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IntrodutionIn this work we aim to extend the understanding of Homy skein theory, inpartiular when trying to give a geometri interpretation of useful and inter-esting algebrai objets. Muh work that preedes this thesis has onsideredthe skein theoreti view of algebrai objets suh as the Heke algebra, in-luding [Jon87, MT90, Mor93, Ais96, AM98, Luk01℄ and many more besides.Our extension begins with an algebra Hn;p in whih strings in the ge-ometri viewpoint an be onsidered in both diretions. We now o�er thehighlights from eah hapter.The overall aim of this work is to develop some new onepts at thesame time as bringing together muh reent work that has previously onlyappeared spread aross the literature.|The �rst hapter gives the neessary ingredients for the remainder ofthe work. The onept of Homy skein theory is introdued. The Homypolynomial is �rst de�ned and is then used to give a general de�nition of aHomy skein.Before giving spei� examples of Homy skeins, a desription of someuseful skein maps is given, followed by a slight diversion into de�ning theonepts and terminology assoiated with Young diagrams.Finally four Homy skeins are de�ned. Firstly the skein of a retanglewith n input and n output points. This is known to be isomorphi to theHeke algebra Hn.An extension of this is then reintrodued from a geometri viewpoint(initially given by [MW, Had℄). This algebra is denoted Hn;p and omes fromonsidering the skein of a retangle as with Hn, but this time it should haven input and p output points on one side and n output and p input points onthe opposite side. 1



We then give two di�erent skeins of the annulus. The �rst is denoted Cand is broken down into subspaes whih are de�ned by wiring the previoustwo skeins, Hn and Hn;p, into the annulus.The seond is a lesser known skein, denoted A. It arises from onsideringthe annulus with an input point spei�ed on the inner boundary omponentand an output point spei�ed on the outer boundary omponent. It is iso-morphi to a skein used by Kawagoe [Kaw98℄ with the input and output pointon the same boundary omponent. It has been adapted more reently as itlends itself well to providing elegant proofs through its unexpeted algebraiproperties. Although it is linearly isomorphi to the skein of Kawagoe, it isthis more reent adaptation that has meant it ould be onsidered as an al-gebra. It is the ommutative algebrai properties that make the alulationswe rely upon later in Chapter 4 possible. As we shall see, elements of theskein are used in determinants, see also in [Mor02b, Luk01℄.Chapter 2 de�nes the Murphy operators. The original ontext for suhobjets was the group algebra C [Sn ℄ of the symmetri group and is de�nedin terms of sums of transpositions. This onept was extended to the Hekealgebra Hn by Dipper and James [DJ87℄. We o�er a survey of some resultsinvolving these elements and the entre of Hn, mainly by Ram and Morton.This inludes a nie skein theoreti representation of the Murphy operatorsand some interesting onnetions between these elements, the entre of Hnand the symmetri funtions (see [Ma79℄ for a omplete survey of symmetrifuntions).This hapter ends with an introdution of a potential set of Murphyoperators for the algebra Hn;p. We also attempt to onnet these to entralelements of Hn;p. Following the preedent of the Hn ase, we �nd thereis a path from these elements to a ertain type of symmetri funtion, theso-alled supersymmetri funtions.The third hapter desribes the results of work by the author with Morton.These results have now been published in [MH02℄. The work of Chapter 2is used to give an understanding of two natural linear maps de�ned on theskein of the annulus C enirling it with a loop one.This work has arisen as a result of a paper by T.-H. Chan [Cha00℄. ThereChan disusses the Homy polynomial of reverse string parallels of the Hopflink. In this hapter we see that the alulations made by Chan an be madevery readily using our tehniques. An essential ingredient to our tehniquesis showing that these linear maps have a set of distint eigenvalues, answeringa question raised by Chan.We end this hapter by using our results to alulate the Homy poly-2



nomials of some spei� reverse string satellites of the Hopf link. We alsoobserve that this approah is still inomplete due to a minimal knowledge ofthe elements Q�;� 2 C.The intention of Chapter 4 is to �ll a gap in the knowledge as noted inChapter 3. This gap is the minimal knowledge of the elements Q�;� in thefull skein C. The �nal goal is to give an expliit formula for Q�;� in terms ofthe determinant of simpler skein elements.In trying to ahieve this goal we are required to take a diversion throughthe skein A whilst introduing a new type of matrix whose entries follow aspei� pattern and an be manipulated in a very presribed way.After muh work on these matries we draw together the tehniqueslearned and results disovered to give the derivation of a matrix whose de-terminant will yield an expliit formula for the Q�;�.The �nal hapter, Chapter 5, aims to �nish this work by giving a briefsurvey of some work of other authors that relates to the general themes dis-ussed here. Although the overlap between our work and that to be disussedin this hapter has not been fully explored, it is felt by the author that suhan exploration has potential for further study.It is hoped by the author that these avenues may be given some thoughtand their potential explored.
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Chapter 1Skein TheoryThe purpose of this hapter is to introdue the basi onstrutions that willbe entral to the majority of the work to follow.1.1 The Homy polynomialThe Homy polynomial is a two-variable isotopy invariant of oriented linksand, sine its disovery, has been the subjet of muh study. It was �rstdesribed by several groups; [FYH+85, PT87℄. Its disovery followed theonstrution of a simpler polynomial invariant V , the so-alled Jones poly-nomial [Jon85℄, found using von Neumann algebras and braid groups.Various versions of the Homy polynomial appear in the literature. Theframed version to the fore in this work, denoted for a link L, P (L), is deter-mined by the Homy polynomial skein relations:P (L+)� P (L�) = (s� s�1)P (L0)and P (T+) = v�1P (T0);where L+, L� and L0 are oriented links whih di�er only in a dis as shownin Figure 1.1; and T+ and T0 di�er only in a dis as shown in Figure 1.2.The seond of the skein relations given above allows one to take aountof the writhe of the link.We normalize the Homy polynomial by setting P (;), where ; is theempty link, equal to 1. Also, a diret onsequene of the skein relations isthat P (L t) = v�1 � vs� s�1 P (L)where Lt is the link L with a disjointly embedded null-homotopi orientedloop. 4



PSfrag replaements L+ L� L0Figure 1.1: L+, L� and L0 di�er only as shown.
PSfrag replaements T+ T0Figure 1.2: T+ and T0 di�er only as shown.Remark. (i) The Homy polynomial of the oriented m-omponent unlink,Um = tmi=1, is P (Um) = Æm, where Æ = v�1�vs�s�1 .Remark. (ii) If L� is the reetion of a link L, thenP (L�)(s; v) = P (L)(s�1; v�1):1.2 Homy skein theorySkein theory was �rst introdued by J.H. Conway, a Liverpool born math-ematiian, [Con70℄. Skein theory an be onsidered from many viewpoints;here we are interested in the skein theory assoiated to the Homy polyno-mial.Following the desription of the Homy polynomial given above, the Hom-y skein relations are � = (s� s�1)and = v�1 :5



Now let F be a planar surfae with a �xed (possibly empty) set of inputand output points on the boundary. We allow the surfae to have holes. Weonsider diagrams in F whih onsist of oriented ars joining input pointsto output points and oriented losed urves, up to Reidemeister moves RIIand RIII [Rei32℄ (reminders of all three Reidemeister moves are shown inFigure 1.3).
R

R

R

I

II

IIIFigure 1.3: Reidemeister moves RI , RII and RIIIWithin a diagram in F , the strands at a rossing point are distinguishedin the onventional way as an overrossing and an underrossing. Clearly,if the surfae F is to have input and output points there must be an equalnumber of eah.Similarly to the Homy polynomial skein relations, it is a onsequenethat for a diagram D, D t = v�1�vs�s�1D.The Homy skein, S(F ), of a surfae F is then de�ned to be �-linearombinations of diagrams in F , modulo the Homy skein relations givenabove, for a suitable oeÆient ring �.The oeÆient ring an be taken as � = Z[v�1; s�1℄ with monomials infsk � s�k : k � 0g admitted as denominators.We notie the empty diagram is only admitted when F has no boundary6



points spei�ed. The relation whih is given above as a onsequene of theHomy skein relations allows the removal of an oriented nul-homotopi losedurve without rossings, at the expense of multipliation by the salar Æ =v�1�vs�s�1 . This relation is a onsequene of the main relations exept where theremoval of the urve leaves the empty diagram.1.3 Skein maps1.3.1 Wiring mapsWe an map the skein of a surfae, F , into the skein of another, F 0 say. Wedo this through a onstrution alled a wiring. A wiring w of F into F 0 isa hoie of inlusion of F into F 0 and a hoie of a �xed diagram of urvesand ars in F 0nF . The boundary of this �xed diagram is the union of thedistinguished set of F and F 0. Examples of wiring will be essential in someof the work to follow.1.3.2 A mirror mapWe de�ne a mirror map, � : S(F )! S(F 0)indued by swithing all rossings in the diagram, oupled with inverting vand s in �.1.3.3 180Æ rotationThis skein map is indued by a 180Æ rotation of diagrams in F about thehorizontal axis A, as shown in Figure 1.4. This is denoted � : S(F )! S(F ).There is no e�et on s and v in �.PSfrag replaements FAFigure 1.4: The involution � rotates F about the axis A.
7



1.3.4 An evaluation mapThere is also an evaluation map,h i : S(F )! �:This is obtained by wiring F into the plane by some presribed wiring map,in partiular, if F has no boundary points then just \forget" its boundary.Then for an element X 2 S(F ), hXi is just the framed Homy polynomialof X after wiring into the plane.1.3.5 A losure mapGiven a surfae F with a non-empty set of boundary points, we an wireelementsX 2 S(F ) into the skein of another surfae F 0 without any boundarypoints using a losure map. Suh a map would have ars in F 0nF joining, insome presribed way, the input points to the output points of F .1.4 Young diagramsWe now take a temporary diversion from skein theory to disuss the wellstudied topi of Young diagrams. Only a brief desription will be given herebut a fuller aount appears in a great many texts suh as [Wey46, FH91,Jon90℄. Here we shall onentrate only on the details essential to our studies.A Young diagram desribes both a partition and a graphial represen-tation of the partition. Let � be a Young diagram representing the integern. Our � is then an array of square ells (eah of equal size) with l rows.We denote the partition � = (�1; �2; : : : ; �i; : : : ; �l) suh that there are �iells in the ith row enumerated from top to bottom, with Pli=1 �i = n and�1 � �2 � � � � � �i � �l.For n = 0 the Young diagram (0) is the empty diagram ;.The number of ells in a Young diagram � is denoted by j�j and the lengthl(�) = l is the number of non-zero rows. The onjugate of � is denoted �_and is the transposition of � suh that the rows of � are the olumns of �_.In other word, this is equivalent to reeting in the leading diagonal. Wehave (�_)_ = � for any Young diagram �.We also assign a o-ordinate system to eah Young diagram. The jth ellin the ith row reading from left-to-right, top-to-bottom, is denoted (i; j) 2 �,and the ontent n() of the ell  = (i; j) 2 � is de�ned to be j � i. Wehave that the hook length of a ell (i; j) 2 � is de�ned to be hl(i; j) =�i � i + �_j � j + 1. 8



