Homfly Skein Theory of
 Reversed String Satellites

Thesis submitted in accordance with the requirements of the
University of Liverpool
for the degree of
Doctor in Philosophy

by

Richard John Hadji

December 2003

Richard John Hadji
 Homfly Skein Theory of Reversed String Satellites

Abstract

This thesis aims to use Homfly skein theory to give a geometric interpretation of useful and interesting algebraic objects. We consider tangles and the skein of the annulus. Previous work has generally been restricted to considering strings in tangles or around the annulus travelling in one direction. Our extension allows strings travelling in both directions. We extend many of the existing results into this arena, at the same time as developing some new ideas.

Acknowledgements

Firstly I would like to thank my supervisor and mentor Professor Hugh R. Morton. His support and invaluable advice, not to mention his endless patience, has been essential in the writing of this thesis.

The Department of Mathematical Sciences in Liverpool has been a great place to study. I have made many friends during my time here from fellow postgraduate students and from the staff. I particularly acknowledge Paul, Andy, Helen, Clare and Jo from the postgraduates, and Dr Ian Porteous, Mrs Ann Newstead and Professor Peter Giblin from the staff. Also, thanks to Joan for the cups of tea!

I acknowledge financial support from the EPSRC and also from the Department who helped fund several very beneficial conference visits.

Thank you to all my family for their support; Mum, Dad, Louise and Gemma. Finally, a very special thank you to Carol, your love is everything to me.

To Mum and Dad for always being there, and, To Carol for being my soulmate...
I couldn't have done any of this without you all

Contents

1 Skein Theory 4
1.1 The Homfly polynomial 4
1.2 Homfly skein theory 5
1.3 Skein maps 7
1.3.1 Wiring maps 7
1.3.2 A mirror map 7
1.3.3 180° rotation 7
1.3.4 An evaluation map 8
1.3.5 A closure map 8
1.4 Young diagrams 8
1.5 The Hecke algebra 9
1.5.1 Quasi-idempotent elements in H_{n} 11
1.6 $H_{n, p}$ - A generalized Hecke algebra? 13
1.6.1 New elements from old 14
1.7 Two skeins of the annulus 15
1.7.1 The skein \mathcal{C} 15
1.7.2 The skein \mathcal{A} 18
2 Murphy Operators 22
2.1 Murphy operators in the Hecke algebras 23
2.2 The Murphy operators and idempotents of the Hecke algebra 27
2.3 Symmetric functions and the skein of the annulus 28
2.4 Symmetric functions of the Murphy operators 32
2.5 A set of Murphy operators in $H_{n, p}$ 35
2.6 The Murphy operators and idempotents of $H_{n, p}$ 39
2.7 Supersymmetric polynomials in the Murphy operators 41
3 The Homfly Polynomial Of Generalized Hopf Links 43
3.1 Initial motivation 43
3.2 Satellites of Hopf links 43
3.3 Maps on the skein of the annulus, \mathcal{C} 45
3.4 Eigenvectors and eigenvalues of the maps φ and $\bar{\varphi}$ 47
3.5 The Homfly polynomials of some generalized Hopf links 49
3.5.1 The Homfly polynomial of $H\left(k_{1}, k_{2} ; n, 0\right)$ 49
3.5.2 The Homfly polynomial of $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ 50
3.6 Some final remarks 53
3.6.1 The Homfly polynomial of the decorated Hopf link 53
3.6.2 Kauffman polynomials of generalized Hopf links 53
4 A Basis For The Skein Of The Annulus, \mathcal{C} 55
4.1 Basic behaviour of the $Q_{\lambda, \mu}$ 55
4.2 A spanning set for \mathcal{C} 56
4.3 Some elements of \mathcal{A} 57
4.4 Some matrix results 59
4.4.1 Fixed indexing matrices 59
4.4.2 Matrices of skein elements 60
4.5 The final push 64
5 A Survey Of Related Work 70
5.1 Centralizer algebras of mixed tensor representations 70
5.2 The Homfly skein module of $S^{1} \times S^{2}$ 72
5.3 Concluding remarks 72

