallyseen to be injetive. Hene (0; 1; : : : ; m) = (0; 0; : : : ; 0).Hene e; a; a2; : : : are linearly independent over C+. |Remark By essentially the same argument, C 0+ as a right-module over C+ is thepolynomial algebra over C+ in a. Similarly, for either operation of C on C 0, C 0 isthe Laurent polynomial algebra over C in a.3.4 Basi skein relationsLet D be an element of the skein of the annulus C. The inlusion of the annulusin the plane indues a (non-injetive) linear map from the skein of the annulus Cto the skein of the plane S(R2). We denote the Homy polynomial of the imageof D in S(R2) by hDi. The map D 7! hDi is an algebra homomorphism.We de�ne A0i to be the element �0(ai) of C 0+, and Ai to be the element �(ai)of C+ for any integer i � 0. We reall that aiai = �iai for some non-zero salar�i. We de�ne hi = 1�iAi for any integer i � 0, and we de�ne hi = 0 for i < 0.The following lemma is depited in �gure 3.11.Lemma 3.4.1 We have[i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iain C 0+ for any integer i � 0. 40



ai = ai = (xs)i�j+1 ai
Figure 3.12: Moving rossings around in the annulus.Proof We haveai+1 = (ai 
 11)(1i+1 + (x�1s)�i + (x�1s)2�i�i�1 + � � �+ (x�1s)i�i�i�1 � � ��1)by equation (2.4.1). We onsider the term �0((ai 
 1)�i�i�1 � � ��j) as depitedin �gure 3.12. If 2 � j � i then we an move the braid �i�i�1 � � ��j around theannulus to the top of ai where the braid is read as �i�1�i�2 � � ��j�1 and these(i � j + 1) rossings are swallowed by ai at the expense of the salar (xs)i�j+1.We thus get �0((ai 
 11)�i�i�1 � � ��j) = (xs)i�j+1�0(ai)afor 2 � j � i. For j = 1 we have the summand �0((ai
 11)�i�i�1 � � ��1) whih isequal to eAi. We thus getA0i+1 = �0(ai+1)= �0(ai 
 11) + iXj=1(x�1s)i�j+1�0((ai 
 11)�i�i�1 � � ��j)= A0ia+ (x�1s)i(eAi) + iXj=2 s2(i�j+1)A0ia= (x�1s)i(eAi) + A0ia i+1Xj=2 s2(i�j+1)= (x�1s)i(eAi) + si�1[i℄A0ia:Sine �i+1 = �isi[i + 1℄ by lemma 2.4.2, we get[i + 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0ia: |41



ai = x�1v � ai = x�1v(xs)1�i� ai
Figure 3.13: The losure of A0ia.

ai+1 = (xs)�i � ai+1
Figure 3.14: The losure of A0i.Lemma 3.4.2 We have hhi+1i = hhii v�1si � vs�isi � s�ifor any integer i � 0.Proof Using the skein relations in �gures 3.13 and 3.14 we dedue from lemma3.4.1 by taking the losure and Homy polynomial in R2 that[i + 1℄(xs)�i hhi+1i = x�iv�1 � vs� s�1 hhii+ s�1[i℄x�1v(xs)1�i hhii :Hene, [i + 1℄ hhi+1i = hhii siv�1 � vs� s�1 + [i℄v!= hhii siv�1 � siv + siv � s�ivs� s�1= hhii siv�1 � s�ivs� s�1 : |42



We de�ne Bi to be the losure of the quasi-idempotent bi 2 Hi in the skein ofthe annulus.Corollary 3.4.3 We have* 1�i+1Bi+1+ = * 1�iBi+ vsi � v�1s�isi � s�ifor any integer i � 0.Proof This follows diretly from lemma 3.4.2 by applying the map  from sub-setion 2.4.1 whih interhanges the quasi-idempotents ai and bi. |We de�ne an element ti = xi(hie)� x�i(ehi)in C 0+ for any integer i. We remark that ti = 0 for i � 0.Lemma 3.4.4 We have ti = (s�1 � s) [i℄�iA0iafor any integer i � 0.Proof We have [i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iaby lemma 3.4.1. By applying the map � from subsetion 2.4.1 we get[i+ 1℄�i+1 A0i+1 = xi�i (Aie) + s[i℄�i A0ia:The right hand sides of the above two equations show thatxi�i (Aie)� x�i�i (eAi) = (s�1 � s) [i℄�iA0iafor any integer i � 0. |Corollary 3.4.5 We have t̂i = (s1�2i � s)x�ivhifor any integer i. 43



Proof From lemma 3.4.4 and the skein relation in �gure 3.13 we dedue thatt̂i = (s�1 � s)[i℄x�1v(xs)1�ihi= (s1�2i � s)x�ivhifor any integer i � 0. This equation holds for negative integers i as well beausehi and ti are equal to zero for negative i. |Corollary 3.4.6 We have(hie)^ = x�2i  v�1 � vs� s�1 + v(s1�2i � s)! hifor any integer i.Proof We have ti = xi(hie)� x�i(ehi). Taking the losure we deduet̂i = xi(hie)^ � x�i v�1 � vs�1 � shibeause the losure of ehi is equal to hi with a disjoint loop. By orollary 3.4.5we immediately get(hie)^ = x�2i  v�1 � vs� s�1 + v(s1�2i � s)!hi: |Lemma 3.4.7 We havetitj+1 � tjti+1 = (s2 � 1)(x�i(ehi)tj+1 � x�j(ehj)ti+1)for any integers i and j.Proof If either i or j is negative then the lemma is obviously true. Let i � 0and j � 0 from now on. We have[i+ 1℄�i+1 A0i+1 = x�i�i (eAi) + s�1[i℄�i A0iaby lemma 3.4.1. We multiply both sides by [j+1℄�j+1A0j+1a (on the right) and get[i + 1℄[j + 1℄�i+1�j+1 A0i+1A0j+1a = x�i[j + 1℄�i�j+1 (eAi)A0j+1a+ s�1 [i℄[j + 1℄�i�j+1 A0iaA0j+1a:44



We multiply both sides by the salar (s�1 � s)2 and use lemma 3.4.4 to get[i+ 1℄[j + 1℄(s�1 � s)2�i+1�j+1 A0i+1A0j+1a = (s�1 � s)x�i�i (eAi)tj+1 + s�1titj+1:The left hand side of the above equation is invariant under the interhange of iand j beause C 0+ is ommutative, and thus the right hand side is invariant underthis interhange. Hene,(s�1 � s)x�i�i (eAi)tj+1 + s�1titj+1 = (s�1 � s)x�j�j (eAj)ti+1 + s�1tjti+1:Equivalently,titj+1 � tjti+1 = (s2 � 1) x�i�i (eAi)tj+1 � x�j�j (eAj)ti+1)! : |3.5 Determinantal alulationsLemma 3.5.1 For any integer r � 2 and integers i1; i2; : : : ; ir we have an equal-ity of (r � r)-determinants in C 0�������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� = s2(r�1) �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 ��������when we set x = 1.Proof The reason for the substitution x = 1 is the fat that we an then writeLemma 3.4.7 in determinantal form as����� ti ti+1tj tj+1 ����� = (s2 � 1) ����� ehi ti+1ehj tj+1 ����� (3.5.2)for any integers i and j. Using the multilinearity of the determinant togetherwith ti = hie� ehi we dedue from the above equation that����� hie ti+1hje tj+1 ����� = s2 ����� ehi ti+1ehj tj+1 ����� ; (3.5.3)whih is our laim in the ase r = 2. 45



From equations (3.5.2) and (3.5.3) we dedue that����� ti ti+1tj tj+1 ����� = (1� s�2) ����� hie ti+1hje tj+1 ����� : (3.5.4)From now on let r � 3. We see that�������� ti1 ti1+1 ti1+2 � � � ti1+r�1... ... ... ...tir tir+1 tir+2 � � � tir+r�1 �������� = (1� s�2) �������� hi1e ti1+1 ti1+2 � � � ti1+r�1... ... ... ...hire tir+1 tir+2 � � � tir+r�1 ��������by developing the determinant on the left hand side by the �rst two olumns,applying equation (3.5.4) to eah summand, and redeveloping the determinant.By doing this suessively for the olumns 1 and 2, 2 and 3, ..., (r� 1) and r, wededue that�������� ti1 � � � ti1+r�2 ti1+r�1... ... ...tir � � � tir+r�2 tir+r�1 �������� = (1� s�2)r�1 �������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� :On the other hand, if we use equation (3.5.2) instead of (3.5.4) in the aboveargument, we get�������� ti1 � � � ti1+r�2 ti1+r�1... ... ...tir � � � tir+r�2 tir+r�1 �������� = (s2 � 1)r�1 �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 �������� :Hene�������� hi1e � � � hi1+r�2e ti1+r�1... ... ...hire � � � hir+r�2e tir+r�1 �������� = s2(r�1) �������� ehi1 � � � ehi1+r�2 ti1+r�1... ... ...ehir � � � ehir+r�2 tir+r�1 �������� : |We de�ne S� = det(h�i+j�i)1�i;j�l(�) 2 Cnwhere n = j�j. We remark that we have proved the following theorem for thease � equal to a row diagram already in Corollary 3.4.6.Theorem 3.5.2 We have (S�e)^ = q�S� in C+ with the salarq� = v�1 � vs� s�1 + vs�1 l(�)Xk=1(s2(k��k) � s2k)when we set x = 1. 46



Proof We shall set x = 1 throughout our alulations. For any elements � and� of the skein of the annulus C we have (�e) � (�e) = (��)e in C 0. HeneS�e = det(h�i+j�ie)1�i;j�l(�):Similarly eS� = det(eh�i+j�i)1�i;j�l(�):We denote l(�) by n from now on. We remark that the losure (eS�)^ is equalto S� and a disjoint irle whih an be removed at the expense of the salar(v�1 � v)=(s� s�1).By the multilinearity of the determinant we an write the di�erene of anytwo (n� n)-determinants as a telesope sum of n (n� n)-determinants.�������� y11 � � � y1n... ...yn1 � � � ynn ��������� �������� z11 � � � z1n... ...zn1 � � � znn �������� =nXk=1 �������� y1 1 � � � y1k�1 (y1k � z1 k) z1 k+1 � � � z1n... ... ... ... ...yn 1 � � � ynk�1 (ynk � znk) znk+1 � � � znn �������� :Applying this formula to the determinants for S�e and eS� we getS�e� eS� =nXk=1 �������� h�1e � � � h�1+k�2e t�1+k�1 eh�1+k � � � eh�1+n�1... ... ... ... ...h�n+1�ne � � � h�n+k�1�ne t�n+k�n eh�n+k+1�n � � � eh�n �������� :By lemma 3.5.1 we dedueS�e� eS� =nXk=1 s2(k�1) �������� eh�1 � � � eh�1+k�2 t�1+k�1 eh�1+k � � � eh�1+n�1... ... ... ... ...eh�n+1�n � � � eh�n+k�1�n t�n+k�n eh�n+k+1�n � � � eh�n �������� :The appearing n determinants are very speial beause eah of them is a sum ofterms of the form of a ti above a produt of hj's. Therefore the losure of eahdeterminant is t̂i above a produt of hj's. Expliitly,(S�e)^ � (eS�)^ =nXk=1 s2(k�1) �������� h�1 � � � h�1+k�2 t̂�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n t̂�n+k�n h�n+k+1�n � � � h�n �������� :47



We know by orollary 3.4.5 that t̂i is a salar multiple of hi. Hene(S�e)^ � (eS�)^ =nXk=1 �������� h�1 � � � h�1+k�2 �1 kh�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n �nkh�n+k�n h�n+k+1�n � � � h�n ��������where �i k = s2(k�1)(s1�2(�i+k�i) � s)v. We use the notation �i = s2i�2�i�1v andk = �s2k�1v, hene �i k = �i + k. By the multilinearity of the determinant weget(S�e)^ � (eS�)^ = (1 + : : :+ n)S� +nXk=1 �������� h�1 � � � h�1+k�2 �1h�1+k�1 h�1+k � � � h�1+n�1... ... ... ... ...h�n+1�n � � � h�n+k�1�n �nh�n+k�n h�n+k+1�n � � � h�n �������� :We bring the sum over the determinants in a more appropriate form via thegeneral formula for variables wij and �k,nXk=1 �������� w1 1 � � � w1k�1 �1w1 k w1 k+1 � � � w1n... ... ... ... ...wn 1 � � � wnk�1 �nwnk wnk+1 � � � wnn �������� =(�1 + � � �+ �n) �������� w1 1 � � � w1n... ...wn 1 � � � wnn �������� :Applying this formula we get(S�e)^ � (eS�)^ = (1 + � � �+ n)S� + (�1 + � � �+ �n)S�= (�1 1 + � � �+ �nn)S�:Sine (eS�)^ = (v�1 � v)=(s� s�1)S�, we have (S�e)^ = q�S� withq� = v�1 � vs� s�1 + �1 1 + � � �+ �nn= v�1 � vs� s�1 + vs�1 nXk=1(s2(k��k) � s2k): |We now formulate theorem 3.5.2 for general x.48



Theorem 3.5.3 We have (S�e)^ = q�S� in C+ with the salarq� = x�2j�jv�1 � vs� s�1 + x�2j�jvs�1 l(�)Xk=1(s2(k��k) � s2k):Proof We de�ne two maps from C+ to C+. The map � is the speialization of xto 1. The map � maps every diagram D to x�wr(D)D. The maps � and � are notinverse to eah other in general. But, from the de�nition of the quasi-idempotentai 2 Hi we see that ��(Ai) = Ai for every integer i � 0. Sine the salar �i doesnot involve x, we dedue that ��(P ) = P for every polynomial in hi = 1�iAi. Inpartiular, ��(S�) = S�. Hene q� = x�2j�j(q�jx=1). |We reall the linear maps � and ~� from C+ to C+ as de�ned in setion 3.2.They enirle a diagram by a single loop with a spei�ed orientation.Corollary 3.5.4 We have �(S�) = q�S� and ~�(S�) = ~q�S� whereq� = x�2j�jv�1 � vs� s�1 + x�2j�jvs�1 l(�)Xk=1(s2(k��k) � s2k);~q� = x2j�jv�1 � vs� s�1 + x2j�jv�1s l(�)Xk=1(s2(�k�k) � s�2k)for any Young diagram �.Proof The equality �(S�) = q�S� is the statement of theorem 3.5.3. We reallthe map � from subsetion 2.4.1. We have �(hi) = hi by lemma 2.4.4. Hene,�(S�) = S� beause S� is a polynomial in the hi. Hene, �(�(S�)) = ~�(S�), andthus ~�(S�) = �(q�)S�. |We reall that Q� is the element of C+ whih is the losure of the idempotent(1=��)e� of Hn. We thus have to onsider some suitable subring of the rationalfuntions in x; v and s as the ring of salars for the skein modules. We shalldesribe the struture of the denominators appearing for Q� in lemma 3.6.3.Theorem 3.5.5 S� is equal to Q� for any Young diagram �.Proof Q� is non-zero by lemma 2.4.6. Sine the salars � and ~q� from lemma2.4.7 and orollary 3.5.4 are equal, we have that S� and Q� are eigenvetorswith the same eigenvalue under the map ~�. Possibly, S� = 0. The set of Q�for all Young diagrams � with n ells is a linear basis for Cn by lemma 3.2.1.Furthermore, the eigenvalues � are pairwise di�erent by lemma 2.4.8.49



Hene, we dedue that S� is a salar multiple of Q� for any Young diagram� with n ells. This salar is a rational funtion in x, v and s, and it is possiblyequal to zero.We denote the Young diagram onsisting of a single ell by . We have thatS = Q = â1 is the single ore irle in the annulus. Hene, Sn is equal to thelosure of the identity braid of Hn. On the other hand, by the multipliation rulefor Young diagrams, we have n = Xj�j=nd��where d� is the number of standard tableaux of �. Therefore,Sn = Xj�j=n d�S�:We have the following equality in the skein of the annulusQn = Xj�j=n d�Q�:This follows from the results in setion 2.5 as we explain now. We have provedthat Ps �ss = idn 2 Hn where the sum is over all standard tableaux of Youngdiagrams with n ells. The losure of any �ss in the annulus is equal to Q� whens is a standard tableaux of Q�. Finally, the losure of the identity braid of Hn isthe n-th power of the ore of the annulus whih is equal to Q .Sine S = Q , we dedue from the above two equations thatXj�j=n d�Q� = Xj�j=nd�S�:Sine fQ� j � has n ellsg is a basis of Cn, and any S� lies in Cn, and any S�di�ers from Q� by a salar, we get that Q� = S�. |Theorem 3.5.6 The map � 7! Q� is an isomorphism from the algebra of Youngdiagrams to C+ provided that any �� is invertible in the ring of salars.Proof The ring of Young diagrams Y is a free Abelian ring generated by theolumn diagrams 1; 2; : : :. This is also true when we onsider Y as an algebraover any subring of the rational funtions in x; v and s.C+ is ommutative, hene there is a unique algebra homomorphism that ex-tends the map i 7! Qi . This beomes an algebra homomorphism for any ringof salars. In order that Qi is de�ned, we need the invertibility of the salar(si � s�i).The Q� for all Young diagrams � are linearly independent. Hene the mapY ! C+ is injetive. It is also surjetive beause the set of the Q� for Youngdiagrams � with n ells is a basis for Cn. |50



3.6 AppliationsWe shall abbreviate hQ�i by h�i.Lemma 3.6.1 For any Young diagram � we haveh�i = Yx2� v�1sn(x) � vs�n(x)shl(x) � s�hl(x) :Proof We have by orollary 3.4.3 thathki = kYi=1 v�1s1�i � vsi�1si � s�i : (3.6.5)By exerises I.2.5 and I.3.3 of [17℄ with q = s2; a = vs; b = v�1s we dedue fromthe above equation thatXi�0 hiiX i = Yi�0 1 + aqiX1 + bqiX= Yi�0 1 + vs2i+1X1 + v�1s2i+1X ; (3.6.6)and s� = qn(�) Yx2� a� bqn(x)1� qhl(x)= s2n(�) Yx2� s1+n(x)�hl(x) v�1sn(x) � vs�n(x)shl(x) � s�hl(x) ;where n(�) = Pl(�)i=1(i�1)�i. The Shur funtion s� is understood to be expressedas a polynomial in the elementary symmetri funtions e1; e2; : : : and then anyei is replaed by hii. The isomorphism of Shur funtions and Young diagramsimplies that s� = h�i beause D 7! hDi indues an algebra homomorphism fromC to the salars. By examples 2 and 3 in setion I.1 of [17℄ we have2n(�) +Xx2�(1 + n(x)� hl(x)) = 0:Hene h�i = s� = Qx2�(v�1sn(x) � vs�n(x))=(shl(x) � s�hl(x)). |
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Let F be an oriented surfae. We reall that a framed link in F � (0; 1)is an embedded annulus with an oriented ore. Let L be a framed link withk omponents with a �xed numbering. Let S1 � [0; 1℄ be an annulus with anoriented ore. For diagrams D1; : : : ; Dk in S1 � [0; 1℄ we de�ne the deoration ofL with D1; : : : ; Dk as the link (L;D1; : : : ; Dk)whih derives from L by replaing eah annulus Li by the annulus with thediagram Di suh that the orientations of the ores math. Eah omponent ofeah Di has a small blakboard neighbourhood in the annulus, and this turns thedeorated link (L;D1; : : : ; Dk) into a framed link.The linear extension of deorating satis�es the skein relations, and thus thedeoration of a framed link with elements of the skein of the annulus C gives awell de�ned element of the skein S(F � (0; 1)).Lemma 3.6.2 We have�(L;Q�_; : : : ; Q�_) = �(L;Q�; : : : ; Q�)s7!�s�1= �(L;Q�; : : : ; Q�)x7!�x; v 7!�v; s7!s�1for any framed link L and any Young diagrams �; : : : ; �.Proof We reall from subsetion 2.4.1 the map  from Hn to Hn that simplyreplaes s by �s�1. We similarly de�ne  in other skeins, e.g. in the skein of theannulus or the skein of the plane.  permutes the idempotents derived from thequasi-idempotents an and bn. Hene (Qdn) = Qn . We have (��)_ = �_�_ bylemma 1.2.2. Using the ring homomorphism Y ! C+ from theorem 3.5.6, thefat that Y is generated by olumn diagrams, and (Qdn) = Qn, we dedue that(Q�) = Q�_for any Young diagram �. Hene(L;Q�; : : : ; Q�) = (L;Q�_; : : : ; Q�_)in the skein of the plane R2 .The seond laim follows by repeating the same argument with the map �from subsetions 2.1.1 and 2.4.1 instead of . |The hook length hl(�) of a Young diagram � is de�ned as the maximum amongthe hook lengths of its ells. We have hl(�) = �1 + l(�)� 1.52



Lemma 3.6.3 The element Q� of the skein of the annulus an be written as alinear ombination of diagrams PD tDD where the salars tD are frations whosedenominators are produts of terms (si � s�i) for 1 � i � hl(�).Proof We have Q� = det(h�i+j�i)1�i;j�l(�)by theorem 3.5.5. We have by de�nition that hk = Qdk = (1=�k)âk, and weknow by lemma 2.4.2 that the denominator of �k is a produt of terms (si� s�i),1 � i � k. The maximum of the integers �i + j � i with 1 � i; j � l(�) is equalto �1 + l(�)� 1 whih is the hook length of �. |
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Chapter 4The deorated Hopf link
4.1 The Hopf linkWe onsider the Hopf link with linking number 1 as depited in �gure 4.1. Let aand b be any elements of the skein of the annulus. We denote by ha; bi the Homypolynomial of the Hopf link with deorations a and b on its omponents. We haveha; bi = hb; ai, and we abbreviate hQ�; Q�i by h�; �i for any Young diagrams �and �.The salars we are looking at are rational funtions in x, v and s to ensurethat the idempotents (1=��)e� of the Heke algebra exist.In order to simplify the alulations of the Homy polynomial of the deoratedHopf link, we often speialize x to 1. The initial value of the Homy polynomialmay be reovered from this speialized value as desribed in the next lemma.This is similar to the proof of theorem 3.5.3.

Figure 4.1: The Hopf link.54



Lemma 4.1.1 Let � be an m-braid and  be an n-braid. Thenhx�wr(�)�̂; x�wr()̂i = x2nmh�̂; ̂ix=1:Proof We get a variant of the Homy polynomial by setting�u(D) = (xv�1)�wr(D)�(D)for any link diagram D. This Homy polynomial �u satis�es the skein relationv�1�1� v��11 = (s� s�1) id and a disjoint unknot an be removed at the expenseof the salar (v�1 � v)=(s� s�1). We see that �u(D) does not involve x for anydiagram D. Hene, �(D) = xwr(D)�(D)x=1for any link diagram D. The writhe of the Hopf link with deorations �̂ and̂ is equal to wr(�) + wr() + 2nm beause the onept of deorations requiresthe orientation of the braids to be parallel to the orientation of the ore of theannulus. Henehx�wr(�)�̂; x�wr()̂i = x�(wr(�)+wr())h�̂; ̂i= x�(wr(�)+wr())xwr(�)+wr()+2nmh�̂; ̂ix=1= x2nmh�̂; ̂ix=1: |Corollary 4.1.2 Let � and � be Young diagrams. Thenh�; �i = x2j�j j�jh�; �ix=1:Proof The losures of the quasi-idempotents an and bn of Hn are sums of termsfx�wr(�)�̂ where f is a power of �s and � is an n-braid. Sine the normalizedidempotents di�er from the quasi-idempotents by a rational funtion in s, theirlosures Qdn and Qn are sums of terms fx�wr(�)�̂ where f is a rational funtionin s and � is an n-braid. By the relation of Q� with Shur funtions we an writeQ� as a homogeneous polynomial in Qdi (or Qj ) of degree j�j. Hene, Q� is asum of terms fx�wr(�)�̂ where f is a rational funtion in s and � is a braid on j�jstrings. We an now apply lemma 4.1.1 to Q� and Q� for any Young diagrams �and �. We get h�; �i = x2j�j j�jh�; �ix=1. |Lemma 4.1.3 We have hQ�; bihQ�; i = hQ�i hQ�; bi:for any elements b and  of C+ and any Young diagram �.55



Proof Let � be any Young diagram and b and  be any elements of C+. Wedenote the number of ells of � by n. The element Q� of C+ is the losure ofthe idempotent derived from the quasi-idempotent e� of the Heke algebra Hn.The produt of e� with any entral element of Hn is a salar multiple of e� byequation (2.4.2). The identity braid on n strings enirled by a loop deoratedwith b (resp. ) is obviously a entral element of Hn, and we denote it by b0(resp. 0). The losure of b00y� is equal to the Hopf link deorated with Q� onone omponent and b on the other. The losure of b0y� (resp. 0y�) is equal tothe Hopf link with deorations b (resp. ) and Q�.There exists a salar t suh that b0e� = te�. By losing the elements on bothsides of this equation, we see that t = hQ�; bi= hQ�i. We know by lemma 2.4.6that hQ�i is non-zero. Similarly, 0e� = hQ�; i= hQ�i e�. Hene,1�� b00e� = hQ�; bihQ�; ihQ�i2 �� e�:Taking the losure and Homy polynomial in the above equation, we gethQ�; bi = hQ�; bihQ�; ihQ�i2 hQ�iand therefore hQ�; bihQ�; i = hQ�i hQ�; bi. |We immediately dedue from lemma 4.1.3 thatCorollary 4.1.4 The linear map � 7! h�; �i= h�i from the ring of Young dia-grams to the ring of rational funtions in x, v and s is a ring homomorphism forany Young diagram �.Sine any Young diagram � an be written as a polynomial in olumn diagrams,we only need to know the values of h�; ii for suÆiently many integer i � 0 inorder to ompute h�; �i. Hene, it is useful to de�ne a formal power seriesE�(X) = 1h�iXr�0h�; riXrfor any Young diagram �.For any formal power series P (X) whose oeÆients are rational funtionsin x, v and s we de�ne s�(P (X)) as �rst expressing the Shur funtion s� as apolynomial in the elementary symmetri funtions e0; e1; : : : and then replaingany ej by the oeÆient of Xj in P (X). We reall that sr = er for any r � 0.Note that this is well de�ned beause the elementary symmetri funtions arealgebraially independent in the ring of symmetri funtions.We state our above onsiderations in the following lemma.56



Lemma 4.1.5 We have s�(E�(X)) = 1h�ih�; �ifor any Young diagrams � and �.From orollary 4.1.2 we see how to reover E�(X) from the power seriesE�(X)x=1 where we substituted x by 1 in every oeÆient of the power series.We simply replae X by x2j�jX in E�(X)x=1. Equivalently, we haveE�(x�2j�jX) = E�(X)x=1:We de�ne H�(X) = 1h�iXr�0h�; driXrfor any Young diagram �. The next lemma shows how E�(X) and H�(X) arerelated.Lemma 4.1.6 We have E�(X)H�(�X) = 1for any Young diagram �.Proof We have by equation (1.2.3) that0�Xr�0 rXr1A0�Xk�0 dk(�X)k1A = 1in the algebra of Young diagrams. By orollary 4.1.4 we have that the mapa 7! h�; ai= h�i is an algebra homomorphism from the algebra of Young diagramsto the salars for any Young diagram �. Hene0�Xr�0 1h�ih�; riXr1A0�Xk�0 1h�ih�; dki(�X)k1A = 1: |The following lemma explains the relation between the power series E�(X)and the power series E�_(X) for the transposed Young diagram �_.Lemma 4.1.7 We have E�_(�X)E�(X)s7!�s�1 = 1for any Young diagram �. 57



Figure 4.2: The unknot with framing 1 and its 2-parallel.Proof We have by lemma 3.6.2 that h�is7!�s�1 = h�_i and in partiular we havethat h�; kis7!�s�1 = h�_; dki. HeneE�(X)s7!�s�1 = 1h�_iXk�0h�_; dkiXk= H�_(X)= E�1�_ (�X): |4.2 Hopf link deorated with olumns and rowsWe now ompute Ek(X) for any integer k � 0. To do this, we start with asurprisingly simple formula for hk; dji.Lemma 4.2.1 We havehk; dji = hki hdjix2jk v�1(s2j � s2(j�k) + s�2k)� vv�1 � vfor any integers k � 0 and j � 0.Proof We laim thathk; dji = hki hdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � vwhen we set x = 1. The lemma then follows from the above laim beausehk; dji = x2jkhk; djix=1 by orollary 4.1.2. We shall prove our laim by expressingthe Homy polynomial of a ertain deorated link in two di�erent ways andomparing the results. The link in question is the 2-parallel of the unknot withframing 1 as depited in �gure 4.2 deorated with Qj on one omponent and Qdkon the other omponent. We denote its Homy polynomial by R.Already in the Heke algebra Hi, the produt of the positive url on i stringsand any quasi-idempotent e�, j�j = i, is a salar multiple of e�. The salar was58



alulated using skein theory in theorem 17 in [2℄ as f(�) = xj�j2v�j�jsn� wheren� is twie the sum of the ontents of all ells of �. Sine we speialize x to 1, wehave f(�) = v�j�jsn�:By removing the two urls in �gure 4.2 after the deoration we getR = f(k)f(dj)hk; dji: (4.2.1)The other way to alulate R is to onsider �rst the produt of Qk and Qdj inthe skein of the annulus. R is the Homy polynomial of the unknot with framing1 deorated by the produt of Qk and Qdj . Sine the Q� multiply like Shurfuntions by theorem 3.5.6, we get QkQdj = Q�k;j+1 + Q�k+1;j where �a;b is thehook Young diagram with (a+ b� 1) ells of whih a are in the �rst olumn andb are in the �rst row. HeneR = f(�k;j+1) h�k;j+1i+ f(�k+1;j) h�k+1;ji : (4.2.2)From the above formula for f(�) we deduef(k+1) = v�1s�2kf(k); f(dj+1) = v�1s2jf(dj); f(�k;j) = vf(k)f(dj):We have by lemma 3.6.1hk+1i = v�1s�k � vsksk+1 � s�k�1 hki ;hdj+1i = v�1sj � vs�jsj+1 � s�j�1 hdji ;h�k;ji = (sj � s�j)(sk � s�k)(v�1 � v)(sk+j�1 � s�k�j+1) hki hdji :By these relations we get from equation 4.2.2 thatR = f(�k;j+1) h�k;j+1i+ f(�k+1;j) h�k+1;ji= vf(k)v�1s2jf(dj)(sk � s�k)(v�1sj � vs�j)(v�1 � v)(sk+j � s�k�j) hki hdji+s�2kf(k)f(dj)(sj � s�j)(v�1s�k � vsk)(v�1 � v)(sk+j � s�k�j) hki hdji= v�1(s2j � s2(j�k) + s�2k)� vv�1 � v f(k)f(dj) hki hdji : (4.2.3)Sine f(k) and f(dj) are non-zero, we dedue from equations (4.2.1) and (4.2.3)that hk; dji = hki hdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � vwhen we set x = 1. |59



Corollary 4.2.2 We haveHk(X) = 1� v�1s�2k+1x2kX1� v�1sx2kX H;(x2kX)for any integer k � 0.Proof As usual, it is suÆient to work with the substitution x = 1. We have toshow that(1� v�1sX) 1hkiXj�0hk; djix=1Xj = (1� v�1s�2k+1X)Xj�0 hdjiXj:The onstant terms of the power series in the above equation are equal to 1. Inorder that the oeÆient of Xj on the left hand side agrees with the oeÆientof Xj on the right hand side, we have to show that1hkihk; dji � v�1s 1hkihk; dj�1i = hdji � v�1s�2k+1 hdj�1i (4.2.4)after the substitution x = 1. By lemma 4.2.1 we an write the left hand side ofequation (4.2.4) ashdji v�1(s2j � s2(j�k) + s�2k)� vv�1 � v �v�1s hdj�1i v�1(s2(j�1) � s2(j�1�k) + s�2k)� vv�1 � v :Beause hdji = hdj�1i v�1sj�1 � vs�j+1sj � s�j ;the left hand side of equation (4.2.4) an be transformed further into (v�1sj�1 � vs�j+1)(v�1(s2j � s2(j�k) + s�2k)� v)(sj � s�j)(v�1 � v)�v�1sv�1(s2(j�1) � s2(j�1�k) + s�2k)� vv�1 � v ! hdj�1i : (4.2.5)The right hand side of equation (4.2.4) is equal to v�1sj�1 � vs�j+1sj � s�j � v�1s�2k+1! hdj�1i : (4.2.6)It is straightforward to on�rm the equality of the terms in equations (4.2.5) and(4.2.6), and thus equation (4.2.4) is proven. |As an immediate onsequene of orollary 4.2.2 and lemma 4.1.6 we getCorollary 4.2.3 We haveEk(X) = 1 + v�1sx2kX1 + v�1s�2k+1x2kXE;(x2kX)for any integer k � 0. 60