The number of partitions of a natural number n (equivalently, the num-ber of Young diagrams with n ells) shall be denoted �(n). (The standardnotation used for the number �(n) is p(n); our alternative notation has beenhosen to avoid a lash with notation required later in this work.) Finally,the standard tableau T (�) is a Young diagram for � with the numbers 1 to nassigned to eah ell, suh that the numbers inrease from left-to-right andfrom top to bottom.1.5 The Heke algebraThe Heke algebra, Hn of type An�1 is a deformed version of the group alge-bra of the symmetri group Sn. It has been well studied from many di�erentviewpoints, and hene has many di�erent but equivalent inarnations. It willbe most onveniently thought of in this ontext as having expliit presenta-tionHn = *�i : i = 1; : : : ; n� 1 ������ �i�j = �j�i : ji� jj > 1;�i�i+1�i = �i+1�i�i+1 : 1 � i < n� 1;�i � ��1i = s� s�1: + :We disuss how to translate from this variant into some of its isomorphivariants at the end of this setion.Now onsider the following geometri senario. Consider a surfae I�I, aretangle, with n input points spei�ed aross the bottom and n output pointsaross the top. Denote this surfae F = Rnn, as shown diagrammatially inFigure 1.5.
PSfrag replaements nFigure 1.5: The surfae Rnn.Diagrams in F then onsist of oriented ars joining the inputs to the9



outputs and oriented losed urves, up to Reidemeister moves II and III.Suh diagrams in Rnn are known as n-tangles.Now onsider the skein S(Rnn), �-linear ombinations of n-tangles in Rnn,modulo the Homy skein relations.Composition of diagrams D1 and D2 in Rnn is ahieved by staking D2above D1. This omposition indues a produt whih makes S(Rnn) intoan algebra. It has a linear basis of n! elements and its generators are theelementary braids �i =where the rossing ours between the ith and i+1th string, for i = 1; : : : ; n�1.It is shown in [MT90℄ that the skein theoreti algebra S(Rnn) with oeÆ-ient ring extended to inlude v�1, is isomorphi to the Heke algebra, Hn, oftype An�1. We notie that the variable v does not appear in the presentationof the abstrat algebra Hn. It is present when following a geometri routeto allow one to redue general tangles to linear ombinations of braids, bymeans of the Homy skein relations. The variable v omes into play in deal-ing with urls using the seond Homy skein relation and in handling disjointlosed urves. In other words it is required to keep trak of the framing ofthe diagrams.From this point we shall, perhaps rather lazily, onsider S(Rnn) and Hnsynonymously. The juxtaposition of putting tangles S 2 Hn to the left ofT 2 Hm is denoted S 
 T and is an element of Hn 
Hm ,! Hn+m.In the speial ase s� s�1 = 0, the Heke algebra redues to C [Sn ℄ with�i beoming the transposition (i i+ 1 ). In this ase there is no possibilityof any urls being present hene the v is not required in the presentation.As said previously, there are di�erent isomorphi variants of the Hekealgebra. We will now desribe two others and show how to translate betweenour standard de�nition and these variants.One variant inludes an extra variable x whose funtion it to keep trakof the writhe of a diagram. We denote this variant Hn(x; z) and obtain Hnfrom it by setting x = 1 and z = s� s�1. The quadrati relation for Hn(x; z)in terms of generators �i is then x�1�i � x��1i = z.A further variant is seen in many algebrai texts. We shall denote thisvariant Hn(q) as it is usually seen to inlude the indeterminate q. Thequadrati relation is usually given with roots q and �1. With generators�i the quadrati relation is � 2i = (q � 1)�i + q.The three variants of the Heke algebra given here are all isomorphi,10



related by the isomorphisms given below:Hn �= Hn(x; z) �= Hn(q)�i 7! x�1�i�i 7! s�1x�i;where q, z and s are related by z = s� s�1 and q = s2.1.5.1 Quasi-idempotent elements in HnThe group algebra C [Sn ℄ has idempotent elements whih are desribed bythe lassial Young symmetrizers. For a Young diagram � its Young sym-metrizer is the produt of the sum of permutations whih preserve the rowsof the standard tableau T (�) and the alternating sum of permutations whihpreserve the olumns.It is then reasonable to suppose that orresponding elements exist in Hnreplaing permutations by suitably weighted positive permutation braids.Jones [Jon87℄ desribes the two idempotents whih orrespond to the singlerow and single olumn Young diagrams, with other authors giving desrip-tions for general �, inluding Gyoja [Gyo86℄.Given the Gyoja onstrution as a starting point, a pleasing skein piturebased on the Young diagram � was given by Aiston and Morton [Ais96,AM98℄. With this it was possible to see many pleasing properties for theseidempotent elements.For Hn, we denote these idempotent elements e� with j�j = n. Before weontinue we briey desribe the basi proess followed in onstruting suhelements. However, for a full aount of this the interested reader shouldstill refer to [AM98℄ or [Ais96℄. We deliberately avoid any tehnialities hereto avoid repetition later when we onstrut single row and single olumnidempotents in Setion 2.3. Instead we shall onentrate on the rather elegantpitorial view of the e� and some of the basi properties.Reall that the quadrati relation for the presentation of the Heke algebrais �i � ��1i = s� s�1:This an be fatorised to (�i� a)(�i� b) = 0 with a = �s�1 and b = s. Nowde�ne an = X�2Sn(�a)�l(�)w� and bn = X�2Sn(�b)�l(�)w�;where l(�) = wr(w�), the writhe of the braid w�.Now for eah � = (�1; �2; : : : ; �k) we want to de�ne elements e�. Firstwe give a three-dimensional piture of the elements, referring to it now as11



E�. Imagine the strings of the tangle lined up to pass through the entresof templates of the Young diagram � at its top and bottom. At its inputpoints, the strings are grouped together with linear ombinations aj of braidswhere the rows have j ells. At the output points, the strings are groupedwith linear ombinations of bj of braids where the olumns have j ells.To make this explanation lear we now use an expliit example. Considerthe Young diagram � = (4; 3; 1; 1). We then have that E� is the tangle shownin Figure 1.6.
PSfrag replaements

a4a3a1a1

b4 b2 b2 b1
Figure 1.6: The 3-dimensional representation of E� with � = (4; 3; 1; 1).Now how do we translate from this three-dimensional piture to our usualat interpretation of tangles? From this three-dimensional piture we attenit out into two dimensions, ensuring that the resulting rossings that aremade are all positive.A main feature of these elements is aptured in the following theorem.Theorem 1.1 (Aiston-Morton [AM98℄). Let � and � be Young diagramswith n ells. Then e�e� = 0 for � 6= �;e2� = ��e� for some salar ��:Thus distint Young diagrams determine orthogonal elements, while eah e�is a quasi-idempotent element of Hn.12



More information on these interesting elements will emerge during theourse of this work. As a taster, we will be partiularly interested in thee�et of entral elements of Hn on the e�. Given elements  2 Z(Hn), wewill want to �nd the values of � where e� = �e�.There are learly �(n) of these elements in Hn as they oinide with thenumber of partitions of n.1.6 Hn;p | A generalized Heke algebra?We now onsider a family of extended variants of the Heke algebras disussedpreviously.Let us onsider a surfae I � I, a retangle, with n input and p outputpoints spei�ed aross the top, and mathing n output and p input pointsaross the bottom. Denote the surfae F = Rn;pn;p, as shown in Figure 1.7.
PSfrag replaements n pFigure 1.7: The surfae Rn;pn;p.As before, diagrams in F onsist of oriented ars joining the inputs tothe outputs and oriented losed urves, up to Reidemeister moves II and III.Suh diagrams in Rn;pn;p are to be known as (n; p)-tangles.Write Hn;p for the skein S(Rn;pn;p). There is a natural algebra strutureon Hn;p indued by plaing one (n; p)-tangle above the other. When we setn = 0 (or p = 0), we notie that the resulting algebra is isomorphi to theHeke algebra Hp (or Hn respetively).The algebra Hn;p has been studied by Kosuda and Murakami, [KM93℄, inthe ontext of sl(N)q endomorphisms of the module V 
n 
 �V 
p, where V isthe fundamental N -dimensional module.The author of this work has also studied this algebra previously [Had℄.This inluded desribing the algebra geometrially as above and �nding anexpliit skein-theoreti basis for it. We briey disuss some of the details13



from [Had℄, with further details about Hn;p being revealed in subsequenthapters of this work as they are required.Firstly, one should observe that there is a linear isomorphism of Hn;pwith H(n+p), however this is not in general an algebra isomorphism. Thislinear isomorphism is a wiring whih does nothing to the p positively orientedstrings and turns the n negatively oriented strings around into positivelyoriented strings. Clearly there is an element of hoie in this wiring.The algebraHn;p is generated by the elements �i, for �(n�1) � i � p�1,where the skein theoreti representation of the elements f�i : �(n�1) � i <0g, �0 and f�i : 0 < i � p � 1g are shown in Figure 1.8 (a), (b) and ()respetively. Also, Hn;p has a linear basis of (n + p)! elements.
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Figure 1.8: (a)f�i : �(n� 1) � i < 0g; (b)�0; ()f�i : 0 < i � p� 1g.
1.6.1 New elements from oldUsing elements of Hn we an immediately �nd elements of Hn;p. Consider�rst the image ofHn under the involution �. Clearly then �(Hn)
Hp ,! Hn;p.Given the Gyoja-Aiston-Morton elements e� 2 Hn desribed above, wean �nd an obvious set of idempotent elements in Hn;p. These elements are14



to be denoted e0(�;�) := e(�)� 
 e(+)� formed by the juxtaposition of e� ande� with appropriate orientations and j�j = n and j�j = p. There are the�(n)� �(p) of these.1.7 Two skeins of the annulusIn this setion we de�ne two skeins of the annulus. The �rst is very well-known and has reeived muh attention from several authors. The seondhowever has only reently begun to reeive the attention it deserves.1.7.1 The skein CLet F be the annulus, F = S1 � I. Then S(S1 � I) is the Homy skein ofthe annulus. We denote this by C. This skein is disussed in some detail in[Mor93℄ and originally in 1988 in the preprint of [Tur97℄.We shall represent an element X 2 C diagrammatially as in Figure 1.9.PSfrag replaements XFigure 1.9: An element X 2 C.The skein C has a produt indued by plaing one annulus outside another.This de�nes a bilinear produt under whih C beomes an algebra. Thisalgebra is learly ommutative (lift the inner annulus up and streth it sothe outer one will �t inside it).Turaev [Tur97℄ showed that C is freely generated as an algebra by theelements fAm; m 2 Zgwhere Am is represented by the skein theoreti elementshown in Figure 1.10. The sign of the indexm indiates the orientation of theurve. A positive m denotes ounterlokwise orientation and a negative ma lokwise orientation. The element A0 is the identity element, representedby the empty diagram.Subspaes of CThe algebra C an be thought of as the produt of subalgebras C+ and C�whih are generated by fAm : m 2 Z; m � 0g and fAm : m 2 Z; m � 0grespetively. 15
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Figure 1.10: An element Am 2 C, for m 2 Z.We now take the surfae F = Rnn and wire it into the annulus, F 0 = S1�Ias shown in Figure 1.11.
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Figure 1.11: Rnn wired into S1 � I.The resulting skein is a linear subspae of C+ whih we shall all C(n).This subspae an be thought of as the image of Hn under the losure map^ : Hn ! C(n). For an n-tangle T 2 Hn, we denote its image under thislosure map into C(n) as ^(T ) or T̂ .The subspae C(n) is then spanned by monomials in fAmg, with m 2 Z+,of total weight n, where wt(Am) = m. It is lear that this spanning setonsists of �(n) elements, the number of partitions of n. C+ is then gradedas an algebra C+ = 1Mn=0 C(n):16



We an now extend our view of the skein of the annulus to inlude stringsoriented in both diretions. We do this through onsidering the losure oforiented (n; p)-tangles in the annulus. Equivalently, this is ahieved throughwiring the surfae Rn;pn;p into the annulus S1� I, analagous to the way shownin Figure 1.11.We denote the algebra formed through onsidering the image of Hn;punder the losure map by C(n;p) � C.Unlike the ase for C(n) where C(n) \ C(n�1) = ;, we have thatC(n;p) � C(n�1;p�1) � C(n�2;p�2) � � � � � � C(n�p;0) if min(n; p) = p,C(0;p�n) if min(n; p) = n,however, it should be noted that for eah C(i;j) in the sequene above, thedi�erene i� j remains onstant throughout. AlsoC(m;0) �= C(m)(�)and C(0;m) �= C(m)(+) ;where the (�) or (+) subsripts indiate the diretion of the strings aroundthe entre of the annulus. However, we do have that C(n1;p1) \ C(n2;p2) = ; ifn1 � p1 6= n2 � p2.We �nd that C(n;p) is spanned by suitably weighted monomials infA�n; : : : ; A�1; A0; A1; : : : ; Apg:We an see that C(n;p) = �C(n)(�) � C(p)(+)� + C(n�1;p�1):The spanning set of C(n;p) then onsists of �(n; p) elements where�(n; p) := kXj=0 �(n� j)�(p� j)(= �(n)�(p) + � � �+ �(n� k)�(p� k));where k = min(n; p).Similar to the grading of C+ with the C(n) we an think of the full skeinC in terms of the C(n;p)C = 1Mk=�1 [n;p�0�C(n;p) : n� p = k	! :All that is left for us to do now is to use an example to illustrate whatwe meant by C(n;p) being spanned by \suitably weighted" monomials in therange fAi : �n � i � pg. 17