List of Figures

1.1 L_{+}, L_{-}and L_{0} differ only as shown. 5
$1.2 \quad T_{+}$and T_{0} differ only as shown. 5
1.3 Reidemeister moves $\mathrm{R}_{I}, \mathrm{R}_{I I}$ and $\mathrm{R}_{I I I}$ 6
1.4 The involution $*$ rotates F about the axis A. 7
1.5 The surface R_{n}^{n}. 9
1.6 The 3 -dimensional representation of E_{ν} with $\nu=(4,3,1,1)$. 12
1.7 The surface $R_{n, p}^{n, p}$. 13
1.8 (a) $\left\{\sigma_{i}:-(n-1) \leq i<0\right\} ;$ (b) $\sigma_{0} ;(\mathrm{c})\left\{\sigma_{i}: 0<i \leq p-1\right\}$. 14
1.9 An element $X \in \mathcal{C}$. 15
1.10 An element $A_{m} \in \mathcal{C}$, for $m \in \mathbb{Z}$ 16
$1.11 R_{n}^{n}$ wired into $S^{1} \times I$ 16
1.12 The generator $A_{-3} A_{1}$. 18
1.13 The annulus with two boundary points. 19
$1.14 e \in \mathcal{A}$. 19
$1.15 a \in \mathcal{A}$. 20
$1.16 a^{-1}$ and $a^{2} \in \mathcal{A}$. 20
2.1 The positive transposition braid $\omega_{(i j)} \in H_{n}$. 23
$2.2 T(j) \in H_{n}$ 25
$2.3 \quad T^{(n)} \in H_{n}$. 26
2.4 The diagram D which induces the wiring V_{n}. 34
2.5 The (n, p)-tangle $T^{(n, p)}$ 35
2.6 A tangle with at least l pairs of strings which turn back. 36
2.7 The elements $T(j)$ and $A(j)$ for $1 \leq j \leq p$. 37
2.8 The elements $T(j)$ for $1 \leq i \leq n$ and $A(j)$ for $1 \leq j \leq p$. 38
3.1 The links H_{+}and H_{-} 44
3.2 The link $H_{+}\left(P_{1}, P_{2}\right)$. 44
3.3 The diagrams P_{1} and P_{2} 45
3.4 The generalized Hopf link $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ 46
3.5 The link $H\left(k_{1}, k_{2} ; 1,2\right)$ in \mathcal{C}. 51

Introduction

In this work we aim to extend the understanding of Homfly skein theory, in particular when trying to give a geometric interpretation of useful and interesting algebraic objects. Much work that precedes this thesis has considered the skein theoretic view of algebraic objects such as the Hecke algebra, including [Jon87, MT90, Mor93, Ais96, AM98, Luk01] and many more besides.

Our extension begins with an algebra $H_{n, p}$ in which strings in the geometric viewpoint can be considered in both directions. We now offer the highlights from each chapter.

The overall aim of this work is to develop some new concepts at the same time as bringing together much recent work that has previously only appeared spread across the literature.

The first chapter gives the necessary ingredients for the remainder of the work. The concept of Homfly skein theory is introduced. The Homfly polynomial is first defined and is then used to give a general definition of a Homfly skein.

Before giving specific examples of Homfly skeins, a description of some useful skein maps is given, followed by a slight diversion into defining the concepts and terminology associated with Young diagrams.

Finally four Homfly skeins are defined. Firstly the skein of a rectangle with n input and n output points. This is known to be isomorphic to the Hecke algebra H_{n}.

An extension of this is then reintroduced from a geometric viewpoint (initially given by [MW, Had]). This algebra is denoted $H_{n, p}$ and comes from considering the skein of a rectangle as with H_{n}, but this time it should have n input and p output points on one side and n output and p input points on the opposite side.

We then give two different skeins of the annulus. The first is denoted \mathcal{C} and is broken down into subspaces which are defined by wiring the previous two skeins, H_{n} and $H_{n, p}$, into the annulus.

The second is a lesser known skein, denoted \mathcal{A}. It arises from considering the annulus with an input point specified on the inner boundary component and an output point specified on the outer boundary component. It is isomorphic to a skein used by Kawagoe [Kaw98] with the input and output point on the same boundary component. It has been adapted more recently as it lends itself well to providing elegant proofs through its unexpected algebraic properties. Although it is linearly isomorphic to the skein of Kawagoe, it is this more recent adaptation that has meant it could be considered as an algebra. It is the commutative algebraic properties that make the calculations we rely upon later in Chapter 4 possible. As we shall see, elements of the skein are used in determinants, see also in [Mor02b, Luk01].