4.3 Hopf link deorated with any Young dia-gramsWe shall from now on use symmetri funtions as well. On the �rst sight thisseems to be superuous beause the ring of symmetri funtions is isomorphito the ring of Young diagrams via the Shur funtions. The ruial bonus of thesymmetri funtions is that under ertain irumstanes a ring homomorphism �from the symmetri funtions to a ring R fators through the symmetri funtionsin some �nitely many variables. A neessary ondition for this fatorization isthat � maps the i-th elementary symmetri funtion ei to zero for all i largeenough. This ondition is also suÆient in an appropriate extension of R (if itexists). All one has to do in the ase that �(ei) = 0 for all i > i0 is to solve theequation Pi0i=0 �(ei)ti = Qi0i=1(1 + xit) for x1; : : : ; xi0 in R where t is a variable.If we make the substitution v = s�N for some integer N � 0 then E�(X)beomes a polynomial in X of degree N . In fat, we shall be able in lemma 4.3.3to solve the above equation without extending the ring of rational funtions in xand s.In order to alulate the Homy polynomial of the Hopf link deorated withQ� and Q� we �rst have to improve our understanding of Shur funtions byproving lemma 4.3.1.De�nition Given a Young diagram � and elements r1; : : : ; rN in a ommutativering R, N � l(�), we denote by s�(r1; : : : ; rN) the element of R that derivesfrom the Shur funtion s� in N variables x1; : : : ; xN by substituting xi by ri fori = 1; : : : ; N . Equivalently we shall use the notation `s�(ri) where i = 1; : : : ; N '.Lemma 4.3.1 Let N be a positive integer, and let � and � be Young diagramswith at most N rows. Thens�(q�i+N�i)s�(qN�i) = s�(q�i+N�i)s�(qN�i)where q is a variable and i = 1; : : : ; N .Proof The Shur polynomial s� is by de�nition the quotient of two (N � N)-determinants in variables x1; : : : ; xN ,s�(x1; : : : ; xN) = a�+Æ(x1; : : : ; xN)aÆ(x1; : : : ; xN) = det(x�j+N�ji )det(xN�ji )where i = 1; : : : ; N and j = 1; : : : ; N . We thus gets�(q�i+N�i) = a�+Æ(q�i+N�i)aÆ(q�i+N�i)= det(q(�i+N�i)(�j+N�j))det(q(�i+N�i)(N�j))61



where i = 1; : : : ; N and j = 1; : : : ; N . Note that the denominator is di�erent fromzero. Sine the determinant of a matrix is invariant under transposition we aninterhange i and j in the determinant of the N �N -matrix in the denominatorand get s�(q�i+N�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(�j+N�j))= det(q(�i+N�i)(�j+N�j))a�+Æ(qN�i) :We thus get s�(q�i+N�i)a�+Æ(qN�i) = det(q(�i+N�i)(�j+N�j)):Dividing both sides by aÆ(qN�i) we gets�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :By interhanging � and � we derives�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :Using the invariane of the determinant under transposition we dedue from thetwo above equations thats�(q�i+N�i)s�(qN�i) = s�(q�i+N�i)s�(qN�i): |Corollary 4.3.2 Let N be a positive integer, and let � and � be Young diagramswith at most N rows. Thens�(�q�i+N�i)s�(�qN�i) = s�(�q�i+N�i)s�(�qN�i)where � and q are variables, and i = 1; : : : ; N .Proof The Shur polynomial s� is a homogeneous polynomial of degree j�j.Hene s�(�x1; : : : ; �xN) = �j�js�(x1; : : : ; xN ):Hene s�(�q�i+N�i)s�(�qN�i) = �j�j+j�js�(q�i+N�i)s�(qN�i); (4.3.7)62



and s�(�q�i+N�i)s�(�qN�i) = �j�j+j�js�(q�i+N�i)s�(qN�i): (4.3.8)Lemma 4.3.1 implies that the right hand side of equation (4.3.7) agrees with theright hand side of (4.3.8). Hene the left hand side of equation (4.3.7) agrees withthe left hand side of equation (4.3.8) whih is our laim. |For h�i and h�; �i we shall denote by an additional subsript N the substitu-tion v = s�N where N is a positive integer, i.e. we write h�iN and h�; �iN . Wedenote by EN� (X) the substitution v = s�N in E�(X). Note that EN� (X) is onlyde�ned if N � l(�) in order that h�iN is di�erent from zero.Lemma 4.3.3 Let � be a Young diagram and let N � l(�) be an integer. ThenEN� (X) = NYi=1(1 + sN+2�i�2i+1x2j�jX):Proof We onsider a Young diagram � and an integer N � l(�). An equivalentformulation of our laim is thatEN� (X)x=1 = NYi=1(1 + s�N+1q�i+N�iX)where q = s2. For the rest of the proof we always set x = 1 without indiatingthis substitution by the usual subsript.By equation (3.6.6) we haveE;(X) =Xr�0 hriXr = 1Yk=0 1 + vs2k+1X1 + v�1s2k+1X :The substitution v = s�N redues this to the �nite produtEN; (X) = N�1Yk=0 (1 + s�N+2k+1X)= NYi=1(1 + sN�2i+1X): (4.3.9)Note that this is our laim in the ase � = ;.Let k be an integer, k � N . By orollary 4.2.3 we haveEk(X) = 1 + v�1sX1 + v�1s�2k+1XE;(X):63



Substituting v = s�N in the above equation and using equation (4.3.9) we getENk(X) = 1 + sN+1X1 + sN�2k+1X NYi=1(1 + sN�2i+1X)= kYi=1(1 + sN�2i+3X) NYi=k+1(1 + sN�2i+1X)whih is our laim in the ase � = k.By lemma 4.1.5 we have s�(Er(X)) = h�; ri= hri for any r � 0. Hene1h�ih�; ri = sr(E;(X))s�(E;(X)) s�(Er(X)):Restriting to 0 � r � N and substituting v = s�N we get1h�iN h�; riN = sr(EN; (X))s�(EN; (X)) s�(ENr (X))= sr(s�N+1qN�i)s�(s�N+1qN�i) s�(s�N+1q(r)i+N�i)where q = s2, and i = 1; : : : ; N . By Corollary 4.3.2 with � = r and � speializedto s�N+1 we dedue from the above equation that1h�iN h�; riN = sr(s�N+1q�i+N�i):In partiular, we dedue from the above equation that h�; ri = 0 for all r � N+1beause the r-th elementary symmetri funtion sr beomes zero when only Nof the in�nitely many variables are substituted by non-zero terms. We thus getEN� (X) = NXr=0 1h�iN h�; riNXr= NXr=0 sr(s�N+1q�i+N�i)Xr= NYi=1(1 + s�N+1q�i+N�iX)beause sr is the r-th elementary symmetri funtion. |We now dedue a formula for E�(X) from the formula for EN� (X), N � l(�).64



Theorem 4.3.4 We haveE�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jXfor any Young diagram �.Proof For any integer N � l(�) we have that by lemma 4.3.3EN� (X) = NYi=1(1 + sN+2�i�2i+1x2j�jX)= l(�)Yi=1(1 + sN+2�i�2i+1x2j�jX) NYi=l(�)+1(1 + sN�2i+1x2j�jX):In partiular, for � equal to the empty Young diagram,EN; (X) = NYi=1(1 + sN�2i+1X);whih we had obtained earlier, too. Combining the above expressions for EN� (X)and EN; (X) we getEN� (X) = EN; (x2j�jX) l(�)Yi=1 1 + sN+2�i�2i+1x2j�jX1 + sN�2i+1x2j�jX :This means that the power series E�(X) andE;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX : (4.3.10)are equal for any substitution v = s�N provided that N � l(�).The equality of E�(X) and the power series in (4.3.10) follows now from theobservation that if there exists an integer n0 � 1 suh that two rational funtionsr1(v; s) and r2(v; s) in v and s are equal for any substitution v = s�n, n � n0,then r1(v; s) = r2(v; s).Equivalently, let r(v; s) be a rational funtion in v and s that beomes zerofor any substitution v = s�n, n � n0 � 1. In order to show that r(v; s) = 0 wewrite the rational funtion r(v; s) as the quotient of two polynomials in v ands, say r(v; s) = p(v; s)=q(v; s). Now p(1; s) is a polynomial in s. For any n-throot of unity � we have p(1; �) = 0 provided that n � n0. The only polynomialthat has in�nitely many roots is the zero polynomial. Hene p(1; s) = 0. Hene65



(v � 1) is a fator of p(v; s), i.e. there exists a polynomial p2(v; s) suh thatp(v; s) = (v � 1)p2(v; s). Sine (v � 1) is di�erent from zero for any substitutionv = s�n, n � 1, we have that p2(s�n; s) = 0 for any n � n0. Applying the wholeargument again we �nd a polynomial p3(v; s) suh that p2(v; s) = (v � 1)p3(v; s)and p3(s�n; s) = 0 for any n � n0. Applying this argument again and again, wededue that (v � 1)k is a fator of p1(v; s) for any k � 1. Hene p1(v; s) = 0,hene r(v; s) = 0.We have thus proved thatE�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX : |By the de�nition of E�(X) we have that the oeÆient of X in E�(X) is equalto the salar ~q� from orollary 3.5.4. In fat, we an verify this quikly as follows.We have E�(X) = E;(x2j�jX) l(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jXfor any Young diagram �. We have that(1 + aX + � � �)1 + bX + � � �1 + X + � � � = 1 + (a+ b� )X + � � �for any formal power series. We haveE;(x2j�jX) = 1 + x2j�jv�1 � vs� s�1X + � � � ;l(�)Yj=1(1 + v�1s2�j�2j+1x2j�jX) = 1 + 0�v�1x2j�j l(�)Xj=1 s2�j�2j+11AX + � � � ;l(�)Yj=1(1 + v�1s�2j+1x2j�jX) = 1 + 0�v�1x2j�j l(�)Xj=1 s�2j+11AX + � � � :Hene, the oeÆient of X in E�(X) is equal tox2j�jv�1 � vs� s�1 + v�1x2j�j l(�)Xj=1 s2�j�2j+1 � v�1x2j�j l(�)Xj=1 s�2j+1whih is equal to x2j�j0�v�1 � vs� s�1 + v�1s l(�)Xj=1 �s2(�j�j) � s�2j�1A66



whih is equal to ~q� given in orollary 3.5.4.When we apply theorem 4.3.4 to the ase � = k and ompare the result withorollary 4.2.3 we note a number of anellations inl(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX :We prove in the next lemma that the number of frations after anellations isgiven by the number of ells in the main diagonal of � whih we denote by d(�).Lemma 4.3.5 For any Young diagram � we havel(�)Yj=1 1 + v�1s2�j�2j+1x2j�jX1 + v�1s�2j+1x2j�jX = d(�)Yi=1 1 + v�1s2�i�2i+1x2j�jX1 + v�1s�2�_i +2i�1x2j�jX ;and the frations at the right hand side admit no further anellations.Proof With p = s�2 and Y = v�1sx2j�jX we have to show thatl(�)Yj=1 1 + pj��jY1 + pjY = d(�)Yi=1 1 + pi��iY1 + p�_i �i+1Y : (4.3.11)Equivalently, we show thatfj � �j j d(�) + 1 � j � l(�)g [ f�_i � i+ 1 j 1 � i � d(�)gis a deomposition of the set of integers f1; 2; : : : ; l(�)g.First, we note that the sequene (j � �j)j�1 is stritly inreasing and thesequene (�_i � i + 1)i�1 is stritly dereasing. This implies that the elements ofeah of the two sets on its own are pairwise di�erent.Seond, we have 1 � j � �j � l(�) for all j = d(�) + 1; : : : ; l(�), and we have1 � �_i � i + 1 � l(�) for all i = 1; : : : ; d(�). Hene, it is suÆient to show thatthe above two sets are disjoint, i.e.�j � j + �_i � i + 1 6= 0 (4.3.12)for all i = 1; : : : ; d(�) and j = d(�) + 1; : : : ; l(�).In fat, equation (4.3.12) is true for all i � 1 and j � 1. To see this, we notethat if the ell (j; i) lies in the Young diagram � then equation (4.3.12) denotes thehook length of the ell (j; i) whih is greater than zero. On the other hand, if theell (j; i) does not lie in � then �j < i and �_i < j, hene �j� j+�_i � i+1 � �1.Hene, equation (4.3.12) is also true in the ase that the ell (j; i) does not lie in�. We have thus proved equation (4.3.11).Finally, there are no anellations in Qd(�)i=1 (1+pi��iY )=(1+p�_i �i+1Y ) beausep ours with non-positive exponents in the numerator, whereas p ours withpositive exponents in the denominator. |67



The ombination of theorem 4.3.4, equation (3.6.6) and lemma 4.3.5 immedi-ately gives the following formula for E�(X). This form has the bene�t that wean make the substitution v = s�n for any integer n � 0.Theorem 4.3.6 We haveE�(X) = 1Yk=0 1 + vs2k+1x2j�jX1 + v�1s2k+1x2j�jX d(�)Yi=1 1 + v�1s2�i�2i+1x2j�jX1 + v�1s�2�_i +2i�1x2j�jXfor any Young diagram �.By theorem 4.3.6 see that E�(X) derives from E;(X) by replaing every fator(1+v�1s2�i�2i+1x2j�jX) of the denominator of E;(X) by (1+v�1s�2�_i +2i�1x2j�jX)for i = 1; : : : ; d(�).From theorem 4.3.6 we immediately dedue that E�_(�X)E�(X)s7!�s�1. Thisgives a seond, independent proof of lemma 3.6.2.4.4 Hopf link with speialization v = s�NGiven Young diagrams � and � and an integer N � max(l(�); l(�)), we prove asimple formula for the value of h�; �i after the substitution v = s�N .Lemma 4.4.1 We haveh�; �iN = s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)where i = 1; : : : ; N and k = 1; : : : ; N , and � and � are any Young diagrams, andN is an integer, N � max(l(�); l(�)) and q = s2.Proof By lemma 4.1.5 we have thath�; �i = h�i s�(E�(X)) = s�(E;(X))s�(E�(X)):By lemma 4.3.3 we have thats�(EN� (X)) = s�(�q�i+N�i) = �j�js�(q�i+N�i)where � = s1�Nx2j�j, q = s2, and i = 1; : : : ; N . Heneh�; �iN = (s1�N)j�js�(qN�i)(s1�Nx2j�j)j�js�(q�k+N�k)= s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)where i = 1; : : : ; N and k = 1; : : : ; N . |68



By extrating the fator qN from eah of the variables in lemma 4.4.1 we deduethat h�; �iN = s(1�N)(j�j+j�j)x2j�jj�js�(qN�i)s�(q�k+N�k)= s(N+1)(j�j+j�j)x2j�jj�js�(q�i)s�(q�k�k):It is tempting to onjeture thath�; �i = (v�1s)(j�j+j�j)x2j�jj�js�(q�i)s�(q�k�k):But this is not true in general beause in the ase � equal to a single ell and� equal to the empty Young diagram the left hand side is simply the Homypolynomial of the unknot whih is equal to (v�1� v)=(s� s�1) whereas the righthand side is the produt of a power of v�1 and a Laurent polynomial in s.We proeed to give an appealing formula for h�; �iN .Theorem 4.4.2 We haveh�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�N�i+1+i�1)(�N�j+1+j�1))det(q(i�1)(j�1))where i = 1; : : : ; N and j = 1; : : : ; N , and � and � are any Young diagrams, andN is an integer, N � max(l(�); l(�)) and q = s2.Proof In the proof of lemma 4.3.1 we found thats�(q�i+N�i)s�(qN�i) = det(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j)) :Hene we dedue from lemma 4.4.1 thath�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�i+N�i)(�j+N�j))det(q(N�i)(N�j))where i = 1; : : : ; N and j = 1; : : : ; N . Sine the determinant of a matrix isunhanged under the simultaneous reversal of the order of all rows and of allolumns, we �nally geth�; �iN = s(1�N)(j�j+j�j)x2j�jj�jdet(q(�N�i+1+i�1)(�N�j+1+j�1))det(q(i�1)(j�1)) :where i = 1; : : : ; N and j = 1; : : : ; N . |69



The determinants appearing in theorem 4.4.2 are derived from the following in-�nite Vandermonde matrixV = (q(i�1)(j�1))1�i;j= 0BBBBBBBBB�
1 1 1 1 1 � � �1 q q2 q3 q4 � � �1 q2 q4 q6 q8 � � �1 q3 q6 q9 q12 � � �1 q4 q8 q12 q16 � � �... ... ... ... ... . . .

1CCCCCCCCCA :
The matrix (q(i�1)(j�1))1�i;j�N is the upper left (N�N) submatrix of V . It derivesfrom V by hoosing rows i and olumns j for i = 1; : : : ; N and j = 1; : : : ; N .The matrix (q(�N�i+1+i�1)(�N�j+1+j�1))1�i;j�N derives from V by hoosing the rowsi + �N�i+1 and the olumns j + �N�j+1 for i = 1; : : : ; N and j = 1; : : : ; N .For example, with � = (2; 1; 1), � = (2; 2) and N = 3 we geth�; �i3 = s�16x32 det ������� 1 q3 q41 q6 q81 q12 q16 ������� = det ������� 1 1 11 q q21 q2 q4 �������= x32q(q2 + 1)(q2 + q + 1)(q4 + q3 + 1):In the ase N = 2, i.e. v = s�2, we have a simple formula for the Homypolynomial of the Hopf link deorated with Qda and Qdb for row diagrams da anddb of length a respetively b. We set [k℄ = (sk � s�k)=(s� s�1) for any integer k.Lemma 4.4.3 For integers a � 0 and b � 0 we havehda; dbi2 = (x2s)ab[(a+ 1)(b + 1)℄:Proof By the above alulations we havehda; dbi2 = s�(a+b)x2ab ����� 1 11 q(a+1)(b+1) ���������� 1 11 q �����= s�(a+b)x2ab q(a+1)(b+1) � 1q � 1= s�(a+b)x2ab s(a+1)(b+1)s s(a+1)(b+1) � s�(a+1)(b+1)s� s�1= (x2s)ab[(a+ 1)(b+ 1)℄: |70



Remark If we make the substitutions v = s�2 and x = s� 12 then hda; dbi beomessimply [(a + 1)(b + 1)℄. This orresponds to the alulations of the Uh(sl(2))-quantum invariant in [19℄ and [15℄. We remark that the row diagram da of lengtha indexes the (a+ 1)-dimensional irreduible representation of Uh(sl(2)).Lemma 4.4.4 Let � and � by Young diagrams, and let n � 0 be an integer. Ifn < max((l(�); l(�)) then h�; �in = 0. If n � max((l(�); l(�)) then h�; �in an bewritten as the produt of a power of s, a power of x, and a non-zero polynomialin q = s2 with integer oeÆients.Proof By lemma 4.1.5 we haveh�; �i = h�i s�(E�(X)) = h�i s�(E�(X))beause h�; �i = h�; �i. Using the expression in theorem 4.3.6 for E�(X) we anmake the substitution v = s�n for any integer n � 0. If n < max((l(�); l(�)) theneither h�i or h�i beomes zero after substituting v = s�n by lemma 3.6.1, heneh�; �i beomes zero after substituting v = s�n.If n � max((l(�); l(�)) then we have by lemma 4.4.1 thath�; �in = s(1�N)(j�j+j�j)x2j�jj�js�(qn�i)s�(q�k+n�k)where i = 1; : : : ; n and k = 1; : : : ; n. Sine a Shur funtion in �nitely manyvariables is a (symmetri) integer polynomial in its variables, we have that theprodut s�(qn�i)s�(q�k+n�k) is an integer polynomial in q. It remains to showthat the two appearing Shur funtions are non-zero. In fat, they are non-zeroeven after substituting s = 1. Our laim is that s�(1; : : : ; 1) and s�(1; : : : ; 1) arenon-zero where the number of variables is n. We reall that s�(qn�i) = h�in andwe get by lemma 3.6.1 thath�in = Yy2� snsn(y) � s�ns�n(y)shl(y) � s�hl(y)= Yy2� [n + n(y)℄[hl(y)℄ :Sine [k℄ = (sk � s�k)=(s� s�1) = sk�1 + sk�3 + � � �+ s�k+1, we haves�(1; 1; : : : ; 1) = Yy2� n + n(y)hl(y) :Sine we onsider the ase n � max(l(�); l(�)) we have that the ontent of any ellof � and of � is greater than (�n). Hene s�(qn�i) beomes a positive numberafter substituting s = 1 and is thus non-zero. The value of s�(q�k+n�k) aftersubstituting s = 1 is equal to s�(1; 1; : : : ; 1) where the Shur funtion has nvariables. This is non-zero by the same argument as for s�(1; : : : ; 1). |71



On �rst sight, Lemma 4.4.4 is surprising beause the denominator of Q� isnon-trivial as desribed in lemma 3.6.3. But in fat, the Homy polynomial ofany link with deorations of type Q� an be written as a Laurent polynomialin s 1N after the substitutions x = s� 1N and v = s�N . This an be seen by anargument using the Uh(sl(N))-invariants.
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Chapter 5Roots of unity
5.1 Homy polynomial at roots of unityWe �x integers N � 2 and l � 1. We �x a omplex number � suh that �N is aprimitve root of unity of order 2(l +N). We denote ��N by �.We shall work oasionally with the substitutions x = �, s = ��N and v = �N2.This an also be written as x = �, s = � and v = s�N .Lemma 5.1.1 Let L = L1 [ : : : [ Lk be a link diagram with k omponents. LetL0 be the element of the skein of the plane derived from L by deorating oneomponent with Qj for some j � N + 1, and all the other omponents deoratedby elements of the skein of the annulus involving denominators only of the type(si � s�i) for some i � 1.Then the Homy polynomial of L0 beomes zero after the substitution v = s�N .Proof Let L1 be the omponent deorated by Qj , j � N + 1. We reall thatQj is the losure of the idempotent (1=�j)bj 2 Hj in the skein of the annulus.We arrange L as the losure of an (1; 1)-tangle T in the plane so that thelosing ar belongs to the omponent L1. We now deorate the omponents ofL. This turns T in a (j; j)-tangle T 0 involving denominators only of the type(si � s�i). In the Heke algebra Hj we have that the produt of T 0 and bj isa salar multiple � of bj, and the salar involves denominators only of the type(si�s�i). Hene, the Homy polynomial of L0 is the produt of � and the Homypolynomial of Qj .The Homy polynomial of Qj beomes zero after the substitution v = s�Nbeause the fator for t = N + 1 is equal to zero inDQjE = jYt=1 v�1s1�t � vst�1st � s�t = jYt=1 sN+1�t � s�N�1+tst � s�t73



whih follows from lemma 3.6.1 for � = j. The salar � is well de�ned after thesubstitution v = s�N and therefore the Homy polynomial of L0 beomes zeroafter the substitution v = s�N . |Corollary 5.1.2 We are allowed to make the substitutions x = �, v = s�N ands = � in the Homy polynomial of any link L whose omponents are deorated byany Q�.Proof Any Q� is a polynomial in the Qi. The monomials inluding Qi withi � N + 1 an be negleted beause any deoration with them evaluates to zeroby lemma 5.1.1. The denominators of the remaining Qi with 1 � i � N onlyinvolve (si � s�i) for 1 � i � N whih does not beome zero for the substitutions = �. The substitutions for x and v do not pose any problem. |Lemma 5.1.3 Let L = L1 [ : : : [ Lk be a link diagram with k omponents.Let L0 be the element of the skein of the plane derived from L by deorating oneomponent with Qdi for some i, l+1 � i � l+N�1, and all the other omponentsdeorated by some Q�; Q�; : : :.Then the Homy polynomial of L0 beomes zero after �rst making the substi-tution v = s�N and then substituting s by �.Proof First, we write all the deorations Q� as polynomials in Q1; Q2 ; : : :. Bylemma 5.1.1, the Homy polynomials of all the summands involving some Qjwith j � N+1 beome zero after the substitution v = s�N . Hene, it is suÆientto prove that the Homy polynomial of any link L with one omponent deoratedby Qdi and all the other omponents deorated with Qk for some 1 � k � Nbeomes zero after the substitutions v = s�N and s = �.By the same argument as in the proof of lemma 5.1.1 we write the deoratedlink L0 as the losure of some (i; i)-tangle, and dedue that the Homy polynomialis the produt of a salar � and the Homy polynomial of Qdi . The denominatorsof � involve only (sj � s�j) with 1 � j � N beause only the Young diagrams1; : : : ; N are involved. Hene the substitution v = s�N and s = � is allowed forthe salar �, sine the order of � is greater than 2N .The Homy polynomial of Qdi after the substitution v = s�N and s = � isequal to hQdii = iYt=1 v�1st�1 � vst�1st � s�t = iYt=1 �N+t�1 � ��N�t+1� t � ��tby lemma 3.6.1. None of the denominators is equal to zero beause 1 � i < l+N .The numerator for t = l + 1 beomes zero. Hene this produt is equal to zero.Hene the Homy polynomial of L0 whih is the produt of � and the Homypolynomial of Qdi is equal to zero. |74



= s�2x�2i �� i+1QiQi Figure 5.1: Pulling a string through Qi.Lemma 5.1.4 For a link with deorations of type Q� on its omponents we anremove any omponent deorated by QN without hanging the value of the Homypolynomial provided we make the substitutions x = s� 1N and v = s�N .Proof We reall that Ai resp. A0i is the losure of the quasi-idempotent ai 2 Hiin Ci resp. C 0i. Similarly, Bi resp. B0i is the losure of the quasi-idempotentbi 2 Hi in Ci resp. C 0i. By lemma 5.1.1 we an assume that only deorations Q�are hosen where � is a olumn diagram of length up to N . We gets�1xi�i (Aie) = sx�i�i (eAi) + (s�1 � s) [i + 1℄�i+1 A0i+1if we eliminate A0ia from the �rst and the seond equation in the proof of lemma3.4.4. We get�sxi�i (Bie) = �s�1x�i�i (eBi) + (s�1 � s)(�1)i [i + 1℄�i+1 B0i+1by applying the map  from subsetion 2.4.1. This is equivalent to1�i (Bie) = s�2x�2i�i (eBi)� s�1x�i(s�1 � s)(�1)i [i+ 1℄�i+1 B0i+1:We apply to this equation the map to the variant skein of the annulus where thetwo boundary points are on the same omponent. We get the skein relation in�gure 5.1 where � = s�1x�i(s�1 � s)(�1)i[i + 1℄. The box labelled i + 1 standsfor (1=�i+1)bi+1 2 Hi+1.We reall that (1=�j)Bj = Qj by de�nition. When we join the boundarypoints of (1=�N+1)bN+1 by any tangle in R2 then the Homy polynomial of theresulting skein element is a salar multiple of hQN+1i. This salar involves onlydenominators of type (si� s�i) for 1 � i � N oming from the other deorationsof the kind Q�. Sine hQN+1i beomes zero after the substitution v = s�N , we75



QN QN QN QN= = s�2x�2N = s�2x�2NFigure 5.2: Pulling an oriented ar through a omponent deorated with Qn.QN QN QN QN= = s�2x�2N = s�2x�2NFigure 5.3: Pulling a di�erently oriented ar through a omponent deorated withQN .see that the diagram at the very right in �gure 5.1 an be negleted. The newrelation is depited in �gure 5.2 where we used regular isotopy. Similarly, therelation in �gure 5.3 follows. We note that these are not relations in the skeinof the plane. The equalities is only valid after evaluating the Homy polynomialand then making substitutions.We an thus pull the omponent lear from the remaining link. We anfurthermore swith all the self rossings of the link without a�eting the Homypolynomial after substitutions. We thus arrive at the unknot deorated with QN .Sine the swith of a rossing hanges the writhe by 2, we arrive at the unknotwith writhe equal to either 0 or 1.A positive url deorated by QN may be removed by expense of the salarxN2v�Ns�N(N�1) as desribed in theorem 17 in [2℄. This beomes xN2sN after thesubstitution v = s�N . When we substitute xN = s�1 then this salar beomesequal to 1. We remark that the salar xN2sN does not beome 1 in general whenwe make the substitution x2N = s�2.Finally, it follows from lemma 3.6.1 that the value of hQN i beomes equalto 1 after the substitution v = s�N . We have thus removed the omponentdeorated by QN without a�eting the Homy polynomial of the link modulothe substitutions. |5.2 Skein of the annulus at roots of unityWe �x a omplex number � suh that �N is a root of unity of order 2(l + N).Given this hoie of �, we de�ne a partial map �N l from the rational funtions inx, v and s to the omplex numbers by making the substitutions x = �, s = ��N ,76



and v = �N2 whenever this is well de�ned. The order of the substitutions mighta�et whether it is well de�ned or not. The fration (vs2l+3N � 1)=(s2(l+N) � 1)beomes 1 after the substitution v = s�N . Instead, the immediate substitutionof s by a 2(l +N)-th primitive root of unity leads to the denominator 0.De�nition Let v and w be rational funtions in x, v and s. We write v := w if�N l(v) = �N l(w).De�nition Let a and b be any elements of the skein C of the annulus over thesalars C [x; v; s; (si � s�i)�1; i � 1℄. Let L be a framed link and L1 one of itsomponents. We deorate L1 by a (or b) and all the other omponents by someQ�; Q�; : : :. We say that a := b if�(L; a;Q�; Q�; : : :) := �(L; b; Q�; Q�; : : :)for all framed links L, for all omponents L1 and for all Young diagrams �; �; : : :.Lemmas 5.1.1, 5.1.3, 5.1.4 an be reformulated asCorollary 5.2.1 We haveQj := 0 for all j � N + 1;Qdi := 0 for all l + 1 � i � l +N � 1;QN := ;:The relation := satis�es the following property.Lemma 5.2.2 Let a and b be elements of the skein C of the annulus suh thata := b. Then aQ� := bQ� for any Young diagram �.Proof Let L be a link diagram and denote one of its omponents by L1. Denoteby L0 the link diagram that is derived from L by taking the 2-parallel of theomponent L1, i.e. L1 beomes L01[L001. Then the deoration of L with aQ� on theomponent L1 and Q�'s for various Young diagrams � on the other omponentsis equal to the deoration of L0 with a on L01 and Q� on L001, and the Q�'s on theother omponents. The de�nition of a := b implies that aQ� := bQ�. |The map from the algebra Y of Young diagrams to the skein of the annulusthat maps a Young diagram � to Q� is an algebra homomorphism as shown intheorem 3.5.6. From lemmas 5.1.1, 5.1.3, and 5.1.4 we dedue that this mapfators through the ideal of Y whih is generated byfdl+1; : : : ; dl+N�1; N � 0; N+1; N+2; : : : ; gwhen we onsider equivalene lasses modulo ` :='. We start in hapter 6 a arefulanalysis of the algebra Y quotiented by this ideal.77



Chapter 6An ideal in the ring of Youngdiagrams
6.1 The ideal IN;lThroughout this hapter we �x integers N � 2 and l � 1, and we denote l + Nby m. The letter l stands for `level'. We are onsidering rings, but all the resultsremain true when we onsider in later hapters the rings to be algebras over anextension of Z in order to handle Homy skeins involving the variables x, v ands and the salars C .We de�ne an ideal IN;l in the ring Y of Young diagrams. The ideal is generatedby the row diagrams of lengths from (l+ 1) to (l+N � 1), the olumn diagramsof length greater than N , and the di�erene between the empty diagram and theolumn diagram of length N ,IN;l = hhdl+1; : : : ; dm�1; 0 � N ; N+1; N+2; : : :ii:We denote by YN;l the quotient ring Y=IN;l and by � the quotient ring homomor-phism from Y to YN;l, � : Y ! Y=IN;l = YN;l:We de�ned an ideal IN in setion 1.3. We learly have IN � IN;l, and thus thequotient map Y ! Y=IN;l = YN;l fators through Y=IN = YN .We shall say that a Young diagram � lies (or is) in the (N � 1)� l-retangleif � has at most (N � 1) rows and at most l olumns. We shall prove in lemma6.4.1 that for any Young diagram � we have either �(�) = 0 or there exists aYoung diagram � in the (N � 1)� l-retangle so that �(�) = ��(�). In theorem6.5.2 we shall prove that the set f�(�) j � lies in the (N � 1)� l-retangleg is alinear basis for YN;l. 78