Example. Consider when n = 4 and p = 2. The spanning set of C(4;2)onsists of 15 (= 5 � 2 + 3 � 1 + 2 � 1) elements, sineC(4;2) = �C(4)(�) � C(2)(+)� + �C(3)(�) � C(1)(+)� + �C(2)(�) � C(0)(+)� :The spanning set is therefore�A�4A2; A�4A21; A�3A�1A2; A�3A�1A21; A2�2A2; A2�2A21; A�2A2�1A2;A�2A2�1A21; A4�1A2; A4�1A21; A�3A1; A�2A�1A1; A3�1A1; A�2; A2�1	where, for example, the element A�3A1 is obtained from losing an elementin H4;2 as shown in Figure 1.12.
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Figure 1.12: The generator A�3A1.1.7.2 The skein AConsider again the annulus S1� I. Let the outer boundary urve be C1 andthe inner boundary urve C2. Now pik points 1 2 C1 and 2 2 C2 suhthat 1 is an output point and 2 is an input point, and denote these by out1and in2 respetively.Let F be the surfae S1 � I with an assoiated set of boundary pointsfout1 ; in2 g as desribed above. Then S(F ) = S(S1 � I; fout1 ; in2 g) is the18



Homy skein of the surfae represented diagramatially in Figure 1.13. Weshall denote this skein by A.
PSfrag replaements 2 1

Figure 1.13: The annulus with two boundary points.Similar to C, the skein A beomes an algebra under the produt induedby plaing one annulus outside another. The identity element this timeannot be the empty diagram due to the points spei�ed on the boundary.It is the element e 2 A represented by the diagram shown in Figure 1.14,obtained by joining the two boundary points by a single straight ar.
Figure 1.14: e 2 A.A further element of A, also with no rossings, we shall all a 2 A andrepresent it by the diagram shown in Figure 1.15. From this, powers, amfor m 2 Z, an be onstruted, giving for example the elements shown inFigure 1.16.Another property that A has in ommon with C isTheorem 1.2 (Morton). As an algebra, A is ommutative.However, unlike the ase of C this is not immediately obvious. After theintrodution of a bit more tehnology, we o�er a proof from [Mor02b℄.Remark. A skein whih is isomorphi to A is used by Kawagoe [Kaw98℄ andother authors. Their version is based on the annulus with input and output19



Figure 1.15: a 2 A.
Figure 1.16: a�1 and a2 2 A.points both on the same boundary omponent. More reently its use hasbeen adopted by the author as its unexpeted algebrai properties allow forsome satisfyingly lean proofs. For more work on this interesting skein fromthis viewpoint, see also [Mor02b℄, and work by Luka [Luk01℄.We also have two bilinear produts whih involve the skein A. These arel : C�A ! A and r : A�C ! A and are indued by plaing an element of Crespetively under or over an element of A. For example, reall that A1 2 Cis represented by a single ounterlokwise loop, so this givesl(A1; e) = and r(e; A1) = :We now give the proof whih was promised above.Proof of Theorem 1.2 [Mor02b℄. Using standard skein theory tehniques wean represent any element of A as a linear ombination of tangles onsistingof a totally desending ar lying over a number of losed urves. This isahieved through ensuring that on traversing an ar, eah time one enirlesthe entre of the annulus it is passing below the part already traversed, andif not the skein relations an be used to hange rossings as required. Eah20



suh tangle represents l(m; am) = l(m; e)am for some m and some m 2 C.The general element of A an then be written as a Laurent polynomialXm2Zl(m; e)amin a, with oeÆients in the ommutative subalgebra l(C; e) � A. Sine aommutes with l(C; e) it follows that any two elements of A ommute. �The subalgebras l(C; e) and r(e; C) are both isomorphi, but they are notequal. We an use their di�erene to de�ne a sort of ommutator map[ ; e℄ : C ! Awhere for  2 C, [; e℄ = l(; e)� r(e; ).Finally let us de�ne a type of losure map partiular to this skein A. Ourmap will take an element of A and make it an element of C by joining thetwo boundary points over the top of the annulus. We have� : A ! C
A 7! A :As we alluded to above, we shall not study the skeinA here independently,rather use it as a tool, apitalizing on its unexpeted algebrai properties.
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Chapter 2Murphy OperatorsHistorially, the Murphy operators have appeared in various arenas. Initiallythey were de�ned independently in the works of Juys [Ju71℄ and Murphy[Mur81℄ as ertain sums of transpositions giving elements of the group algebraC [Sn ℄ of the symmetri group.Remark. The �rst referene [Ju71℄ appears in a then little known Lithuanianjournal of theoretial physis. As a result of this it was some time before itsontent was generally known, hene [Mur81℄ was published independentlyby Murphy. As an aknowledgement of this situation we will refer to thealgebrai objets of interest as Juys-Murphy elements.Let the Juys-Murphy elements be de�ned by m(1) = 0 and:m(j) = j�1Xi=1 (i j) 2 C [Sn ℄; for j = 2; : : : ; n: (2.1)These elements have two well-known properties; �rstly they all ommutewith one-another, and also every symmetri polynomial in them an be shownto lie in the entre of the algebra, Z(C [Sn ℄).For example, m(3) = (1 3) + (2 3), m(4) = (1 4) + (2 4) + (3 4), andm(3)m(4) = (1 3)(1 4) + (1 3)(2 4) + (1 3)(3 4)+(2 3)(1 4) + (2 3)(2 4) + (2 3)(3 4)= (3 4)(1 3) + (2 4)(1 3) + (1 4)(1 3)+(1 4)(2 3) + (3 4)(2 3) + (2 4)(2 3)= m(4)m(3):
22



2.1 Murphy operators in the Heke algebrasNow given that the Heke algebra, Hn of type An�1 is a deformation of thegroup algebra C [Sn ℄ of the symmetri group, it would be a natural questionto ask if there exists a deformed analogue of the Juys-Murphy elementsde�ned in (2.1).Suh a de�nition is given by Dipper and James in [DJ87℄ using a simpledeformation of the transpositions. This deformation of the transpositionsorresponds geometrially to the positive permutation braid !(i j) 2 Hn fori < j shown in Figure 2.1, where positive permutation braids have all ross-ings positive.
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Figure 2.1: The positive transposition braid !(i j) 2 Hn.Remark. Positive permutation braids are �rst de�ned by Elrifai and Mortonin [EM94℄. They subsequently appear in many plaes suh as [Ais96, AM98,Mor02b℄.Before we de�ne these elements expliitly, we make the following obser-vations. Again, these elements, denoted M(j) , all ommute, and also everysymmetri polynomial in them lie in the entre of Hn. Moreover, Dipper andJames showed that for generi values of the deformation parameter these a-ount for the whole of the entre. This was then extended by Mathas [Mat99℄to inlude the previously omitted non-semisimple ase.Furthermore, Katriel, Abdessalam and Chakrabarti [KAC95℄ observedthe stronger result that in fat any entral element an be expressed as apolynomial in just the sum M =Pnj=1M(j) of the Murphy operators.Before moving on, we observe that Ram [Ram97℄ o�ers generalizationsof the Juys-Murphy elements in other settings. He onsiders the arbitraryWeyl groups and Heke algebras of types An, Bn, Dn and G2. He alsoobserves that the Heke algebras of types F4, E6 and E7 are also within easyreah of the tehniques he uses. 23



Now using the skein model forHn we �nd that there are elegant geometrirepresentations of the Murphy operators. The observations that follow inthis setion are due to the work of Ram [Ram97℄ and Morton [Mor02b℄. Thisskein theoreti viewpoint immediately failitates the proofs of the propertiesstated above.De�nition 1. The Murphy operator M(j) 2 Hn, j = 1; : : : ; n is de�ned byM(1) = 0 and M(j) = j�1Xi=1 !(i j): (2.2)These elements learly projet to the Juys-Murphy elements m(j) 2C [Sn ℄, therefore (2.2) is the deformed analogue of (2.1).Proving that these elements possess the properties desribed above re-quire a bit of algebrai work. As noted above Ram [Ram97℄ and Morton[Mor02b℄ found geometri representations of the Murphy operators whihare easier to manipulate and indeed make ertain properties obvious withno work required. We observe that the sum of the Murphy operators, M ,de�ned above, an be written as:M = nXj=1 M(j) =Xi<j !(i j):Theorem 2.1 (Ram). The Murphy operator M(j) an be represented by asingle braid T (j), up to linear ombination with the identity.Theorem 2.2 (Morton). The sum M of the Murphy operators an be rep-resented in Hn by a single tangle T (n) , again up to linear ombination withthe identity.Before embarking on our journey through these elegant proofs, we requireone piee of new notation. Let the identity braid on l strings be denoted byIl for l � n and given a tangle T on n� l strings then we write T 
 Il 2 Hnfor the juxtaposition of T and the identity.Proof (of Theorem 2.1 [Ram97℄). Let T (j) be the element of Hn representedby the braid shown in Figure 2.2.Using the framed Homy skein relation� = (s� s�1) ;24
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Figure 2.2: T (j) 2 Hn.on the rossing indiated we see thatT (j) == (s� s�1) += : : : (repeated appliations of the skein relations) : : := (s� s�1)0� + � � �+ 1A+= (s� s�1) j�1Xi=1 !(i j) + In= (s� s�1)M(j) + In:Therefore, M(j) = T (j)� Ins� s�1 : �Remark. Theorem 2.1 enables us to onsider the geometrially more appeal-ing elements T (j) in plae of the M(j), provided s � s�1 6= 0, or in otherwords we are away from C [Sn ℄.In fat, these elements are not only geometrially more appealing, it isalso the ase that algebraially they are muh easier to work with. Mathas[Mat99℄ remarks that the original de�nitions for Murphy operators are quitehard to work with and de�nes L-Murphy operators whih have the sameproperties as the elements T (j), in partiular Theorem 2.1. Results are thenproved for the L-Murphy operators.Remark. It is pitorially lear that the elements T (j) all ommute.25



Remark. The produt of the T (j) is the full url (often denoted in braidtheory by �2), learly a entral element. However, it is not immediatelyobvious that their sum is entral.Proof (of Theorem 2.2 [Mor02b℄). Let T (n) be the element of Hn representedby the tangle T (n), as shown in Figure 2.3.
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Figure 2.3: T (n) 2 Hn.Applying the skein relation to the rossing indiated we haveT (n) == (s� s�1) += : : : (repeated appliations of the skein relations) : : := (s� s�1)0� + � � �+ 1A += (s� s�1)v�1 nXj=1 T (j) + T (0) 
 In:Now sine the term T (0)
In is simply a disjoint trivial loop alongside theidentity braid, we an remove the loop at the expense of the salar Æ = v�1�vs�s�1 .
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Therefore, using the result of Theorem 2.1, we haveT (n) = (s� s�1)v�1 nXj=1 T (j) + v�1 � vs� s�1 In= (s� s�1)v�1 nXj=1 �(s� s�1)M(j) + In�+ v�1 � vs� s�1 In= (s� s�1)2v�1M + �(s� s�1)v�1n+ v�1 � vs� s�1� In: �Pitorially it is very lear that the element T (n) is entral inHn, therefore,it is an immediate orollary of Theorem 2.2 that the element M is entral.2.2 The Murphy operators and idempotentsof the Heke algebraReall the set of idempotent elements inHn de�ned in Setion 1.5.1. They aredenoted e�, one for eah partition � of n, with ; being the unique partitionof 0. We now onsider the e�et of these idempotents on the element T (n).Using skein theoreti tehniques it is easy to prove the following orollary ofTheorem 19 in [AM98℄ (see also [Mor02b℄),Corollary (of Theorem 19, [AM98℄). T (n)e� = t�e� wheret� = (s� s�1)v�1 X; ellsin � s2n() + Æ:Moreover, the salars t� are di�erent for eah partition �.If we were then to reverse the orientation of the enirling string in T (n)we obtain another entral element in Hn. We shall all this element �T (n).Then, using similar tehniques, one an showLemma 2.3 ([MH02℄). �T (n)e� = �t�e� where�t� = �(s� s�1)v X; ellsin � s�2n() + Æ:Moreover, the salars �t� are di�erent for eah partition �.27