Chapter 2 defines the Murphy operators. The original context for such objects was the group algebra $\mathbb{C}\left[S_{n}\right]$ of the symmetric group and is defined in terms of sums of transpositions. This concept was extended to the Hecke algebra H_{n} by Dipper and James [DJ87]. We offer a survey of some results involving these elements and the centre of H_{n}, mainly by Ram and Morton. This includes a nice skein theoretic representation of the Murphy operators and some interesting connections between these elements, the centre of H_{n} and the symmetric functions (see [Mac79] for a complete survey of symmetric functions).

This chapter ends with an introduction of a potential set of Murphy operators for the algebra $H_{n, p}$. We also attempt to connect these to central elements of $H_{n, p}$. Following the precedent of the H_{n} case, we find there is a path from these elements to a certain type of symmetric function, the so-called supersymmetric functions.

The third chapter describes the results of work by the author with Morton. These results have now been published in [MH02]. The work of Chapter 2 is used to give an understanding of two natural linear maps defined on the skein of the annulus \mathcal{C} encircling it with a loop once.

This work has arisen as a result of a paper by T.-H. Chan [Cha00]. There Chan discusses the Homfly polynomial of reverse string parallels of the Hopf link. In this chapter we see that the calculations made by Chan can be made very readily using our techniques. An essential ingredient to our techniques is showing that these linear maps have a set of distinct eigenvalues, answering a question raised by Chan.

We end this chapter by using our results to calculate the Homfly poly-
nomials of some specific reverse string satellites of the Hopf link. We also observe that this approach is still incomplete due to a minimal knowledge of the elements $Q_{\lambda, \mu} \in \mathcal{C}$.

The intention of Chapter 4 is to fill a gap in the knowledge as noted in Chapter 3. This gap is the minimal knowledge of the elements $Q_{\lambda, \mu}$ in the full skein \mathcal{C}. The final goal is to give an explicit formula for $Q_{\lambda, \mu}$ in terms of the determinant of simpler skein elements.

In trying to achieve this goal we are required to take a diversion through the skein \mathcal{A} whilst introducing a new type of matrix whose entries follow a specific pattern and can be manipulated in a very prescribed way.

After much work on these matrices we draw together the techniques learned and results discovered to give the derivation of a matrix whose determinant will yield an explicit formula for the $Q_{\lambda, \mu}$.

The final chapter, Chapter 5, aims to finish this work by giving a brief survey of some work of other authors that relates to the general themes discussed here. Although the overlap between our work and that to be discussed in this chapter has not been fully explored, it is felt by the author that such an exploration has potential for further study.

It is hoped by the author that these avenues may be given some thought and their potential explored.

Chapter 1

Skein Theory

The purpose of this chapter is to introduce the basic constructions that will be central to the majority of the work to follow.

1.1 The Homfly polynomial

The Homfly polynomial is a two-variable isotopy invariant of oriented links and, since its discovery, has been the subject of much study. It was first described by several groups; [FYH ${ }^{+} 85$, PT87]. Its discovery followed the construction of a simpler polynomial invariant V, the so-called Jones polynomial [Jon85], found using von Neumann algebras and braid groups.

Various versions of the Homfly polynomial appear in the literature. The framed version to the fore in this work, denoted for a link $L, P(L)$, is determined by the Homfly polynomial skein relations:

$$
\begin{aligned}
P\left(L_{+}\right)-P\left(L_{-}\right) & =\left(s-s^{-1}\right) P\left(L_{0}\right) \\
\text { and } P\left(T_{+}\right) & =v^{-1} P\left(T_{0}\right),
\end{aligned}
$$

where L_{+}, L_{-}and L_{0} are oriented links which differ only in a disc as shown in Figure 1.1; and T_{+}and T_{0} differ only in a disc as shown in Figure 1.2.

The second of the skein relations given above allows one to take account of the writhe of the link.