For elements a and b of Y we shall say that a and b are equal in YN;l if�(a) = �(b). Sine the quotient map � is a ring homomorphism, we have that fora square matrix with entries in Y, the determinant does not hange in YN;l if wereplae any entry a of the matrix by an element that is equal in YN;l to a.Remark If we add the row diagram dl to the generators of IN;l we get a largerideal I 0N;l. In fat, I 0N;l = Y as we show now. If we added dl+N instead of dl tothe generators of IN;l we still get Y beause dl+N = (�1)N+1dl modulo IN;l bylemma 6.3.1.Lemma 6.1.1 I 0N;l = Y.Proof We dedue from equation (1.2.2) for r = N + i thatdi = N�1di+1 � N�2di+2 + � � �+ (�1)N�1di+Nmodulo IN;l for any integer i � 1 beause N = 0 and j = 0 for j � N +1. Stepby step we dedue from this equation that di 2 I 0N;l for all i = l � 1; l � 2; : : : ; 1.Hene, d1; : : : ; dl+N�1 2 I 0N;l. In partiular, d1; : : : ; dN 2 I 0N;l beause l � 1.From equation (1.2.2) (or from the Giambelli formula) we dedue that any jis a polynomial in d1; : : : ; dj. Hene, j 2 I 0N;l for j = 1; : : : ; N . Hene, j 2 I 0N;lfor any j � 1. Hene, I 0N;l = Y. |6.2 Adding a row of length lWe reall the notation �0 for a Young � with N rows from setion 1.3. It denotesthe Young diagram that derives from � by removing all (initial) olumns of lengthN . We de�ne a map � on the set of Young diagrams in the (N � 1)� l-retangleby adding an initial row of length l at the top of � and then removing all olumnsof length N ,�(�1; : : : ; �N�1) = (l � �N�1; �1 � �N�1; : : : ; �N�2 � �N�1):This map is extended linearly to the subspae spanned by the Young diagramsin the (N � 1) � l-retangle. It is easy to hek that �N(�) = � for any Youngdiagram � in the (N�1)�l-retangle. Figure 6.1 shows that �(4; 3; 2; 2) = (5; 2; 1)for N = 5 and l = 7.Lemma 6.2.1 The elements �(�) and dl� are equal in YN;l for any Young dia-gram � in the (N � 1)� l-retangle. 79



! !Figure 6.1: Adding an initial row of length l and removing all olumns of lengthN .Proof Let � = (�1; : : : ; �N�1) be a Young diagram in the (N � 1)� l-retangle.Denote � = (l; �1; : : : ; �N�1). Then �0 = �(�) by de�nition.We have by lemma 1.3.1 that � and �0 are equal YN , hene they are equal inYN;l. It remains to show that � and dl� are equal in YN;l.The Giambelli formula applied to the Young diagram � gives� = ���������� dl dl+1 � � � dl+N�1d�1�1 d�1 � � � d�1+N�2... ... . . . ...d�N�1�N+1 d�N�1�N+2 � � � d�N�1
���������� :When we onsider this equality in YN;l, we an replae dl+1; : : : ; dl+N�1 by zero.By developing the determinant by the �rst row we get� = dl �������� d�1 � � � d�1+N�2... . . . ...d�N�1�N+2 � � � d�N�1 ��������= dl�in YN;l. |6.3 Row diagrams modulo IN;lWe start by proving a useful relation for row diagrams in YN;l.Lemma 6.3.1 We have dkm+r = (�1)(N+1)kdkl drin YN;l for any integer k � 0 and integer r, 0 � r � m� 1.Proof By equation (1.2.3) we have1 =  1Xi=0(�1)iizi!0� 1Xj=0 djzj1A (6.3.1)80



in Y. Using the relations for YN;l we dedue that1 =  NXi=0(�1)iizi!0� lXj=0 djzj + 1Xj=m djzj1Ain YN;l. Looking at the exponents less than or equal to m we dedue that1 =  NXi=0(�1)iizi!0� lXj=0 djzj1A+ dmzm; (6.3.2)hene 1� dmzm =  NXi=0(�1)iizi!0� lXj=0 djzj1A :Multipliation of both sides by P1k=0 dkmzmk and the use of the relations for YN;lleads to 1 =  1Xi=0(�1)iizi!0�m�1Xj=0 djzj1A 1Xk=0 dkmzmk! :We remark that for any ommutative algebra the inverse of a formal power seriesa0 + a1z + a2z2 + � � � with an invertible onstant term a0 is uniquely determined.Hene, by omparing the above equation with equation (6.3.1) we dedue that1Xj=0 djzj =  m�1Xr=0 drzr! 1Xk=0 dkmzmk! :This implies that for k � 0 and 0 � r � m� 1dkm+r = drdkm:Looking at the oeÆient of zm on both sides of equation (6.3.2), we see that0 = (�1)NNdl+ dm. Sine N = 1 in YN;l, we get dm = (�1)N+1dl. Substitutingthis in the above equation yields dkm+r = (�1)(N+1)kdkl dr. If l + 1 � r � m � 1then dr = 0 in YN;l, hene dkm+r = 0 in YN;l. |The Young diagrams dl+1; : : : ; dm�1 are equal to zero in YN;l, and we thus getCorollary 6.3.2 We havedkm+r = ( (�1)(N+1)kdkl dr if 0 � r � l;0 if l + 1 � r � m� 1in YN;l for any integer k � 0 and integer r, 0 � r � m� 1.81



The ombination of lemma 6.2.1 and Corollary 6.3.2 shows that in YN;l anyrow diagram is either equal to zero or it is equal up to a sign to a Young diagramin the (N � 1)� l-retangle.Corollary 6.3.3 We havedkm+r = ( (�1)(N+1)k�k(dr) if 0 � r � l;0 if l + 1 � r � m� 1in YN;l for any integer k � 0 and integer r, 0 � r � m� 1.6.4 Redution of a Young diagramWe shall extend Corollary 6.3.3 by proving that any Young diagram is up to asign equal in YN;l to a Young diagram in the (N � 1)� l-retangle.De�nition For integers q1; : : : ; qa we de�ne an element 0BB� q1...qa 1CCAG of Y by0BB� q1...qa 1CCAG = �������� dq1�(a�1) � � � dq1�(a�j) � � � dq1... ... ...dqa�(a�1) � � � dqa�(a�j) � � � dqa ��������(where dr = 0 for r < 0).The letter G stands for `Giambelli'. If q1 > � � � > qa � 0 then this (a � a)-determinant is equal to a Young diagram by the Giambelli formula. If q1; : : : ; qaare pairwise di�erent non-negative integers then a permutation of rows showsthat this determinant is equal to a Young diagram up to a sign. If qi = qj fordi�erent indies i and j then this determinant is equal to zero. If some qi < 0then this determinant is equal to zero.The Giambelli formula for a Young diagram � = (�1; : : : ; �N�1) takes the form(�1; �2; : : : ; �a) = 0BBBBBBB� �1 + a� 1...�i + a� i...�a
1CCCCCCCAG :82



By a permutation of rows we have for example0B� 023 1CAG = �0B� 320 1CAG = �2:De�nition For a Young diagram � with at most (N � 1) rows we write�i +N � 1� i = kim+ rifor (uniquely determined) integers ki � 0 and 0 � ri � m � 1, i = 1; : : : ; N � 1.We set K = k1+ � � �+ kN�1. The redution � of a Young diagram � is de�ned as
� = 8>>>>>>>>>>>><>>>>>>>>>>>>:

(�1)(N+1)K�K 0BB� r1...rN�1 1CCAG if l(�) � N � 1, and 0 � ri � m� 1for all i = 1; : : : ; N � 1,0 if l(�) � N � 1 and ri = m� 1for some 1 � i � N � 1,�0 if l(�) = N ,0 if l(�) � N + 1.We see that the redution of a Young diagram is either equal to zero or it isequal to a Young diagram inside the (N � 1)� l-retangle up to a sign.Example We onsider the Young diagram � = (8; 6; 3; 2) for N = 5 and l = 3.We have m = l +N = 8.We have �i +N � 1� i = kim+ ri8 + 5� 1� 1 = 1 � 8 + 36 + 5� 1� 2 = 1 � 8 + 03 + 5� 1� 3 = 0 � 8 + 42 + 5� 1� 4 = 0 � 8 + 2:Hene,k1 = 1; k2 = 1; k3 = 0; k4 = 0 and r1 = 3; r2 = 0; r3 = 4; r4 = 2:Hene, K = k1+ k2+ k3+ k4 = 2. None of the ri is equal to m� 1 whih is equalto 7. We thus have� = (�1)(5+1)2�20BBB� 3042 1CCCAG = �20BBB� 3042 1CCCAG = ��2 0BBB� 4320 1CCCAG83



where the minus sign appears beause we have permuted the rows of the deter-minant in order that they are dereasing downwards. In fat, they are stritlydereasing, and by the Giambelli formula this determinant is equal to a Youngdiagram �. The diagonal entries of the determinant are d1; d1; d1; d0. Hene,� = (1; 1; 1; 0). We have �(�) = (3; 1; 1; 1). Adding a further row of length l = 3at the top, we get the Young diagram (3; 3; 1; 1; 1) with the �rst olumn of lengthN = 5. We thus have �2(�) = �(3; 1; 1; 1) = (2; 2; 0; 0). We therefore �nally have� = �(2; 2).We remark that � = 0 for � = (8; 6; 3; 2) with N = 6 and l = 3 (beauser1 = r4 in this ase).For a Young diagram � in the (N � 1) � l-retangle we have � = � beauseki = 0 for every i = 1; : : : ; N � 1. Hene the linear map Y ! Y given by � 7! �is the projetion of Y to the submodule spanned by the Young diagrams in the(N � 1)� l-retangle.Lemma 6.4.1 We have �(�) = �(�) for any Young diagram �.Proof We �rst onsider the ase of a Young diagram � with at most N � 1 rows.We have� = 0BB� k1m + r1...kN�1m + rN�1 1CCAG= �������������
d�1 � � � d�1+N�2... ...d�i+1�i � � � d�i+N�1�i... ...d�N�1�N+2 � � � d�N�1

������������� (6.4.3)
= �������������

d�1 � � � � � � d�1+N�2... ...dkim+ri�(N�2) � � � dkim�1 dkim � � � dkim+ri�1 dkim+ri... ...d�N�1�N+2 � � � � � � d�N�1
�������������where the above (N � 1)� (N � 1)-determinant shows the i-th row in detail forsome 1 � i � N � 1. The entry dkim may or may not our, depending whether0 � ri � N � 2 or N � 1 � ri � m� 1.If ri = m� 1 then all entries of the i-th row beome zero in YN;l by orollary6.3.2. Hene the determinant beomes zero in YN;l, i.e. �(�) = 0. On the otherhand, � = 0 in this ase by de�nition. Hene �(�) = �(�) in this ase.84



We assume from now on that 0 � ri < m � 1 for all i = 1; : : : ; N � 1. Bylemma 6.3.1 we an replae dkim+j by (�1)(N+1)kidkil dj for all j = 0; : : : ; ri. Reallthat the determinant is of size (N�1)�(N�1). Hene, there are at most (N�1)elements to the left of dkim and so their indies lie between l+1 and m�1 modulom. Hene all the entries to the left of dkim beome zero in YN;l by lemma 6:3:1.Hene we have in YN;l� = (�1)(N+1)kidkil �������������
d�1 � � � � � � d�1+N�2... ...0 � � � 0 d0 � � � dri�1 dri... ...d�N�1�N+2 � � � � � � d�N�1

������������� :By applying this argument to every row in equation (6.4.3), we see that in YN;l� = (�1)(N+1)KdKl 0BB� r1...rN�1 1CCAGwhere K = k1+ k2+ � � �+ kN�1. Sine r1; : : : ; rN�1 are all di�erent from (m� 1),the above determinant is (up to a sign depending on a permutation of its rows)equal to a Young diagram in the (N � 1) � l-retangle, or it is zero. We antherefore apply Lemma 6.2.1 and get� = (�1)(N+1)K�K 0BB� r1...rN�1 1CCAGin YN;l. Hene, � = � in YN;l in the ase that 0 � ri � m�1 for i = 1; : : : ; N �1.Hene, � = � in YN;l for every Young diagram � with at most (N � 1) rows.If � has N rows then � = �0 by de�nition, and �(�0) = �(�0) by the abovease for Young diagrams with at most (N � 1) rows. Hene,�(�) = �(�0) = �(�0) = �(�):sine �(�0) = �(�) by lemma 1.3.1.If � has at least N +1 rows then � = 0 by de�nition, and �(�) = 0 by lemma1.3.1. Hene, �(�) = �(�). |
85



6.5 A basis for YN;lWe de�ne the Z-submodule LN;l of Y to be the span of (� � �) for all Youngdiagrams �, LN;l = h�� � j � a Young diagrami:We haveY = LN;l � h� j Young diagram � lies in the (N � 1)� l-retanglei (6.5.4)beause, �rst, � is either zero or up to a sign equal to a Young diagram in the(N � 1)� l-retangle, and seond, � = � if � lies in the (N � 1)� l-retangle.The proof that LN;l is an ideal in Y depends on lemma 6.6.7 whih will beproved later.Lemma 6.5.1 LN;l is an ideal in Y.Proof Sine the ring of Young diagrams is generated by all the olumn diagrams1; 2; : : : it is suÆient to show thati(�� �) 2 LN;l for any i � 1 and any Young diagram �:We remark that LN;l ontains all Young diagrams with more than N rows andall terms (a� a) for a 2 Y.Let i > N . Sine i is a subdiagram of every summand of i(�� �0), they allhave more than N rows. Hene, i(�� �) 2 LN;l.Let � be a Young diagram with more than N rows, and let i � 1. We have� = 0 by de�nition. Sine � is a subdiagram of every summand of i�, we havei(�� �) 2 LN;l.Let 1 � i � N and let � be a Young diagram with less than N rows. We havetrivially i(�� �) = (i�� i�) + (i�� i�)� (i�� i�):The �rst and the third summand lie in LN;l by de�nition. The seond summandis equal to zero by lemma 6.6.7. Hene i(�� �) 2 LN;l.Let 1 � i � N and � be a Young diagram with N rows. We have � = �0 byde�nition. We have triviallyi(�� �) = i(�� �0) + i(�0 � �0):The �rst summand lies in LN;l beause it lies in LN by lemma 1.3.2. The seondsummand lies in LN;l by the previous ase for Young diagrams with less than Nrows. Hene i(�� �) 2 LN;l. |86



Theorem 6.5.2 The set f�(�) j � lies in the (N � 1)� l� retangleg is a linearbasis for YN;l.Proof We have �(�) = �(�) by lemma 6.4.1, hene (�� �) 2 IN;l. Hene LN;l isa submodule of IN;l. Sine LN;l is an ideal in Y, we have LN;l = IN;l. By equation(6.5.4) we see that the images of the Young diagrams in the (N � 1)� l-retangleare a basis for YN;l. |6.6 Proof that i� = i�The ombinatorial Littlewood-Rihardson rule via ounting the number of stritextensions is not suitable for algebrai omputations. In order to prove lemma6.6.7 we need a ompat formula for the multipliation of a Young diagram bya olumn diagram. Suh a formula is provided in the next lemma using thevetor notation for Young diagrams. The essential simpli�ation provided bythis lemma is that we do not have to restrit the addition of ells of i to � sothat the resulting diagram is a Young diagram. If the resulting diagram is not aYoung diagram then the orresponding summand is equal to zero.Lemma 6.6.1 Let q1; : : : ; qN�1 be non-negative integers and let i be an integer,1 � i � N . Theni0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG modulo LN;l:The variables "1; : : : ; "N are to have values in f0; 1g.Proof We start by proving the lemma for the ase that q1 > q2 > � � � > qN�1 arenon-negative integers. We have0BB� q1...qN�1 1CCAG = (q1 � (N � 2); q2 � (N � 1); : : : ; qN�1)whih is a Young diagram, say �. We know by the Littlewood-Rihardson rulethat the summands with up to N rows ourring in i� in Y are all the Youngdiagrams (�1 + "1; : : : ; �N�1 + "N�1; "N) (6.6.5)where the variables "1; : : : ; "N are to have values 0 or 1 and their sum is equal toi. This is beause every summand in i� derives from � by adding at most one87



ell to eah row of �. By removing a possible �rst row of length N we transformthe above Young diagram into(�1 + "1 � "N ; : : : ; �N�1 + "N�1 � "N):Writing the summands of i� in determinantal form we geti0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG (6.6.6)up to summands with more than N rows and terms (�� �0) where � has N rows.The variables "1; : : : ; "N are to have values 0 or 1, and they have to satisfy theondition that the sequene in expression (6.6.5) is a Young diagram.Now assume that for some "1; : : : ; "N the sequene in expression (6.6.5) is nota Young diagram, this means it is inreasing at some point. Then we have forsome j, 1 � j � N � 1, that �j + "j < �j+1 + "j+1 where �N = 0. Sine "j and"j+1 an only have values 0 or 1, and �j � �j+1 beause � is a Young diagram,we dedue �j = �j+1 and "j = 0, "j+1 = 1. Hene qj + "j � "N = qj+1+ "j+1� "N .Then the orresponding determinant is equal to zero,0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG = 0;beause the rows j and (j+1) are idential. Hene the right hand side of equation(6.6.6) is not altered by extending the sum of determinants to all "1; : : : ; "N sothat "1 + � � �+ "N = i and eah variable "j has values in f0; 1g.We have thus proved the lemma for the ase q1 > q2 > � � � > qN�1 � 0.The ase that q1; : : : ; qN�1 are pairwise di�erent non-negative integers followsimmediately by a permutation of the rows of the determinants.To �nally prove the lemma we onsider from now on the ase that qj1 = qj2for some 1 � j1 < j2 � N � 1. In this ase the left hand side of equation (6.6.6)is equal to zero. We have to prove that the right hand side is equal to zero aswell.First we note that for a summand orresponding to ("1; : : : ; "N) with "j1 = "j2the determinant at the right hand side of equation (6.6.6) ontains two identialrows, hene it is equal to zero. We an thus restrit to those summands with"j1 = 0 and "j2 = 1 and those summands with "j1 = 1 and "j2 = 0. We get a �xedpoint free permutation of these summands by interhanging the values of "j1 and"j2. The determinants of two orresponding summands add up to zero beausethey di�er by a transposition of the rows j1 and j2. Hene the whole sum addsup to zero. |88



Applying the redution map � 7! � to lemma 6.6.1 leads toCorollary 6.6.2 Let q1; : : : ; qN�1 be non-negative integers and let i be an integer,1 � i � N . Theni0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG:The variables "1; : : : ; "N are to have values 0 or 1.If for an N-tuple ("1; : : : ; "N) we have qj + "j � "N � m� 1 mod m for some1 � j � N � 1 then this summand is equal to zero.Proof The redution of elements of LN;l is equal to zero beause �� � = ��� = 0for any Young diagram �. Henei0BB� q1...qN�1 1CCAG = X"1+���+"N=i0BB� q1 + "1 � "N...qN�1 + "N�1 � "N 1CCAG:If qj + "j � "N � m� 1 mod m for some 1 � j � N � 1 then we have to onsidertwo ases. Either qj+"j�"N = �1 in whih ase the determinant is zero beausethe j-the row onsists entirely of zeros. Or qj + "j � "N = kj(N + l) +m� 1 forsome integer kj � 0 in whih ase the redution is de�ned to be equal to zero. |There is a ompat formulation for the operation of � in terms of the vetornotation for Young diagrams.Lemma 6.6.3 For integers m� 2 � q1 � q2 � � � � � qN�1 � 0 we have�0BBBB� q1q2...qN�1 1CCCCAG = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :Proof We denote elements in Y,� = 0BBBB� q1q2...qN�1 1CCCCAG and � = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :89



If m � 2 � q1 > q2 > � � � > qN�1 � 0 then � is equal to a Young diagram in the(N�1)� l-retangle by the Giambelli formula. The laimed equality of �(�) and� is the translation of the de�nition of �(�) into determinantal form.From now on we onsider the remaining ase qi = qi+1 for some 1 � i � N�2.Then the determinant � is equal to zero beause it has idential rows i and i+1.Hene �(�) = 0 as well. We shall show that � = 0, too.If qN�2 = qN�1, then qN�2 � 1� qN�1 is negative, hene the determinant � isequal to zero.If qi = qi+1 for some 1 � i � N � 3 then the olumns (i+1) and (i+2) of thedeterminant � are equal, hene � = 0. Therefore the statement of the lemma isalso true in the ase qi = qi+1 for some 1 � i � N � 2. |The next lemma desribes that for a Young diagram � in the (N�1)� l-retanglethe operation � ommutes with the operation of multipliation with i followedby redution. Note that i�f(�) means i(�f(�)).Lemma 6.6.4 Let � be a Young diagram in the (N � 1)� l-retangle, let f be anon-negative integer, and let 1 � i � N . Theni�f(�) = �f(i�):Proof By indution on f . Let � be a Young diagram in the (N�1)� l-retangle.The ase f = 0 is trivial. The essential part of the proof is to show the statementof the lemma for f = 1 sine indution immediately shows for f � 2 that�f (i�) = ��f�1(i�)= �(i�f�1(�))= i��f�1(�)= i�f(�):We set qj = �j +N � 1� j for j = 1; : : : ; N � 1, and we have� = 0BB� q1...qN�1 1CCAGand m� 2 � q1 > q2 > � � � > qN�1 � 0. By lemma 6.6.3 we have�(�) = 0BBBB� m� 2� qN�1q1 � 1� qN�1...qN�2 � 1� qN�1 1CCCCAG :90



Therefore, using orollary 6.6.2,i�(�) = X"1+���+"N=im�2�qN�1+"1�"N�m�2
0BBBB� m� 2� qN�1 + "1 � "Nq1 � 1� qN�1 + "2 � "N...qN�2 � 1� qN�1 + "N�1 � "N 1CCCCAGwhere the sum is restrited to those summands withm�2�qN�1+"1�"N � m�2beause only the �rst entry of the vetor ould be greater than m� 2. (It ouldbe at most m � 1 in whih ase it redues to zero.) The ondition is equivalentto qN�1+ "N � "1 � 0. The only situation in whih the seond entry of the vetoris not less than the �rst entry ours if the �rst and the seond entry are equal.Hene those summands are equal to zero. We an thus redue the summands inthe above sum to those with q1 � 1� qN�1 + "2 � "N < m� 2� qN�1 + "1 � "Nwhih is equivalent to q1 + "2 � "1 � m� 2. Henei�(�) = X"1+���+"N=iqN�1+"N�"1�0q1+"2�"1�m�2

0BBBB� m� 2� qN�1 + "1 � "Nq1 � 1� qN�1 + "2 � "N...qN�2 � 1� qN�1 + "N�1 � "N 1CCCCAG : (6.6.7)
On the other hand, we have by orollary 6.6.2i� = X�1+���+�N=iq1+�1��N�m�2 0BB� q1 + �1 � �N...qN�1 + �N�1 � �N 1CCAG :For the summands in the above sum we havem� 2 � q1 + �1 � �N � q2 + �2 � �N � � � � � qN�1 + �N�1 � �N :By elipsing the summands with qN�1 + �N�1 � �N < 0, whih are equal to zeroanyway, we get by lemma 6.6.3�(i�) = X�1+���+�N=iqN�1+�N�1��N�0q1+�1��N�m�2

0BBBB� m� 2� qN�1 + �N � �N�1q1 � 1� qN�1 + �1 � �N�1...qN�2 � 1� qN�1 + �N�2 � �N�1 1CCCCAG : (6.6.8)
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There is a bijetion of the summands in equations (6.6.7) and (6.6.8) thatrespets the additional onditions imposed on the summands. The summand("1; "2; : : : ; "N�1; "N) of the sum in equation (6.6.7) agrees with the summand(�1; : : : ; �N) = ("2; : : : ; "N�1; "N ; "1) of the sum in equation (6.6.8). We thereforehave �(i�) = �(i�). |Now we are able to prove under minor onditions that for a Young diagram �with less then N rows the redutions of i� and of i� agree for 1 � i � N .Lemma 6.6.5 Let � = (�1; : : : ; �N�1) be a Young diagram with�j +N � 1� j 6� m� 1 mod m for all j = 1; : : : ; N � 1:Then i� = i� for any integer i, 1 � i � N .Proof For j = 1; : : : ; N�1 we write �j+N�1�j = kjm+rj with integers kj � 0and 0 � rj � m� 1. Our assumption is that 0 � rj < m� 1 for j = 1; : : : ; N � 1.We denote � = 0BB� r1...rN�1 1CCAG :Then the Young diagram � redues to� = (�1)(N+1)K�K(�) (6.6.9)where K = k1 + � � �+ kN�1. We have0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)K�K 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAGprovided that 0 � rj + "j � "N � m� 2 for j = 1; : : : ; N � 1.Hene, by orollary 6.6.2,i� = X"1+���+"N=i0�rj+"j�"N�m�2 (�1)(N+1)K�K 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAG
= (�1)(N+1)K�K 0BBBBBBB� X"1+���+"N=i0�rj+"j�"N�m�2 0BB� r1 + "1 � "N...rN�1 + "N�1 � "N 1CCAG

1CCCCCCCA :
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The last sum in the above equation is equal to i� by orollary 6.6.2, and we thusget i� = (�1)(N+1)K�K(i�):We apply lemma 6.6.4 and geti� = (�1)(N+1)Ki�K(�)= i(�1)(N+1)K�K(�)= i�: |The remaining speial ase will be proved now.Lemma 6.6.6 Let � = (�1; : : : ; �N�1) be a Young diagram with�j +N � 1� j � m� 1 mod m for some 1 � j � N � 1:Then i� = 0 for any integer i, 1 � i � N .Proof Let � be a Young diagram with less than N rows and let 1 � i � N . Wewrite �j + N � 1 � j = kjm + rj with integers kj � 0 and 0 � rj � m � 1 forj = 1; : : : ; N � 1. We have by orollary 6.6.2i� = X"1+���+"N=i0�rj+"j�"N�m�2 0BB� k1m + r1 + "1 � "N...kN�1m + rN�1 + "N�1 � "N 1CCAG:We onsider �rst the ase that rj1 = rj2 = m � 1 for di�erent indies j1 andj2. Beause j"j1 � "j2j and "N are either equal to 0 or 1, we see that the terms(kj1m+ rj1 + "j1 � "N ) and (kj2m+ rj2 + "j2 � "N ) are either equal or at least oneof them is ongruent to (m � 1) modulo m. Hene any summand on the righthand side in the above equation redues to zero.We assume from now on that exatly one of r1; : : : ; rN�1 is equal to m � 1,say rj1 . For a summand ("1; : : : ; "N) in the above sum with "j1 = "N we haverj1 + "j1 � "N = m � 1. Hene this summand is equal to zero. Hene we anrestrit the sum to the summands with "j1 6= "N .If "j1 = 0 and "N = 1 then0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)K�K 0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1
1CCCCCCCAG93



with (m� 2) as the j1-th entry. If rj = m� 2 for some 1 � j � N � 1 and "j = 1then the above term is equal to zero beause the rows j and j1 of the determinanton the right hand side would be idential.If "j1 = 1 and "N = 0 then0BB� k1m+ r1 + "1 � "N...kN�1m+ rN�1 + "N�1 � "N 1CCAG = (�1)(N+1)(K+1)�K+10BBBBBBB� r1 + "1...0...rN�1 + "N�1
1CCCCCCCAGwith 0 as the j1-th entry. If rj = 0 for some 1 � j � N � 1 and "j = 0 then theabove term is equal to zero beause the rows j and j1 of the determinant on theright hand side would be idential. Henei� = X"1+���+"N=i"j1=0; "N=10�rj+"j�"N�m�2 (�1)(N+1)K�K 0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1

1CCCCCCCAG
+ X"1+���+"N=i"j1=1; "N=00�rj+"j�"N�m�2 (�1)(N+1)(K+1)�K+10BBBBBBB� r1 + "1...0...rN�1 + "N�1

1CCCCCCCAG :We shall prove that the summand ("1; : : : ; "j1�1; 0; "j1+1; : : : ; "N�1; 1) from the�rst sum and the summand ("1; : : : ; "j1�1; 1; "j1+1; : : : ; "N�1; 0) from the seondsum of the above equation add up to zero, hene the whole sum adds up to zero.To prove this laim, it is suÆient to show that0BBBBBBB� r1 + "1 � 1...m� 2...rN�1 + "N�1 � 1
1CCCCCCCAG = (�1)N�0BBBBBBB� r1 + "1...0...rN�1 + "N�1

1CCCCCCCAGsine the summands in question are iterated images of the same power of � of theseterms. By shifting the j1-th row of the �rst determinant by (j1�1) rows upwards94



and the j1-th row of the seond determinant by (N � 1 � j1) rows downwards,the above equation is equivalent to0BBBB� m� 2r1 + "1 � 1...rN�1 + "N�1 � 1 1CCCCAG = �0BBBB� r1 + "1...rN�1 + "N�10 1CCCCAG :This is true by lemma 6.6.3 whih an be applied after a suitable permutation ofrows. Hene i� = 0. |Lemma 6.6.7 We have i� = i� for any Young diagram � with less than Nrows and any 1 � i � N .Proof If �j +N � 1� j � m� 1 mod m for some 1 � j � N � 1 then � = 0 byde�nition, hene i� = 0. Hene, by lemma 6.6.6, i� = 0 = i�.If �j +N � 1� j 6� m� 1 mod m for all j = 1; : : : ; N � 1 then i� = i� bylemma 6.6.5. |6.7 Useful resultsReall that m was de�ned as l +N .Lemma 6.7.1 A Young diagram � = (�1; : : : ; �N�1; �N) with �N = 0 redues tozero if and only if�i � �j � i� j mod m for some 1 � i < j � N:Proof We set �j +N � 1� j = kjm + rj for j = 1; : : : ; N � 1 with kj � 0 and0 � rj � m � 1. The redution is equal to zero if either rj = m � 1 for someindex j, or if ri = rj for di�erent indies i and j.The ase ri = rj ours if and only if �i+N � 1� i � �j +N � 1� j mod m.This is equivalent to �i � �j � i� j mod m.The ase rj = m� 1 ours if and only if �j +N � 1� j � m� 1 mod m, i.e.�j � j �N mod m. This an be written as �j � �N � j �N mod m. |Lemma 6.7.2 Let � = (�1; : : : ; �N) be a Young diagram with �N = 0 that satis-�es �i � �j � i� j mod m for some 1 � i < j � N:If (�1; : : : ; �i+ b; : : : ; �N) and (�1; : : : ; �j + b; : : : ; �N) are Young diagrams for aninteger b � 0 then the redutions of these two Young diagrams add up to zero.95



Proof Let � = (�1; : : : ; �N) be a Young diagram with �N = 0 that satis�es�i � �j � i� j mod (N + l) for some 1 � i < j � Nand furthermore� = (�1; : : : ; �i + b; : : : ; �N) and � = (�1; : : : ; �j + b; : : : ; �N)are Young diagrams for some integer b � 0.First we onsider the ase 1 � i < j � N � 1. The ase j = N will beonsidered later. We set qf = �f + N � 1 � f and write qf = kfm + rf withkf � 0 and 0 � rf � m� 1 for f = 1; : : : ; N � 1. Our assumption is that ri = rj.We have qi + b = (ki + a)m+ s and qj + b = (kj + a)m+ s for integers a � 0and 0 � s � m� 1. With K = k1 + � � �+ kN�1 we have by de�nition� = (�1)(N+1)(K+a)�(K+a)0BBBBBBB� r1...s...rN�1
1CCCCCCCAGwith s as the i-th entry, and� = (�1)(N+1)(K+a)�(K+a)0BBBBBBB� r1...s...rN�1
1CCCCCCCAGwith s as the j-th entry. Sine the orresponding determinants di�er by a trans-position of rows, � and � di�er by the salar (�1) as laimed.Now we prove the ase j = N by indution on b. Let 1 � i � N � 1. Theindution hypothesis for b is that for any Young diagram � = (�1; : : : ; �N�1) with�i � i�N mod m we have that the redution of  = (�1; : : : ; �i+e; : : : ; �N�1) andthe redution of Æ = (�1�e; : : : ; �N�1�e) add up to zero for any e = 0; 1; : : : ; b�1provided that  and Æ are Young diagrams.The indution hypothesis for b = 0 is true by lemma 6.7.1.We assume that the indution hypothesis is true for an integer b � 0. Weshall dedue from this the indution hypothesis for (b + 1).Let � = (�1; : : : ; �N�1) be a Young diagram that satis�es �i � i � N mod m,and that (�1; : : : ; �i + b + 1; : : : ; �N�1) and (�1 � (b + 1); : : : ; �N�1 � (b + 1)) areYoung diagrams. We denote the Young diagrams� = (�1; : : : ; �i + b; : : : ; �N�1) and � = (�1 � b; : : : ; �N�1 � b):96