Remark. An alternative proof to this lemma ould be made through onsid-ering these elements wired into the skein of the annulus ombined with thee�et of the mirror map. Then it an be shown that the e� are invariantunder the mirror map and learly �(T (n)) = �T (n). We also reall that themirror map inverts the salars v and s in the oeÆient ring. Applying thesefats to the preeding orollary, the result follows immediately.We remarked above that the produt of the Murphy operators is the fullurl, �2. This too is a well-known entral element. It would therefore beinteresting to ask the e�et of the idempotent elements e� on �2.For our purposes we hoose not to adopt the notation �2, but insteaduse Fn 2 Hn for the full url on n strings. We have in terms of the Murphyoperators the indutive de�nitionFn = vT (n)(Fn�1 
 I1);whih gives Fn = vnQnj=1 T (j). We then haveTheorem 2.4 (Aiston-Morton). Let � be a Young diagram with j�j = n.Then Fne� = f�e�, where f� = v�j�jsn�and n� = X(i;j)2� 2(j � i):2.3 Symmetri funtions and the skein of theannulusThe theory of symmetri polynomials has been well studied and there aremany texts giving a good desription with the well-known authority being[Ma79℄. In this setion we onsider elements in the Heke algebra and theirlosure in C within this ontext of symmetri funtions.Again reall the set of idempotent elements in Hn as desribed in Se-tion 1.5.1. Here we onsider the two simplest, those whih orrespond to thesingle row and single olumn Young diagrams.Let w� be the positive permutation braid ([EM94℄) orresponding to � 2Sn. De�ne two quasi-idempotents byan = X�2Sn sl(�)w� and bn = X�2Sn(�s)�l(�)w�;where l(�) = wr(w�), the writhe of the braid w�. We reall that the writheof the braid (also known as the algebrai rossing number) is the sum of thesigns of the rossings. 28



Lemma 2.5. an = an�1gn;where gn = 1 + s�n�1 + s2�n�1�n�2 + : : :+ sn�1�n�1 � : : : � �1.In the above lemma the �i orrespond to the usual braid group generators,for the braid group Bn.We have gn+1 = 1 + s�ngn, and also the immediate skein relation
n+1g = gn + snfor tangles on n+ 1 strings.Lemma 2.6. For any braid � 2 Bn we have an� = �s(�)an = �an, where�s(�) = swr(�).Analogous results for bn hold, replaing s with s�1 throughout.We an then see that the element an satis�esa2n = �s(an)an = �s(an�1)�s(gn)an:Now sine �s(gn) = 1+ s2 + : : :+ s2n�2 = sn�1[n℄ with [k℄ = sk�s�ks�s�1 , we haveimmediatelyCorollary. We an write sn�1[n℄hn = hn�1gn;where hn = an=�s(an) is the true idempotent.The element hn onstruted above is the idempotent whih orrespondsto the single row Young diagram with n ells. The single olumn idempotent,denoted en, is onstruted in an analogous way from bn. It an be obtainedfrom hn by using �s�1 in plae of s.With a slight abuse of the notation we write hn; en 2 C for the losures^(hn), ^(en) in C.The skein C+ when onsidered as an algebra is spanned by the monomialsin fhm : m � 0g.Remark. These elements have already been studied by Aiston in [Ais96℄,however, there the notations Qn and Qdn are used in plae of en and hn.Morton adopts this more suggestive notation in [Mor02b℄ to make it lear thatit is the ombination of these elements and symmetri funtion tehniquesthat is being exploited. 29



Write H(t) = 1 + 1Xn=1 hntnand E(t) = 1 + 1Xn=1 entnfor the generating funtion of the elements fhng and feng respetively, whenonsidered as formal power series with oeÆients in C.Theorem 2.7 (Aiston). E(�t)H(t) = 1as a power series in C.We shall regard the elements hn and en formally as respetively the nthomplete and elementary symmetri funtions in a suitably large number Nof variables x1; : : : ; xN , settingH(t) = NYi=1 11� xit ;and E(t) = NYi=1(1 + xit):Now onsider the wiring indued from onsidering the diagramD = :with n strings running around the annulus. Suh a wiring is a linear mapWn : Rn+1n+1 ! A. It is easy to see from the drawing of some simple pituresthat given a tangle T 2 Hn whih is inluded in Hn+1 as the element T 
 I1has the property Wn(T 
 I1) = Wn�1(T )a:This is lear beause the �nal string leaving the top right-hand orner of Tpasses around the annulus one �nal time before going to the output point ofthe annulus, it is this that ontributes the a. Also, Wn(In) = an.30



Theorem 2.8 (Morton). The elements Wn(hn+1), Wn(I1
hn) and l(hn; e)in A satisfy the linear relation[n + 1℄Wn(hn+1) = s�1[n℄Wn(I1
 hn) + l(hn; e):Proof. [Mor02b℄ Reall the relation given above,
n+1g = gn + sn :This immediately gives Wn(hngn+1) = Wn(gnhn) + snWn(hn�n � � ��1). Nowusing the now familiar style of manipulation using the skein relations wean also show that gnhn = sn�1[n℄hn and Wn(hn�n � � ��1) = l(hn; e). Thisombined with a previous result that sn[n+1℄hn+1 = hngn+1 the result followsimmediately. �Let Yn = [n + 1℄Wn(hn+1) and use this to de�ne another formal powerseries Y (t) = 1Xn=0 Yntn:We then obtain the following orollaryCorollary. As power series with oeÆients in A we havel(H(t); e) = (e� s�1at)Y (t): (2.3)Proof. We know that Wn(hn) = Wn�1(hn)a or equivalently sine A is om-mutative Wn(hn) = aWn�1(hn). We an therefore rewrite the expression forYn as Yn = s�1aYn�1 + l(hn; e):Therefore, Y (t) = s�1atY (t) + l(H(t); e):The result now follows immediately. �Following appropriate use of the mirror map on the skein A the followingresult is an immediate onsequene of the previous orollaryProposition 2.9. As power series with oeÆients in A we haver(e;H(t)) = (e� sat)Y (t): (2.4)31



Combining these results gives[H(t); e℄ = (s� s�1)atY (t):This result also appears in the same ontext in [Luk01℄.We �nally o�er one further result whih will be essential in ertain sub-sequent results. The element of C to appear here is the formal power sum ofthe variables xi, Pm =PNi=1 xmi .Theorem 2.10. For m � 1 we have [Pm; e℄ = (sm � s�m)am.Proof. First reall the Newton power series equation1Xm=1 Pmm tm = lnH(t):Now, taking logarithms of equations 2.3 and 2.4, then subtrating, we haveln(e� s�1at)� ln(e� sat) = ln(l(H(t); e))� ln(r(e;H(t)))= l(ln(H(t)); e)� r(e; ln(H(t)))= 1Xm=1 �Pmm tm; e� :Now ln(e� s�1at) = �P1m=1 s�mamtmm . Finally, omparing oeÆients of tm,the result follows. �2.4 Symmetri funtions of the Murphy op-eratorsThe work that appears in this setion is intended to summarise the resultsof Morton in [Mor02b℄ with a view to extending them later �a la [Mor02a℄.Morton introdues a new relation between the Heke algebras and theskein of the annulus. This relation is a very natural homomorphism  n fromC to the entre of eah algebra Hn.First take D to be the diagramD = :
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D then determines a map  n : C ! Hn whih is indued by plaing X 2 Caround the enirling loop in D and the identity In 2 Hn on the ar. Wetherefore have:  n : C ! Hn
X

7!
X
2 Hn:Clearly  n(XY ) =

Y
X

= X

Y

=  n(X) n(Y ):Therefore,  n de�nes an algebra homomorphism. Also, it is obvious that theelements  n(X) lies in the entre of Hn for all X 2 C.We shall say that the element T (n) is \almost equal" to the sumPnj=1 T (j).Denote this by T (n) � nXj=1 T (j):By this we mean that T (n) is equal to a salar multiple of Pnj=1 T (j) up toa linear ombination with the identity as in Theorem 2.2. Also we observethat T (n) =  n(X1) for X1 = A1 2 C. Morton then enquires whether thereis an element X2 suh that  n(X2) �Pnj=1 T (j)2, or indeed more generally,whether there are Xm suh that  n(Xm) �Pnj=1 T (j)m for any value m.The surprising part of this result is not that there exist suh elements inC, but that there exist elements whih are independent of n whih have thisproperty.Theorem 2.11. For any n we have n(Pm)�  0(Pm) = (sm � s�m)v�m nXj=1 T (j)m:33



Figure 2.4: The diagram D whih indues the wiring Vn.Proof. First de�ne the wiring Vn : A! Hn indued by the diagram D shownin Figure 2.4.It is lear that for any X 2 C, we haveVn(l(X; e)) =  n(X)and Vn(r(e;X)) =  n�1(X)
 I1:We also observe that Vn(a) = v�1T (n) and hene indutively we have Vn(am) =v�mT (n)m.Therefore  n(Pm) �  n�1(Pm) 
 I1 = (sm � s�m)v�mT (n)m, and by in-dution on n we have n(Pm)�  0(Pm)
 In = (sm � s�m)v�m nXj=1 T (j)m;whih we abbreviate using the standard inlusion of Hn�1 � Hn to obtainthe result. �In [Ais96℄, Aiston shows that [m℄Pm is the sum[m℄Pm = + � � �+ + � � �+ :The proof she gives requires signi�ant knowledge of results about sl(N)qrepresentations. Morton o�ers another proof later in [Mor02a℄ whih is purelyskein theoreti.We end this setion with one �nal result.Theorem 2.12. The image of  n is the whole entre of Hn.34