We normalize the Homfly polynomial by setting $P(\emptyset)$, where \emptyset is the empty link, equal to 1 . Also, a direct consequence of the skein relations is that

$$
P(L \sqcup \bigcirc)=\frac{v^{-1}-v}{s-s^{-1}} P(L)
$$

where $L \sqcup \bigcirc$ is the link L with a disjointly embedded null-homotopic oriented loop.

Figure 1.1: L_{+}, L_{-}and L_{0} differ only as shown.

Figure 1.2: T_{+}and T_{0} differ only as shown.

Remark. (i) The Homfly polynomial of the oriented m-component unlink, $\mathcal{U}^{m}=\sqcup_{i=1}^{m} \bigcirc$, is $P\left(\mathcal{U}^{m}\right)=\delta^{m}$, where $\delta=\frac{v^{-1}-v}{s-s^{-1}}$.
Remark. (ii) If L^{*} is the reflection of a link L, then

$$
P\left(L^{*}\right)(s, v)=P(L)\left(s^{-1}, v^{-1}\right) .
$$

1.2 Homfly skein theory

Skein theory was first introduced by J.H. Conway, a Liverpool born mathematician, [Con70]. Skein theory can be considered from many viewpoints; here we are interested in the skein theory associated to the Homfly polynomial.

Following the description of the Homfly polynomial given above, the Homfly skein relations are

$$
\begin{aligned}
& \left.\pi-\=\left(s-s^{-1}\right)\right\rangle \\
& \text { and } \quad \hat{}=v^{-1} \uparrow .
\end{aligned}
$$

Now let F be a planar surface with a fixed (possibly empty) set of input and output points on the boundary. We allow the surface to have holes. We consider diagrams in F which consist of oriented arcs joining input points to output points and oriented closed curves, up to Reidemeister moves $\mathrm{R}_{I I}$ and $\mathrm{R}_{\text {III }}$ [Rei32] (reminders of all three Reidemeister moves are shown in Figure 1.3).

Figure 1.3: Reidemeister moves $\mathrm{R}_{I}, \mathrm{R}_{I I}$ and $\mathrm{R}_{I I I}$

Within a diagram in F, the strands at a crossing point are distinguished in the conventional way as an overcrossing and an undercrossing. Clearly, if the surface F is to have input and output points there must be an equal number of each.

Similarly to the Homfly polynomial skein relations, it is a consequence that for a diagram $D, D \sqcup \bigcirc=\frac{v^{-1}-v}{s-s^{-1}} D$.

The Homfly skein, $\mathcal{S}(F)$, of a surface F is then defined to be Λ-linear combinations of diagrams in F, modulo the Homfly skein relations given above, for a suitable coefficient ring Λ.

The coefficient ring can be taken as $\Lambda=\mathbb{Z}\left[v^{ \pm 1}, s^{ \pm 1}\right]$ with monomials in $\left\{s^{k}-s^{-k}: k \geq 0\right\}$ admitted as denominators.

We notice the empty diagram is only admitted when F has no boundary
points specified. The relation which is given above as a consequence of the Homfly skein relations allows the removal of an oriented nul-homotopic closed curve without crossings, at the expense of multiplication by the scalar $\delta=$ $\frac{v^{-1}-v}{s-s^{-1}}$. This relation is a consequence of the main relations except where the removal of the curve leaves the empty diagram.

1.3 Skein maps

1.3.1 Wiring maps

We can map the skein of a surface, F, into the skein of another, F^{\prime} say. We do this through a construction called a wiring. A wiring w of F into F^{\prime} is a choice of inclusion of F into F^{\prime} and a choice of a fixed diagram of curves and arcs in $F^{\prime} \backslash F$. The boundary of this fixed diagram is the union of the distinguished set of F and F^{\prime}. Examples of wiring will be essential in some of the work to follow.

1.3.2 A mirror map

We define a mirror map,

$$
{ }^{-}: \mathcal{S}(F) \rightarrow \mathcal{S}\left(F^{\prime}\right)
$$

induced by switching all crossings in the diagram, coupled with inverting v and s in Λ.

1.3.3 180° rotation

This skein map is induced by a 180° rotation of diagrams in F about the horizontal axis A, as shown in Figure 1.4. This is denoted $*: \mathcal{S}(F) \rightarrow \mathcal{S}(F)$. There is no effect on s and v in Λ.