We have � + � = 0 by indution hypothesis for b.For 1 � r � N the addition of a ell to the r-th row of � gives a Youngdiagram if and only if the addition of a ell to the r-th row of � gives a Youngdiagram, exept in one ase. If �i = �i+1 and b � 1 then the addition of a ell tothe (i+ 1)-st row of � does not give a Young diagram, but the addition of a ellto the (i+1)-st row of � gives a Young diagram. (In this ase i 6= N � 1 beause�N�1 � b + 1 � 1 and �N = 0.) But this Young diagram, say �, redues to zeroby lemma 6.7.1 beause �i+1 � i + 1�N mod m.Let r 6= i and r 6= N . If both of(�1; : : : ; �r + 1; : : : ; �i + b; : : : ; �N�1)and (�1 � b; : : : ; �r � b+ 1; : : : ; �i � b; : : : ; �N�1 � b)are Young diagrams then their redutions add up to zero. This follows from theindution hypothesis for (b� 1) applied to(�1; : : : ; �r + 1; : : : ; �i; : : : ; �N�1):Hene, only the terms for r = i and r = N appear in the following equation.Remark that for r = N we have to remove a olumn of length N .1� + 1� = (�1; : : : ; �i + b+ 1; : : : ; �N�1)+ (�1 � 1; : : : ; �i + b� 1; : : : ; �N�1 � 1)+ (�1 � b; : : : ; �i � b+ 1; : : : ; �N�1 � b)+ (�1 � b� 1; : : : ; �i � b� 1; : : : ; �N�1 � b� 1):Reall that � + � = 0. By lemma 6.6.7 we get1� + 1� = 1� + 1� = 1� + 1� = 1(� + �) = 0:We thus get 0 = (�1; : : : ; �i + b + 1; : : : ; �N�1)+ (�1 � 1; : : : ; �i + b� 1; : : : ; �N�1 � 1) (6.7.10)+ (�1 � b; : : : ; �i � b + 1; : : : ; �N�1 � b)+ (�1 � b� 1; : : : ; �i � b� 1; : : : ; �N�1 � b� 1):For b = 0, this equation beomes0 = 2(�1; : : : ; �i + 1; : : : ; �N�1) + 2(�1 � 1; : : : ; �N�1 � 1)97



whih is (up to the negligible salar 2) the indution hypothesis for � with b = 1.For b � 1, the indution hypothesis for (b � 1) applied to the Young dia-gram (�1� 1; : : : ; �i; : : : ; �N�1� 1) shows that the seond and the third summandin equation (6.7.10) add up to zero. The remaining equation is the indutionhypothesis for (b + 1) applied to the Young diagram � . |Sometimes, the ideal IN;l appears with a di�erent set of generators.Lemma 6.7.3 Let N � 2 and l � 1. Denote by P the ideal of Y generated byall Young diagrams with l + 1 olumns and less than N rows. Denote by Q theideal of Y generated by all row diagrams dl+1; dl+2; : : : ; dm�1. Then P = Q.Proof By the Giambelli formula for a Young diagram � we have� = det(d�i+j�i)1�i;j�l(�):If �1 = l + 1 then the �rst row reads dl+1; dl+2; : : : ; dl+l(�). If � has less than Nrows then all these elements lie in Q, hene by developing the determinant by the�rst row we see that � lies in Q. Hene P � Q.Denote by �i;j the hook diagram with j ells in the �rst row and i ells in the�rst olumn. The number of ells of �i;j is i+ j� 1. For i � 1 and j � 1 we haveby the Littlewood-Rihardson rule�i;j = idj�1 � �i+1;j�1: (6.7.11)In partiular, for any r � 1,dl+r = 1dl+r�1 � �2;l+r�1:Applying suessively equation (6.7.11) to the above equation we getdl+r = 1dl+r�1 � 2dl+r�2 + � � �+ (�1)rr�1dl+1 + (�1)r+1�r;l+1:From this we dedue indutively that dl+1; : : : ; dl+r lie in the ideal generatedby �1;l+1; �2;l+1; : : : ; �r;l+1. If r � N � 1 then �r;l+1 lies in P . Hene all ofdl+1; : : : ; dm�1 lie in P , hene Q � P . Hene P = Q. |
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Chapter 7A lattie model for Youngdiagrams
7.1 The lattieFor an integer N � 2 we onsider a vetor spae V (N) over R with a basis"1; : : : ; "N and an inner produt on V (N) given by h"i; "ji = Æij for 1 � i; j � N .We de�ne elements �i in V (N), �i = "i � "i+1for i = 1; : : : ; N�1. They are linearly independent. We denote by V 0(N) the ve-tor subspae spanned by �1; : : : ; �N�1. There are unique elements �1; : : : ;�N�1of V 0(N) so that h�i; �ji = Æijfor any 1 � i; j � N � 1. Expliitly, these elements are given by�i = "1 + � � �+ "i � iN ("1 + � � �+ "N)for i = 1; : : : ; N � 1. For notational purposes we set �0 = 0 and �N = 0. Wedenote by P (N) the integral lattie spanned by �1; : : : ;�N�1,P (N) = fa1�1 + � � �+ aN�1�N�1 j ai 2 Z for i = 1; : : : ; N � 1g:We denote by P+(N) the one in P (N),P+(N) = fa1�1 + � � �+ aN�1�N�1 j ai 2 Z; ai � 0 for i = 1; : : : ; N � 1g:Sine h�i; �ji = Æij, we have that an element v of V 0(N) lies in P (N) (resp.in P+(N)) if and only if hv; �ji is integral (resp. integral and non-negative) forj = 1; : : : ; N � 1. 99
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�1 �2Figure 7.1: The vetor spae V (3).The integral lattie spanned by �1; : : : ; �N�1 is a sublattie of P (N) beause�i = ��i�1 + 2�i � �i+1, and thus any �i lies in P (N). The restrition of theinner produt to P (N) is not neessarily integral, in fath�i; �ji = min(i; j)� ijN for 1 � i; j � N:We an write�i = i�1i ("1 + � � �+ "i)� 1N ("1 + � � �+ "N)� for 1 � i � N � 1:This means that �i lies in the diretion of the line that joins the entres of thesimplies with verties "1; : : : ; "i respetively "1; : : : ; "N . Figure 7.1 shows in V (3)the aÆne plane parallel to V 0(3) ontaining "1, "2 and "3.7.2 Relation between V (N) and sl(N)The set of diagonal matries in sl(N) is a Cartan subalgebra h of sl(N). TheCartan-Killing form indues an inner produt B on the dual h? of h. Onean hoose primitive positive roots �1; : : : ; �N�1 and orresponding fundamentalweights !1; : : : ; !N�1 in h? so that there is an isomorphism between the R-vetorspae spanned by the primitive positive roots and V 0(N) mapping �i to �i and100



!i to �i. Furthermore, this isomorphism respets (up to the salar 2N) the in-ner produts on h? and V 0(N). The relation between non-negative integral linearombinations of fundamental weights and the irreduible representations of sl(N)shows us how to relate Young diagrams and elements of P+(N). We explain thisnow.7.3 The lattie and Young diagramsWe desribe a bijetion between Young diagrams with less than N rows and theone P+(N) � P (N).To a1�1+� � �+aN�1�N�1 in P+(N) we assoiate the Young diagram that has a1olumns of length 1, a2 olumns of length 2, : : :, and aN�1 olumns of lengthN�1.For example, a1�1 orresponds to a single row of length a1, and 2�1 + 3�3 + �4orresponds to the Young diagram (6; 4; 4; 1). In general, a1�1 + � � �+ aN�1�N�1orresponds to the Young diagram � = (�1; : : : ; �N�1) with�i = ai + ai+1 + � � �+ aN�1 (7.3.1)for i = 1; : : : ; N � 1.Lemma 7.3.1 Let � = (�1; : : : ; �N�1; �N) be a Young diagram with �N = 0.Denote its orresponding element in P+(N) by p. Then�i � �j = h"i � "j; pifor any 1 � i < j � N .Proof We have p = a1�1 + � � � + aN�1�N�1 for some non-negative integersa1; : : : ; aN�1. From the above equation (7.3.1) we have�i � �j = ai + � � �+ aj�1for any 1 � i < j � N . On the other hand,h"i � "j; pi = h�i + � � �+ �j�1; a1�1 + � � �+ aN�1�N�1i= ai + � � �+ aj�1:beause h�k; �mi = Ækm for any 1 � k;m � N � 1. |From lemmas 6.7.1 and 7.3.1 we immediately dedueLemma 7.3.2 A Young diagram (�1; : : : ; �N) with �N = 0 redues to zero if andonly if it orresponds to an element of P+(N) that lies in a hyperplaneHi;j; = fx 2 V (N) j hx; "i � "ji = i� j + (N + l)gfor some 1 � i < j � N and integer .We shall denote the family of all the hyperplanes Hi;j; with 1 � i < j � N andinteger  by H. 101
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Figure 7.2: A point y and its mirror image �v(y).7.4 Hyperplanes and reetionsA non-zero element v of V (N) determines an (N � 1)-dimensional hyperplanefx 2 V (N) j hx; vi = 0g:The reetion �v in this hyperplane maps y 2 V (N) to �v(y) so that �v(y)� y isa salar multiple of v, and (�v(y) + y)=2 lies in this hyperplane (see �gure 7.2).We dedue �v(y) = y � 2hy; vihv; viv:More general, for any r 2 R, the reetion �v;r in the hyperplanefx 2 V (N) j hx; vi = rgis given by �v;r(y) = y + 2r � hy; vihv; vi v: (7.4.2)This says that the reetions �v and �v;r di�er by a translation in the diretionof v.Lemma 7.4.1 Let v and w be non-zero elements of V (N) and let r and t be realnumbers. The reetion in the hyperplane fx 2 V (N) j hx; vi = rg maps thehyperplane fy 2 V (N) j hy; wi = tg to the hyperplane(z 2 V (N) j *z; w � 2hv; wihv; vi v+ = t� 2r hv; wihv; vi ) :Proof The mirror image of the hyperplane is given byfz 2 V (N) j h�v;r(z); wi = tg:A simple appliation of the above formula for �v;r gives the expliit form of thishyperplane. |102



Lemma 7.4.2 The set V 0(N) and the set P (N) are invariant under reetionin any hyperplane of H.Proof Let us onsider a hyperplane Hi;j; of H. From equation (7.4.2) we deduethat the reetion �"i�"j ; in the hyperplane Hi;j; is given by�v;(w) = w + (r � hw; vi)vwhere r = i� j + (N + l) and v = "i � "j and thus hv; vi = 2.We have "i � "j = �i + � � �+ �j�1, and thus v 2 P (N) � V 0(N). Hene, wehave �v;(w) 2 V 0(N) for any w of V 0(N). This desribes the invariane of V 0(N)under reetion in Hi;j;.Let w be an element of P (N), i.e. w lies in V 0(N) and hw; �ki is integral forany k = 1; : : : ; N � 1. Then hw; vi is integral beausehw; vi = hw; "i � "ji= hw; �i + � � �+ �j�1i= hw; �ii+ � � �+ hw; �j�1i :Hene, �v;(w) lies in P (N). |Lemma 7.4.3 The family H of hyperplanes is invariant under reetion in anyhyperplane of H.Proof The essential tool is lemma 7.4.1 by whih we know that the reetion inthe hyperplane Hi;j;e maps the hyperplane Hk;m;f to the hyperplanefz 2 V (N) j hz; w � hv; wi vi = d�  hv; wig (7.4.3)with v = "i � "j, w = "k � "m,  = i � j + e(N + l) and d = k �m + f(N + l).We have that hv; vi = h"i � "j; "i � "ji = 2. Hene, all we have to know are thevalues of hv; wi whih are equal to h"i � "j; "k � "mi for 1 � i < j � N and1 � k < m � N .If i; j; k and m are pairwise di�erent then hv; wi = 0 and thus formula 7.4.3tells us that Hk;m;f is invariant under reetion in Hi;j;e.In the remaining �ve ases we haveh"i � "j; "k � "mi = 8>>>>>><>>>>>>: 2 if i = k and j = m;1 if i = k and j 6= m;1 if i 6= k and j = m;�1 if j = k;�1 if m = i:103



We thus have w � hv; w; vi = 8>>>>>><>>>>>>: "i � "j if i = k and j = m;"j � "m if i = k and j 6= m;"k � "i if i 6= k and j = m;"i � "m if j = k;"k � "j if m = i:In these �ve ases we get by equation (7.4.3) the hyperplanes onsisting of allz 2 V (N) that satisfyhz; "j � "ii = j � i+ (f � 2e)(N + l) if i = k; j = mhz; "j � "mi = j �m+ (f � e)(N + l) if i = k; j 6= mhz; "k � "ii = k � i + (f � e)(N + l) if i 6= k; j = mhz; "i � "mi = i�m + (f + e)(N + l) if j = khz; "k � "ji = k � j + (f + e)(N + l) if m = i:These hyperplanes are again of the form Ha;b; with integers a, b, and  suh that1 � a � N , 1 � b � N and a 6= b. To ensure a < b, we have to multiply bothsides of the above equations by (�1) if neessary. |7.5 The deomposition of V (N) by HWe an write the family of hyperplanes H as the union of �N2� loally �nite setsof hyperplanes, H = [1�i<j�N [2ZHi;j;:Hene, H is a loally �nite set of hyperplanes. Thus, H indues a polyhedraldeomposition of the N -dimensional Eulidean spae V (N) whih is invariantunder reetion in any hyperplane of H. We denote the deomposition by D.The polyhedra of D are not neessarily ompat.Every hyperplane Hi;j; determines two half-spaes of V (N). We denoteH+i;j; = fx 2 V (N) j hx; "i � "ji � i� j + (l +N)gand H�i;j; is the other half-spae. For a subset B � V (N) we denote by ÆB theset of interior points of B with respet to the topology indued by the Eulideanmetri.We denote H\ = N�1\i=1 H+i;i+1;0whih is a losed unbounded onvex subset of V (N). It is the union of (in�nitelymany) polyhedra of the deomposition D.104



Lemma 7.5.1 P (N) \ ÆH\ = P+(N):Proof Let p be an element of P (N). Then p 2 ÆH\ if and only ifhp; "i � "i+1i > �1for i = 1; : : : ; N�1. Sine "i�"i+1 = �i and p 2 P (N) we have that hp; "i � "i+1iis an integer. The above ondition on p is therefore equivalent to hp; �ii � 0 fori = 1; : : : ; N � 1. The element p satis�es this if and only if p 2 P+(N). |Lemma 7.5.2 The set S = H�1;N;1 \H\is an N-dimensional polyhedron of the deomposition D.Proof We have to show that the interior of S is disjoint to any hyperplane of Hand that it is not empty. The interior ÆS of S is given byÆS = fx 2 V (N) j hx; "1 � "Ni < l + 1g \fx 2 V (N) j hx; "i � "i+1i > �1 for i = 1; : : : ; N � 1g: (7.5.4)Assume that an element x of ÆS lies in a hyperplane Hj;k; for some 1 � j < k � Nand integer . We have by equation (7.5.4)hx; "j � "ki = hx; "j � "j+1i+ � � �+ hx; "k�1 � "ki> (�1) + � � �+ (�1)= j � k:Hene  has to be greater than zero, i.e.  � 1. Thush"j � "k; pi � j � k +N + l:Henehx; "1 � "Ni = hx; "1 � "2i+ � � �+ hx; "j�1 � "ji+ hx; "j � "ki+ hx; "k � "k+1i+ � � �+ hx; "N�1 � "Ni> (�1) + � � �+ (�1) + j � k +N + l + (�1) + � � �+ (�1)= (�1)(j � 1) + j � k +N + l + (�1)(N � k)= l + 1:The inequality hx; "1 � "Ni > l+1 is in ontradition to equation (7.5.4). Henethe interior of S is disjoint to any hyperplane of H.The interior of S is not empty beause it ontains e.g. ("1+ � � �+ "N) beauseh"1 + � � �+ "N ; "a � "bi = 0 for any 1 � a; b � N . |105



Lemma 7.5.3 For any two N-dimensional polyhedra R and T of the deompo-sition D of V (N) there exists a sequene of N-dimensional polyhedra of D, sayS1; S2; : : : ; Sk so that S1 = R, Sk = T , and the polyhedra Sj and Sj+1 di�er by areetion in a hyperplane of H for j = 1; : : : ; k � 1.If R and T lie in H\ then we an hoose S2; : : : ; Sk�1 to lie in H\, too.Proof We hoose a point r in the interior of R, and a point t in the interior ofT . Sine V (N) is a onneted N -dimensional manifold, we an �nd a path inV (N) onneting r and t whih intersets the (N � 1)-dimensional polyhedra ofD transversally and whih is disjoint to the (N � 2)-skeleton of D. The sequeneof N -dimensional polyhedra through whih the path from r to t is going satis�esthe ondition of the statement of the lemma. This is beause the invariane ofthe deomposition of D under reetion in hyperplanes of H implies that anytwo polyhedra of the deomposition D with a ommon (N � 1)-dimensional sidedi�er by a reetion in the hyperplane spanned by this side.If R and T lie in H\ then we an hoose the above path to lie in the interiorof H\ beause the interior of H\ is onneted, even after removing the (N � 2)-skeleton of D. |Lemma 7.5.4 For any element p of P+(N) whih does not lie on any hyperplaneof H there exists a sequene of elements of P+(N), p = p1; p2; : : : ; pr so thatpr lies in ÆS, and pj and pj+1 di�er by a reetion in a hyperplane of H forj = 1; : : : ; r � 1.Proof Let p be an element of P+(N) that does not lie in a hyperplane ofH. Thenp lies in the interior of an N -dimensional polyhedron R of the deomposition Dof V (N). By lemma 7.5.3 there exists a sequene R = S1; S2; : : : ; Sk = S ofN -dimensional polyhedra whih all lie in H\ so that Si and Si+1 di�er by areetion in a hyperplane of H. The suessive mirror images of p are disjointfrom H, hene they lie in ÆH\. They lie in P (N) by lemma 7.4.2. Therefore, theylie in P+(N) by lemma 7.5.1. The �nal element of this sequene of points lies inÆS as required. |Lemma 7.5.5 Let p and q be two elements of P+(N) so that there exists a hy-perplane of H with respet to whih q is the mirror image of p. Then the Youngdiagrams � and � orresponding to p resp. q satisfy �+ � = 0.Proof Let us onsider two elements p and q of P (N) that are mirror images ofeah other with respet to a hyperplane Hi;j; of H. By equation (7.4.2) we haveq � p = b("i � "j) where b = i� j + (N + l)� h"i � "j; pi106



beause h"i � "j; "i � "ji = 2. By interhanging p and q we may assume thatb � 0. We have "i � "j = �i + � � � + �j�1. Sine p 2 P+(N) we dedue thathp; "i � "ji is an integer. Hene b is a non-negative integer.We denote the element p + b(�j�1 � �j) by y. This element y lies in thehyperplane Hi;j; beausehy; "i � "ji = hp+ b(�j�1 � �j); "i � "ji= hp; "i � "ji+ b h�j�1 � �j; "i � "ji= hp; "i � "ji+ b h�j�1 � �j; �i + � � �+ �j�1i= hp; "i � "ji+ b= hp; "i � "ji+ i� j + (N + l)� h"i � "j; pi= i� j + (N + l):From "i � "j = �i + � � �+ �j�1 and �i = ��i�1 + 2�i � �i+1 we dedue that"i � "j = ��i�1 + �i + �j�1 � �j. Hene y = q + b(�i�1 � �i). We laim thaty lies in P+(N). Sine y lies in P (N), we have to show that hy; �ki � 0 fork = 1; : : : ; N � 1. Sine p and q lie in P+(N) we have that hp; �ki � 0 andhq; �ki � 0 for k = 1; : : : ; N � 1. Fromhy; �ki = hp; �ki+ hb(�j�1 � �j); �kiwe dedue that hy; �ki � 0 for k = 1; : : : ; N � 1 exept k = j. Fromhy; �ki = hq; �ki+ hb(�i�1 � �i); �kiwe dedue the missing ase hy; �ji � 0. Hene y lies in P+(N) and we denotethe orresponding Young diagram by �.We have p = y + b(�j � �j�1) and q = y + b(�i � �i�1). The Young diagramorresponding to q is (�1; : : : ; �i+b; : : : ; �N�1). The Young diagram orrespondingto p is (�1; : : : ; �j + b; : : : ; �N�1) if 1 � j � N � 1, and it is (�1� b; : : : ; �N�1� b)if j = N .The redutions of (�1 � b; : : : ; �N�1 � b) and (�1; : : : ; �N�1; b) agree by thede�nition of the redution. Hene, for any 1 � j � N the redution of p is equalto the redution of (�1; : : : ; �j + b; : : : ; �N�1; �N) with �N = 0.By lemma 6.7.2 we dedue that the redutions of the Young diagrams orre-sponding to p and q add up to zero. |Lemma 7.5.6 The intersetion of P+(N) with the interior of the polyhedron Sfrom Lemma 7.5.2 orresponds to the set of Young diagrams inside the (N�1)�l-retangle. 107



Proof From equation (7.5.4) we dedue that an element p of P+(N) lies in ÆSif and only if hp; "1 � "Ni < l + 1 and hp; "i � "i+1i > �1 for i = 1; : : : ; N � 1.By lemma 7.3.1 this is equivalent to �1 � �N < l + 1 and �i � �i+1 > �1 fori = 1; : : : ; N � 1. Sine � is a Young diagram, the only non-trivial ondition is�1 < l + 1. This means that � lies in the (N � 1)� l-retangle. |Remark The normal vetor ("i� "j) of any hyperplane Hi;j; of H lies in V 0(N).This implies that the deomposition D0 of V 0(N) indued by H is the orthogonalprojetion along ("1+ � � �+ "N) of the deomposition D of V (N). Therefore, thepolyhedra of the deomposition D are non-ompat prisms. The intersetion ofS with V 0(N) is a ompat (N � 1)-simplex. Therefore any polyhedron of thedeomposition D0 is a ompat simplex.7.6 Resum�eWe have identi�ed the Young diagrams with less than N rows that redue tozero to be the intersetion of P+(N) with a family H of hyperplanes of the N -dimensional Eulidean vetor spae V (N). This family of hyperplanes splits the(N�1)-dimensional Eulidean spae V 0(N) � V (N) up into (N�1)-simplies thatan be transformed into eah other by suessive reetion in these hyperplanes.If two elements p1 and p2 of P+(N) di�er by a reetion in a hyperplane Hi;j;then the redutions of their orresponding Young diagrams �1 and �2 respetivelydi�er by the salar (�1). Furthermore, if j 6= N then �1 and �2 di�er by a shiftof ells between the rows i and j hene �1 and �2 have the same number of ells.As a fundamental simplex we hoose the simplex next to the origin whoseelements orrespond to the Young diagrams that lie in the (N � 1)� l-retangle.Hene we have found another way to show that any Young diagram with at mostN � 1 rows is up to a sign ongruent modulo IN;l to a Young diagram in the(N � 1)� l-retangle. We an now interpret the sign as the parity of the numberof reetions that we need in order to bring an element of P+(N) into the simplexnext to the origin.Figure 7.3 shows the situation for N = 3 and l = 3. There are three lassesof parallel hyperplanes in H. Their intersetion with P (N) are the lattie pointsp = a1�1 + a2�2 that satisfy hp; "i � "ji = (l +N) for some 1 � i < j � 3 andinteger . Sine hp; "i � "ji = ha1�1 + a2�2; �i + � � �+ �j�1i = ai + � � � + aj�1,the three lasses are a1 = �1 + 6 for i = 1 and j = 2;a2 = �1 + 6 for i = 2 and j = 3;a1 + a2 = �2 + 6 for i = 1 and j = 3:108



a1 + a2 = 4a1 + a2 = 10 a1 = �1�2 a1 = 5 a1 = 11a2 = 11a2 = 5a1 + a2 = 16�1a2 = �1Figure 7.3: The lattie P (3) � V 0(3) of elements a1�1 + a2�2.Eah shaded triangles is the onvex hull of the intersetion of P+(N) with theinterior of a 3-dimensional polyhedron of the deomposition D of V (3). The anglebetween �1 and �2 is aros �h�1; �2i =qh�1; �1i h�2; �2i� whih is equal to �=3.
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Chapter 8Invertibility of the Hopf matrixat roots of unityWe start with algebrai results in YN;l. We reall that the dual �� of a Youngdiagram � has been introdued in subsetion 1.3.2.8.1 Multipliation in YN;lSine the Young diagrams in the (N �1)� l-retangle are a basis for YN;l, we anwrite the produt of any two Young diagrams as a linear ombination of thesebasis elements. Sine taking the dual is a bijetion of these basis elements, wean write �� =X� b�����in YN;l for integers b��� , and the summation is over all Young diagrams in the(N � 1) � l-retangle. It is easy to ompute these integers. The produt ��is a linear ombination of Young diagrams in Y by the Littlewood-Rihardsonrule. Then one replaes eah of these summands by its redution as desribed insetion 6.4.Obviously, b��� = b��� for any Young diagrams �, � and � beause the mul-tipliation of Young diagrams is ommutative. Interestingly, we will prove inlemma 8.1.5 that b��� = b��� whih implies that any permutation of the indiesleaves b��� invariant. This result explains our motivation to de�ne b��� as theoeÆient of �� in the produt �� instead of referring to the oeÆient of � inthe produt ��.For non-negative integers a and b we denote the retangular Young diagramwith a rows and b olumns by (ba). 110



1 3 3 4 4 421 21 321 321 321Figure 8.1: A strit extension � of � = (6; 3; 1; 1) by � = (6; 5; 5; 3) to (65) =(6; 6; 6; 6; 6).Lemma 8.1.1 Let � be a Young diagram with at most N � 1 rows. The onlyYoung diagram � for whih the summand (�N1 ) appears as a summand in theprodut �� in Y is the dual of �. The Young diagram (�N1 ) appears as a summandwith multipliity 1 in ��� in Y.Proof We assume that � is a Young diagram suh that (�N1 ) appears as a sum-mand in the produt ��. Then there exists a strit extension � of � by � to(�N1 ).In a �rst step, we prove by indution on the length of the �rst row of � thatfor every olumn of � the labelled ells read 1; 2; 3; : : : downwards as shown in�gure 8.1. This is lear in the ase �1 = 0 for the empty Young diagram.Let �1 � 1. The top label of the last olumn is 1 beause the word w(�) startswith 1. Assume that the last olumn of � does not read 1; 2; 3; : : : downwards,i.e. it reads 1; 2; : : : ; i � 1; i; j; : : : with j 6= i + 1. Then j has to be greater thani + 1 beause the last row has to be stritly inreasing downwards. This impliesthat the label i+ 1 appears later than the label j in the word w(�) (beause therows are weakly inreasing from left to right). But this is a ontradition to theonditions on strit extensions. We have thus proved that the last olumn reads1; 2; : : : ; l(�) downwards.We denote by �̂ the Young diagram that derives from � by removing its lastolumn. We remove the last olumn of �, and we get an extension �̂ of �̂ by aYoung diagram �0 (whih derives from � by removing the �rst olumn). Thisextension is easily seen to be strit beause the word w(�̂) derives from w(�) bydeleting the �rst appearane of eah label 1; : : : ; l(�). By the indution hypothesiswe know that every olumn of �̂ reads 1; 2; 3; : : : downwards. Hene, every olumnof � reads 1; 2; 3; : : : downwards.In a seond step, we ount the number of ourrenes of eah label in �. Leti be a label. The label i ours in the j-th olumn of � if and only if �_j + i � N .The number of olumns of � in whih the label i appears is therefore quiklyidenti�ed as �1 � �N�i+1. 111



This implies that �i = �1��N�i+1 beause the number of labels i in � is equalto the length of the i-th row of �. Hene, � = ��.We have thus proved that if there exists a strit extension � of � by � to (�N1 )then � reads 1; 2; 3; : : : in every olumn downwards, and � = ��. In fat, thisextension of � by �� is easily seen to be strit. Its uniqueness implies that theretangular Young diagram (�N1 ) appears exatly one as a summand of ���. |Lemma 8.1.2 The empty Young diagram ; is the only Young diagram that liesin the (N � 1)� 2l-retangle whih redues to either ; or to �; in YN;l.Proof Let � be a Young diagram that �ts in the (N � 1)� 2l-retangle and thatredues to either ; or �;. We write �i +N � 1� i = ki(l+N) + ri with integerski � 0 and 0 � ri � l +N � 1 for i = 1; : : : ; N � 1. Sine � is non-zero, we havethat none of the ri is equal to l +N � 1. Sine �i � 2l we have that ki is equalto either 0 or 1. Hene 0 � K = k1 + � � �+ kN�1 � N � 1.The ase K = 0 appears if and only if either �1 = l+1 (whih is not possiblesine ri 6= l+N�1), or �1 � l in whih ase � = �, and therefore � = �; impliesthat � = ;.From now on we onsider the ase 1 � K � N � 1, i.e. kj = 1 for at least oneindex j. In order that � = �;, we need that�K 0BB� r1...rN�1 1CCAG = �;:This is equivalent to 0BB� r1...rN�1 1CCAG = (l(N�K))where (l(N�K)) denotes the Young diagram that onsists of (N�K) rows of lengthl. This retangular Young diagram an be written as0BBBBBBBBBBBBBBB�
l +N � 2l +N � 3...l + k � 1K � 2K � 3...0
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with the notation from setion 6.4. Hene, if � redues to �; thenfr1; : : : ; rN�1g = fl +N � 2; l +N � 3; : : : ; l +K � 1; K � 2; K � 3; : : : ; 0g:ki = 1 for some index i implies that ri � l�2 beause �i+N�1� i � 2l+N�2.Hene, the above equality of the two sets implies that ki = 1 for at most K � 1indies i. Sine K = k1 + : : :+ kN�1 we get K � K � 1 whih is a ontradition.Hene, there exists no Young diagram in the (N � 1)� 2l-retangle that reduesto �; in the ase 1 � K � N � 1. |The quotient map from the ring of Young diagrams Y to YN;l fators throughYN . The quotient map from Y to YN maps every Young diagram either to zeroor to a Young diagram with less than N rows. The quotient map from Y to YN;lmaps every Young diagram either to zero or (up to a sign) to a Young diagramin the (N � 1)� l-retangle.Lemma 8.1.3 Let � and � be Young diagrams with at most (N �1) rows. If theempty Young diagram appears as a summand of �� in YN then � = ��.Proof If the empty Young diagram appears as a summand of �� in YN then thissummand omes from a summand � of �� in Y whih beomes the empty Youngdiagram in YN , i.e. � is an (N �k)-retangle for some k. Sine � is a subdiagramof any summand of �� in Y, we have that k � �1. In fat, k annot be greaterthan �1 sine any olumn of any (strit) extension of � by � has at most l(�)labelled ells, and l(�) � N�1 by assumption. Hene, � is the (N��1)-retangle,and by lemma 8.1.1 we dedue that � = ��. |Lemma 8.1.4 Let � and � be Young diagrams in the (N � 1) � l-retangle. Ifthe empty Young diagram appears as a summand of �� in YN;l then � = �� inwhih ase the multipliity of the empty Young diagram is equal to 1.Proof We know that in YN we an write the produt �� uniquely as a linearombination of Young diagrams with at most (N � 1) rows. Sine � and � haveat most l olumns, the summands appearing in �� in Y have at most 2l olumnsand the same is true in YN .By lemma 8.1.2 we know that the empty Young diagram is the only Youngdiagram in the (N � 1) � 2l retangle that redues to �; in YN;l. Hene, theempty Young diagram appears in YN;l as a summand of �� if and only if theempty diagram appears as a summand of �� in YN . This happens by lemma8.1.3 if and only if � = �� in whih ase the multipliity of the empty Youngdiagram is equal to 1. |113