Proof. It is shown by Dipper, James and Mathas [DJ87, Mat99℄ that sym-metri polynomials in the Murphy operators aount for the whole of theentre of Hn. The power sums Pm are a generating set for the symmetripolynomials. Now by Theorem 2.11 the result follows. �2.5 A set of Murphy operators in Hn;pSine the family of algebras Hn;p an be thought of as a generalization ofthe Heke algebra, an immediate question is whether one an �nd a set ofelements with similar properties in this more general setting.For some of the results in this setion we shall adopt the approah usedby Morton in [Mor02b℄ and [Mor02a℄ as they have been exhibited above.We follow an analogous proedure in Hn;p as in Hn. Firstly let us onsiderthe elements of Hn;p represented by the tangles T (n;p) and �T (n;p) whih areonstruted in a similar way to T (n) and �T (n) respetively. We show T (n;p)diagramatially in Figure 2.5.
PSfrag replaements n pFigure 2.5: The (n; p)-tangle T (n;p).De�nition 2. (see [MW℄,[Had℄) Let H(i)n;p denote the sub-algebra of Hn;pspanned by elements with \at least" i pairs of strings turning bak.Remark. An (n; p)-tangle is said to have \at least" l pairs of strings whihturn bak if it an be written as a produt T1T2 of an f(n; p); (n� l; p� l)g-tangle T1 and an f(n� l; p� l); (n; p)g-tangle T2 as illustrated in Figure 2.6.Remark. The H(i)n;p are two-sided ideals and there is a �ltration:Hn;p �= H(0)n;p �H(1)n;p � � � ��H(k)n;p;where k = min(n; p).We use a similar notation of Il;m 2 Hn;p for the identity on l strings downand m strings up, with l � n and m � p.35
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Figure 2.6: A tangle with at least l pairs of strings whih turn bak.Lemma 2.13. T (n;p) = T (n;p)0 + w;�T (n;p) = �T (n;p)0 + �w;where T (n;p)0 = T (n)(�) 
 I(+)p + I(�)n 
 T (p)(+) � Æ In;p;�T (n;p)0 = �T (n)(�) 
 I(p)(+)+ I(n)(�)
 �T (p)(+) � Æ I(n)(�)
 I(p)(+);and w; �w 2 H(1)n;p.Proof. We prove the result for T (n;p), with the result for �T (n;p) following inexatly the same way. Throughout this proof, we use a standard notationsetting s� s�1 = z.We �rst de�ne some elements in Hn;p represented by tangles as shown inFigure 2.7.Now applying the skein relation one to T (n;p) we obtain:= + z= T (n;p�1) 
 I(+)1 + zv�1A(p):
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Figure 2.7: The elements T (j) and A(j) for 1 � j � p.Repeated appliation of the skein relation in this way will learly yield:T (n;p) = T (n;0) 
 I(+)p + zv�1 pXj=1 A(j)= T (n)(�) 
 I(+)p + zv�1 pXj=1 A(j): (2.5)Now observe, similar to a result in [Mor02b℄, we an �nd:= Æ + zv�1 pXj=1 T (j): (2.6)Combining equations 2.5 and 2.6, we see that we are only left to showthat: zv�1 pXj=1 A(j) = zv�1 pXj=1 T (j) + w;for w 2 H(1)n;p.Let w =Ppj=1 w(j). We must now show that for eah j, with 1 � j � p,there exists a w(j) suh that:zv�1A(j) = zv�1T (j) + w(j):
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Now,zv�1A(j) = zv�1( � z )
= zv�1( � z � z )= � � � (repeating appliation of the skein relation)= zv�1T (j) + z2v�1(� � � � � � )= zv�1T (j) + w(j):with w(j) 2 H(1)n;p.The result follows. �We therefore suggest a potential set of Murphy operators in Hn;p. Theseare then the elements T (j) de�ned for the �rst n strings (as with the Hnase in Figure 2.2 exept the strings are obviously oriented in the oppositediretion and we then take its inverse). In addition to this set of n elements,we add the A(j) de�ned in Figure 2.7, de�ned for the last p strings. Theseelements are shown in Figure 2.8.PSfrag replaements
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Figure 2.8: The elements T (j) for 1 � i � n and A(j) for 1 � j � p.We �nd, similar to Theorem 2.2 thatTheorem 2.14. The sum of these Murphy operators is almost equal toT (n;p).Proof. It is not diÆult to show using the skein relations thatT (n;p) = (s� s�1) �v nXj=1 T (j) + v�1 pXj=1 A(j)!+ v�1 � vs� s�1 In;p:38



This is ahieved through an analogous method to the one used previouslyto show that T (n) = (s � s�1)v�1Pnj=1 T (j) + T (0) 
 In in the standardHeke algebra ase, exept this time one must pay partiular attention tothe orietation of the strings. By the de�nition of almost equal the resultfollows immediately. �2.6 The Murphy operators and idempotentsof Hn;pWe an then use earlier information, ombined with Lemma 2.13 to prove thefollowing proposition onerning the elements e0(�;�) = e(�)� 
e(+)� as disussedabove.Proposition 2.15. T (n;p)e0�;� = t�;�e0�;� + we0�;�and �T (n;p)e0�;� = �t�;�e0�;� + �we0�;�;where, t�;� = (s� s�1)0B��vXellsin � s�2(ontent) + v�1Xellsin � s2(ontent)1CA+ Æand�t�;� = (s� s�1)0B�v�1Xellsin � s2(ontent) � vXellsin � s�2(ontent)1CA+ Æ:Here we had �xed j�j and j�j with values n and p respetively. In fat,we �nd that t�;� and �t�;� have the following property:Lemma 2.16. As � and � vary over all hoies of Young diagram, the valuesof t�;� are all distint; as are the values of �t�;�.Remark. An equivalent way of stating Lemma 2.16 is that if t�;� = t�0;�0 then� = �0 and � = �0 (similarly for the �t�;�).Proof. (of Lemma 2.16) We prove the �rst part of the lemma and note thatthe seond part follows immediately due to the observation that �t�;� = t�;�.Given f(s; v) = t�;� we now show how to reover the Young diagrams �and �. 39



From the formula for t�;� in Lemma 2.15 we see that f(s; v) � Æ is aLaurent polynomial in s and v, and must be of the form:(s� s�1)(�vP (s) + v�1Q(s)):Now onsider P (s) and Q(s) individually. It is lear that these are alsoLaurent polynomials, this time only in the variable s. We haveP (s) = X ais�2iand Q(s) = X bjs2j;where ai is the number of ells in � with ontent i, and similarly, bj is thenumber of ells in � with ontent j. Hene we an uniquely onstrut � and�. �Extending the notion of the full url into the Hn;p setting, we use thenotation Fn;p 2 Hn;p. Again, Fn;p is entral in Hn;p. In terms of our set ofMurphy operators we haveFn;p = vn+p nYj=1 T (j)�1 pYj=1A(j):We now o�er without proof a lemma omparable to Lemma 2.13.Lemma 2.17. Fn;p = Fn;0 
 F0;p + uwhere u 2 H(1)n;p.Continuing with this theme we have the following proposition, ombiningthe result of Theorem 2.4 and the tehniques of Proposition 2.15.Proposition 2.18. Fn;pe0(�;�) = f(�;�)e0(�;�) + ue0(�;�)where f(�;�) = vj�j�j�js�n�+n�, and n� =P(i;j)2� 2(j�i) and n� =P(i;j)2� 2(j�i).
40



2.7 Supersymmetri polynomials in the Mur-phy operatorsWhy should we have hosen this deomposition of T (n;p) to give a set ofMurphy operators in Hn;p? Is there a symmetri funtion type result in thissetting? Well, �rst we prove the following, a generalization of Theorem 2.11.First we introdue a natural generalisation of the map  n into the Hn;p arenaand all it  n;p. Similarly, this de�nes an algebra homomorphism on Hn;p,and all elements  n;p lie in the entre of Hn;p.Theorem 2.19. The entral elements  n;p(Pm) of Hn;p an be written, up toa linear ombination with the identity, as the power sum di�erene�vm nXj=1 T (j)m + v�m pXj=1 A(j)m:Proof. Using the tehniques displayed in Theorem 2.11 and hanging thewiring appropriately for the left n strings we �nd n;p(Pm)� 0;0(Pm)
In;p = (sm�s�m) �vm nXj=1 T (j)m + v�m pXj=1 A(j)m! :�Now this does not quite resemble the power sum found in the Hn set-ting for the standard symmetri funtions, however, Stembridge disussessupersymmetri polynomials in [Ste84℄. Suh polynomials appear in termsof two sets of ommuting variables fxig and fyig say. For a polynomial inthese variables to be alled supersymmetri they must satisfy the followingproperties:1. the polynomial is invariant under permutations of the variables fxig;2. the polynomial is invariant under permutations of the variables fyig;3. when the substitution x1 = y1 = t is made, the resulting polynomial isindependent of t.Stembridge then ontinues to prove that the set of supersymmetri polyno-mials is in fat generated by the power sum di�erenePxmi �P ymi , provinga onjeture of Sheunert [Sh84℄We then see that the entral elements  n;p(X) an be written as suha supersymmetri polynomial in two sets of ommuting elements, up to alinear ombination with the identity.41



Remark. There is an element of hoie assoiated with this set of Murphyoperators given here. For example, onjugating all of them by a �xed elementwill not alter their supersymmetri polynomials.We end this setion, and indeed hapter, with a urrently unproved, butmorally reasonable onjeture.Conjeture (Morton). The image of  n;p is the whole entre of Hn;p.Remark. Morton remarks that although it is possible to prove this for theHn ase (see Theorem 2.12), there does not at present exist an immediateskein theory proof for either the Hn and ertainly not the more general Hn;pase. The information that urrently seems to be laking is an upper boundon the dimension of the entre in the generi ase n; p > 0.
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Chapter 3The Homy Polynomial OfGeneralized Hopf LinksIn this hapter we see how to use some of the results of the previous hapterto alulate the Homy polynomial of a lass of links we shall all generalizedHopf links. This work will follow that desribed in [MH02℄ by Morton andthe author. Although this hapter an be onsidered as self-ontained, it atsvery well to whet one's appetite for what is to follow.3.1 Initial motivationIn [Cha00℄, T.-H. Chan disusses the Homy polynomial of reverse stringparallelsH(k1; k2;n1; n2) of the Hopf link. Using results desribed previously,we �nd that the omputations whih were more labour intensive in [Cha00℄beome simpli�ed. A further generalization is then readily available to allowus to alulate the Homy polynomial of satellites of the Hopf link whihonsists of a reverse string parallel around one omponent ombined with aompletely general reverse string deoration on the other.3.2 Satellites of Hopf linksThe Hopf link is the simplest non-trivial link involving just two unknotslinked together. When giving this link orientation, two distint links areformed. We shall all these H+ and H�, as shown in Figure 3.1.The Homy polynomial of these links an easily be alulated with the
43



PSfrag replaements H+ H�Figure 3.1: The links H+ and H�.Homy polynomial skein relations. We have that:P (H+) = �v�1 � vs� s�1�2 + v�2 � 1;and P (H�) = �v�1 � vs� s�1�2 + v2 � 1:We now use H+ and H� as starting points for the onstrution of satellitelinks. We do this by onsidering the two omponents of the Hopf links anddeorating them. For example, take P1 and P2 as diagrams in the annulus.Now starting with H+, we deorate its two omponents with P1 and P2respetively, obtaining a new link in the plane whih we shall allH+(P1; P2),as shown in Figure 3.2. Now learlyH+(P1; P2) andH+(P2; P1) are equivalent
PSfrag replaementsP1 P2Figure 3.2: The link H+(P1; P2).links. An analogous onstrution is now possible for H�.With suh a onstrution, it is possible to realise a variety of links. Inpartiular, the generalized Hopf links whih are the topi of [Cha00℄ an beonstruted. For example, if we take P1 and P2 as shown in Figure 3.3, thenH+(P1; P2) is the link Chan refers to as H(k1; k2;n1; n2). This link is shownin Figure 3.4, somewhat rearranged from how it appears in [Cha00℄. Thishange of view will be seen to be bene�ial in our approah.44



PSfrag replaements n2 n1 k2 k1
Figure 3.3: The diagrams P1 and P2.With suh links in mind, we make the following observation, using thenotation that the image of a link H under the involution �, desribed inSetion 1.3, shall be denoted H�Observation. The linksH(k1; k2;n1; n2); H(n1; n2; k1; k2); H(k2; k1;n2; n1); H(n2; n1; k2; k1);andH�(k2; k1;n1; n2); H�(n1; n2; k2; k1); H�(k1; k2;n2; n1); H�(n2; n1; k1; k2);are all equivalent links. For example it is trivial to see that reordering thefour groups of strings H(k1; k2;n1; n2) will give H(k2; k1;n2; n1).3.3 Maps on the skein of the annulus, CWe now de�ne two natural linear maps, ' and �', on the skein of the annulusin the following way; take an element X 2 C and enirle it one with a singleoriented loop. The orientations are opposite for ' and �'. We de�ne thesemaps pitorially as follows: ' : C ! C