Figure 1.4: The involution $*$ rotates F about the axis A.

1.3.4 An evaluation map

There is also an evaluation map,

$$
\rangle: \mathcal{S}(F) \rightarrow \Lambda .
$$

This is obtained by wiring F into the plane by some prescribed wiring map, in particular, if F has no boundary points then just "forget" its boundary. Then for an element $X \in \mathcal{S}(F),\langle X\rangle$ is just the framed Homfly polynomial of X after wiring into the plane.

1.3.5 A closure map

Given a surface F with a non-empty set of boundary points, we can wire elements $X \in \mathcal{S}(F)$ into the skein of another surface F^{\prime} without any boundary points using a closure map. Such a map would have arcs in $F^{\prime} \backslash F$ joining, in some prescribed way, the input points to the output points of F.

1.4 Young diagrams

We now take a temporary diversion from skein theory to discuss the well studied topic of Young diagrams. Only a brief description will be given here but a fuller account appears in a great many texts such as [Wey46, FH91, Jon90]. Here we shall concentrate only on the details essential to our studies.

A Young diagram describes both a partition and a graphical representation of the partition. Let λ be a Young diagram representing the integer n. Our λ is then an array of square cells (each of equal size) with l rows. We denote the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{i}, \ldots, \lambda_{l}\right)$ such that there are λ_{i} cells in the $i^{\text {th }}$ row enumerated from top to bottom, with $\sum_{i=1}^{l} \lambda_{i}=n$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{i} \geq \lambda_{l}$.

For $n=0$ the Young diagram (0) is the empty diagram \emptyset.
The number of cells in a Young diagram λ is denoted by $|\lambda|$ and the length $l(\lambda)=l$ is the number of non-zero rows. The conjugate of λ is denoted λ^{\vee} and is the transposition of λ such that the rows of λ are the columns of λ^{\vee}. In other word, this is equivalent to reflecting in the leading diagonal. We have $\left(\lambda^{\vee}\right)^{\vee}=\lambda$ for any Young diagram λ.

We also assign a co-ordinate system to each Young diagram. The $j^{\text {th }}$ cell in the $i^{\text {th }}$ row reading from left-to-right, top-to-bottom, is denoted $(i, j) \in \lambda$, and the content $\mathrm{cn}(c)$ of the cell $c=(i, j) \in \lambda$ is defined to be $j-i$. We have that the hook length of a cell $(i, j) \in \lambda$ is defined to be $\mathrm{hl}(i, j)=$ $\lambda_{i}-i+\lambda_{j}^{\vee}-j+1$.

The number of partitions of a natural number n (equivalently, the number of Young diagrams with n cells) shall be denoted $\pi(n)$. (The standard notation used for the number $\pi(n)$ is $p(n)$; our alternative notation has been chosen to avoid a clash with notation required later in this work.) Finally, the standard tableau $T(\lambda)$ is a Young diagram for λ with the numbers 1 to n assigned to each cell, such that the numbers increase from left-to-right and from top to bottom.

1.5 The Hecke algebra

The Hecke algebra, H_{n} of type A_{n-1} is a deformed version of the group algebra of the symmetric group S_{n}. It has been well studied from many different viewpoints, and hence has many different but equivalent incarnations. It will be most conveniently thought of in this context as having explicit presentation
$H_{n}=\left\langle\sigma_{i}: i=1, \ldots, n-1 \left\lvert\, \begin{array}{cl}\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & :|i-j|>1 ; \\ \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & : 1 \leq i<n-1 ; \\ \sigma_{i}-\sigma_{i}^{-1}=s-s^{-1} . & \end{array}\right.\right\rangle$.
We discuss how to translate from this variant into some of its isomorphic variants at the end of this section.

Now consider the following geometric scenario. Consider a surface $I \times I$, a rectangle, with n input points specified across the bottom and n output points across the top. Denote this surface $F=R_{n}^{n}$, as shown diagrammatically in Figure 1.5.

Figure 1.5: The surface R_{n}^{n}.

Diagrams in F then consist of oriented arcs joining the inputs to the
outputs and oriented closed curves, up to Reidemeister moves II and III. Such diagrams in R_{n}^{n} are known as n-tangles.