Lemma 8.1.5 The oeÆients b��� do not hange under any permutation oftheir indies.Proof Let �, � and � be any Young diagrams in the (N � 1)� l-retangle. Wehave (by de�nition of the integers b���)�� =X� b�����in YN;l, and therefore ��� =X� b������:When we write the right hand side of the above equation as a linear ombinationof Young diagrams in the (N � 1)� l-retangle then the oeÆient of the emptyYoung diagram is equal to b���. This is beause ��� does not involve the emptyYoung diagram unless � = �, and then the oeÆient of the empty diagram isequal to 1 as seen in lemma 8.1.4.The left hand side of the above equation is symmetri under permutation of �,� and � beause YN;l is Abelian. Hene b��� is symmetri under any permutationof its indies. |Let % : YN;l ! YN;l be a ring endomorphism. We de�ne an element
% =X� %(��)� 2 YN;lwhere the sum is over all Young diagrams � that lie in the (N � 1)� l-retangle.Obviously, 
% depends on N and l, but this shall not lead to onfusion beausewe �x N and l throughout.In setion 8.2 we shall onsider YN;l as an algebra over C and onstrut 
%for an algebra homomorphism % : YN;l ! C .Theorem 8.1.6 Let % : YN;l ! YN;l be a ring endomorphism and let � be anyYoung diagram. Then �
% = %(�)
% in YN;l.Proof It is suÆient to prove the statement for elements � of a basis of YN;l.Hene, let � be any Young diagram in the (N � 1)� l-retangle. We have�
% = X� %(��)��= X� %(��)X� b���v�= X� ��X� b���%(��)114



= X� ��% X� b�����!= X� ��% X� b�����!= X� ��%(��)= X� ��%(�)%(�)= %(�)X� %(�)��= %(�)
%where we used that b��� = b��� and that taking the dual indues a permutationof the Young diagrams in the (N � 1)� l-retangle. |8.2 The Hopf matrixWe reall the results and the notation from hapter 5. We onsider the skein of theannulus C with oeÆients C [x�1 ; v�1; s�1; (si� s�i)�1; i � 1℄ and its submoduleC+. We �x a omplex number � suh that �N is a root of unity of order 2(l+N).We denote the substitution x = �, v = �N2 and s = ��N in a rational funtionfrom C (x; v; s) by �N l. We reall that we denote hQ�i by h�i oasionally.We proved in orollary 5.2.1 that Qi := 0 for i � N+1, QN := ;, and Qdj := 0for any j with l+1 � j � l+N � 1. Sine a := b implies that aQ� := bQ� for anyYoung diagram �, we looked in hapter 6 at the ideal IN;l of the ring of Youngdiagrams Y generated by N�0, i for i � N+1, and dj for l+1 � j � l+N�1.In partiular, the map � 7! �N l(h�i) from Y to C fators through YN;l, whereh�i denotes the Homy polynomial of Q� as a subset of R2 . We onsider Y asan algebra over C , and the map � 7! �N l(h�i) as the algebra endomorphism ofY given by � 7! �N l(h�i)0. We de�ne
 =X� �N l(h��i)� 2 C+where the sum is over all Young diagrams � in the (N � 1)� l-retangle. We anapply theorem 8.1.6 and getLemma 8.2.1 Q�
 := hQ�i
 for any Young diagram � in the (N � 1) � l-retangle.We de�ned � for any Young diagram � in setion 6.4. This is either equalto zero or up to a sign equal to a Young diagram �, � = "� where "2 = 1. We115



de�ne Q� = "Q� in this ase. Lemma 6.4.1 shows that � = � modulo the idealof the algebra of Young diagrams generated by N � 0, i for i � N + 1, and djfor l + 1 � j � l +N � 1. We therefore getLemma 8.2.2 Q� := Q� for any Young diagram �.We an extend lemma 8.2.1 now to all Young diagrams �.Lemma 8.2.3 Q�
 := hQ�i
 for any Young diagram �.Proof From lemma 8.2.2 we dedue that hQ�i := hQ�i by looking at the evalua-tion on the unknot. We use lemma 5.2.2 and lemma 8.2.1 to getQ�
 := Q�
 := hQ�i
 := hQ�i
: |The set of Q� for all Young diagrams � is a linear basis for C+ over the salarsC [x�1 ; v�1; s�1; (si � s�i)�1; i � 1℄. We therefore have y
 := hyi
 for any ele-ment y of C+ over the salars C [x�1 ; v�1; s�1; (si � s�i)�1; i � 1℄ whenever thesubstitution �N l is de�ned for hyi.We onsider an oriented link diagram L1 [ L2 in the annulus as depited in�gure 8.2. In fat, this lies in the subalgebra C+ of the skein of the annulus.When we deorate L1 by Q� and L2 by 
 then the resulting element of the skeinof the annulus lies again in C+. This element is a salar multiple p� 
 of Q� byequation (2.4.2). This is similar to lemma 2.4.7. We remark that the orientationof the deoration is now di�erent. The following lemma appeared in [3℄ with adi�erent proof.Lemma 8.2.4 We have p� 
 := 0 for any Young diagram � in the (N � 1) � l-retangle di�erent from the empty diagram provided we hoose � to be a primitiveroot of unity of order 2N(l +N).Proof Let � be a Young diagram in the (N � 1)� l-retangle.We deorate the Hopf link depited in �gure 8.2. We deorate the omponentL1 with Q� and the omponent L2 with the produt of Qi and 
 as depited in�gure 8.3. We denote the resulting element of C+ by T . Eah of the two loopsan be removed at the expense of a salar, hene T is equal to p� ip� 
Q� in C+.On the other hand, we have Qi
 := hQii
 by lemma 8.2.1. Hene the loopdeorated by Qi an be swallowed at the expense of the salar hQii, while theloop deorated with 
 is swallowed at the expense of the salar p�
 as before. Wethus get T := hQii p� 
Q�. When we deorate the unknot by these two elementsof C+, we get by de�nition of := thathhQii p� 
Q�i := hp� ip� 
Q�i ;116



L1L2
Figure 8.2: The Hopf link L1[L2in the annulus.

Q�Qi

Figure 8.3: Deorated Hopf linkin the annulus.whih is equivalent to hQii p� 
 hQ�i := � ip� 
 hQ�i :If � lies in the (N � 1) � l-retangle then �N l(hQ�i) is di�erent from zero bylemma 3.6.1. Hene, hQii p� 
 := p� ip� 
:From now on let � be suh a Young diagram in the (N � 1) � l-retanglefor whih �N l(p� 
) is di�erent from zero. The above equation then implies thatp� Qi := hQii for any i � 0. This implies that hQ�; Qii := hQ�i hQii wherehQ�; Qii is the Homy polynomial of the Hopf link with deorations Q� and Qi.When we look at the de�nition of E�(X) from setion 4.1 we see that theequality hQ�; Qii := hQ�i hQii implies that E�(X) agrees with E;(X) after thesubstitution �N l. Lemma 4.3.3 gives expliit formulas for E�(X) and for E;(X)after the substitution v = s�N . We thus dedue from E�(X) = E;(X) thatNYk=1(1 + sN+2�k�2k+1x2j�jX) := NYj=1(1 + sN�2j+1X)whih is equivalent toNYk=1(1 + s2�k�2kx2j�jX) := NYj=1(1 + s�2jX)sine �N l(sN+1) is non-zero. By the de�nition of := this is equivalent tof��N(2�k�2k)�2j�j j k = 1; : : : ; Ng = f�2Nj j j = 1; : : : ; Ng:In partiular, the value for k = N on the left hand side has to appear in the seton the right hand side. This means that �2N2�2j�j = �2Nj for some 1 � j � N .117



Equivalently, �2(j�j+N2�Nj) = 1. Sine � lies in the (N � 1)� l-retangle we have0 � j�j � (N � 1)l. We have 0 � N2 �Nj < N2 for 1 � j � N . Hene,0 � 2(j�j+N2 �Nj) < 2(N � 1)l + 2N2 = 2N(l +N)� 2l < 2N(l +N):We hose � to be a root of unity of order 2N(l + N), hene �2(j�j+N2�Nj) = 1implies that 2(j�j + N2 � Nj) = 0 whih implies that j�j = 0, hene � is theempty diagram.Our assumption that �N l(p� 
) is di�erent from zero for some Young diagram� in the (N�1)� l-retangle has led us to the result that � is the empty diagram.This implies that p� 
 := 0 for any Young diagram � in the (N � 1)� l-retangledi�erent from the empty diagram. |We immediately dedue from lemma 8.2.4 thatCorollary 8.2.5 h
; Q�i := 0 for every Young diagram � in the (N � 1) � l-retangle di�erent from the empty Young diagram.The following lemma settles the ase � = ; whih is not overed by lemma8.2.4. We obviously have p; 
 = h
i.Lemma 8.2.6 h
i beomes a positive real number after substituting v = s�N andthen substituting s by any omplex number of norm equal to 1.Proof We denote by P the omplex number derived from hQ�i by �rst substi-tuting v = s�N and then substituting s by a omplex number � of norm equalto 1. By lemma 4.1.5 and equation (4.3.9) we have that hQ�i beomes after thesubstitution v = s�N the Shur funtion in the variables s�N+1; s�N+3; : : : ; sN�1.Hene, P is the Shur funtion s� in the variables ��N+1; ��N+3; : : : ; �N�1. Theonjugate of � is equal to ��1 beause the norm of � is equal to 1. Hene, on-jugation indues a permutation of the variables of the Shur funtion s�. Sinethe Shur funtion is symmetri in its variables, the onjugate of P is equal toP . Hene, P is a real number and P 2 is a non-negative real number.We have 
 = P� hQ�iQ�, heneh
i =X� hQ�i2where the summation is over all Young diagram in the (N � 1) � l-retangle.Hene, h
i beomes a non-negative real number after �rst substituting v = s�Nand then s = � . In fat, this sum is positive beause the summand for the emptyYoung diagram is equal to 1. |118



Remark One an prove that �N l(hQ�i) is a real number diretly from lemma3.6.1 beause eah fration appearing as a fator in the formula is self-onjugateand therefore real. The denominators do not beome zero beause the hook lengthof any ell of any Young diagram in the (N�1)�l-retangle is smaller than l+N .Even though this alternate proof is more straightforward, the above proof givesa more detailed view on hQ�i.Lemma 8.2.7 h�i = h��i for any Young diagram � with at most (N � 1) rowsafter the substitution v = s�N .Proof This is heked quikly by lemma 3.6.1 by substituting v = s�N . In fat,it is suÆient to show this for � equal to all olumn diagrams, i.e. hii = hN�ii.Lemma 1.3.4 then ensures that h�i = h��i for any Young diagram � with at mostN � 1 rows. |Lemma 8.2.8 Let � and � be Young diagrams with at most N � 1 rows. Thenh��; �i is the omplex onjugate of h�; �i after the substitutions s2(l+N)=1, v = s�Nand xN = s�1.Proof We have ��i = �1� �N�i+1 for i = 1; : : : ; N � 1, and j��j = N�1� j�j. Bylemma 4.3.3 we getEN��(X) = NYi=1(1 + sN+2��i�2i+1x2j��jX)= NYi=1(1 + sN+2(�1��N�i+1)�2i+1x2(�1N�j�j)X)= NYi=1(1 + sN�2�N�i+1�2i+1x�2j�jX)= NYj=1(1 + s�N�2�j+2j�1x�2j�jX)where we used that xN = s�1. Hene, EN��(X) is the omplex onjugate of EN� (X).Lemma 4.1.5 implies that 1�� h��; �i = 1h�ih�; �i:Lemma 8.2.7 �nally implies that h��; �i = h�; �i. |
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We �x from now on an arbitrary total ordering of all the Young diagrams thatlie in the (N�1)�l-retangle. The indies of any of the following square matriesare ordered in this way. We denote byH the matrix whose entry indexed by Youngdiagrams � and � is the Homy polynomial h�; �i of the Hopf link (with framingzero and linking number 1) deorated by Q� and Q�. Clearly, H is symmetri.We denote the identity matrix by E.Theorem 8.2.9 We have HH = �N l(h
i)Eafter the substitutions s = x�N , v = s�N , and x by a root of unity of order2N(l +N).Proof The entry k� � of HH indexed by � and � is equal toX� h�; �ih�; ��iwhere the summation is over all Young diagrams � that lie in the (N � 1) � l-retangle. By lemma 4.1.3 we have that h�; �ih�; �i = h�i h�; ��i, henek�� = X� h�i h�; ���i= h
; ���i:= h
; ���iwhere we used lemma 8.2.3 in the last equality. We an write ��� as a linearombination of Young diagrams in the (N � 1)� l-retangle. By orollary 8.2.5we see that only the multipliity of the empty Young diagram makes a non-zeroontribution.We know by lemma 8.1.4 that the empty Young diagram appears as a sum-mand in ��� if and only if � = � in whih ase it appears with multipliity equalto 1. Hene, k�� = �N l(h
i) and k�� = 0 if � 6= �. |
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Chapter 9Homy polynomials at roots ofunity and YN;lWe �x integers N � 2 and l � 1. We onsider the substitutions of s by a primitiveroot of unity of order 2(l+N), x by an N -th root of s�1, and v by s�N . We shallabbreviate this by s2(N+l) = 1, xN = s�1, and v = s�N . We denote the Homypolynomial after these substitutions by �N;l.9.1 Homy polynomials at roots of unityLemma 9.1.1 hQdli = 1 after the substitutions v = s�N and s2(l+N) = 1.Proof We have sN+i � s�N�i = sN+l(si�l � s�2N�i�l)= �sN+l(sl�is�2(l+N) � si�l)for any integer i. If s is a primitive root of unity of order 2(l + N) then sl+Nis equal to �1 and therefore sN+i � s�N�i = sl�i � si�l. Lemma 3.6.1 gives aformula for hQdli with substitutions v = s�N and s2(l+N) = 1,hQdli = v�1 � vs� s�1 v�1s� vs�1s2 � s�2 � � � v�1sl�1 � vs�l+1sl � s�l= sN � s�Ns� s�1 sN+1 � s�N�1s2 � s�2 � � � sN+l�1 � s�N�l+1sl � s�l= sl � s�ls� s�1 sl�1 � s�l+1s2 � s�2 � � � s� s�1sl � s�l= 1where we used that sN+i � s�N�i = sl�i � si�l. |121



Qdl Qdl Qdl Qdl= s2x�2l = s�2x2lFigure 9.1: Swithing rossings at the expense of the salar (s2x�2l)�1.Qdl Qdl Qdl Qdl= (s2x�2l)l Qdl Qdl Qdl Qdl= (s�2x2l)lFigure 9.2: Swithing rossings at the expense of the salar (s2x�2l)�l.Whenever we have loally a omponent deorated with Qdl overpassing asimple ar in a rossing of sign " then we an swith the rossing at the expenseof the salar (s�2x2l)" as shown in �gure 9.1 provided we make the substitutionsxN = s�1, v = s�N and s2(l+N) = 1. The argument is virtually the same as inlemma 5.1.4 and the formula an be derived as well from �gures 5.2 and 5.3 byapplying the map  from subsetion 2.4.1 that replaes s by �s�1.We get the skein relations in �gure 9.2 by applying the orresponding skeinrelations in �gure 9.1 l-times to eah summand of Qdl . This is possible beauseQdl an be written as a sum of diagrams eah looking like l parallel ars near therossing.We know by theorem 17 in [2℄ that in the Heke algebra Hl we an remove aurl deorated by the idempotent orresponding to dl at the expense of a salarf that is given by f = xl2v�lsl(l�1):We de�ne p by p = �s�1xl:We have pl = f when we substitute v = s�N and s2(l+N) = 1 beausepl = (sl+Ns�1xl)l = xl2slNsl(l�1)where we used that sl+N = �1.The salars appearing in �gure 9.1 are p�2 and p2.Remark By onneting in �gure 9.2 the ars with a straight line at the right,we see that hanging from a positive url to a negative url means multipliationwith the salar (s�2x2l)l, i.e. f 2 = (s�2x2l)l. But this determines the value of fonly up to a sign. To get the exat value of f we need the omputation from [2℄as mentioned above. 122



Lemma 9.1.2 We have �N;l(K;Qdl) = pwr(K)l for any framed knot K.Proof We onsider a diagram of K with blakboard framing. It is possible byswithing some, say r, of the rossings of K to get a diagram K 0 of the unknot.Among these r swithes there are a swithes that transform a positive rossinginto a negative rossing, and b swithes that transform a negative rossing into apositive rossing, r = a+ b. We have wr(K 0) = wr(K) + 2b� 2a. We have�N;l(K;Qdl) = (p2l)a(p�2l)b�N;l(K 0;Qdl)by the skein relation in �gure 9.2.Using regular isotopy we an transform K 0 into a irle O plus a number ofpositive and negative urls, say  resp. d. We have wr(K 0) =  � d. A positive(resp. negative) url may be removed by introduing the salar f (resp. f�1).Therefore, �N;l(K 0;Qdl) = f f�d�N;l(O;Qdl) = fwr(K0) = fwr(K)+2b�2awhere we used the result �N;l(O;Qdl) = 1 from lemma 9.1.1.We merge the above two lines of equations and get�N;l(K;Qdl) = p2l(a�b)�N;l(K 0;Qdl)= p2l(a�b)fwr(K)+2b�2a= pwr(K)lbeause f = pl after the substitutions v = s�N and xN = s�1. |9.2 Linking matrix and �-operationsThe linking number vij between di�erent omponents Li and Lj of a link diagramL is de�ned as the sum of the signs of all overpasses of Li over Lj. It is easilyseen to be invariant under all Reidemeister moves and is therefore an invariantof links under ambient isotopy. One veri�es the symmetry vij = vji by looking atthe diagram L �rst from above and then from below.We de�ne the self linking number of a knot diagram K to be the linkingnumber between the two omponents of the blakboard 2-parallel of K. In theontext of framed knots, this is the linking number between the knot and a parallelthat represents the framing. It is lear that this agrees with the writhe of K. Fora link diagram L we denote by vii the self linking number of the omponent Li.123



Lemma 9.2.1 Given a framed link L = L1 [ L2 [ : : : [ Lt and Young diagrams�2; : : : ; �t. Then�N;l(L1 [ L2 [ : : : [ Lt;Qdl; Q�2 ; : : : ; Q�t) =�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t)plv11+2Pti=2 j�ijv1i :Proof We onsider a diagram of L with blakboard framing. We look at arossing of L where the omponent L1 rosses over another omponent Li, i 6= 1.We denote the sign of this rossing by ". We swith this rossing to an underpassfor L1. We denote the resulting link by L0. We have�N;l(L;Qdl; Q�2 ; : : : ; Q�t) = p2"j�ij�N;l(L0;Qdl; Q�2 ; : : : ; Q�t):beause Q�i an be written as a sum of diagrams eah of whih looks like j�ijparallel ars near the rossing. Applying the (left for " = �1 resp. right for " = 1)skein relation in �gure 9.1 j�ij-times gives the result. Doing this for all overpassesof L1 with all the other omponents we separate the deorated omponent L1 andget�N;l(L;Qdl ; Q�2 ; : : : ; Q�t) =p2Pti=2 j�ijv1i�N;l(L1;Qdl)�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t):We use lemma 9.1.2 and get�N;l(L;Qdl ; Q�2 ; : : : ; Q�t) = plv11+2Pti=2 j�ijv1i�N;l(L2 [ : : : [ Lt;Q�2 ; : : : ; Q�t):|Lemma 9.2.2 Given a framed link L = L1[ : : :[Lt, Young diagrams �1; : : : ; �t,and non-negative integers n1; : : : ; nt. Then�N;l(L;Q�1Qn1dl ; : : : ; Q�tQntdl ) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1;:::;nt;j�1j;:::;j�tj;fvijg)where �(a1; : : : ; at; b1; : : : ; bt; fvijg) = X1�i;j�t aivij(2bj + laj):Proof By indution on n = n1 + � � �+ nt. We proved the ase n = 1 in lemma9.2.1.We onsider the ase n � 2. We renumber the omponents so that n1 � 1. In-stead of deorating the omponent Li with Q�iQnidl , for all i = 1; : : : ; t, we an on-sider the (ni+1)-parallel of Li and deorate the omponents by Q�i; Qdl ; : : : ; Qdl.124



We an use lemma 9.2.1 to remove one of the omponents of Ln1+11 deorated byQdl . We get�N;l(L;Q�1Qn1dl ; : : : ; Q�tQntdl )= �N;l(Ln1+11 [ : : : [ Lnt+1t ;Q�1 ; Qdl ; : : : ; Qdl| {z }n1 ; : : : : : : ; Q�t; Qdl ; : : : ; Qdl| {z }nt )= �N;l(Ln11 [ : : : [ Lnt+1t ;Q�1 ; Qdl ; : : : ; Qdl| {z }n1 ; : : : : : : ; Q�t; Qdl ; : : : ; Qdl| {z }nt )p�= �N;l(L;Q�1Qn1�1dl ; : : : ; Q�tQntdl )p�where � = lv11 + 20�j�1jv11 + (n1 � 1)lv11 + tXj=2(j�jjv1j + njlv1j)1A= v11(2j�1j+ l(2n1 � 1)) + 2 tXj=2 v1j(j�jj+ njl):The remaining part of the proof is algebrai. Our indution hypothesis is that�N;l(L;Q�1Qn1�1dl ; : : : ; Q�tQntdl ) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1�1;:::;nt;j�1j;:::;j�tj;fvijg):To aomplish the indution step we have to prove that�(n1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) = �(n1 � 1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) + �:We have�(a1; : : : ; at; b1; : : : ; bt; fvijg) = tXi=2 aivi1(2b1 + la1) + tXj=2 a1v1j(2bj + laj)+a1v11(2b1 + la1) + X2�i;j�t aivij(2bj + laj)and the last summand is not a�eted by the value of a1. Therefore�(a1; a2; : : : ; at; b1; : : : ; bt; fvijg)� �(a1 � 1; a2; : : : ; at; b1; : : : ; bt; fvijg)= tXi=2 aivi1(2b1 + la1) + tXj=2 a1v1j(2bj + laj) + a1v11(2b1 + la1)�� tXi=2 aivi1(2b1 + l(a1 � 1)) + tXj=2(a1 � 1)v1j(2bj + laj)+(a1 � 1)v11(2b1 + l(a1 � 1))�125



= tXi=2 aivi1l + tXj=2 v1j(2bj + laj) + v11(2b1 + l(2a1 � 1))= v11(2b1 + l(2a1 � 1)) + 2 tXj=2 v1j(bj + laj):Substituting ai = ni and bj = j�jj for i = 1; : : : ; t and j = 1; : : : ; t we get fromthe above equation that�(n1; : : : ; nt; j�1j; : : : ; j�tj; fvijg)� �(n1 � 1; : : : ; nt; j�1j; : : : ; j�tj; fvijg) = �as laimed. This ompletes the indution step. |Lemma 9.2.3 We havep�(a1;a2;:::;at;b1;:::;bt;fvijg) = p�(a1+N;a2;:::;at;b1;:::;bt;fvijg)for any integers a1; : : : ; at; b1; : : : ; bt and fvijg.Proof We have�(a1 +N; a2; : : : ; at; b1; : : : ; bt; fvijg)� �(a1; a2; : : : ; at; b1; : : : ; bt; fvijg)= lv11((a1 +N)2 � a21) + 2l tXj=2 v1jaj(a1 +N � a1) + 2 tXj=1 v1jbj(a1 +N � a1)= lv11(N2 + 2a1N) + 2Nl tXj=2 v1jaj + 2N tXj=1 v1jbjwhih is an integer linear ombination of 2N and N2. In order to omplete theproof we mention thatp2N = (�s�1xl)2N = s�2Nx2lN = s2lx2lN = (sxN )2l = 1and pN2 = (�s�1xl)N2 = (�1)N2(sNlxN2l)s�Nl�N2= (�1)N2s�N(N+l) = (�1)N2�N = (�1)N(N�1) = 1are both equal to 1. |Lemma 9.2.3 follows in the ase of non-negative integers a1; : : : ; an immediatelyfrom the fat that dNl = ; in the ring YN;l.126



Theorem 9.2.4 Given a framed link L = L1[: : :[Lt, Young diagrams �1; : : : ; �t,and integers n1; : : : ; nt. Then�N;l(L;Q�n1 (�1); : : : ; Q�nt (�t)) = �N;l(L;Q�1 ; : : : ; Q�t)p�(n1;:::;nt;j�1j;:::;j�tj;fvijg)where �(a1; : : : ; at; b1; : : : ; bt; fvijg) = X1�i;j�t aivij(2bj + laj):Proof We know that dl� = �(�) in YN;l for any Young diagram � by lemma 6.2.1.We know by the remarks at the end of setion 5.2 that the Homy polynomialdoes not distinguish between deorations Q� and Q� if � = � in YN;l providedone substitutes v = s�N , xN = s�1 and s2(l+N) = 1. Hene, lemma 9.2.2 anbe restated with Q�ni (�i) in plae of Q�iQnidl . Sine �N(�) = � for any Youngdiagram � and by the result of lemma 9.2.3 we an admit negative ni, too. |With the substitutions = exp� �il +N � and x = exp � �i(l +N)N !we get p = �s�1xl = �xN+l = � exp���iN � :We denote � = �(a1; : : : ; at; b1; : : : ; bt; fvijg). We have � � lviia2i mod 2 beausevij = vji. We thus get (�1)� = exp(�i�)= exp �il tXi=1 viia2i!= exp �iN Nl tXi=1 viia2i! :We thus getp� = �� exp(��iN )��= exp �iN  Nl tXi=1 viia2i � �!!= exp0��iN 0�Nl tXi=1 viia2i � X1�i;j�t aivij(2bj + laj)1A1A : (9.2.1)127



If bi (whih is the number of ells of �i) is ongruent to zero modulo N for alli = 1; : : : ; t then 2P1�i;j�t vijaibj � 0 mod 2N , and thusp� = exp0��iN 0�Nl tXi=1 viia2i � l X1�i;j�t aivijaj1A1A= exp0��iN (N � 1)l X1�i;j�t aivijaj1A (9.2.2)beause p2N = 1 and tXi=1 viia2i � X1�i;j�t aivijaj mod 2:Equations (9.2.1) and (9.2.2) are given in proposition 3.2.1 in [16℄. We remarkthat Kohno and Takata are using the letter k rather than l.9.3 Transposing and onjugation, one wayWe denote by L the mirror image of a link diagram with blakboard framing. Wedenote the omplex onjugate of a omplex number by an overline as well.Lemma 9.3.1 Let L = L1 [ � � � [ Lt be a link diagram with blakboard framing,and let �; : : : ; � be Young diagrams. Then�N;l(L;Q�; : : : ; Q�) = �N;l(L;Q�; : : : ; Q�):Proof We apply the map � from subsetion 2.4.1 to the link diagram L deoratedby Q�; : : : ; Q�. This leaves every Q� invariant, beause Q� is a polynomial inQdi 'swhih are invariant under � by lemma 2.4.4. The map � maps L to its mirrorimage L.This tells us in the skein of the plane that � maps L deorated with Q�; : : : ; Q�to L deorated by Q�; : : : ; Q�. Therefore, the Homy polynomial (whih is arational funtion in x, v and s) of L deorated with Q�; : : : ; Q� is mapped to theHomy polynomial of L deorated by Q�; : : : ; Q�. We have by de�nition that�(s) = s�1, �(x) = x�1 and �(v) = v�1. Sine s, x and v are roots of unity, andthe onjugate of any omplex number with absolute value 1 is equal to its inverse,we have �N;l(L;Q�; : : : ; Q�) = �N;l(L;Q�; : : : ; Q�): |128



Lemma 9.3.1 relates the Homy polynomial of a link L deorated with Q�; : : : ; Q�to the Homy polynomial of its mirror image with the same deorations.We now relate the Homy polynomial of a link L deorated with Q�; : : : ; Q�to the Homy polynomial of L deorated with Q~�; : : : ; Q~� where ~� lies in thesame �-orbit as the transposed Young diagram �_ of �. The Homy polynomialswill turn out to be the omplex onjugate of eah other.Given a Young diagram � in the (N�1)�l-retangle we see that the transposedYoung diagram �_ lies in the l � (N � 1)-retangle, and in Yl;N it is thereforeequal to a Young diagram in the (l � 1) � N -retangle by removing all initialolumns of length l.Given a link L and deorations Q�; : : : ; Q� on its omponents, the Homypolynomial of this deorated link is a rational funtion p(x; v; s) in x, v and s.The Homy polynomial of L with deorations Q�_; : : : ; Q�_ is a rational funtionq(x; v; s) in x, v and s. We have q(x; v; s) = p(�x;�v; s�1) and q(x; v; s) =p(x; v;�s�1) by lemma 3.6.2.We want q(x; v; s) to be the onjugate omplex number of p(x; v; s) aftersubstitutions or something similar. We have to be areful about the substitution.We want the 2(l + N)-th root of unity ! to be substituted for s to be the samein the ontext of YN;l and Yl;N .The value to be substituted for v in the ontext of YN;l is s�N . In the ontextof Yl;N we substitute v by s�l. We denote v1 = s�N and v2 = s�l.The value for x involves a hoie. In the ontext of YN;l the ondition isxN = s�1 and our hoie x1 is therefore determined up to an N -th root of unity.In the ontext of Yl;N the ondition is xl = s�1, and our hoie x2 is thereforedetermined up to an l-th root of unity.The problem with the approah q(x; v; s) = p(x; v;�s�1) is that the omplexonjugate of s is rather s�1 than �s�1.The approah q(x; v; s) = p(�x;�v; s�1) seems to be appropriate, sine s�1is the onjugate of s, and �v in the ontext Yl;N is the onjugate of v in theontext YN;l beause �v2 = �s�l = sN = v�11 = v1 sine sN+l = �1. A problemours for x, sine �x2 is hardly ever the onjugate of x1. (Well, sometimes it is,as desribed in setion 9.4). We take aount of this problem with x by hoosinga suitable element in the �-orbit of the transposed Young diagram. First, weonsider the approah via q(x; v; s) = p(x; v;�s�1).We denote the Homy polynomial after the substitutions v = v1, x = x1 ands = ! by �N;l. We denote the Homy polynomial after the substitutions v = v2,x = x2 and s = ! by �l;N .
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9.3.1 Transposing from YN;l to Yl;NThe de�nition of the �-operation in setion 6.2 was given in the ontext of YN;l, i.e.for Young diagrams in the (N � 1)� l-retangle. Here, we denote this operationby �l. In the ontext of Yl;N , i.e. for Young diagrams in the (l�1)�N -retangle,we denote the addition of an initial row of length N to a Young diagram �and then removing all olumns of length l by �N (�). We have �Nl (�) = � and�Nl (�) = � for any Young diagrams � and � in the (N � 1) � l-retangle resp.(l � 1)�N -retangle.First, we make the meaning of transposing preise. Consider maps,F : fYoung diagrams in (N � 1)� l-retangleg !fYoung diagrams in (l � 1)�N -retangleggiven by transposing the Young diagram and then removing all initial olumnsof length l. Similarly:G : fYoung diagrams in (l � 1)�N -retangleg !fYoung diagrams in (N � 1)� l-retangleggiven by transposing the Young diagram and then removing all initial olumnsof length N . It is lear thatG(��N�1N (F (�l(�)))) = �and �jl (GF (�)) = �where j is the number of initial rows of length l in �. We have �Nl (�) = � for anyYoung diagram � in the (N � 1)� l-retangle. The above equations imply thatG and F indue a bijetion of the �l-orbits and the �N -orbits. This bijetion willbe revisited in lemma 10.1.3.The equality j�(�)j = j�j+ l�N�N�1 implies that j�(�)j � j�j+ l mod N . IfN and l are oprime then there exists exatly one element in eah �-orbit whosenumber of ells is divisible by N . If N and l are not oprime then the existeneof suh Young diagrams is not guaranteed. If j�j is divisible by N then �� j�jNN (�_)is a Young diagram in the (l� 1)�N -retangle whose number of ells is divisibleby l. The following theorem was motivated by Proposition 3.3.2 in [16℄Theorem 9.3.2 Let N � 2 and l � 1. Let �1; : : : ; �t be Young diagrams in the(N � 1)� l-retangle suh that N divides the number of ells of eah �i. Denote�i = �� j�ijNN �(�i)_�. Then, for any framed link L,�N;l(L;Q�1 ; : : : ; Q�t) = �l;N(L;Q�1 ; : : : ; Q�t):130