X

7!
X

;and �' : C ! C
X

7!
X

:Now reonsider the satellites of Hopf links disussed earlier in this hapter,but this time as elements of the skein of the annulus C. We an then use45
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Figure 3.4: The generalized Hopf link H(k1; k2;n1; n2).ompositions of the maps ' and �' to onstrut a subset of suh links. Inpartiular, for the element A = An11 An2�1 2 C, we haveH(k1; k2;n1; n2) = 'k1 � �'k2(A)� :It therefore seems a reasonable proposition that to aid our investigation ofthe links H(k1; k2;n1; n2) and their Homy polynomial, we should look morelosely at the maps ' and �', in partiular at their eigenvalues. We shallahieve this during the remainder of this hapter through onsidering ertainalready familiar subspaes of C and the restritions of the maps ' and �' tothese subspaes.
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3.4 Eigenvetors and eigenvalues of the maps' and �'We begin with the Hn ase. Take an element S 2 Hn with Ŝ 2 C(n) andompose it with T (n). Then ^(ST (n)) = '(Ŝ). Similarly ^(S �T (n)) = �'(Ŝ).The restritions 'jC(n) and �'jC(n) learly arry C(n) to itself.Theorem 3.1 ([Mor02b℄). The eigenvalues of 'jC(n) are all distint as arethe eigenvalues of �'jC(n).Proof. We prove the �rst statement with the seond following in exatly thesame way.Set Q� = ê� 2 C(n). Then the losure of T (n)e� is '(Q�). However,T (n)e� = t�e�, hene '(Q�) = t�Q�. The element Q� is then an eigenve-tor of ' with eigenvalue t�. There are �(n) of these eigenvetors, and theeigenvalues are all distint by [AM98℄. Sine C(n) is spanned by �(n) ele-ments we an dedue that the elements Q� form a basis for C(n) and that theeigenspaes are all 1-dimensional. �This proof is quite instrutive as it establishes that the Q� with j�j = nare a basis for C(n). Hene any element in C(n) an be written as a linearombination of the Q� with j�j = n. It also follows that any element of C(n)whih is an eigenvetor of ' (and similarly �') must be a multiple of someQ�. Finally, we notie that the eigenvalues of the ' and �' are the t� and �t�we found earlier in Chapter 2.We now extend our view to the Hn;p ase. First reall the salars t(�;�)and �t(�;�) disussed in Chapter 2. We go straight into some important resultsabout these values.Theorem 3.2. The t�;� and �t�;� are eigenvalues of 'jC(n;p) and �'jC(n;p) re-spetively. Moreover, they our with multipliity 1.Proof. We prove the result for the t�;� with an idential argument provingthe result for the �t�;�.Fix an integer k suh that k = p� n and k � 0 (in other words p � n |the ase for p < n is idential). Write C(n;p) as C(n;k+n) and do indution onn. For n = 0 we have that C(0;k) �= C(k). Now for j�j = 0 and j�j = k wehave that t�;� = t�. Moreover, in the proof of Theorem 3.1 we saw that thet� with j�j = k are eigenvalues of 'jC(k). Now sine C(k) �= C(0;k) � C(n;k+n)for all n, the t� are also eigenvalues of 'jC(n;k+n).Now assume that for j�j < n and j�j < k + n the t�;� are eigenvalues of'jC(j�j;j�j). Sine C(j�j;j�j) � C(n;k+n) the t�;� are also eigenvalues of 'jC(n;k+n).47



Consider the t�;� with j�j = n and j�j = k+n. By the indutive hypothesisthese t�;� are not eigenvalues of 'jC(n�1;k+n�1) sine we have �(n�1; k+n�1)eigenvalues and C(n�1;k+n�1) is spanned by �(n� 1; k + n� 1) elements andby Lemma 2.16 we have that if t�;� = t�0;�0 then � = �0 and � = �0.De�ne elements Q0�;� := Q(�)� � Q(+)� (= ^(e0�;�)) with j�j = n and j�j =k + n. Clearly Q0�;� 2 C(n;k+n).Now by Lemma 2.15,'jC(n;k+n)(Q0�;�) = t�;�Q0�;� + w0where w0 2 C(n�1;k+n�1).We an �nd a v 2 C(n�1;k+n�1) suh that ('jC(n;k+n) � t�;�I)(v) = w0.Now onsider Q0�;� � v. This is learly non-zero. We �nd:'jC(n;k+n)(Q0�;� � v) = 'jC(n;k+n)(Q0�;�)� 'jC(n;k+n)(v) + t�;�v � t�;�v= 'jC(n;k+n)(Q0�;�)� w0 � t�;�v= t�;�Q0�;� + w0 � w0 � t�;�v= t�;�(Q0�;� � v):Hene suh t�;� are eigenvalues of 'jC(n;k+n).Hene by indution, we have that the t�;�, with j�j � n, j�j � p andj�j � j�j = n� p, are eigenvalues of 'jC(n;p).Moreover, we have found at least �(n; p) eigenvalues for 'jC(n;p). ButC(n;p) is known to be spanned by �(n; p) elements, so 'jC(n;p) has at most�(n; p) di�erent eigenvalues. Hene it has exatly �(n; p) eigenvalues eahwith multipliity one. �We now state two useful orollaries.Corollary. There is a basis of C(n;p) given by:fQ�;� : j�j � n; j�j � p; j�j � j�j = n� pgsuh that: '(Q�;�) = t�;�Q�;� and �'(Q�;�) = �t�;�Q�;�:Corollary. Every eigenvetor of ' and �' is a multiple of one suh basiselement.Remark. The eigenvalues t�;� and �t�;� orrespond to the eigenvalues of thematrix M in equation (1.1) of [Cha00℄, found there only for 1 � k1 + k2 � 5and k2 � k1. Chan uses the Homy polynomial based on parameters l andm,48



whih are variants of v and z. The numbers pm2 � 4 in Chan's eigenvalues�i and ��i orrespond to the parameter s here with z = s�s�1, whih featuresstrongly in our eigenvalues t�;� and �t�;�. Our use of s is the feature whihallows us to give simple formulae for the Gyoja-Aiston elements Q� and toextend in priniple to Q�;�.Unlike the Gyoja-Aiston elements Q� whih are known and have beenwell-studied, their generalisations the Q�;� desribed in the above Corollaryare not well-understood. We shall show in the following setion how theyan be found expliitly.3.5 The Homy polynomials of some gener-alized Hopf linksHere we apply the tehniques desribed above to show how omputation ofthe Homy polynomial ofF some generalized Hopf links is possible.3.5.1 The Homy polynomial of H(k1; k2;n; 0)Consider H(k1; k2;n; 0) in the skein of the annulus. Then we haveH(k1; k2;n; 0) = 'k1( �'k2(An1 )):Now sine the maps ' and �' are linear maps, we know that for the Q�,'k1( �'k2(Q�)) = tk1� �t k2� Q�:Also, sine the Q� are a basis or the skein C(n), we haveAn1 = Xj�j=n d�Q�for onstants d�. The d� an be alulated by several means, for example byounting the number of standard tableaux of shape �. Consider the Youngdiagram � = (2; 2), there are two possible standard tableau. The �rst hasthe top two ells enumerated 1 and 2 and the bottom two ells 3 and 4, theseond has the top two ells enumerated 1 and 3 and the bottom two ells 2and 4.Therefore, H(k1; k2;n; 0) = Xj�j=nd�'k1( �'k2(Q�))= Xj�j=nd�tk1� �tk2� Q�:49



So evaluating in the plane (using the work of [AM98℄), we �ndP (H(k1; k2;n; 0)) = Xj�j=n d�tk1� �tk2� 0� Y(i;j)2� v�1sj�i � vsi�jshl(i;j) � s�hl(i;j)1A ;where hl(i; j) is the hook-length of the ell (i; j), in row i and olumn j.3.5.2 The Homy polynomial of H(k1; k2;n1; n2)Consider, in a similar way to above, H(k1; k2;n1; n2) as an element of theskein C. Then we haveH(k1; k2;n1; n2) = 'k1( �'k2(An11 An2�1)):Similar to the restrited ase above, we have'k1( �'k2(Q�;�)) = tk1�;��t k2�;�Q�;�and An11 An2�1 = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�Q�;�for onstants d�;�. These onstants an be alulated in terms of appropriated� and d� (see previous setion).Theorem 3.3 ([Ste87℄). The numbers d�;� an be found from the followingformula: d�;� = m!�n2m��n1m�d�d�;where j�j � n2, j�j � n1 and m = n2 � j�j = n1 � j�j.Therefore,H(k1; k2;n1; n2) = Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�'k1( �'k2(Q�;�))= Xj�j�n2j�j�n1j�j�j�j=n2�n1 d�;�tk1�;��t k2�;�Q�;�:At present, we do not have a general losed formula for P (H(k1; k2;n1; n2))due to lak of information about the elements Q�;�.We an, however, make expliit alulations in individual ases as illus-trated by the following example. 50
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Figure 3.5: The link H(k1; k2; 1; 2) in C.Example. Consider H(k1; k2; 1; 2) 2 C(2;1), as shown in Figure 3.5.Then H(k1; k2; 1; 2) = 'k1( �'k2(A1A2�1));where, by Theorem 3.3,A1A2�1 = Q , + 2Q ,; +Q , : (3.1)However, we an also �nd, by using powers of trivial Gyoja-Aiston elementsQ , with appropriate orientation, that sine A1 = Q(+) and A�1 = Q(�) wehave A1A2�1 = (Q(�))2Q(+):Moreover, these elements are known to satisfy the Littlewood-Rihardsonrule for multipliation of Young diagrams ([Ais96℄), soA1A2�1 = (Q(�) +Q(�))Q(+)= Q(�)Q(+) +Q(�)Q(+)= Q0 , +Q0 , : (3.2)51



Now ombining equations 3.1 and 3.2 with the observation thatQ ,; = Q0 ,; = Q(�)Q(+);and assuming symmetry under onjugation of Young diagrams, we haveQ , = Q0 , �Q0 ,;;and Q , = Q0 , �Q0 ,;:Hene, evaluating in the plane, we �nd,P (H(k1; k2; 1; 2)) = P ('k1( �'k2(A1A2�1)))= tk1 , �tk2 , P (Q , )+2tk1,;�tk2,;P (Q ,;) + tk1, �tk2, P (Q , )= tk1 , �tk2 , (P (Q0 , )� P (Q0 ,;))+2tk1,;�tk2,;P (Q0 ,;) + tk1, �tk2, (P (Q0 , � P (Q0 ,;))= tk1 , �tk2 , P (Q0 , )+(2tk1,;�tk2,; � tk1 , �tk2, � tk1, �tk2, )P (Q0 ,;) (3.3)+tk1, �tk2, P (Q0 , )From the de�nition of the Q0�;�, we an now use the results in [AM98℄ to �ndP (Q0 ,;), P (Q0 , ) and P (Q0 , ). We have:P (Q0 ,;) = v�1 � vs� s�1 ;P (Q0 , ) = � v�1 � vs2 � s�2��v�1s� vs�1s� s�1 ��v�1 � vs� s�1� ;and P (Q0 , ) = � v�1 � vs2 � s�2��v�1s�1 � vss� s�1 ��v�1 � vs� s�1� :Then using Proposition 2.15 we �nd:t ,; = �v(s� s�1) + Æ;t , = (s� s�1)(�v(1 + s�2) + v�1) + Æ;t , = (s� s�1)(�v(1 + s2) + v�1) + Æ;52