Now consider the skein $\mathcal{S}\left(R_{n}^{n}\right)$, Λ-linear combinations of n-tangles in R_{n}^{n}, modulo the Homfly skein relations.

Composition of diagrams D_{1} and D_{2} in R_{n}^{n} is achieved by stacking D_{2} above D_{1}. This composition induces a product which makes $\mathcal{S}\left(R_{n}^{n}\right)$ into an algebra. It has a linear basis of n ! elements and its generators are the elementary braids
where the crossing occurs between the $i^{\text {th }}$ and $i+1^{\text {th }}$ string, for $i=1, \ldots, n-1$.
It is shown in [MT90] that the skein theoretic algebra $\mathcal{S}\left(R_{n}^{n}\right)$ with coefficient ring extended to include $v^{ \pm 1}$, is isomorphic to the Hecke algebra, H_{n}, of type A_{n-1}. We notice that the variable v does not appear in the presentation of the abstract algebra H_{n}. It is present when following a geometric route to allow one to reduce general tangles to linear combinations of braids, by means of the Homfly skein relations. The variable v comes into play in dealing with curls using the second Homfly skein relation and in handling disjoint closed curves. In other words it is required to keep track of the framing of the diagrams.

From this point we shall, perhaps rather lazily, consider $\mathcal{S}\left(R_{n}^{n}\right)$ and H_{n} synonymously. The juxtaposition of putting tangles $S \in H_{n}$ to the left of $T \in H_{m}$ is denoted $S \otimes T$ and is an element of $H_{n} \otimes H_{m} \hookrightarrow H_{n+m}$.

In the special case $s-s^{-1}=0$, the Hecke algebra reduces to $\mathbb{C}\left[S_{n}\right]$ with σ_{i} becoming the transposition $(i i+1)$. In this case there is no possibility of any curls being present hence the v is not required in the presentation.

As said previously, there are different isomorphic variants of the Hecke algebra. We will now describe two others and show how to translate between our standard definition and these variants.

One variant includes an extra variable x whose function it to keep track of the writhe of a diagram. We denote this variant $H_{n}(x, z)$ and obtain H_{n} from it by setting $x=1$ and $z=s-s^{-1}$. The quadratic relation for $H_{n}(x, z)$ in terms of generators ρ_{i} is then $x^{-1} \rho_{i}-x \rho_{i}^{-1}=z$.

A further variant is seen in many algebraic texts. We shall denote this variant $H_{n}(q)$ as it is usually seen to include the indeterminate q. The quadratic relation is usually given with roots q and -1 . With generators τ_{i} the quadratic relation is $\tau_{i}^{2}=(q-1) \tau_{i}+q$.

The three variants of the Hecke algebra given here are all isomorphic,
related by the isomorphisms given below:

$$
\begin{array}{rlll}
H_{n} & \cong H_{n}(x, z) & \cong H_{n}(q) \\
\sigma_{i} & \mapsto x^{-1} \rho_{i} & \\
& & \rho_{i} & \mapsto s^{-1} x \tau_{i}
\end{array}
$$

where q, z and s are related by $z=s-s^{-1}$ and $q=s^{2}$.

1.5.1 Quasi-idempotent elements in H_{n}

The group algebra $\mathbb{C}\left[S_{n}\right]$ has idempotent elements which are described by the classical Young symmetrizers. For a Young diagram λ its Young symmetrizer is the product of the sum of permutations which preserve the rows of the standard tableau $T(\lambda)$ and the alternating sum of permutations which preserve the columns.

It is then reasonable to suppose that corresponding elements exist in H_{n} replacing permutations by suitably weighted positive permutation braids. Jones [Jon87] describes the two idempotents which correspond to the single row and single column Young diagrams, with other authors giving descriptions for general λ, including Gyoja [Gyo86].

Given the Gyoja construction as a starting point, a pleasing skein picture based on the Young diagram λ was given by Aiston and Morton [Ais96, AM98]. With this it was possible to see many pleasing properties for these idempotent elements.