Proof We have�(L;Q�1 ; : : : ; Q�t) = xy�(L;Q�1 ; : : : ; Q�t)x=1 (9.3.3)where y is the writhe of the diagram where every omponent Li is replaed by itsj�ij-parallel, i = 1; : : : ; t. This is a straightforward extension of orollary 4.1.2.Here, y = X1�i<j�t 2vijj�ijj�jj+ tXi=1 viij�ij2 (9.3.4)beause for i 6= j, we have that vij is half the sum of the signed rossings betweenthe omponents Li and Lj of L. Furthermore, vii is the writhe of the ompo-nent Li. Considering the parallels, any rossing between omponents Li and Ljbeomes j�ijj�jj rossings of the same sign. This establishes equation (9.3.4).We have by theorem 9.2.4 that�l;N(L;Q�a1 (�1); : : : ; Q�at (�t)) = pw2 �l;N(L;Q�1 ; : : : ; Q�t)where w = X1�i;j�t aivij(2j�ij+Naj):Sine the number of ells of eah �j is divisible by l and p2l2 = 1, we an usew0 = X1�i;j�t aiajvijNinstead of w in the above equation. In partiular, for ai = j�ij=N we have�l;N(L;Q(�1)_; : : : ; Q(�t)_) = pw02 �l;N(L;Q�1 ; : : : ; Q�t)where w0 = y=N in this ase.We have�(L;Q(�1)_; : : : ; Q(�t)_) = �(L;Q�1 ; : : : ; Q�t)x7!�x; v 7!�v; s7!s�1by lemma 3.6.2. Hene, by equation (9.3.3),�(L;Q(�1)_; : : : ; Q(�t)_) = (�x)y�(L;Q�1 ; : : : ; Q�t)x=1;v 7!�v;s 7!s�1:Making the substitutions in the ontext of Yl;N we get�l;N(L;Q(�1)_; : : : ; Q(�t)_) = (�x2)y�(L;Q�1 ; : : : ; Q�t)x=1;v 7!�!�l;s7!!�1:131



From equation (9.3.3) and the above equations we get�N;l(L;Q�1 ; : : : ; Q�t) = xy1�N;l(L;Q�1 ; : : : ; Q�t)x=1= x�y1 �(L;Q�1 ; : : : ; Q�t)x=1; v 7!!�N ; s7!!= x�y1 �(L;Q�1 ; : : : ; Q�t)x=1; v 7!�!�l; s7!!�1= x�y1 (�x2)�y�l;N(L;Q(�1)_; : : : ; Q(�t)_)= (�x1x2)�ypw02 �l;N(L;Q�1 ; : : : ; Q�t):We thus have to prove that (�x1x2)y = pw02 :Sine p2 = �!�1xN2 = �xN+l2 , the above equation is equivalent to(�x1x2)y = (�xN+l2 ) yN :Sine N divides any j�ij, i = 1; : : : ; t, we have that y = N2 for some integer .We thus have to prove that (�x1x2)N2 = (�xN+l2 )Nfor any integer . We have that (�1)N2 = (�1)N , and it is therefore suÆientto prove that (x1x2)N = x(N+l)2 :This is equivalent to xN1 = xl2whih is true sine x1 is an N -th root of !, and x2 is an l-th root of !. |9.4 Transposing and onjugation, the other wayWe set s = exp 2�i k2(l +N)!where k is an integer oprime to 2(l +N), and 1 � k � 2(l +N). We setx1 = exp � 2�ik2(l +N)N + 2�irN !for some 0 � r � N � 1. We setx2 = exp � 2�ik2(l +N)l + 2�iql !for some 0 � q � l � 1. 132



The other way to ahieve that q(x; v; s) (= p(�x;�v; s�1)) is the onjugateof p(x; v; s) is by hoosing the substitutions for x, v and s in suh a way that theonjugate of s is equal s�1, that the onjugate of v1 is equal to �v2, and that theonjugate of x1 is equal to �x2.Sine s, v and x are roots of unity after the substitutions we have that theironjugates are equal to their inverses. Hene, the onjugate of s is equal to s�1.The onjugate of v1 is equal to v�11 , andv�11 = �s�N��1 = sN = sN+ls�l = �s�l = �v2satis�es the above ondition. The only remaining ondition is that x�11 = �x2.This is equivalent to x1x2 = �1. The rest of this setion solves the question whenx1x2 is equal to �1. It turns out that there are unique solutions for x1 and x2provided that l and N are oprime odd integers.RemarkWe have that q(x; v; s) = p(x; v;�s�1), too, but there are no hoies fork, r and q suh that the onjugate of x1 is equal to x2. This is beause x1x2 = 1leads to the equation 2(rl+ qN)� k � 2Nl mod Z whih implies that k is even.This ontradits the ondition that k and 2(l +N) are oprime.9.4.1 When is x1x2 = �1?The equation x1x2 = �1 is equivalent toexp � 2�ik2(l +N)N + 2�irN ! exp � 2�ik2(l +N)l + 2�iql ! = exp(�i)by our above notation. This equation is equivalent to� k2(l +N)N + rN +  � k2(l +N)l + ql ! � 12where ongruene means here and in the following ongruene modulo Z. Thisongruene is equivalent to 2(rl + qN)� k2Nl � 12 : (9.4.5)In partiular, Nl is a divisor of 2(rl+ qN)� k, and there exists an integer a suhthat 2(rl + qN)� k = aNl:This implies that the greatest ommon divisor g::d:(l; N) of l and N is a divisorof k. Sine k is supposed to be oprime to 2(l +N), and g::d:(l; N) is a divisor133



of (l + N), we dedue that g::d:(l; N) has to be equal to 1, i.e. l and N areoprime.If N or l is even then the equation 2(rl + qN) � k = aNl implies that k iseven. This is in ontradition to the ondition that k and 2(l +N) are oprime.We have proved so farLemma 9.4.1 Let l, N and k be positive integers so that k is oprime to 2(l+N),and 1 � k � 2(l+N). There exists a solution to r and q to the ondition (9.4.5)only if l and N are oprime odd integers.We desribed in subsetion 9.3.1 a relation between the Young diagrams inthe (N � 1)� l-retangle and the Young diagrams in the (l � 1) � N -retangle.The relation is indued by transposing a Young diagram and then reduing it toits representative in the (l� 1)�N -retangle. But in order to be a bijetion, wehave to onsider the �-orbits of the Young diagrams.The e�et of the �-operation an be ontrolled by theorem 9.2.4. In order tobe able to neglet the inuene of the �-operation we want p to be equal to 1 inthe ontext of YN;l and Yl;N . We reall that p1 = �s�1xl1 in the ontext of YN;l,and p2 = �s�1xN2 in the ontext of Yl;N .The ondition �s�1xl1 = 1 is equivalent to s�1xl1 = �1 whih is equivalent bythe above equations to� k2(l +N) + l � k2(l +N)N + rN ! � 12 :This equation an be written as2rl � k2N � 12 : (9.4.6)We want p2 = �s�1xN2 = 1 as well. This is equivalent to2qN � k2l � 12 (9.4.7)whih di�ers from ondition (9.4.6) by interhanging l and N and interhangingr and q.Given oprime odd integers N and l, and an integer k oprime to 2(l+N), and1 � k � 2(l+N), we are looking for solutions for r and q that satisfy onditions(9.4.5), (9.4.6) and (9.4.7).If r and r0 are solutions to ondition (9.4.6) then 2N divides 2(r�r0)l and thusr � r0 mod N . Similarly, any solution q to (9.4.6) is unique up to ongruenemodulo l. 134



Sine l and N are oprime and odd we have that 2l and N are oprime. Hene,there exist integers  and d suh that2l + dN = 1;and in partiular d is odd. We dedue that2kl � kN = �kdand therefore r = kis a solution for ondition (9:4:6) beause �kd is odd sine k and d are odd.Sine 2l + dN = 1, we have (d + l)N � 1 = l(N � 2) where N � 2 is odd,and d+ l is even. Thereforek(d+ l)N � kl = k(N � 2);and therefore q = k(d+ l)2is a solution to ondition (9.4.7).We have to hek ondition (9.4.5) for these solutions. We have2(rl + qN)� kNl = 2(kl + k(d+l)2 N)� kNl= k2l + (d+ l)N � 1Nl= k (2l + dN)� 1 + lNNl= kwhih is an odd integer and thus ondition (9.4.5) is satis�ed. We an summarizeour onsiderations.Lemma 9.4.2 Given positive integers l and N , there exists an integer k oprimeto 2(l+N) and integers r and q satisfying onditions (9.4.5) only if l and N areoprime odd integers.Given positive oprime odd integers l and N and an integer k oprime to2(l + N). Let  and d be integers that satisfy 2l + dN = 1. The there exist aninteger r = k (unique up to ongruene modulo N) and an integer q = k(d+ l)=2(unique up to ongruene modulo l) that satisfy onditions (9.4.5), (9.4.6) and(9.4.7). 135



Remark For the solution r = k we get by our onstrutionx1 = exp �ik(2� d)l +N ! and x2 = x�1:We �nally show that the solutions r and q are symmetri, i.e. if we interhangeN and l then the orresponding solutions are r0 = q up to ongruene modulo N ,and q0 = r up to ongruene modulo l.Lemma 9.4.3 The interhange of N and l interhanges the solutions r and q.Proof Given oprime odd integers l and N we have2l + dN = 1 and20N + d0l = 1for some integers , 0, d and d0. The solutions we found arer = k; q = kd+ l2 and, symmetriallyr0 = k0; q0 = kd0 +N2 :We have to show thatk0 � kd+ l2 mod l and k � kd0 +N2 mod Nfor any integer k oprime to 2(l +N). In fat, we show that0 � d+ l2 mod l; and  � d0 +N2 mod N:We have by the above equation that2l + dN = 20N + d0l;hene (2� d0)l = (20 � d)N:Sine l and N are oprime, we dedue that N divides 2 � d0, and l divides(20 � d), hene 2 � d0 mod N and 20 � d mod l:This implies that 2 � d0+N mod N . The integer d0 is odd beause 20N+d0l = 1.Hene, the sum of two odd integers d0 +N is even. Sine N is odd, we have � d0 +N2 mod N:Similarly, we have that 0 � (d + l)=2 mod l, and this ompletes our proof thatr0 � q mod N and q0 � r mod l. |136



Chapter 10Young-solutionsWe �x integers N � 2 and l � 1. We �x �, a primitive root of unity of orderl + N . We denote El+N = f1; �; : : : ; � l+N�1g, the set of all (l + N)-th roots of1. We denote � = exp(2�i=N). But in setion 10.4 we shall denote by � anotherprimitive N -th root of unity.10.1 Enoding Young diagrams in the unit ir-leTo every Young diagram � in the (N � 1)� l-retangle we assign a set T� of Npoints on the unit irle in the omplex plane,T� = f1; ��N�1+1; ��N�2+2; : : : ; ��1+N�1g:This desribes a bijetion between the Young diagrams in the (N�1)�l-retangleand the setT = ff1; �a1; : : : ; �aN�1g j 1 � a1 < � � � < aN�1 � l +N � 1g:In partiular, we see that the number of Young diagrams in the (N � 1) � l-retangle is equal to �l+N�1N�1 �. We denote ��N�k+k as the k-th element of T�,0 � k � N � 1.The group of symmetries (i.e. Eulidean isometries) of the set El+N is thedihedral group Zl+N / Z2 whih is generated by the reetion in the x-axis (i.e.onjugation) and the rotation by the angle 2�=(l + N) (i.e. multipliation byexp(2�i=(l +N))).The suessive rotations by the angle 2�=(l + N) do not at on T beauseevery T� has to ontain the element 1.137



But there is an operation of the yli group ZN = (a j aN = 1) on T . Theelement ak of ZN , 1 � k � N � 1, ats on T� as the rotation of the unit irlethat brings the k-th element of T� to 1. The element b of Z2 = (b j b2 = 1) atsas the reetion in the x-axis, i.e. omplex onjugation.We have that bab = a�1 beause x = �1x for any omplex number x where = ��(�N�1+1). This means that the onjugation by b 2 Z2 ats as the inversionon ZN, and therefore the dihedral group ZN / Z2 ats on T . We remark thatthe ation of ZN / Z2 on T is not free in general.We desribe now the ation of ZN / Z2 more aurately. We refer for the�-operation to setion 6.2 and for the onept of the dual Young diagram �� tosubsetion 1.3.2.Lemma 10.1.1 The generators a and b of ZN / Z2 at asa(T�) = T�(�);b(T�) = T��1(��)for any Young diagram � in the (N � 1)� l-retangle.Proof The ation of a transforms T� = f1; ��N�1+1; : : : ; ��1+N�1g via the rotation��(�N�1+1) into the seta(T�) = ��(�N�1+1)T�= f��(�N�1+1); 1; ��N�2+2�(�N�1+1); : : : ; ��1+N�1�(�N�1+1)g= f1; ��N�2+2�(�N�1+1); : : : ; ��1+N�1�(�N�1+1); ��(�N�1+1)g= f1; ��N�2��N�1+1; : : : ; ��1��N�1+N�2; � l��N�1+N�1g= T�(�)beause �(�) = (l��N�1; �1��N�1; : : : ; �N�2��N�1) and � l+N = 1. The ationof b transforms T� = f1; ��N�1+1; : : : ; ��1+N�1g via onjugation into the setb(T�) = f1; ��(�N�1+1); ��(�N�2+2); : : : ; ��(�1+N�1)g= f1; ��(�1+N�1); : : : ; ��(�N�2+2); ��(�N�1+1)g= f1; � l+N�(�1+N�1); : : : ; � l+N�(�N�2+2); � l+N�(�N�1+1)g= f1; � l��1+1; : : : ; � l��N�2+N�2; � l��N�1+N�1g= T�where � = (�1; : : : ; �N�1) is the Young diagram with �i = l � �N�i. Hene,�(�) = (l � �N�1; �1 � �N�1; : : : ; �N�2 � �N�1)= (�1; �1 � �N�1; : : : ; �1 � �2)= ��:We have thus proved that b(T�) = T� with �(�) = ��, hene b(T�) = T��1(��). |138



We remark that lemma 10.1.1 gives a seond proof that bab = a�1.Furthermore, we see that two elements � and � from the (N �1)� l-retanglelie in the same �-orbit if and only if T� and T� di�er by a rotation. We reallthat � = exp(2�i=N).Lemma 10.1.2 The ardinality of the �-orbit of � is equal to the ardinality ofthe set f�jT� j j = 0; : : : ; N � 1gfor any Young diagram � in the (N � 1)� l-retangle.Proof The rotations that keep T� invariant form a �nite subgroup of S1. Any�nite subgroup of S1 is yli and therefore there is a unique rotation by a positiveangle �, 0 < � � 2�, that generates all the rotations that keep T� invariant. Theardinality of the �-orbit of � is then equal to N�2� by lemma 10.1.1.The rotation by � indues a permutation of the N points of T�. This permu-tation is a power of an N -yle. Hene, the rotation by N� indues the identitypermutation and thus N� is an integer multiple of 2�. Therefore, there exists aunique integer j0, 1 � j0 � N , suh that � = 2�j0N . No other rotation �j0 with1 � j 0 < j0 keeps T� invariant. The ardinality off�jT� j j = 0; : : : ; N � 1gis therefore equal to j0.On the other hand, the ardinality of the �-orbit of � is equal to N�2� (as statedabove) whih is equal to j0. |10.1.1 The unit irle and the outline of Young diagramsWe desribe now a relation between the outline of a Young diagram and the setT� on the unit irle. We position a Young diagram � that lies in the (N �1)� l-retangle in an atual N � l-retangle and remove the lower and the right edgeof this retangle. An example is shown in �gure 10.1. We refer to the solid linein this �gure as the outline of the Young diagram.We de�ne a word w(�) with the letters `full' and `empty' by reading thesequene 1; �; �2; : : : ; � l+N�1 and we write `full' if the element lies in T�, and wewrite `empty' if it does not lie in T�. This word w(�) an be read diretly o� theYoung diagram � in the following way.We start at the bottom left and follow the outline of � to the top right.Whenever we go vertially we write `full', and whenever we go horizontally wewrite `empty'. We start with `full' beause �N = 0. On the other hand, 1 liesin T�. Whenever �i+1 = �i, i.e. we go one step vertially, then the elements��i+1+N�(i+1) and ��i+N�i are onseutive in the sequene 1; �; �2; : : : ; � l+N�1.139



Figure 10.1: Young diagram � = (6; 5; 5; 4; 4; 2) with extended lines in the aseN = 8 and l = 9.
Figure 10.2: The dual Young diagram upside down.Whenever �i = �i+1 + k for some k > 0, then on the one hand we go ksteps vertially, and on the other hand the omplement El+NnT� ontains thek onseutive elements ��i+1+N�(i+1)+1; : : : ; ��i+N�i�1. Walking along � we thusread w(�).This visualization of the word w(�) leads to a nie interpretation of the resultfrom lemma 10.1.1 that b(T�) = T��1(��).Figure 10.2 derives from �gure 10.1 by taking the omplement of � in theN � �1-retangle. The upper right spoke in �gure 10.1 beomes the lower leftspoke in �gure 10.2 beause �� derives from this diagram after the rotation by �and thus we also have to rotate the two bounding edges of the N � l-retangle.Walking along the solid outline of �� and the solid spokes from the top right tothe bottom left, we read the reverse word of w(�) up to the yli shift of lengthl � �1 due to the horizontal spoke. Hene, up to rotation (i.e. �-operations),b(T�) is equal to T�� .This tehnique of reading the word w(�) allows us to present a relation be-tween T� and T�_ as explained in the following.Given any subset S of El+N with N elements, we an rotate this set by someangle so that 1 lies in this set. This is well de�ned up to some rotation by ZN,and thus S determines a Young diagram up to �-operation. Furthermore, theomplement of S onsists of l points. These determine a Young diagram in the140



(l � 1)�N -retangle up to �-operation. We remark that this �-operation refersto the (l�1)�N -retangle whih means adding a row of length N and removingall olumns of length l. We avoid the notations �l and �N for the �-operationsin the (N � 1)� l-retangle resp. (l � 1)�N -retangle.It is obvious that every �-orbit of Young diagrams in the (N�1)� l-retangleontains a representative that lies in the (N � 1)� (l � 1)-retangle. Therefore,it is not a strong restrition to onsider Young diagrams in the (N � 1)� (l� 1)-retangle.Lemma 10.1.3 The sets El+NnT� and T(�_)� di�er by a rotation for any Youngdiagram � in the (N � 1)� (l � 1)-retangle.Proof We remark that �_ lies in the (l � 1)�N -retangle beause � lies in the(N � 1)� (l � 1)-retangle.When we transpose � in �gure 10.1 we see that the word w(�_) derives fromthe word w(�) by �rst reversing the order of its letters and then swithing theletters `empty' and `full'.This means that � i�1 lies in T� if and only if � l+N�i does not lie in T�_ fori = 1; : : : ; l + N . The omplex onjugate of � l+N�i is equal to � i, and therefore� i�1 lies in T� if and only if � i does not lie in T� for i = 1; : : : ; l+N . This meansthat �T� ℄ T�_ = El+N :Complex onjugation transforms the set T�_ into T(�_)� up to rotation by lemma10.1.1. Hene, El+NnT� and T(�_)� are equal up to rotation. |The example in �gure 10.1 for N = 8 and l = 9 leads to the setT� = f1; �; �4; �7; �8; �10; �11; �13g:The omplement isEl+NnT� = f�2; �3; �5; �6; �9; �12; �14; �15; �16g:Replaing � by ��1, i.e. onjugation, transforms this sequene intof�; �2; �3; �5; �8; �11; �12; �14; �15gsine � l+N = �17 = 1. Rotation by ��1 leads to the setf1; �; �2; �4; �7; �10; �11; �13; �14gwhih is equal to T� with � = (6; 6; 5; 5; 3; 1) = �_.141



10.2 Young-solutionsWe de�ned in setion 6.1 the quotient ring YN;l = Y=IN;l. We reall that thering of Young diagrams Y is freely generated as an Abelian ring by the olumndiagrams 1; 2; : : :. Hene, a ring homomorphism � : Y ! C fators through YN;lif and only if �(0) = �(N);�(i) = 0 for i � N + 1; and�(dj) = 0 for l + 1 � j � l +N � 1:Sine the empty Young diagram 0 is the unit for the multipliation, we have�(0) = 1. Hene, � fators through YN;l if and only if�(N) = 1;�(i) = 0 for i � N + 1; and (10.2.1)�(dj) = 0 for l + 1 � j � l +N � 1:In partiular, if � fators through YN;l then � is determined by �(1); : : : ; �(N�1).An (N�1)-tuple (1; : : : ; N�1) of omplex numbers is alled a Young-solutionif the map � : Y ! C given by�(i) = i for 1 � i � N � 1�(N) = 1;�(i) = 0 for i � N + 1fators through YN;l.Lemma 10.2.1 There is bijetion between Young-solutions and the family of setsof pairwise di�erent omplex numbers fy1; : : : ; yNg that satisfyyl+Ni = yl+Nj for any 1 � i; j � N;y(l+N)N1 = 1;y1y2 � � � yN = 1:The bijetion is given by assigning to i the i-th elementary symmetri funtionin y1; : : : ; yN .Proof We de�ne 0 = N = 1. We de�ne a polynomial C(Z) in the variable Z,C(Z) = NXi=0(�1)iiZi142



for any (N � 1)-tuple (1; : : : ; N�1) of omplex numbers. We de�ne D(Z) to bethe inverse power series of C(Z),D(Z) = C�1(Z) = 1Xj=0 ÆjZjwhere the omplex numbers Æj depend on 1; : : : ; N�1. By equations (1.1.1) and(10.2.1) we see that (1; : : : ; N�1) is a Young-solution if and only if Æj = 0 for allj = l + 1; : : : ; l +N � 1.Let (1; : : : ; N�1) be a Young-solution. ThenD(Z) = lXj=0 ÆjZj + 1Xj=l+N ÆjZj;and we denote the �rst summand (whih is a polynomial) by D0(Z), and theseond summand (whih is a power series) by D00(Z). We haveC(Z)D0(Z) + C(Z)D00(Z) = 1:The maximal degree in Z of C(Z)D0(Z) is equal to l+N , and the minimal degreein Z of C(Z)D00(Z) is equal to l+N , too. The term of degree l+N in C(Z)D00(Z)is equal to Æl+NZ l+N . Hene,C(Z)D0(Z) + Æl+NZ l+N = 1:Equivalently, C(Z)D0(Z) = 1� �Z l+Nwhere � = Æl+N . The omplex number � is non-zero beause C(Z) is a polynomialof degree N , and D0(Z) has onstant term 1.Any root � of C(Z) satis�es �l+N = ��1 by the above equation. The N roots�1; : : : ; �N of C(Z) are pairwise di�erent beause the roots of 1 � �Z l+N arepairwise di�erent. We have �1 � � ��N = 1 beause the onstant term of C(Z) isequal to 1, and the oeÆient of the highest term ZN of C(Z) is equal to (�1)N .We have C(Z) = (�1)N NYi=1(Z � �i)= (�1)N NYi=1�i(��1i Z � 1)= (�1)N NYi=1(��1i Z � 1)= NYi=1(1� ��1i Z):143



This means that the oeÆient i of (�1)iZi in C(Z) is the i-th elementarysymmetri funtion in ��11 ; : : : ; ��1N whih are the inverses of the roots of C(Z).We have that (��1i )l+N = � for all i = 1; : : : ; N as mentioned above. The equation�1 � � ��N = 1 implies that (��11 � � ���1N )l+N = 1;hene �N = 1. (Another way to see this is the following. We have by lemma 6.3.1that dl+N = (�1)N+1dl in YN;l. Hene, dNl+N = (�1)(N+1)NdNl = �N (0) = 0 = 1by lemma 6.2.1.)This means that for any Young-solution there exists a unique set of pairwisedi�erent omplex numbers y1; : : : ; yN (= ��11 ; : : : ; ��1N ) suh that y1 � � � yN = 1,yN(l+N)1 = 1, and yl+Ni = yl+Nj for any 1 � i; j � N . The uniqueness derives fromthe fat that y1; : : : ; yN are the inverses of the roots of C(Z).Conversely, let i be the i-th elementary symmetri funtion of pairwise dif-ferent omplex numbers y1; : : : ; yN with the properties as stated in the lemma.Denote � = y�(l+N)1 . Aside from y1; : : : ; yN there are l other (l + N)-th roots of��1, say x1; : : : ; xl. We have C(Z) = NYi=1(1� yiZ):Then its inverse power seriesD(Z) = C�1(Z)= 11� �Z l+N lYj=1(1� xjZ)= (1 + �Z l+N + � 2Z2(l+N) + � � �) lYj=1(1� xjZ)has zero as oeÆient of Zk for k = l+ 1; : : : ; l+N � 1. Hene, (1; : : : ; N�1) isa Young-solution. |10.3 Young-solutions and the unit-irleOur notation does not distinguish between a Young-solution and the set of Nomplex numbers assigned to it by lemma 10.2.1. We reall that � is a �xedprimitive root of unity of order l +N .Let fy1; : : : ; yNg be a Young-solution. The yi are pairwise di�erent, and their(N + l)-th powers are all equal. Hene, there exist integers a1; : : : ; aN�1 with144



1 � a1 < � � � < aN�1 � N + l � 1 so thatf1; y�11 y2; : : : ; y�11 yNg = f1; �a1; : : : ; �aN�1g:Therefore, y�11 fy1; : : : ; yNg = T�for some Young diagram � in the (N � 1) � l-retangle. If we had hosen y2instead of y1 then y�12 fy1; : : : ; yNg = T�for some Young diagram � in the (N � 1)� l-retangle. Sine the setsy�11 fy1; : : : ; yNg and y�12 fy1; : : : ; yNgdi�er by a rotation a rotation of the unit irle, we know by lemma 10.1.1 that� and � lie in the same �-orbit. The assignment of the �-orbit of � to theYoung-solution fy1; : : : ; yNg is therefore well de�ned.Lemma 10.3.1 The number of Young-solutions that are assigned the same �-orbit is equal to the number of Young diagrams in this orbit.Proof Let � be a Young diagram in the (N � 1) � l-retangle. We denoteai = �N�i + i for i = 1; : : : ; N � 1. By lemma 10.2.1 we see that the Young-solutions that are assigned the �-orbit of � arefy0; y0�a1; : : : ; y0�aN�1g(whih is equal to y0T�) where y0 has to satisfy the onditionsyl+N0 = (y0�a1)l+N = : : : = (y0�aN�1)l+N ; yN0 �(a1+���+aN�1) = 1; y(l+N)N0 = 1:These onditions are equivalent toyN0 �(a1+���+aN�1) = 1 and y(l+N)N0 = 1whih is equivalent to yN0 �(a1+���+aN�1) = 1: (10.3.2)There are N solutions for y0 in the last equation. We hoose one solution y00,and then the other solutions for this equation are y00�; y00�2; : : : ; y00�N�1 where� = exp(2�i=N).Our laim is that the ardinality of the following set of Young-solutionsfy00�jT� j j = 0; : : : ; N � 1gis equal to the ardinality of the �-orbit of �. Sine the rotation by y00 does notinuene the ardinality of this set, we have to show that the ardinality off�jT� j j = 0; : : : ; N � 1gis equal to the ardinality of the �-orbit of �. This is true by lemma 10.1.2. |145



10.4 Hopf link and Young-solutionsIn hapter 4 we were onsidering the Homy polynomial h�; �i of the Hopf linkwith deorations Q� and Q� on its omponents. This is a rational funtion inx, v and s. We onsidered in previous parts the substitution of s by a primitiveroot of unity of order 2(l+N), the substitution of x by an N -th root of s�1, andthe substitution of v by s�N .Here, it will be neessary to restrit the substitutions. We will hoose x to bea primitive root of unity of order 2N(l + N) and we shall �x this hoie unlessstated otherwise. We will substitute s by x�N , and we will substitute v by xN2 .This is neessary beause we shall want x�N to be a primitive root of unity oforder 2(l + N) as usual, but additionally, we shall want � = x2(l+N) to be aprimitive root of unity of order N .To any Young diagram � in the (N � 1) � l-retangle we assign the set ofomplex numbers (�) = f�; ���N�1+1; : : : ; ���1+N�1g = �T�where � = xN(N�1)+2j�j and � = x�2N . This is a Young-solution beause�N�(�N�1+1)+���+(�1+N�1) = xN2(N�1)+2N j�j� j�j+N(N�1)2= xN2(N�1)+2N j�jx�2N(j�j+N(N�1)2 )= 1and thus the ondition from equation (10.3.2) is satis�ed.Lemma 10.4.1 We have (�(�)) = x2(N+l)(�) for any Young diagram � in the(N � 1)� l-retangle.Proof The Young-solution assigned to �(�) is by the above de�nition(�(�)) = �T�(�)where � = xN(N�1)+2j�(�)j.We have j�(�)j = j�j + l � N�N�1 beause �(�) derives from � by adding arow of length l and then removing all (i.e. �N�1) olumns of length N . Hene,� = xN(N�1)+2(j�j+l�N�N�1)= �x2l�2N�N�1= �x2l��N�1 :By lemma 10.1.1 we know thatT�(�) = a(T�) = ��(�N�1+1)T�:146



Hene, (�(�)) = �T�(�)= �x2l��N�1��(�N�1+1)T�= x2l��1�T�= x2(l+N)(�): |The omplex onjugate of the set (�) is again a Young-solution beause theondition from equation (10.3.2) is satis�ed. We know by lemma 10.1.1 thatomplex onjugation of T� leads to the �-orbit of the dual �� of �. Hene, (�)orresponds to the �-orbit of ��, i.e. (��) = �k(�) for some k, 0 � k � N � 1,and � = x2(l+N). It turns out that k = 0.Lemma 10.4.2 We have (��) = (�) for any Young diagram � in the (N�1)�l-retangle.Proof Let � be a Young diagram in the (N �1)� l-retangle. We reall that thedual �� is up to rotation the omplement of � in the N � �1-retangle. Hene,��i = �1 � �N�i+1 for i = 1; : : : ; N � 1, and j��j = N�1 � j�j. We thus get(��) = �f1; ���N�1+1; : : : ; ���1+N�1g= �f1; ��1��2+1; : : : ; ��1��N+N�1g= ���1+N�1f��(�1+N�1); ��(�2+N�2); : : : ; ��(�N�1+1); 1g= ���1+N�1f1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)gwhere � = xN(N�1)+2j��j. We have that���1+N�1 = s1�Nx2(N�1�j�j)��1+N�1= s1�N���1x�2j�j��1+N�1= s1�Nx�2j�j�N�1= sN�1x�2j�jwhere we used that � = x�2N and s = x�N . We thus get(��) = sN�1x�2j�jf1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)g:On the other hand, we have by de�nition(�) = s1�Nx2j�jf1; ��N�1+1; : : : ; ��1+N�1g:147



The onjugate of x is equal to x�1 beause the norm of x is equal to 1. Therefore,the onjugate of s = x�N is equal to s�1. We thus derive from the above equationsthat (��) = sN�1x�2j�jf1; ��(�N�1+1); : : : ; ��(�2+N�2); ��(�1+N�1)g= (�): |The terms �i + N � i for i = 1; : : : ; N � 1 appear in the sets T� and (�)beause of the relation between the ring of Young diagrams and Shur funtions.We an exploit this by relating Shur funtions, Young-solutions and the Hopflink by lemmas 4.1.5 and 4.3.3. Their ombination implies that h�; �i= h�i isthe Shur funtion s� in in�nitely many variables whih are to be substituted bysN+2�i�2i+1x2j�j for i = 1; : : : ; N , and all the other variables are to be substitutedby zero. This result is true under the ondition that � has at most N rows, andthat v is to be substituted by s�N .If � has more than N rows then the Shur funtion s� beomes zero afterthe above substitution of N variables by sN+2�i�2i+1x2j�j for i = 1; : : : ; N and allother variables are substituted by zero. Therefore, we restrit to the interestingase that � has at most N rows, and we thus an regard s� as the Shur funtionin N variables.We an write sN+2�i�2i+1x2j�j = s1�Nx2j�js2(�i+N�i)for i = 1; : : : ; N . We restrit � to Young diagrams in the (N � 1) � l-retangleand we thus have �N = 0. Hene,h�; �ih�i = s� �; s2(�N�1+1); : : : ; s2(�1+N�1)�where  = s1�Nx2j�j. We see that  is equal to the value of � that we have hosenin order to de�ne (�). In fat, this was our motivation for the de�nition of (�).We thus have proved thatLemma 10.4.3 We have s�((�)) = h�; �ih�ifor any Young diagram � in the (N � 1)� l-retangle and any Young diagram �with at most N rows, after the substitutions of x by a primitive root of unity oforder 2N(l +N), s = x�N , and v = s�N = xN2.148