and �t ,; = v�1(s� s�1) + Æ;�t , = (s� s�1)(v�1(1 + s2)� v) + Æ;�t , = (s� s�1)(v�1(1 + s�2)� v) + Æ:Substitution of these values into equation 3.3 then gives P (H(k1; k2; 1; 2))immediately.3.6 Some �nal remarksWe an in priniple write any given element of the skein X 2 C as a linearombination of the basis elements Q�;�. Therefore, one an �nd '(X) and�'(X),and hene readily evaluate the Homy polynomial of H(k1; k2;X) :=H+(X;Ak11 Ak2�1). The speial ase X = An11 An2�1 gives H(k1; k2;n1; n2).In order to be able to write any element of the skein as a linear ombina-tion of the basis elements Q�;� we must deepen our understanding of theseelements. We aim to begin this quest in the next hapter.Before we embark of this journey we look at some other work related tothe �ndings of the urrent hapter.3.6.1 The Homy polynomial of the deorated HopflinkMorton and Luka [Luk01, ML03℄ show how to alulate the Homy polyno-mial of any satellite of the Hopf link, when the deorations are hosen fromthe more restrited setting of C+.This is ahieved sine the deorations are spanned in the Homy skeinof the annulus by the well-known elements Q�. The paper shows that theHomy polynomial of the Hopf link deorated by Q� on one omponent andQ� on the other, denoted < �; � >, depends on the Shur symmetri funtions� of an expliit power series depending on �.3.6.2 Kau�man polynomials of generalized Hopf linksThe tehniques developed and used to produe the results of this hapterhave been adopted by Zhong and Lu in [ZL02℄ to investigate the Kau�manpolynomials of generalized Hopf links.They onsidered the Kau�man skein module of the solid torus whih isde�ned and onstruted in an analogous way to the Homy skein of the53



annulus, obviously using the unoriented Kau�man skein relations in plae ofthe Homy skein relations.Following [MH02℄, Zhong and Lu de�ne a map ' on the Kau�man skeinmodule and then alulate eigenvalues �. These are then also shown to bedistint for di�erent �.
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Chapter 4A Basis For The Skein Of TheAnnulus, CIn the previous hapter we introdued a basis for the full Homy skein ofthe annulus. We referred to these skein elements as Q�;� where � and � areYoung diagrams. These basis elements were identi�ed as being eigenvetorsof the natural linear skein maps ' and �' whih see the addition of a meridianloop of the annulus.In this hapter we aim to onstrut a matrix of simple skein elementswhose determinant gives an expliit expression for Q�;�. Before we an hopeto get to that stage we must do some bakground work. As a taster, we o�ersome initial observations to the behaviour of the Q�;� at a very basi level.4.1 Basi behaviour of the Q�;�It is known that the Q�;� 2 C are indexed by pairs of Young diagrams. In thissetion we ask how these elements behave under multipliation. Sine we stillhave limited knowledge of these elements, we limit ourselves to onsideringthe multipliation by trivial elements, or, in other wordsQ�;� �Q ,; and Q�;� �Q;, :For Young diagrams, suh multipliation is illustrated by the Brattelli di-agram. For pairs of Young diagrams we an o�er an analogue to the Brattellidiagram, it is adapted from a onstrution o�ered by Kosuda and Murakamiin [KM93℄. To illustrate our onstrution we now build a Brattelli type dia-gram for the set of Young diagrams relevant to the subspae of C with n = 255



and p = 1, C(2;1). Our diagram is as follows(;; ;)( ; ;)( ; ;) ( ; ;)( ; ) ( ; ;) ( ; )We notie that to move from one level to the next, we are either multiplyingthe preeding pairs of Young diagrams by ( ; ;) (the �rst two steps) or by(;; ) (the �nal step). When multiplying a pair of Young diagrams by ( ; ;)the resulting pairs will either have and extra ell on the left Young diagram,or one less ell on the right Young diagram. Conversely, when multiplyinga pair of Young diagrams by (;; ) the resulting pairs will either have andextra ell on the right Young diagram, or one less ell on the left Youngdiagram.Remark. Due to the ommutativity in C we an build up this diagram withidential results even if we were to hange the order of the steps.We use these observations to give the following two rules:Q�;� �Q ,;(= Q ,; �Q�;�) = Xf(�0;�):j�0j=j�j+1;���0gQ�0;� + Xf(�;�0):j�0j=j�j�1;�0��gQ�;�0 ;Q�;� �Q;, (= Q;, �Q�;�) = Xf(�0;�):j�0j=j�j�1;�0��gQ�0;� + Xf(�;�0):j�0j=j�j+1;���0gQ�;�0 :As a �nal observation, the number of di�erent paths to a pair of Youngdiagrams (�; �) from top-to-bottom orresponds to the integer d�;� given byan expliit formula by Stembridge in Theorem 3.3.4.2 A spanning set for CReall from Chapter 2 the elements of Hn denoted hn and en whih orre-spond respetively to the single row and single olumn Young diagrams with56



n ells. We now onsider these elements wired into the annulus, and witha slight abuse of notation we write hn; en 2 C for the losures ^(hn);^(en)in C. It an be demonstrated using a symmetri funtion approah that theskein C+, when onsidered as an algebra, is spanned by monomials in thefhm : m � 0g.Now onsider the image of these elements under the involution �. Wehave �(hn) := h�n and �(en) := e�n. Similarly, the skein C� is spanned bymonomials in the fh�l : l � 0g.Combining these sets, the whole skein C is spanned by monomials infh�l ; hm : l; m � 0g.4.3 Some elements of ANow, if we keep the elements we have just de�ned in mind, and reall themaps l : C�A ! A and r : A�C ! A, we an de�ne the following elementsof A. Let ln := l(hn; e) = hn

and rn := r(e; hn) = hn :Now given these two elements of A we de�neyn := [n + 1℄ � hn+1whih satis�es the relationyn = s�1ayn�1 + ln: (4.1)Applying the mirror map, � to these elements of A we notie�yn = yn; �a = a; �ln = rn; s 7! s�1;57



so (4.1) beomes yn = sayn�1 + rn: (4.2)We de�ne further elements of A. We havel�n = r(e; h�n) = nh* ;
r�n = l(h�n; e) = nh*

and y�n = [n + 1℄ � hn+1
* :Similarly we obtain the relationy�n = s�1a�1y�n�1 + l�n (4.3)and under the mirror map this beomesy�n = sa�1y�n�1 + r�n: (4.4)We re-write relations (4.4) and (4.3) in order that they are similar in styleto (4.1) and (4.2) respetively. We gety�n�1 = s�1ay�n + �n�1 (4.5)and y�n�1 = say�n + ��n�1: (4.6)with �n�1 = �s�1ar�n and ��n�1 = �sal�n.Now solving pairs of equations (4.1,4.2) and (4.5,4.6) we obtain(s� s�1)yn = sln � s�1rn (4.7)and (s� s�1)y�n�1 = s�n�1 � s�1��n�1: (4.8)Finally let us reall the losure map we de�ned on A. We have� : A ! C

A 7! A :58



4.4 Some matrix resultsIn this setion we introdue a system of abbreviations for matries in orderto failitate the path to our goal. Then using these abbreviations we givesome results for determinants of ertain matries of skein elements.4.4.1 Fixed indexing matriesHere we desribe the idea of a �xed indexing matrix (FIM), eah of whihhaving assoiated to it an indexing vetor (IV). One main feature of thematries to be onsidered here is that rows will either ontain elements forwhih all are starred or all are non-starred.The IV will ontain the indies of the elements in the �rst olumn of theFIM, the remaining indies then being determined suh that the indies ofelements in starred rows derease sequentially and the indies of elements innon-starred rows inrease sequentially.We shall think of the FIM and the IV as a pair whih de�nes a matrix.We write M = (A; V ) for the matrix M represented by the FIM A and theIV V .Further simpli�ation of notation is possible due to the spei� format ofthe matries we are interested in. In eah FIM we shall only give one rowto represent eah of the starred and non-starred rows. This will be possiblesine the elements in any olumn will be of a similar type, di�ering onlyin the indies of its elements. Furthermore, there will be a similarity inelements along rows, with hanges ouring in the jth olumn, for a �xed j.An example will help to larify this desription.Example. Let A be the 8� 8 FIMA = �a� � � � b� b� � � � �a � � � b b  � � ��and V be the IV
V = 0BBBBBBBBBB�

34351231
1CCCCCCCCCCA ;
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then taking j = 4, we have the matrix M represented by A and V is
M = (A; V ) =

0BBBBBBBBBBB�
j=4#a�3 a�2 a�1 b�0 b��1 ��2 ��3 ��4a�4 a�3 a�2 b�1 b�0 ��1 ��2 ��3a�3 a�2 a�1 b�0 b��1 ��2 ��3 ��4a�5 a�4 a�3 b�2 b�1 �0 ��1 ��2a1 a2 a3 b4 b5 6 7 8a2 a3 a4 b5 b6 7 8 9a3 a4 a5 b6 b7 8 9 10a1 a2 a3 b4 b5 6 7 8

1CCCCCCCCCCCA:In the forthoming setions, the matries we will use will all be of size(k� + k) � (k� + k) with the top k� rows being starred and the bottom knon-starred. Furthermore, there will be only two di�erent indexing vetorsrequired. We de�ne them now.De�nition 3. Let V1 and V2 be the (k� + k)-row IV's
V1 :=

0BBBBBBBBBBB�
i1 � 1i2 � 1...ik� � 1ik�+1ik�+2...ik�+k

1CCCCCCCCCCCA and V2 := V1 +
0BBBBBBBBBBB�
11...100...0
1CCCCCCCCCCCA =

0BBBBBBBBBBB�
i1i2...ik�ik�+1ik�+2...ik�+k
1CCCCCCCCCCCA :

4.4.2 Matries of skein elementsReall the various skein elements onstruted and de�ned in Setion 4.3 andthe relations between them. We shall now use the notation developed aboveto state and prove some results for elements of the skein A whih are deter-minants of matries of these simple skein elements.
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Lemma 4.1. For all j � 1 we havedet  j#� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#� � � � y� y� �� � � �l � � � y y r � � � !; V1!:Proof. Apply olumn operationj+1 7! saj + j+1using (4.6) on starred rows and (4.2) on non-starred rows. �Corollary. For all j � 1 we havedet  j#� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#� � � � y� � � �l � � � y � � � !; V1!: (4.9)Lemma 4.2. For all j � 1 we havedet  j#� � � � y� y� � � � �l � � � y y l � � � !; V1! =det  j#� � � � y� � � � �l � � � y l � � � !; V1!:Proof. Apply olumn operationj+1 7! �s�1aj + j+1using (4.5) on starred rows and (4.1) on non-starred rows. �61



Corollary. For all j � 1 we havedet  j#� � � � y� � � �l � � � y � � � !; V1! =det  j#� � � � y� � � � �l � � � y l � � � !; V1!: (4.10)Lemma 4.3. For all j � 1 we havedet  j#� � � � y� �� � � �l � � � y r � � � !; V1! =det  j#� � � � y� � � � �l � � � y l � � � !; V1!:Proof. Combine determinantal equations 4.9 and 4.10. �De�nition 4.(a) �k�+k := det��� � � �l � � �� ; V1� 2 A;(b) �0 := det���� � � �r � � �� ; V1� 2 A;() In general, for j � 0,�j := det � j#� � � � � �� � � �l � � � l r � � � �; V1! 2 A:Lemma 4.4. For all j � 1 we have(s� s�1) det � j#� � � � y� �� � � �l � � � y r � � � �; V1! = s�j � s�1�j�1:62



Proof.(s� s�1) det  j#� � � � y� �� � � �l � � � y r � � � !; V1!= det  j#� � � � (s� s�1)y� �� � � �l � � � (s� s�1)y r � � � !; V1!= det  j#� � � � s� � s�1�� �� � � �l � � � sl � s�1r r � � � !; V1!(using equations (4.7) and (4.8))= det  j#� � � � s� �� � � �l � � � sl r � � � !; V1!� det  j#� � � � s�1�� �� � � �l � � � s�1r r � � � !; V1!= s�j � s�1�j�1 �Furthermore,Lemma 4.5.(s� s�1) k�+kXj=1 s2j�1 det  j#� � � � y� �� � � �l � � � y r � � � !; V1! =s2(k�+k)�k�+k ��0:
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Proof.(s� s�1) k�+kXj=1 s2j�1 det  j#� � � � y� �� � � �l � � � y r � � � !; V1!= k�+kXj=1 s2j�1(s� s�1) det  j#� � � � y� �� � � �l � � � y r � � � !; V1!= k�+kXj=1 s2j�1(s�j � s�1�j�1)= s2(k�+k)�k�+k ��0: �4.5 The �nal pushIn this setion we ombine all the results of the preeding setions to takeus to our �nal goal, expliitly identifying a basis for the Homy skein of theannulus C.Firstly we are required to de�ne some further matries.De�nition 5.(a) �0k�+k := det��r� � � �l � � �� ; V2� 2 A;(b) �00 := det��l� � � �r � � �� ; V2� 2 A;Now relating these matries to those de�ned in De�nition 4 we �ndProposition 4.6. The following relations hold:(i) �0k�+k = (�sa�1)k��k�+k;(ii) �00 = (�s�1a�1)k��0:Proof. To the left hand side of the relations apply the fats that r�i =�sa�1�i�1 and l�i = �s�1a�1��i�1 respetively to the top k� rows. We alsoallow for the shift in indies on the top k� rows with the hange in indexingvetor. The relations follow immediately. �64