For H_{n}, we denote these idempotent elements e_{λ} with $|\lambda|=n$. Before we continue we briefly describe the basic process followed in constructing such elements. However, for a full account of this the interested reader should still refer to [AM98] or [Ais96]. We deliberately avoid any technicalities here to avoid repetition later when we construct single row and single column idempotents in Section 2.3. Instead we shall concentrate on the rather elegant pictorial view of the e_{λ} and some of the basic properties.

Recall that the quadratic relation for the presentation of the Hecke algebra is

$$
\sigma_{i}-\sigma_{i}^{-1}=s-s^{-1} .
$$

This can be factorised to $\left(\sigma_{i}-a\right)\left(\sigma_{i}-b\right)=0$ with $a=-s^{-1}$ and $b=s$. Now define

$$
a_{n}=\sum_{\pi \in S_{n}}(-a)^{-l(\pi)} w_{\pi} \quad \text { and } \quad b_{n}=\sum_{\pi \in S_{n}}(-b)^{-l(\pi)} w_{\pi},
$$

where $l(\pi)=\operatorname{wr}\left(w_{\pi}\right)$, the writhe of the braid w_{π}.
Now for each $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ we want to define elements e_{λ}. First we give a three-dimensional picture of the elements, referring to it now as
E_{λ}. Imagine the strings of the tangle lined up to pass through the centres of templates of the Young diagram λ at its top and bottom. At its input points, the strings are grouped together with linear combinations a_{j} of braids where the rows have j cells. At the output points, the strings are grouped with linear combinations of b_{j} of braids where the columns have j cells.

To make this explanation clear we now use an explicit example. Consider the Young diagram $\nu=(4,3,1,1)$. We then have that E_{ν} is the tangle shown in Figure 1.6.

Figure 1.6: The 3-dimensional representation of E_{ν} with $\nu=(4,3,1,1)$.

Now how do we translate from this three-dimensional picture to our usual flat interpretation of tangles? From this three-dimensional picture we flatten it out into two dimensions, ensuring that the resulting crossings that are made are all positive.

A main feature of these elements is captured in the following theorem.
Theorem 1.1 (Aiston-Morton [AM98]). Let λ and μ be Young diagrams with n cells. Then

$$
\begin{aligned}
e_{\lambda} e_{\mu} & =0 & & \text { for } \lambda \neq \mu, \\
e_{\lambda}^{2} & =\alpha_{\lambda} e_{\lambda} & & \text { for some scalar } \alpha_{\lambda} .
\end{aligned}
$$

Thus distinct Young diagrams determine orthogonal elements, while each e_{λ} is a quasi-idempotent element of H_{n}.

More information on these interesting elements will emerge during the course of this work. As a taster, we will be particularly interested in the effect of central elements of H_{n} on the e_{λ}. Given elements $c \in Z\left(H_{n}\right)$, we will want to find the values of c_{λ} where $c e_{\lambda}=c_{\lambda} e_{\lambda}$.

There are clearly $\pi(n)$ of these elements in H_{n} as they coincide with the number of partitions of n.

1.6 $\quad H_{n, p}$ - A generalized Hecke algebra?

We now consider a family of extended variants of the Hecke algebras discussed previously.

Let us consider a surface $I \times I$, a rectangle, with n input and p output points specified across the top, and matching n output and p input points across the bottom. Denote the surface $F=R_{n, p}^{n, p}$, as shown in Figure 1.7.

Figure 1.7: The surface $R_{n, p}^{n, p}$.

As before, diagrams in F consist of oriented arcs joining the inputs to the outputs and oriented closed curves, up to Reidemeister moves II and III. Such diagrams in $R_{n, p}^{n, p}$ are to be known as (n, p)-tangles.

Write $H_{n, p}$ for the skein $\mathcal{S}\left(R_{n, p}^{n, p}\right)$. There is a natural algebra structure on $H_{n, p}$ induced by placing one (n, p)-tangle above the other. When we set $n=0$ (or $p=0$), we notice that the resulting algebra is isomorphic to the Hecke algebra H_{p} (or H_{n} respectively).

The algebra $H_{n, p}$ has been studied by Kosuda and Murakami, [KM93], in the context of $s l(N)_{q}$ endomorphisms of the module $V^{\otimes n} \otimes V^{\otimes p}$, where V is the fundamental N-dimensional module.