We �nish our study of Young-solutions by desribing the e�et of the �-operation to the statement of lemma 10.4.3.We know by lemma 10.4.1 that (�k(�)) = �k(�) for any k = 1; : : : ; N � 1,where � = x2(l+N). Sine s� is a homogeneous polynomial of degree j�j in Nvariables, we have that s�((�k(�))) = �kj�js�((�)):Lemma 10.4.3 implies thath�k(�); �ih�k(�)i = �kj�j h�; �ih�i (10.4.3)for any Young diagrams � and � in the (N � 1)� l-retangle.We an dedue this result as well from lemma 9.2.2. The lemma implies thatafter the substitutions for s, x and v we haveh�k(�); �i = p2kj�jh�; �iand D�k(�)E = h�ifor any non-negative integer k beause the linking number of the two omponentsof the Hopf link is equal to 1, and the self linking number of any omponent isequal to zero. Here, p = �s�1xl. Sine we make the substitution s = x�N , weget p2 = x2(l+N). This is our preferred primitive N -th root of unity �, and wethus dedue equation 10.4.3.
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Chapter 11Quantum invariants and HomypolynomialIn this hapter we onsider algebras over a ommutative ring k. The ases for kwe are interested in are either C , the �eld C (q) of rational funtions in a variableq, or the algebra C [[h℄℄ of power series in a variable h. The ase k = C [[h℄℄ israther triky sine so-alled `ompletions' of modules over C [[h℄℄ are neessary todeal with the salars. Furthermore, C [[h℄℄ is given the h-adi topology. This isdesribed in hapter XVI of [12℄.For a omplex semi-simple Lie algebra g we de�ne in setion 11.3 the Quantumenveloping algebra Uh(g) over C [[h℄℄. There exists a simpler version Uq(g) overC [q℄ whose theory is somehow parallel to Uh(g) as mentioned at the end of setionXVII.2 of [12℄. The translation between these two algebras is q = eh. Thedisadvantage of Uq(g) is the lak of a universal R-matrix. The exposition givenhere deals with Uh(g) but without mentioning expliitly the tehnial diÆultiesarising for tensor produts of Uh(g)-modules.We remark that the variable h in Uh(sl(N)) is not the same in [12℄ and [4℄, onedi�ers from the other by the fator 2. Furthermore, they are onsidering di�erentHopf algebra strutures on this algebra, but lemma 11.3.3 will show that they areequivalent.11.1 Ribbon Hopf algebrasWhenever we are onsidering the tensor produt of two algebras A and B overa ommutative ring k, we understand the tensor produt to be over k and weabbreviate A
k B by A
 B.De�nition A ribbon Hopf algebra A is both an algebra and a oalgebra over aommutative ring k, i.e. there are maps � : A
 A ! A (alled multipliation),150



� : k ! A (alled the unit), � : A ! A 
 A (alled omultipliation), and" : A ! k (alled the ounit) whih satisfy�(idA 
 �) = �(�
 idA) = idA;�(� 
 idA) = �(idA 
 �)(i.e. A is an algebra), and(idA 
 ")� = ("
 idA)� = idA;(�
 idA)� = (idA 
�)�;(i.e. A is a oalgebra). Furthermore, multipliation and unit are homomorphismsof oalgebras, and, equivalently, omultipliation and ounit are homomorphismsof algebras. Furthermore, we require the existene of an anti-homomorphismS : A! A (alled the antipode) that satis�es�(S 
 idA)� = �" = �(idA 
 S)�:Furthermore, we require the existene of an invertible element R 2 A
A (alleda universal R-matrix) and an invertible and entral element v 2 A suh that�op(x) = R�(x)R�1 for all x 2 A;(�
 idA)(R) = R13(1
 R);(idA 
�)(R) = R13(R 
 1);v2 = uS(u);�(v) = (R21R)�1(v 
 v)"(v) = 1S(v) = vwhere R = Pi si 
 ti, u = Pi S(ti)si, R13 = Pi si 
 1
 ti, R21 = Pi ti 
 si, and�op = �A;A� where �A;A is the ip of the omponents of A
A. We shall denoteuv�1 by � whih is sometimes alled the ribbon element.We remark that a ribbon Hopf algebra may ontain several universal R-matries.We also remark that � satis�es the equation �(�) = �
 �.The tensor produt of any A-modules V and W is an A 
 A-module byde�ning (a1 
 a2) � (v 
 w) = (a1v 
 a2w). The Hopf struture allows us to turnV 
W into an A-module by de�ning a � (v 
 w) = �(a) � (v 
 w).The dual V � = Homk(V; k) of an A-module V beomes an A-module byde�ning ha � �; vi = h�; S(a) � vi where a 2 A, � 2 V �, v 2 V , and h ; i is thenatural pairing between V � and V . 151



Figure 11.1: The homomorphisms �; �; F1; F2; F3; F4 (from left to right).11.2 An invariant of ribbon tanglesWe onsider a speial ase of ribbon tangles. An (m;n)-ribbon tangle is a diagramof oriented ars and oriented simple losed urves in the square [0; 1℄ � [0; 1℄ ofthe Eulidean plane suh that all the boundary points of the ars belong eitherto the m points at the top [0; 1℄ � 1 of the square, or to the n points at thebottom [0; 1℄� 0. (This implies that m+n has to be even). The Eulidean planeis assigned the standard orientation. We onsider only diagrams for whih theblakboard framing agrees with the atual framing of the tangle as explained insetion 2.1. (The blakboard framing is the diagram together with its regularneighbourhood (respeting rossings) in the plane).We onsider a diagram of an (m;n)-ribbon tangle T withA-modules V1; : : : ; Vkassigned to its omponents. We shall also refer to this assignment as a olouring.The boundary points at the top of T belong to ars that are oloured by, say,Vi1 ; : : : ; Vim from left to right. At the bottom we read, say, Vj1; : : : ; Vjn from leftto right. At eah of these endpoints, the orresponding ar is loally orientedeither top-down or bottom-up. If the module we read o� at an endpoint is, say,V then we denote a module V 0 by saying that V 0 is equal to V if the orrespond-ing loal orientation is top-down, and V 0 is equal to the dual module V � if theorresponding loal orientation is bottom-up.A oloured ribbon tangle then determines a module homomorphism J(T ),J(T ) : V 0j1 
 � � � 
 V 0jn ! V 0i1 
 � � � 
 V 0im:J(T ) is de�ned by disseting T into stripes in whih we have either a singlerossing, a single ap, or a single up as shown in �gure 11.1. For these basipiees we de�ne the orresponding module homomorphisms now. The map J(T )is then the omposition of these maps read from the bottom to the top of thediagram.Consider the rossing at the very left of �gure 11.1. For this diagram, J(T )is a map V 
W ! W 
 V for modules V and W depending on the olouringand the loal orientations of the two ars. We denote J(T ) by �V;W (or �) in thisase. We de�ne this map �V;W as �rst multiplying with the universal R-matrixR and then swithing the fators of V 
W . This map is A-linear.For the seond rossing in �gure 11.1, the map J(T ) : V 
W ! W 
 V isdenoted by �V;W (or �). It is de�ned by �V;W = ��1W;V .152



V W
Figure 11.2: Deomposition of an oriented link diagram into simple piees.When the ap resp. up ars in �gure 11.1 are oloured by a module V thenthe orresponding module homomorphisms are (from left to right)F1 : V � 
 V ! k; F1(g 
 v) = g(v);F2 : V 
 V � ! k; F2(v 
 g) = g(�v);F3 : k ! V 
 V �; F3(1) =Xm vm 
 vm;F4 : k ! V � 
 V; F4(1) =Xm vm 
 (�vm)where fvmg is a basis for V , and fvmg is the orresponding dual basis for V �.Finally, a straight vertial line determines the identity map, and the juxtapo-sition of diagrams is handled by the tensor produt of the involved modules.Reshetikhin and Turaev show in [22℄ that this map J(T ) is an isotopy-invariantof ribbon tangles. Any oloured (0; 0)-ribbon tangle T (i.e. framed link) deter-mines an A-linear map J(T ) : k ! k whih is the multipliation by an elementof k. This salar is invariant under isotopy of ribbon tangles, and it is alled theA-invariant of the oloured framed link.An example is shown in �gure 11.2. The omponents of the Hopf link areoloured by A-modules V resp. W . The linear map from k to k is given byk F3�! V 
 V �F4�! V 
 V � 
W � 
W�V �;W��! V 
W � 
 V � 
W�W�;V ��! V 
 V � 
W � 
WF2�! k 
W � 
W =W � 
WF3�! W � 
W 
W � 
WF1�! k 
W � 
W =W � 
WF1�! k: 153



Remark The ation of A on the trivial module k is given by a � t = "(a)t.Furthermore, the tensor produt of any number of opies of k is again k. For anytangle T , the homomorphism J(T ) for the trivial module k is the identity of kbeause "uv�1 = 1 and ("
")(R) = ("
")(R�1) = 1. (In fat ("
id)(R) = 1
1).In partiular, the A-invariant of any framed link oloured on all of its omponentsby the trivial module k is equal to 1.11.3 q-deformed universal enveloping algebrasLet A = (aij)i;j=1;:::;n be a generalized Cartan matrix, i.e. aii = 2 and aij � 0for all i 6= j, and aij = 0 if and only if aji = 0. Furthermore, A has to besymmetrizable, i.e. there exists a diagonal (n�n)-matrix D with oprime integerdiagonal entries d1; : : : ; dn suh that DA is symmetri and positive de�nite. (Itturns out that D is unique.)We de�ne for an indeterminate q and an integer j � 0[j℄q = qj � q�jq � q�1 (j � 1);[0℄q = 1;[j℄q! = [j℄q[j � 1℄q � � � [1℄q (j � 1);[0℄q! = 1;" mj #q = [m℄q![j℄q![m� j℄q! (m � j � 0):We denote by C [[h℄℄ the ring of formal power series in the variable h. The in-vertible elements of C [[h℄℄ are those power series that have a non-zero onstantterm.We remark that [k℄eth is well de�ned and invertible in C [[h℄℄ for any omplexnumber t and integer k. This is beause ehr � e�hr = 2hr + r33 h3 + � � � andeh� e�h = 2h+ 13h3+ � � �, and after anellation of the fator h, the denominatoreh � e�h beomes invertible.A generalized Cartan matrix determines a Lie algebra that we denote by g.Our single appliation will be with the Lie algebra sl(N) of traeless (N � N)-matries with omplex entries. (The Lie braket is given by the ommutator[A;B℄ = AB � BA whih is traeless sine tr(AB) = tr(BA).)The set of diagonal matries of sl(N) forms a Cartan subalgebra. The Cartanmatrix A for sl(N) is of size (N � 1)� (N � 1), with entries aii = 2, aij = �1 forji� jj = 1, and aij = 0 for ji� jj > 1, where i; j = 1; : : : ; N � 1. It is symmetriand positive de�nite, and therefore D is the identity matrix.154



De�nition Given a generalized (n � n)-Cartan matrix A, we de�ne Uh(g) asthe algebra over C [[h℄℄ topologially generated by elements Hi; X+i and X�i fori = 1; : : : ; n with the following relations:[Hi; Hj℄ = 0; [Hi; X�j ℄ = �aijX�j ; [X+i ; X�j ℄ = Æij edihHi � e�dihHiedih � e�dih and1�aijXk=0 (�1)k " 1� aijk #edih (X�i )kX�j (X�i )1�aij�k = 0 for i 6= jwhere [x; y℄ = xy � yx, and Æij is the Kroneker-delta, i.e. Æii = 1 and Æij = 0 ifi 6= j. The last equation is alled the Quantum-Serre-relation. We remark that(edihHi � e�dihHi)=(edih � e�dih) is de�ned over C [[h℄℄ beause the fator h in thedenominator anels with a fator h in the numerator.Lemma 11.3.1 We haveethHiX+j = ethaijX+j ethHi andethHiX�j = e�thaijX�j ethHiin Uh(g) for any omplex number t and any integers 1 � i; j � n.Proof We have [Hi; X+j ℄ = aijX+j , hene HiX+j = X+j (Hi + aij). Indutively wededue that Hki X+j = X+j (Hi + aij)kfor any integer k � 0. Hene,ethHiX+j = Xk�0 1k! (thHi)kX+j= X+j Xk�0 1k! (th)k(Hi + aij)k= X+j eth(Hi+aij)= ethaijX+j ethHi :The result for X�j is proved similarly. |There are two ways to turn Uh(g) into a topologial Hopf algebra over C [[h℄℄.One way is to de�ne the omultipliation �h as�h(Hi) = Hi 
 1 + 1
Hi;�h(X+i ) = X+i 
 edihHi + 1
X+i ;�h(X�i ) = X�i 
 1 + e�dihHi 
X�i ;155



and the antipode Sh de�ned bySh(Hi) = �Hi; Sh(X+i ) = �X+i e�dihHi; Sh(X�i ) = �edihHiX�i ; (11.3.1)and the ounit "h de�ned by "h(Hi) = "h(X�i ) = 0:The other way is to de�ne the omultipliation �0h as�0h(Hi) = Hi 
 1 + 1
Hi;�0h(X�i ) = X�i 
 e dihHi2 + e� dihHi2 
X�iand the antipode S 0h byS 0h(Hi) = �Hi; S 0h(X+i ) = �edihX+i ; S 0h(X�i ) = �edihX�i ;and the ounit "0h by "0h(Hi) = "0h(X�i ) = 0:The �rst de�nition orresponds to de�nition 6.5.1 of [4℄, the seond orre-sponds to de�nition XVII.2.3 of [12℄. In fat, this is not exatly the de�nition ofKassel, beause he uses a variable h whih orresponds to 2h in our setting. Thismeans, one has to replae the h in our de�nition by h=2 in order to get Kassel'sde�nition.The Hopf algebras are in fat isomorphi. To prove this, we �rst look at thelevel of the algebra.Lemma 11.3.2 The map f given by X+i 7! X+i e dihHi2 , X�i 7! e� dihHi2 X�i andHi 7! Hi extends to an algebra isomorphism of Uh(g).Proof We have to hek that the relations are preserved. We have[f(Hi); f(X+j )℄ = [Hi; X+j e djhHj2 ℄= HiX+j e djhHj2 �X+j e djhHj2 Hi= [Hi; X+j ℄e djhHj2= aijX+j e djhHj2= f(aijX+j )where we used that [Hi; Hj℄ = 0. The ase for X�j is heked similarly.156



We have[f(X+i ); f(X�j )℄ = X+i e dihHi2 e� djhHj2 X�j � e� djhHj2 X�j X+i e dihHi2= X+i X�j e dihHi2 e� djhHj2 e� dihaij2 edjh�X�j X+i e dihHi2 e� djhHj2 e� djhaji2 edjh= [X+i ; X�j ℄e dihHi2 e� djhHj2 e� dihaij2 edjhwhere we used lemma 11.3.1 and the fat that diaij = djaji sine DA is a sym-metri matrix and that ajj = 2.If i 6= j then [X+i ; X�j ℄ = 0 in Uh(g), hene the above equation implies that[f(X+i ); f(X�j )℄ = f([X+i ; X�j ℄).If i = j then aij = 2 and trivially di = dj, hene[f(X+i ); f(X�i )℄ = [X+i ; X�i ℄:Sine [X+i ; X�i ℄ = (edihHi � e�dihHi)=(edih � e�dih) is a relation for Uh(g), andf(Hi) = Hi, it follows from the above equation that[f(X+i ); f(X�i )℄ = f([X+i ; X�i ℄):We have therefore [f(X+i ); f(X�j )℄ = f([X+i ; X�j ℄)for any i; j = 1; : : : ; n.Finally, the map f respets the Quantum-Serre-relation beausef �(X�i )kX�j (X�i )1�aij�k�turns out to be a multiple of (X�i )kX�j (X�i )1�aij�k, and the fator depends onlyon i and j (and not on k). In fat, let t and r by any non-negative integers. Thenf �(X+i )tX+j (X+i )r�= �X+i e dihHi2 �t �X+j e djhHj2 ��X+i e dihHi2 �r= (X+i )tX+j (X+i )re dihHi(t+r)2 e djhHj2 edih(1+2+���+(t+r�1))e dihaij t2 e djhajir2where we shifted (using lemma 11.3.1) t-times a fator e dihHi2 past X+j , r-times afator e djhHj2 past X+i , and (1 + 2 + � � �+ (t + r � 1))-times a fator e dihHi2 pastX+i . Sine diaij = djaji, we getf �(X+i )tX+j (X+i )r� = (X+i )tX+j (X+i )re dihHi(t+r)2 e djhHj2 edih (t+r)(t+r�1)2 e dihaij(t+r)2 :157



Hene, f �(X+i )kX+j (X+i )1�aij�k� = (X+i )kX+j (X+i )1�aij�k�ijwhere �ij = e dihHi(1�aij )2 e djhHj2 edih (1�aij)(1�aij�1)2 e dihaij (1�aij)2whih is independent of k. We denoteTij = 1�aijXk=0 (�1)k " 1� aijk #edih (X�i )kX�j (X�i )1�aij�k:We have f(Tij) = Tij�ij for any i and j. Hene, f(Tij) = 0 for any i 6= j sineTij = 0 for any i 6= j. Hene, f respets the Quantum-Serre-relation. The asefor X�i and X�j is proved similarly.The map f is bijetive sine e dihHi2 is invertible with inverse e� dihHi2 . |Lemma 11.3.3 The algebra isomorphism f : Uh(g)! Uh(g) is an isomorphismof Hopf algebras (Uh(g);�h; "h; Sh) and (Uh(g);�0h; "0h; S 0h).Proof First, we show that f respets the antipode. We havefSh(X+i ) = f(�X+i e�dihHi)= �X+i e dihHi2 e�dihHi= �X+i e� dihHi2and S 0h(f(X+i )) = S 0h �X+i e dihHi2 �= S 0h �e dihHi2 �S 0h(X+i )= e� dihHi2 (�edihX+i )= �edihe�dihX+i e� dihHi2= �X+i e� dihHi2where we used that the antipode is an anti-homomorphism and we used lemma11.3.1. Hene, fSh(X+i ) = S 0h(f(X+i )). Similarly, fSh(X�i ) = S 0h(f(X�i )) Finally,fSh(Hi) = f(�Hi) = �Hi = S 0h(Hi) = S 0h(f(Hi))whih ompletes the proof that f respets the antipode, i.e. fSh = S 0hf .158



In order to show that f respets the omultipliation, we make the observationthat �0h(ethHi) = ethHi
 ethHi for any omplex number t and any 1 � i � n. Thisfollows immediately from �0h(Hi) = Hi
 1+ 1
Hi by mimiking the proof thatex+y = exey for any omplex numbers x and y. We therefore get(f 
 f)�h(X+i ) = (f 
 f)(X+i 
 edihHi + 1
X+i )= f(X+i )
 f(edihHi) + f(1)
 f(X+i )= X+i e dihHi2 
 edihHi + 1
X+i e dihHi2and hene�0h(f(X+i )) = �0h �X+i e dihHi2 �= �0h(X+i )�0h �e dihHi2 �= �X+i 
 e dihHi2 + e� dihHi2 
X+i ��e dihHi2 
 e dihHi2 �= X+i e dihHi2 
 edihHi + 1
X+i e dihHi2 :Hene, (f 
 f)�h(X+i ) = �0h(f(X+i )), and the ase for X�i is proved similarly.Finally, we have(f 
 f)�h(Hi) = (f 
 f)(Hi 
 1 + 1
Hi) = Hi 
 1 + 1
Hi = �0h(f(Hi))hene (f 
 f)�h = �0hf .Finally, it is trivial to see that f respets the ounit. |11.3.1 The ribbon elementIt is interesting to note that the algebra homomorphisms (Sh)2 and (S 0h)2 areequal (it is suÆient to verify this for the generators Hi; X�i ). One an showthat the square of the antipode is always equal to the onjugation by the elementu = Pi S(ti)si (where the universal R-matrix R = Pi si 
 ti) whih appears inthe de�nition of a ribbon Hopf algebra (see e.g. Proposition VIII.4.1 in [12℄).But we an �nd another element � of Uh(g) suh that S2h(a) = �a��1 for anya 2 Uh(g) by following the approah indiated in setion XVII.2 of [12℄. We tryto �nd a � of the form � = eh(�1H1+���+�nHn)for integers �1; : : : ; �n. We then have (S 0h)2(Hi) = Hi = �Hi��1.We have by lemma 11.3.1eh(�1H1+���+�nHn)X+j e�h(�1H1+���+�nHn) = eh(�1a1j+���+�nanj)X+j :159



We have (S 0h)2(X+j ) = e2djhX+j by de�nition. Hene, the only ondition on � isthat �1a1j + � � �+ �nanj = 2dj (11.3.2)for j = 1; : : : ; n. If equation (11.3.2) is satis�ed then�X�j ��1 = eh(�1H1+���+�nHn)X�j e�h(�1H1+���+�nHn)= e�h(�1a1j+���+�nanj)X�j= e�2djhX�j= (S 0h)2(X�j );and hene S2h(a) = �a��1 for any a in Uh(g).We solve equation (11.3.2) now. This equation is equivalent toAt 0BB� �1...�n 1CCA = 0BB� 2d1...2dn 1CCA :Hene, �i = 2 nXj=1((At)�1)ijdj= 2 nXj=1(A�1)jidj:We are thus led to ompute the inverse of the Cartan matrix for sl(N). Wedenote n = N � 1. The (n� n)-Cartan matrix A for sl(N) is given by
A =

0BBBBBBBBBBBBBBB�
2 �1 0 0 � � � � � � 0�1 2 �1 0 ...0 �1 2 . . . . . . ...0 0 . . . . . . . . . 0 0... . . . . . . 2 �1 0... 0 �1 2 �10 � � � � � � 0 0 �1 2

1CCCCCCCCCCCCCCCA :
This matrix is symmetri and positive de�nite whih implies that the diagonalentries d1; : : : ; dn of D are all equal to 1. The determinant of A is equal to n+ 1160



whih is proved by indution on the size of the matrix, n. (Develop A by the �rstolumn, and develop one of the appearing summands by the �rst row).We de�ne the (n� n)-matrix B = (Bij)i;j=1;:::;n,Bij = min(i; j)(n+ 1�max(i; j)):Lemma 11.3.4 1n+1B is the inverse matrix of A.Proof We have (AB)ij = nXk=1AikBkj= Xk=i�1;i;i+1AikBkj= �Bi�1 j + 2Bij � Bi+1 j:For i + 1 � j we have that Bi�1 j = (i � 1)(n + 1 � j), Bij = i(n + 1 � j), andBi+1 j = (i + 1)(n + 1 � j). Hene, (AB)ij = 0. This means that all entriesof AB above the main diagonal are equal to zero. Sine AB is symmetri, allo�-diagonal entries are equal to zero.For i = j we have that Bi�1 j = (i � 1)(n + 1 � i), Bij = i(n + 1 � i), andBi+1 j = i(n+ 1� (i+ 1)). Hene, the diagonal entries of AB are(AB)ii = �(i� 1)(n+ 1� i) + 2i(n+ 1� i)� i(n+ 1� (i+ 1))= n + 1:Hene, AB is equal to (n+ 1)-times the identity matrix. |We have nXj=1Bji = nXj=1min(i; j)(n+ 1�max(i; j))= iXj=1 j(n+ 1� i) + nXj=i+1 i(n + 1� j)= (n+ 1� i) iXj=1 j + i n�iXk=1 k= (n+ 1� i) i(i+ 1)2 + i(n� i)(n� i+ 1)2= 12 i(n+ 1� i)(n+ 1):161



Hene, we an ompute the value of �i from equation 11.3.3 in the ase ofUh(sl(N)). �i = 2 nXj=1(A�1)ji= 2n + 1 nXj=1Bji= 22(n+ 1) i(n + 1� i)(n + 1)= i(n + 1� i):We have thus provedLemma 11.3.5 The square of the antipode Sh in Uh(sl(N)) from equation 11.3.1is the onjugation by � = e�h where� = nXi=1 �iHi = nXi=1 i(N � i)Hi:Kassel proves in hapter XVII.3 that � = e�h is a ribbon element.There is another way to get the ribbon element � following Chari and Pressley(hapter 8.3.F of [4℄). We express the sum of the positive roots as a linearombination of simple positive roots, PN�1k=1 tk�k. Then we get a ribbon elementehPN�1k=1 tkHk .For sl(N) we have the positive roots "i�"j for all 1 � i < j � N . The simplepositive roots are �i = "i � "i+1 for i = 1; : : : ; N � 1. We haveX1�i<j�N "i � "j = X1�i<j�N �i + � � �+ �j�1:The term �k appears as a summand in the sum on the right side of the aboveequation for some i; j if and only if i � k � j � 1. There are k possibilities for i,namely 1 � i � k, and N � k possibilities for j, namely k + 1 � j � N . Hene,�k appears k(N � k) times. We thus getX1�i<j�N "i � "j = N�1Xk=1 k(N � k)�kwhih gives the same ribbon element as by Kassel's approah.
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11.3.2 The fundamental module of Uh(sl(N))The fundamental module V of Uh(sl(N)) has a basis v1; : : : ; vN on whih theelements Hi and X�j at naturally as matries. The matrix Eij denotes the(N � N)-matrix whose entries are zero exept the entry 1 at the plae (i; j).The matrix orresponding to X+i is Ei i+1, to X�i orresponds Ei+1 i and to Hiorresponds Eii � Ei+1 i+1 for i = 1; : : : ; N � 1.Lemma 11.3.6 The ation of � = e�h on the fundamental module V is given bye�h(vj) = eh(N+1�2j)vjfor all j = 1; : : : ; n.Proof The ation of Hi on the fundamental module is given by Hi(vi) = vi,Hi(vi+1) = �vi+1, and Hi(vj) = 0 for j 6= i and j 6= i + 1.We have eh� = N�1Yi=1 eh�iHi= N�1Yi=1 0�Xk�0 �kik! hkHki 1A :For the ation of eh� on a basis element vj we only have to look at powers of Hjand Hj�1. We geteh�(vj) = 0�Xk�0 �kjk! hkHkj1A0�Xr�0 �rj�1r! hrHrj�11A (vj)= 0�Xk�0 �kjk! hk1A0�Xr�0 �rj�1r! hr(�1)r1A (vj)= e�jhe��j�1hvj= eh(�j��j�1)vjwhere we have to interpret �0 and �N as being equal to zero whih just extendsour result that �i = i(N � i) for i = 1; : : : ; N � 1. The above equation impliesthat any vj is an eigenvetor of eh� with eigenvaluej = eh(�j��j�1)= eh(j(N�j)�(j�1)(N�(j�1)))= eh(N+1�2j): |163



The onstrution of a universal R-matrix is desribed in hapter 8.3.G of [4℄.Chari and Pressley desribe the ation of this universal R-matrix on V 
 V asR = x 24s X1�a�N Eaa 
 Eaa + X1�a6=b�N Eaa 
 Ebb + (s� s�1) X1�a<b�N Eab 
 Eba35 :In this formula, s = eh, x = e� hN , and Eab(vi) = Æbiva, i.e. Eab orresponds to the(N � N)-matrix whih is everywhere zero exept the single entry 1 in the a-throw and b-th olumn. We remark that we hanged the notation q = eh giventhere to s = eh. The above formula was given by Drinfeld in [5℄.Remark Let V be an A-module for a ribbon Hopf algebra A. The multipliationwith a universal R-matrix followed by swithing the fators is an automorphismof V 
 V whih satis�es the Yang-Baxter equation. Any salar multiple of asolution of the Yang-Baxter equation is again a solution, but a non-trivial salarmultiple of a universal R-matrix is no longer a universal R-matrix beause R hasto satisfy (� 
 idA)(R) = R13(1 
 R). This explains why Turaev ould negletthe fator e� hN in setion 4.2 of [24℄ beause he only needed a solution of theYang-Baxter equation.We de�ne the k-linear endomorphism �R of V 
 V as the omposition of Rand the ip P of the omponents. This oinides with the map �V;W from setion11.2 for V =W = V . We remark that �R is in fat Uh(sl(N))-linear. We haveP Æ (Eab 
 Ekl)(vi 
 vj) = P (Æbiva 
 Æljvk)= Æljvk 
 Æbiva= Æbivk 
 Æljva= (Ekb 
 Eal)(vi 
 vj):We thus have P Æ (Eab 
 Ekl) = Ekb 
 Ealfor any 1 � a; b; k; l � N . We thus get from the above equation for R that�R = x 24s NXa=1Eaa 
 Eaa + X1�a6=b�N Eba 
 Eab + (s� s�1) X1�a<b�N Ebb 
 Eaa35 :(11.3.3)The ation of x�1 �R on the basis elements is therefore given byx�1 �R(vi 
 vj) = 8><>: s(vi 
 vi) i = jvj 
 vi i < jvj 
 vi + (s� s�1)vi 
 vj i > j: (11.3.4)164



Applying x�1 �R twie getsx�2 �R2(vi 
 vj) = 8><>: s2(vi 
 vi) i = jvi 
 vj + (s� s�1)vj 
 vi i < jvi 
 vj + (s� s�1)(vj 
 vi + (s� s�1)vi 
 vj) i > j= 8><>: s2(vi 
 vi) i = jvi 
 vj + (s� s�1)vj 
 vi i < j(1 + (s� s�1)2)vi 
 vj + (s� s�1)vj 
 vi i > j:We immediately verify by the above equations thatx�2 �R2(vi 
 vj) = (s� s�1)x�1 �R(vi 
 vj) + vi 
 vjin every ase i = j, i < j, or i > j. Hene,x�2 �R2 = (s� s�1)x�1 �R + id:Equivalently, x�1 �R� x �R�1 = (s� s�1)id: (11.3.5)The identity map of V 
 V an be written as id = P1�a;b�N Eaa 
 Ebb. Thisleads to an expliit formula for �R�1,�R�1 = x�1 24s�1 NXa=1Eaa 
 Eaa + X1�a6=b�N Eba 
 Eab + (s�1 � s) X1�b<a�N Ebb 
 Eaa35whih is well known.We now ompute the url-fator for the fundamental module V .Lemma 11.3.7 The Uh(sl(N))-linear endomorphism of the fundamental moduleV given by the url in �gure 11.3 is the multipliation with the salar e(N� 1N )h.Proof The endomorphism � of V determined by the (1; 1)-tangle in �gure 11.3is the omposition of three maps,� = (idV 
 F2) Æ ( �R 
 idV �) Æ (idV 
 F3):The maps F2 and F3 are given in setion 11.1, and the map �R is given in equation11.3.4. We onsider an element vi of the anonial basis of V for some 1 � i � N .The e�et of the up-map idV 
 F3 on vi 
 1 isvi 
 1 7! vi 
 NXk=1 vk 
 vk = NXk=1 vi 
 vk 
 vk:165



V
V

Figure 11.3: A positive url.�R 
 idV � maps this element tos(vi 
 vi 
 vi) + NXk=i+1 vk 
 vi 
 vk + i�1Xk=1 �vk 
 vi 
 vk + (s� s�1)vi 
 vk 
 vk�apart from the salar x. The ap-map idV 
F2 applied to this element then givess(vi 
 vi(�vi)) + NXk=i+1 vk 
 vk(�vi) + i�1Xk=1 �vk 
 vk(�vi) + (s� s�1)vi 
 vk(�vk)�apart from the salar x. We have by lemma 11.3.6 that vi is an eigenvetor of themultipliation by � with eigenvalue i = sN+1�2i, hene vk(�vi) = 0 for k 6= i.The above expression for �(vi) is therefore equal to�(vi) = x "s(vi 
 vi(�vi)) + i�1Xk=1(s� s�1)vi 
 vk(�vk)#= x "si + i�1Xk=1(s� s�1)k# vi= x "sN+2�2i + (s� s�1) i�1Xk=1 sN+1�2k#= xsNvifor any 1 � i � N . Hene, � is the multipliation by the salar xsN = e(N� 1N )h.| 166