The following lemma uses all the results of the previous setion to give arelation for elements in C through appliation of the losure map � : A ! C.Lemma 4.7.s2k�(s2k � (�0k�+k)� �(�00)) =k�+kXj=1 s2j Æ det��h� � � �h � � �� ; V2�� det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2!!Proof. We begin with the left hand side of the equation:s2k�(s2k � (�0k�+k)� �(�00))= �(s2k�(s2k�0k�+k)��00)(sine � is a linear map)= �(s2k�(s2k(�sa�1)k��k�+k � (�s�1a�1)k��0))(by Proposition 4.6)= �((�a�1s)k�(s2(k�+k)�k�+k ��0))= � (�a�1s)k�(s� s�1) k�+kXj=1 s2j�1 det � j#� � � � y� �� � � �l � � � y r � � � �; V1!!(by Lemma 4.5)= � (�a�1s)k�(s� s�1) k�+kXj=1 s2j�1 det � j#� � � � y� � � � �l � � � y l � � � �; V1!!(by Lemma 4.3)= � k�+kXj=1 (�a�1s)k�s2j�1 det � j#� � � � s� � s�1�� � � � �l � � � sl � s�1r l � � � �; V1!!(after multiplying olumn j by (s� s�1) and using relations (4.7,4.8))
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= � k�+kXj=1 (�a�1s)k�s2j det��� � � �l � � �� ; V1�!� � k�+kXj=1 (�a�1s)k�s2(j�1) det � j#� � � � �� � � � �l � � � r l � � � �; V1!!(by splitting the matries with the entries in the jth olumn)= k�+kXj=1 s2j � det��r� � � �l � � �� ; V2�!� k�+kXj=1 s2j � det � j#r� � � � l� r� � � �l � � � s�2r l � � � �; V2!!We now apply the losure map to the determinants and realling the skeinmap �' we see the result follows. �We now alulate the values of �'(h�n) and �'(hn).Proposition 4.8. �'(h�n) = (v�1(s2n�1 � s�1) + Æ)h�nand �'(hn) = (v(s�2n+1 � s) + Æ)hn:Proof. We are onsidering the idempotent losures h�n and hn, therefore weare interested in the single row Young diagram with n ells. We apply theresults for the values of t� and �t� given in Chapter 2 (see also [MH02℄), where� = (n) with the ontent of the ells being (from left-to-right) 0, 1, 2,: : :,n� 1. After some anellation, the results follow. �Corollary (of Lemma 4.7 and Proposition 4.8).s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =det  j#h� � � � (v�1s2ir+1 + s2j(Æ � s�1v�1))h�ir�j+1 h� � � �h � � � (vs1�2ir + s2j(s�2Æ � vs�1))hir+j�1 h � � � !; V2!where ir is the value in the rth row of the indexing vetor V2.66



Proof. The result is immediate after �nding the index for the jth olumnfrom the indexing vetor. �We notie the following about the seond summand of the salars multi-plying the h�ir�j+1 and the hir+j�1 in the previous matrix.Proposition 4.9. Æ � s�1v�1 = s�2Æ � s�1v:Proof. Sine Æ = v�1�vs�s�1 , we haveÆ(s� s�1) = v�1 � v) sÆ � v�1 = s�1Æ � v) Æ � s�1v�1 = s�2Æ � s�1v: �From this point we shall de�neA�;� := det��h� � � �h � � �� ; V2� ;and let ��ij := ��i + �j;and �ij := �i + �j;where ��i := v�1s2ir+1;�i := vs1�2ir ;and �j := s2j(Æ � s�1v�1):As explained, the entries in V2 determine the values of the subsripts ofthe entries in A�;�. Here, the entries of V2 will be assoiated with the numberof ells in the Young diagrams � and �, although we shall not indiate herehow this assoiation is made.Therefore we haves2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =det  j#h� � � � ��ijh� h� � � �h � � � �ijh h � � � !; V2!67



Lemma 4.10.k�+kXj=1 s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =(��11 + � � �+ ��k�k� + �k�+1;k�+1 + � � �+ �k�+k;k�+k)A�;�:Proof. We ombine the previous statements noting thatk�+kXj=1 s2j det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2! =k�+kXj=1 s2j det � j#h� � � � ��i h� h� � � �h � � � �ih h � � � �; V2!+ (�1 + � � �+ �k�+k)A�;�:Now apply a general formula noted by Luka in [Luk01℄ (see also [Luk℄) forvariables wij and �i,rXj=1 det0B�w11 � � � w1 j�1 �1w1j w1 j+1 � � � w1r... ... ... ... ...wr1 � � � wr j�1 �rw1j wr j+1 � � � wrr1CA = p det0B�w11 � � � w1r... ...wr1 � � � wrr1CAwhere p = �1 + � � �+ �r. The result follows. �In the following theorem we shall gain a glimpse of the eigenvetors Q�;�,as required.Theorem 4.11. A�;� is a salar multiple of Q�;�.Proof. Reall the statement of Lemma 4.7. The left-hand-side, on alulatingthe e�et of the losure map, iss2k�(s2k � (�0k�+k)� �(�00)) = s2(k�+k)ÆA�;� � s2k� �'(A�;�):The right-hand-side, through the preeding manipulation, isk�+kXj=1 s2j Æ det��h� � � �h � � �� ; V2�� det � j#h� � � � �'(h�) h� � � �h � � � s�2 �'(h) h � � � �; V2!!=   k�+kXj=1 s2j! Æ � k�Xj=1 ��jj + k�+kXj=k�+1 �jj!!A�;�:68



Combining these two statements yields, on re-arrangings2k� �'(A�;�) =   s2(k�+k) � k�+kXj=1 s2j! Æ + k�Xj=1 ��jj + k�+kXj=k�+1 �jj!A�;�:Now, in Chapter 3 we had a result that stated that every eigenvetor of �' isa multiple of one suh Q�;�. We have seen that A�;� is an eigenvetor of �', oris zero. We an on�rm that it is non-zero by omparing the speialisation of< A�;� > (the evaluation of A�;� in the plane), when v = sN with a suitable< Q� >, for large enough N . Hene the result follows. �One we have identi�ed the eigenvalue of A�;� as t�;�, we then knowthat A�;� is a multiple of Q�;� and an hene identify the indexing vetorappropriate for pairs of Young diagrams (�; �).
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Chapter 5A Survey Of Related WorkWe end this work with a brief hapter to disuss some reent work of otherauthors. The work to be disussed here takes a very di�erent approah tothe subjet with a larger emphasis on algebra and lesser so on the geomet-ri interpretation. It is still however a lose relative of what we have beendisussing here in the preeding hapters.5.1 Centralizer algebras of mixed tensor rep-resentationsVarious parties have disussed a onstrution similar to the generalized Hekealgebra Hn;p disussed here. Its onstrution however is di�erent from thegeometri approah we adopted.Firstly we onsider a one variable algebra. For this algebra, the variableq an be onsidered in the same ontext as the variable for the Heke algebravariant desribed previously and denotedHn(q). Aording to Jimbo [Jim86℄,the Heke algebra Hn(q) is the entralizer of the ation of the speial lineargroup Hq(slr) on 
nVq where Vq is the natural r-dimensional representationof Uq(slr). This is also sometimes alled the vetor representation.This is then extended to an algebra denoted Hn;p(q). This is then de�nedto be the entralizer of the ation of the general linear group Uq(glr) on(
nV �q )
 (
pVq) where Vq is again the natural r- dimensional representationof Uq(slr) and V �q its dual.Suh an algebra is onsidered by Kosuda and Murakami [KM92, KM93℄and also by Halverson [Hal96℄. The onnetion is made by these authorsbetween this algebra and the Homy polynomial of losed (n; p)-tangles.Perhaps more �tting for our approah, Ledu introdues a two variablealgebra in a similar way [Led94℄, denoted An;p(z; q) where the q appears as70



it does above, and the z orresponds to the v we see in the oeÆient ringfor Hn;p and is present to deal with any urls within the tangles. The Æ weuse is the equivalent to the x used by Ledu.Ledu o�ers a onvenient way to see how these algebras, shortened nowto An;p, display the natural embedding desribed earlier. We know thatAk;l � An;p for 0 � k � n and 0 � l � p. We then see that the algebras An;pan be arranged in the form of Pasal's triangle.A0;0A1;0 A0;1A2;0 A1;1 A0;2A3;0 A2;1 A1;2 A0;3... ... ...In this triangle we may say that an algebra Ak;l is a subalgebra of An;p ifand only if there is a path from Ak;l to An;p proeeding from top-to-bottomobeying the diretions of the arrows. We also notie that the outer points ofthe triangle are isomorphi to the Heke algebra, and the sum i+ j for eahAi;j is onstant at eah level.Remark. Ledu gives a presentation of An;p in terms of generators and rela-tions (De�nition 2.2, [Led94℄). The presentation given is isomorphi to thepresentation given by the author in the main theorem of [Had℄ where it isproved to be a presentation for the skein theoreti algebra.In all these piees of work, the idea of indexing by pairs of Young dia-grams is present, however unlike the approah taken in Chapter 4, they usea onept they desribe as stairases.Ledu ends his thesis [Led94℄ with a desription of the potential onne-tion between this algebra and alulating the Homy polynomial for losuresof tangles.Barelo and Ram o�er a survey to some of this work and more besidesin [BR99℄. Their survey is primarily from the point of view of ombinatorial71



representation theory and hene they inlude muh that is beyond the sopeof this thesis. They do inlude a omprehensive list of referenes.Remark. In other related work by Kosuda [Kos99℄, irreduible representationsof the Heke ategory H are shown to de�ne isotopy invariants of orientedtangles. The set of oriented tangles (up to isotopy) forms a ategory denotedOT A. Following Turaev [Tur90℄, the Heke ategory H is de�ned as OT Afatored by the Homy skein relations. This method is then used to omputethe Homy polynomial in [Kos97℄.5.2 The Homy skein module of S1 � S2Gilmer and Zhong disuss the Homy skein module of S1 � S2 in [GZ℄.This skein S(S1 � S2) is desribed as a ertain quotient of S(S1 � D2),denoted in the preeeding hapters by C. In order to disuss this quotient,the authors �rst give a basis for the skein S(S1�D2) in terms of losures of theAiston-Morton idempotents of the Heke algebra. They o�er the followingproposition, re-written here using our terminology.Proposition 5.1. C has a ountable in�nite basis given by Q0�;� where � and� vary over all Young diagrams.The spae S1�S2 is then onsidered to be obtained by adding a 2-handleand a 3-handle to the solid torus. The skein of this spae is studied viaonsidering another skein, S(S1�D2; A; B), the skein of the solid torus withan input point A and an output point B.Two bases are then given for S(S1�D2; A; B). The �rst is given in termsof the basis of S(S1 � D2) given by Turaev and denoted here, using ourterminology, by the set fAm : m 2 Zg:The seond basis is related to the basis of C desribed above as Q0�;�, thelosures of two suitably oriented Aiston-Morton idempotent elements.5.3 Conluding remarksThe author hopes that through this work some interesting questions havebeen answered. On the one hand it is hoped that the answering of thesequestions goes a small way in improving our understanding of this area ofskein theory; on the other, one hopes that more questions are raised as aresult. 72
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