Lemma 11.3.8 The Uh(sl(N))-invariant of the zero-framed unknot oloured bythe fundamental module is equal to [N ℄eh.Proof One an position the unknot with framing zero so that its diagram isa simple irle with anti-lokwise orientation. This diagram determines theomposition of the up- and ap-maps F3 and F2 whih map1 7! NXi=1 vi 
 vi 7! NXi=1 vi(�vi) = NXi=1 i:The invariant of the unknot with framing zero oloured by the fundamental mod-ule is therefore equal to NXi=1 i = NXi=1 sN+1�2i= sN � s�Ns� s�1= [N ℄swhere s = eh. |11.4 Uh(sl(N)) and the Homy polynomialWe reall that Hk is the Heke algebra of (k; k)-ribbon tangles with top-downorientations at its boundary points. The set of salars is the ring Z[s; v; x; Æ℄modulo the relation Æ(s� s�1) = v�1 � v.De�nition The variant Heke-algebra ~HNk is de�ned in the same way as Hkwith the only di�erene that the ring of salars is C [[h℄℄ and that in the de�ningrelations we replae s by eh, x by e� hN , and v by e�hN .This de�nition immediately provides a ring homomorphism � : Hk ! ~HNk whihis the substitution of s by eh, x by e� hN , and v by e�hN .Lemma 11.4.1 Let T be any (k; k)-ribbon tangle with top-down orientations atits boundary points. We olour all its omponents by the fundamental module V .Then the map �k given by T 7! J(T ) indues an algebra homomorphism�k : ~HNk ! EndUh(sl(N))(V 
k):
167



V1
V1

Vr
VrT

Figure 11.4: The A-invariant of T̂ an be omputed as the trae of �J(T ).Proof Let T be a diagram of a (k; k)-ribbon tangle. Sine the assigned moduleendomorphism J(T ) is an invariant of ribbon tangles, it is in partiular invariantunder regular isotopy of T .The skein relation in �gure 2.1 is satis�ed beause �R satis�es the quadratirelation in equation (11.3.5). Furthermore, the skein relation for the url in �gure2.2 is mapped to zero by �k beause of the result for the positive url in lemma11.3.7. Finally, we have to hek that T together with a split unknot with framingzero indues the endomorphism [N ℄eh�k(T ). This is true by lemma 11.3.8. |By looking at the ase k = 0 we immediately dedue from lemma 11.4.1Corollary 11.4.2 Let L be a framed link. We olour all of its omponents bythe fundamental module V . The Uh(sl(N))-invariant of L is equal to the Homypolynomial of L after the substitutions of s by eh, x by e� hN , and v by e�hN .Lemma 11.4.3 Let A be a ribbon Hopf algebra over a ommutative ring k. LetT be an (r; r)-ribbon tangle with top-down orientations at its boundary points.We onsider a olouring of the losure of T and denote the modules assigned tothe omponents of T̂ by V1; : : : ; Vr as we read them at the boundary points of Tfrom left to right (see �gure 11.4). T indues a module endomorphism J(T ) ofV1 
 � � � 
 Vr. Then the A-invariant of the losure of T with this olouring isequal to the trae of the linear endomorphism �J(T ) of V1 
 � � � 
 Vr.168



Proof We hoose a basis fvimg for every module Vm, 1 � m � r, where im isrunning through some �nite index set depending on m. The r up-maps at thebottom of �gure 11.4 map the trivial module k to the module V1 
 � � � 
 Vr 
(Vr)� 
 � � � 
 (V1)�, and they map1 7! Xi1;:::;ir vi1 
 � � � 
 vir 
 vir 
 � � � 
 vi1:The map J(T ) on the �rst r fators is a k-linear map in partiular. Hene,J(T )(vi1 
 � � � 
 vir) = Xj1;:::;jr gj1���jri1���ir vj1 
 � � � 
 vjrfor salars gj1���jri1���ir 2 k. Hene, the omposition of the up-maps and J(T ) maps1 7! Xi1;:::;ir Xj1;:::;jr gj1���jri1���ir vj1 
 � � � 
 vjr 
 vir 
 � � � 
 vi1:Finally, the r ap-maps map this to the salarXi1;:::;ir Xj1;:::;jr gj1���jri1���ir vi1(�vj1) � � � vir(�vjr)whih is by de�nition the A-invariant of the framed link T̂ for the spei� olour-ing with V1; : : : ; Vr.On the other hand, sine �h(�) = � 
 �, the map �J(T ) an be written asthe omposition �
kJ(T ) and thus�J(T )(vi1 
 � � � 
 vir) = Xj1;:::;jr gj1���jri1���ir (�vj1)
 � � � 
 (�vjr):Hene the normal trae of this linear map is equal totr(�J(T )) = Xi1;:::;ir Xj1;:::;jr gj1���jri1���ir vi1(�vj1) � � �vir(�vjr)whih agrees with the above A-invariant of T̂ . |Lemma 11.4.3 motivates a de�nition. Given anA-module V and an A-moduleendomorphism V ! V , we de�ne the quantum trae trq(f) as the trae of thek-linear endomorphism �f : V ! V ,trq(f) = tr(�f);where � is the ribbon element. 169



Lemma 11.4.4 Let V be a �nite-dimensional Uh(sl(N))-module. Let f and g beC [[h℄℄-linear endomorphisms of V and � be a salar in C [[h℄℄. Thentrq(f + g) = trq(f) + trq(g); trq(�f) = �trq(f)Proof The proof is the same as for the normal trae. |We reall that � is the speialization Hk ! ~HNk , and phik is the natural map~HNk ! EndUh(sl(N))(V 
k) as desribed in lemma 11.4.1.Let � be a Young diagram and denote the number of its ells by k. The element�k(�(e�)) is a quasi-idempotent of EndUh(sl(N))(V 
k). This is beause e�e� = ��e�in Hk for some salar ��. Furthermore, the speialization � : Hk ! ~HNk isa ring homomorphism and �k is an algebra homomorphism. Hene, we have�k(�(e�))�k(�(e�)) = �(��)�k(�(e�)).The interesting question is whether �(��) is invertible in C [[h℄℄, i.e. whetherthe onstant term of �(��) is non-zero.Lemma 11.4.5 �(��) is invertible in C [[h℄℄.Proof The onstant term of �(��) is equal to the limit h! 1 (i.e. x! 1) of therational funtion whih derives from �� by substituting Æ = (v�1 � v)=(s� s�1)and then s = x�N and v = xN2 .The limit for x ! 1 of the Homy polynomial of ê� after the substitutionsÆ = (v�1 � v)=(s� s�1) and then s = x�N and v = xN2 is well de�ned. This isbeause the only possible problem is the denominator of Æ. But a areful lookreveals that this problem does not our beause limx!1 Æ is well de�ned sinelimx!1 Æ = limx!1 v�1 � vs� s�1 = limx!1 x�N2 � xN2x�N � xN = limx!1 �N2x�N2�1 �N2xN2�1�Nx�N�1 �NxN�1 = Nby l'Hôpital's rule. On the other hand, the limit for x ! 1 of the Homypolynomial of ŷ� after the substitutions Æ = (v�1�v)=(s�s�1) and then s = x�Nand v = xN2 is well de�ned by lemma 3.6.1 (we have ŷ� = Q� by de�nition). Siney� = (1=��)e�, we have that the limit for x ! 1 of �� after the substitutionsÆ = (v�1 � v)=(s� s�1) and then s = x�N and v = xN2 annot be zero. |It will not lead to onfusion if we denote �(y�) 2 ~HNk by y�, too. We havethat �j�j(y�) is an idempotent of the Uh(sl(N))-endomorphism ring of V 
j�j.Lemma 11.4.6 The endomorphism �j�j(y�) of V 
j�j is a projetion to a submod-ule for any Young diagram �. 170



Proof The essential observation is that �j�j(y�) is an idempotent. Let g be anendomorphism of a module W over any ommutative ring suh that g satis�esg2 = g. We an write any element w of W as w = (w � g(w)) + g(w). Sineg2(w) = g(w) we have that w� g(w) lies in the kernel ker(g) of g. Clearly, g(w)lies in the image im(g) of g. Hene, any element w 2 W lies in ker(g)� im(g).Sine the only element of W that lies in the kernel and in the image of g is theelement 0, we have that W = ker(g)� im(g). Hene, g is a projetion of W tothe submodule im(g). |We de�ne W� to be the image of �j�j(y�) in V 
j�j.Lemma 11.4.7 Let � be any Young diagram, and let C be any framed knot.The Uh(sl(N))-invariant of C oloured by the module W� is equal to the Homypolynomial of C deorated by Q� after the substitutions of s = eh; x = e� hN , andv = e�Nh.Proof Let the framed knot C be represented as an oriented knot with blakboardframing. C an be positioned by regular isotopy as the losure of a braid � 0suh that all of its strings are oriented downwards. We denote the number ofstrings by d0. We now have to ensure that the blakboard framing of � 0 agreeswith the framing of C. To do this, we multiply � 0 by �d0�d0+1 � � ��d0+j or by��1d0 ��1d0+1 � � ���1d0+j. For a unique j, the blakboard framing of the losure of this(d0 + j + 1)-braid is a diagram of the framed knot C. We denote this braid by �,and denote the number of strings by d.We denote by k the number of ells of �. We denote by �(k) the k-foldblakboard parallel of �. The deoration of C by Q� is then the losure of theelement y
d� �(k) of Hkd, where k is the number of ells of �. This is beausey� = (y�)d in Hk, and eah fator y� an be slid along the losure of � to thetop of the braid �. This is depited in �gure 11.5. To be preise in the followingarguments, the y�'s have to be at slightly di�erent levels.By lemmas 11.4.1 and 11.4.3 and the linearity of the quantum-trae we havethat the Homy-polynomial of C deorated by Q� after the substitutions for s, xand v is equal to the quantum trae of the endomorphism �kd(y
d� �(k)) of (V 
k)
d.On the other hand, the Uh(sl(N))-invariant of C oloured by W� is thequantum-trae of the endomorphism J(�) of W
d� by lemma 11.4.3. We thushave to prove that trq(J(�)) = trq(�kd(y
d� �(k)));or, equivalently, tr(� � J(�)) = tr(� � �kd(y
d� )J(�(k))) (11.4.6)where the trae on the left hand side refers to W
d� , and the trae on the righthand side refers to (V 
k)
d. 171



y� y� y�

Figure 11.5: The element y
d� �(k) of Hkd in the ase � = �1��12 �1��12 orrespond-ing to the �gure-eight knot with zero-framing, with j�j = k = 3 and d = 3.
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 � J(�(k)1 )J(�1) ��Figure 11.7: Homomorphisms arising at a rossing �1 in the braid � and theorresponding multiple rossings �(k)1 in the braid �(k) shown in the ase k = 2.

(V 
W ) X
X (V 
W )

V
X

W
V W

XFigure 11.8: The braids �1 and �1�2 give the same map V 
W
X ! X
V 
W .We laim that we have ommutative diagram as shown in �gure 11.6 where �is the inlusion of W� to V 
k. It is then lear that equation (11.4.6) is true.We reall that the maps J(�), J(�(k)), �k(y�) and � are module homomor-phisms, whereas the multipliation by � is only a C [[h℄℄-linear map. The topsquare in �gure 11.6 ommutes beause � is the inlusion. The middle squareommutes beause �k(y�) the restrition of �k(y�) to W� is the identity of W�.It remains to prove the ommutativity of the bottom square.We onsider a rossing of the braid �. Figure 11.7 depits two ommutingdiagrams that relate three braids and the module homomorphism whih theyindue. The map J(�1) (or J(�j) for some 1 � j � d � 1, depending on theposition of the rossing in �) is the multipliation by R followed by the ip of thefators of W� 
W� resp. V 
k 
 V 
k.The maps in the left diagram ommute beause � is the inlusion.The maps in the right diagram ommute beause of the general behaviourdepited in �gure 11.8. There, both braids indue the same map from V 
W 
Xto V 
W
X up to the obvious isomorphism between (V 
W )
X and V 
W
X.A short proof of this observation is given e.g. in the proof of Lemma 3.10 in [15℄.Repeated appliation of this result shows that the maps in the right diagram of�gure 11.7 ommute. A orresponding results holds for a negative rossing of �.Hene, we have ommuting diagrams as we move from the bottom to the topof �, and they form the ommuting diagram at the bottom of �gure 11.6. |173



Lemma 11.4.8 Let L = L1 [ � � � [ Lr be a framed link whose omponents areoloured with modules W�1 ; : : : ;W�r . Then the Uh(sl(N))-invariant of this link isequal to the Homy polynomial of the framed link L with deorations Q�1 ; : : : ; Q�ron its omponents L1; : : : ; Lr after the substitutions x = e� hN , v = e�Nh, ands = eh.Proof We are able to represent L as the losure of a braid � with top-downorientations. To get the framing right, we introdue an additional straight stringbetween points i and i+1 that lies above any strings of �. We add at the bottoma (positive or negative) rossing between this string and the string i + 1. Bydoing this suessively at suitable plaes, we adjust the blakboard framing tobeome the framing of L. We then proeed in exatly the same way as in theproof of lemma 11.4.7. The only di�erene is that the notation gets awkwardbeause the modules that we read at the top and bottom of the braid � are somepermutation of W�1 ; : : : ;W�r with multipliities that depend on the hoie of �.Furthermore, the number of ells of the Young diagrams �1; : : : ; �r may vary, andthis makes the notation worse. But apart from the notation, the proof of lemma11.4.7 extends in a straightforward way to the ase of links. |11.4.1 W� � V�Let A be an algebra over a ommutative ring k suh that the dimension (over k)of any A-module is well de�ned. An A-module V is alled simple if it has no othersubmodules than f0g and V . It is alled semi-simple if it is isomorphi to a diretsum of simple A-modules. We note that all �nite-dimensional Uh(sl(N))-modulesare semi-simple.We �x the rank N � 2 of the quantum group Uh(sl(N)). For a Young diagram� with at most N rows we shall denote by V� the simple module indexed by �.Modules V� and V� are isomorphi if and only if � and � di�er by initial olumnsof length N . For a Young diagram with more then N rows we set V� equal tothe zero-module. The map � 7! V� indues a ring isomorphism from YN to therepresentation ring of Uh(sl(N)) (see e.g. hapter XVII of [12℄ or hapter 7 of[13℄). This is due to the similarity of the representation theory of Uh(sl(N)) andsl(N). The latter is desribed in [7℄.Reall that the quantum trae trq(f) of a module endomorphism f : V ! Vis the trae of the C [[h℄℄-linear map � � f : V ! V . The quantum dimensiondimq(V ) of the module V is de�ned as trq(idV ),dimq(V ) = trq(idV ):The fat that isomorphi modules have the same quantum dimension will be ofimportane. The zero-module has quantum trae equal to zero. We are not yetin the position to state that it is the only module of quantum dimension zero.174



Lemma 11.4.9 Let V and W be �nite-dimensional modules over a ring R, andlet f and g be module endomorphisms of V resp. W . Furthermore, we requirethat f 2 = f and g2 = g. Thenim(f)
 im(g) � im(f 
 g):Proof The module homomorphism ' : im(f) 
 im(g) ! im(f 
 g) � V 
Wgiven by f(x)
g(y) 7! (f
g)(x
y) = f(x)
g(y) is well de�ned and surjetive.We have V = im(f)�T andW = im(g)�U where T = ker(f) and U = ker(g)beause f 2 = f and g2 = g. We thus haveV 
W = (im(f)� T )
 (im(g)� U)� (im(f)
 im(g))� (im(f)
 U)� (T 
 im(g))� (T 
 U):Sine ' is the restrition of this isomorphism to im(f)
 im(g) we have that ' isinjetive, too. Hene, ' is a bijetive module homomorphism. |Lemma 11.4.10 Let V and W be a �nite-dimensional Uh(sl(N))-modules. Letf and g be C [[h℄℄-linear endomorphism of V resp. W . Thentrq(f 
 g) = trq(f)trq(g):Proof The same proof as for the normal trae applies. The only point to beareful about is that � operates on V 
W as (�
 �) beause �h(�) = (�
 �).|Lemma 11.4.11 Let � = (�1; : : : ; �r) be a Young diagram with r rows and de-note its transposed diagram by �_ = (�_1 ; : : : ; �_m), m = �1. Any submodule ofVd�1 
� � �
Vd�r whih is isomorphi to a submodule of V�_1 
� � �
V�_m is eitherthe zero-module or it is isomorphi to V�.Proof We �rst look at the level of Young diagrams. We onsider the lexiographiorder on the set of Young diagrams, i.e. for Young diagrams � and � we de�ne� > � if �i = �i for i = 1; 2; : : : ; k, and �k+1 > �k+1 for some k. We de�ne � � �if either � = � or � > �.By the multipliation rule for Young diagrams it is easy to on�rm that anysummand � of d�1d�2 � � �d�r satis�es � � � = (�1; : : : ; �r). Similarly, any sum-mand � of �_1 �_2 � � � �_m satis�es �_ � �_. It is easy to hek that the onlyYoung diagram � with j�j ells that satis�es � � � and �_ � �_ is �. Hene, theonly Young diagram that ould appear in both of these produts is �. It appearsindeed with multipliity one. 175



Going from Young diagrams to Uh(sl(N))-modules we have to be sure thatthere are no summands � of d�1d�2 � � �d�r and � of �_1 �_2 � � � �_m that di�er byinitial olumns of length N . This is lear beause every summand has the samenumber of ells j�j. Hene, if l(�) � N then V� is the only irreduible modulethat is isomorphi to a submodule of both Vd�1 
� � �
Vd�r and V�_1 
� � �
V�_m .If l(�) � N +1 then V� is the zero-module and there is no irreduible submodulethat ours as a summand in both of the tensor produts. |Lemma 11.4.12 Let g be a module endomorphism of a Uh(sl(N))-module Vsuh that g2 = g. Let W be a submodule of V . Then g(W ) is isomorphi to asubmodule of W .Proof g2 = g implies that W = im(gjW )� ker(gjW ). |We reall that W� = im(�j�j(y�)) � V 
j�j.Lemma 11.4.13 For any Young diagram � we havedimq(im(�j�j(y�))) = Y2� sN+n() � s�N�n()shl() � s�hl() ;where s = eh. This quantum dimension is equal to zero if and only if l(�) � N+1.Proof We denote the unknot with framing zero by O. It is the losure of thetrivial 1-braid. By lemma 11.4.3 we thus know that the Uh(sl(N))-invariant of Ooloured by W� is equal to trq(idW�) = dimq(W�). By lemma 11.4.7 we know thatthe Uh(sl(N))-invariant of O oloured by W� is equal to the Homy polynomialof O deorated with Q� after the substitutions s = eh, x = e� hN and v = e�Nh.Hene, dimq(W�) = hQ�iwith substitutions s = eh, x = e� hN and v = e�Nh. The formula for hQ�i fromlemma 3.6.1 with these substitutions thus gives the laimed formula for dimq(W�).This term beomes zero if and only if there exists a ell in � with ontent 0.This happens if and only if l(�) � N + 1. |We denote the row diagram with two ells by , and we denote the olumndiagram with two ells by . We reall that y 2 ~HN2 is the idempotent derivedfrom a2, and y 2 ~HN2 is the idempotent derived from b2.Lemma 11.4.14 Eitherim(�2(y )) � V and im(�2(y )) � V ;or im(�2(y )) � V and im(�2(y )) � V :176



Proof By lemma 11.4.13 we deduedimq(im(�2(y ))) = trq(�2(y )) = sN � s�Ns2 � s�2 sN�1 � s�N+1s� s�1 (11.4.7)and dimq(im(�2(y ))) = trq(�2(y )) = sN � s�Ns2 � s�2 sN+1 � s�N�1s� s�1 : (11.4.8)Sine N � 2, both of these values are di�erent from zero. Hene neither �2(y )nor �2(y ) is the zero map. We have in the Heke algebra H2 the equationy y = 0, hene �2(y )�2(y ) is the zero map. Hene neither �2(y ) nor �2(y )is the identity map of V 
2.From equations (11.4.7) and (11.4.8) we also dedue that �2(y ) and �2(y )have di�erent quantum traes, hene im(�2(y )) and im(�2(y )) are not isomor-phi.We have proved so far that the submodules im(�2(y )) and im(�2(y )) arenon-trivial submodules of V 
2, and they are non-isomorphi. Sine V 
2 deom-poses by the Littlewood-Rihardson rule as V 
2 � V � V we have that eitherim(�2(y )) � V and im(�2(y )) � V , or we have that im(�2(y )) � V andim(�2(y )) � V . |It would be natural to ompute the quantum dimensions of V and V tosettle the ambiguity in lemma 11.4.15. This would involve the omputation ofthe ation of the ribbon element � on V or V . But these omputations an beavoided beause lemma 11.4.16 shows that im(�2(y )) � V by using the sameapproah as in the proof of lemma 11.4.15.Lemma 11.4.15 If im(�2(y )) � V then im(�j�j(y�)) � V� for any Youngdiagram �.Proof By indution on j�j, the number of ells of �.If � is the empty Young diagram then y; is the empty diagram in H0, hene�0(y;) = id : C [[h℄℄ ! C [[h℄℄, hene im(�0(y;)) = C [[h℄℄ = V;.There is only one Young diagram with a single ell, and y is the single stringin H1. Hene �1(y ) is the identity map of V and thus im(�1(y )) = V .The hypothesis of the lemma is that im(�2(y )) � V . Then im(�2(y )) � Vby lemma 11.4.14. Hene the statement of lemma 11.4.15 is true for all Youngdiagrams � with at most 2 ells.Let k � 3. The indution hypothesis is that im(�j�j) � V� for any Youngdiagram � with less than k ells provided that im(�2(y )) � V . From this weshall dedue that im(�j�j) � V� for any Young diagram � with k ells.177



We remark that im(�j�j(y�)) = im(�j�j(e�)) for any Young diagram � beausey� and e� di�er in ~HNk by an invertible non-zero salar.We onsider �rst a Young diagram � = (�1; : : : ; �r) with k ells and r rowsand � di�erent from dk and k. We denote the transposed Young diagram by�_ = (�_1 ; : : : ; �_m), m = �1.By de�nition, we have e� = �w��w�1� with� = a�1 
 � � � 
 a�r and � = b�_1 
 � � � 
 b�_mwhere the tensor produt denotes the juxtaposition Hi 
 Hj � Hi+j. By thede�nition of � and using edi = ai and ej = bj, we get�k(�) = ��1(ed�1 )
 � � � 
 ��r(ed�r ) and �k(�) = ��_1 (e�_1 )
 � � � 
 ��_m(e�_m ):Sine � is neither a single row nor a single olumn diagram, the rows and olumnsof � and �_ have lengths less than k, hene we know by indution hypothesis andlemma 11.4.9 thatim(�k(�)) � im(��1(yd�1 ))
 � � � 
 im(��r(yd�r )) � Vd�1 
 � � � 
 Vd�r andim(�k(�)) � im(��_1 (y�_1 ))
 � � � 
 im(��_m(y�_m )) � V�_1 
 � � � 
 V�_m :Beause e� = �w��w�1� and thus �k(e�) = �k(�)�k(w��w�1� ), we have thatim(�k(e�)) is a submodule of im(�k(�)).On the other hand, by lemma 11.4.12, im(�k(e�)) is isomorphi to a submod-ule of im(�k(w��w�1� )). The positive permutation braid w� has an inverse in Hk(and in ~HNk ) and therefore �k(w�) is a module automorphism of V 
k. Hene,im(�k(e�)) � im(�k(�)), and hene im(�k(e�)) is isomorphi to a submodule ofim(�k(�)).Hene, by lemma 11.4.11, im(�k(e�)) is either isomorphi to V� or it is thezero-module. Hene im(�k(y�)) is either isomorphi to V� or it is the zero-module.We have dimq(im(�k(y�))) = trq(�k(y�)), and by Lemma 11.4.13 this valueis zero if and only if l(�) � N + 1. Hene im(�k(y�)) is not the zero module ifr = l(�) � N . Hene im(�k(y�)) � V� if r � N . On the other hand, if r � N+1,then V� is equal to the zero module anyway, hene im(�k(y�)) is the zero module.We have thus proved the indution step for any Young diagram � with k ellswhih is di�erent from a single row and a single olumn diagram.We now onsider the row diagram � = dk. We have edk = ak, and (ak�1
a1)akis in Hk a non-zero salar multiple of ak by lemma 2.4.2. For the normalizedidempotents in ~HNk we have (ydk�1 
 y )ydk = ydk . Hene,�k(ydk�1 
 y )�k(ydk) = �k(ydk):178



We thus see that im(�k(ydk)) is a submodule of im(�k(ydk�1 
 y )). We have bylemmas 11.4.10 and 11.4.13 thatdimq(im(�k(ydk�1 
 y ))) = trq(�k(ydk�1 
 y ))= trq(�k�1(ydk�1)
 �1(y ))= trq(�k�1(ydk�1))trq(�1(y ))= sN � s�Nsk�1 � s�k+1 � � � sN+k�2 � s�N�k+2s� s�1 sN � s�Ns� s�16= sN � s�Nsk � s�k sN+1 � s�N�1sk�1 � s�k+1 � � � sN+k�1 � s�N�k+1s� s�1= trq(�k(ydk))= dimq(im(�k(ydk))):(The above inequality is equivalent to (sN�1 � s�N+1)(sk�1 � s�k+1) 6= 0 whihis true due to N � 2 and k � 2). Hene im(�k(ydk)) is not the whole ofim(�k(ydk�1 
 y )). Furthermore, we see that im(�k(ydk)) is not the zero-modulesine dimq(im(�k(ydk))) is di�erent from zero. Hene im(�k(ydk)) is a non-trivialsubmodule of im(�k(ydk�1 
 y )). By lemma 11.4.9 and the indution hypothesisfor Young diagrams with less than k ells, we dedue thatim(�k(ydk�1 
 y )) � im(�k�1(ydk�1))
 im(�1(y )) � Vdk�1 
 V :Hene im(�k(ydk�1
y )) � Vdk�V(k�1;1). Hene, im(�k(ydk)) is either isomorphito Vdk or isomorphi to V(k�1;1).We have already proved the indution step in the ase � = (k � 1; 1), henethe quantum dimension of V(k�1;1) is equal to the quantum trae of �k(y(k�1;1)).We havedimq(im(�k(y(k�1;1)))) = trq(�k(y(k�1;1)))= sN � s�Nsk � s�k sN+1 � s�N�1sk�2 � s�k+2 � � �� � � sN+k�2 � s�N�k+2s� s�1 sN�1 � s�N+1s� s�16= sN � s�Nsk � s�k sN+1 � s�N�1sk�1 � s�k+1 � � � sN+k�1 � s�N�k+1s� s�1= trq(�k(ydk))= dimq(im(�k(ydk))):Hene im(�k(ydk)) is not isomorphi to V(k�1;1) and therefore isomorphi to Vdk .The last remaining ase in the proof of the indution step is for � = k. This isvery similar to the ase � = dk. But some hazards our if k � N +1 beause by179



lemma 11.4.13 it an happen that trq(�j�j(y�)) is non-zero whereas trq(�j�j(y�_))is equal to zero.By the same argument as for � = dk, we have that im(�k(yk)) is a submoduleof im(�k(yk�1 
 y )). Hene, im(�k(yk)) is by indution hypothesis isomorphito a submodule ofim(�k�1(yk�1))
 im(�1(y )) � Vk�1 
 V � Vk � V(2;1k�2) (11.4.9)Here and in the following, (2; 1k�2) denotes the Young diagram that has a �rstrow of length 2 and (k � 2) rows of length 1, i.e. it is the transposed Youngdiagram of (k � 1; 1).If k � N then we prove that im(�k(yk)) � Vk by verifying via lemma 11.4.13that trq(�k(yk)) 6= 0;trq(�k(yk)) 6= trq(�k(y(2;1k�2))); andtrq(�k(yk)) 6= trq(�k�1(yk�1))trq(�1(y )):If k = N + 1 then Vk � 0 beause a module V� indexed by a Young dia-gram � with more than N rows is the zero-module. Equation 11.4.9 implies thatim(�k(yk)) is either the zero module or it is isomorphi to V(2;1k�2). We alreadyknow from the indution step in the ase of the Young diagram � = (2; 1k�2) withk ells that V(2;1k�2) � im(�k(y(2;1k�2))), hene dimq(V(2;1k�2)) = trq(�k(y(2;1k�2)))and this term is non-zero by lemma 11.4.13. On the other hand, trq(�k(yk)) = 0for k = N+1 by lemma 11.4.13. Hene, im(�k(yk)) is not isomorphi to V(2;1k�2),hene im(�k(yk)) � Vk � 0 for k = N + 1.If k � N + 2 then both of Vk and V(2;1k�2) are the zero-module, heneim(�k(k)) is the zero-module as well, hene im(�k(yk)) � Vk . |Lemma 11.4.16 The image of �2(y ) : V 
2 ! V 
2 is isomorphi to V .Proof We assume from now on that im(�2(y )) is not isomorphi to V and weshall derive a ontradition from this assumption.Under the assumption that im(�2(y )) 6� V we shall prove by indution(similar to the proof of lemma 11.4.15) thatim(�k(ydk)) � Vk and im(�k(y(k�1;1))) � V(2;1k�2)for any k � 2.In the ase k = 2, the isomorphisms im(�2(y )) � V and im(�2(y )) � Vfollow from lemma 11.4.14.The isomorphisms im(�i(ydi)) � Vi and im(�i(y(i�1;1))) � V(2;1i�2) for any iwith 2 � i < k are our indution hypothesis. We shall prove them for i = k.180



First, we prove the indution step for the Young diagram (k� 1; 1). With thenotation of the proof of lemma 11.4.15 we have e(k�1;1) = �w��w�1� with� = ak�1 
 a1 and � = b2 
 b
(k�2)1 :We get im(�k(�)) � im(�k�1(ydk�1))
 im(�1(y )) � Vk�1 
 Vand im(�k(�)) � im(�2(y ))
 im(�1(y ))
(k�2) � V 
 V 
(k�2):We have that im(�k(y(k�1;1))) is isomorphi to a submodule of im(�k(�)) andto a submodule of im(�k(�)). By lemma 11.4.11 (or by a diret alulationvia the Littlewood-Rihardson rule) we see that V(2;1k�2) is the only non-zeromodule whih is isomorphi to a submodule of Vk�1 
 V and to a submodule ofV 
 V 
(k�2). Hene, im(�k(y(k�1;1))) � V(2;1k�2), or im(�k(y(k�1;1))) is the zeromodule. Sine the quantum trae of �k(y(k�1;1)) is non-zero for any k by lemma11.4.13, we have im(�k(y(k�1;1))) � V(2;1k�2).Now onsider dk. By the same argument as given in the proof of lemma11.4.15 we see that im(�k(ydk)) is a non-trivial submodule of im(�k(ydk�1 
 y )).Now im(�k(ydk�1 
 y )) � Vk�1 
 V � Vk � V(2;1k�2)by the indution hypothesis. We proved above that V(2;1k�2) � im(�k(y(k�1;1))).Sine trq(�k(ydk)) 6= trq(�k(y(k�1;1))), we dedue im(�k(ydk)) 6� V(2;1k�2). Heneim(�k(ydk)) has to be isomorphi to Vk. This ompletes the indution step.A onsequene of this result is that im(�N+1(ydN+1)) is isomorphi to VN+1,hene trq(�N+1(ydN+1)) is equal to the quantum dimension of VN+1. But thequantum trae of �N+1(ydN+1) is seen by lemma 11.4.13 to be di�erent from zero,whereas VN+1 is the zero module and therefore has a quantum dimension equalto zero. This ontradition implies that our assumption im(�2(y )) 6� V waswrong. |By the ombination of lemmas 11.4.15, 11.4.16 and 11.4.6 we have thus provedthat W� � V�.Theorem 11.4.17 The map �j�j(y�) is a projetion of V 
j�j to a submodule iso-morphi to V� for any Young diagram �,Lemma 11.4.8 an now be restated.Theorem 11.4.18 Given a framed link L = L1 [ � � � [Lr whose omponents areoloured with irreduible Uh(sl(N))-modules V�1; : : : ; V�r . Then the Uh(sl(N))-invariant of this link is equal to the Homy polynomial of the link L with deora-tions Q�1 ; : : : ; Q�r on its omponents L1; : : : ; Lr after the substitutions x = e� hN ,v = e�Nh, and s = eh. 181
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