The author of this work has also studied this algebra previously [Had]. This included describing the algebra geometrically as above and finding an explicit skein-theoretic basis for it. We briefly discuss some of the details
from [Had], with further details about $H_{n, p}$ being revealed in subsequent chapters of this work as they are required.

Firstly, one should observe that there is a linear isomorphism of $H_{n, p}$ with $H_{(n+p)}$, however this is not in general an algebra isomorphism. This linear isomorphism is a wiring which does nothing to the p positively oriented strings and turns the n negatively oriented strings around into positively oriented strings. Clearly there is an element of choice in this wiring.

The algebra $H_{n, p}$ is generated by the elements σ_{i}, for $-(n-1) \leq i \leq p-1$, where the skein theoretic representation of the elements $\left\{\sigma_{i}:-(n-1) \leq i<\right.$ $0\}, \sigma_{0}$ and $\left\{\sigma_{i}: 0<i \leq p-1\right\}$ are shown in Figure 1.8 (a), (b) and (c) respectively. Also, $H_{n, p}$ has a linear basis of $(n+p)$! elements.

Figure 1.8: (a) $\left\{\sigma_{i}:-(n-1) \leq i<0\right\} ;$ (b) $\sigma_{0} ;(\mathrm{c})\left\{\sigma_{i}: 0<i \leq p-1\right\}$.

1.6.1 New elements from old

Using elements of H_{n} we can immediately find elements of $H_{n, p}$. Consider first the image of H_{n} under the involution $*$. Clearly then $*\left(H_{n}\right) \otimes H_{p} \hookrightarrow H_{n, p}$.

Given the Gyoja-Aiston-Morton elements $e_{\lambda} \in H_{n}$ described above, we can find an obvious set of idempotent elements in $H_{n, p}$. These elements are
to be denoted $e_{(\lambda, \mu)}^{\prime}:=e_{\lambda}^{(-)} \otimes e_{\mu}^{(+)}$formed by the juxtaposition of e_{λ} and e_{μ} with appropriate orientations and $|\lambda|=n$ and $|\mu|=p$. There are the $\pi(n) \times \pi(p)$ of these.

1.7 Two skeins of the annulus

In this section we define two skeins of the annulus. The first is very wellknown and has received much attention from several authors. The second however has only recently begun to receive the attention it deserves.

1.7.1 The skein \mathcal{C}

Let F be the annulus, $F=S^{1} \times I$. Then $\mathcal{S}\left(S^{1} \times I\right)$ is the Homfly skein of the annulus. We denote this by \mathcal{C}. This skein is discussed in some detail in [Mor93] and originally in 1988 in the preprint of [Tur97].

We shall represent an element $X \in \mathcal{C}$ diagrammatically as in Figure 1.9.

Figure 1.9: An element $X \in \mathcal{C}$.

The skein \mathcal{C} has a product induced by placing one annulus outside another. This defines a bilinear product under which \mathcal{C} becomes an algebra. This algebra is clearly commutative (lift the inner annulus up and stretch it so the outer one will fit inside it).

Turaev [Tur97] showed that \mathcal{C} is freely generated as an algebra by the elements $\left\{A_{m}, m \in \mathbb{Z}\right\}$ where A_{m} is represented by the skein theoretic element shown in Figure 1.10. The sign of the index m indicates the orientation of the curve. A positive m denotes counterclockwise orientation and a negative m a clockwise orientation. The element A_{0} is the identity element, represented by the empty diagram.

Subspaces of \mathcal{C}

The algebra \mathcal{C} can be thought of as the product of subalgebras \mathcal{C}^{+}and \mathcal{C}^{-} which are generated by $\left\{A_{m}: m \in \mathbb{Z}, m \geq 0\right\}$ and $\left\{A_{m}: m \in \mathbb{Z}, m \leq 0\right\}$ respectively.

Figure 1.10: An element $A_{m} \in \mathcal{C}$, for $m \in \mathbb{Z}$.

We now take the surface $F=R_{n}^{n}$ and wire it into the annulus, $F^{\prime}=S^{1} \times I$ as shown in Figure 1.11.

Figure 1.11: R_{n}^{n} wired into $S^{1} \times I$.

The resulting skein is a linear subspace of \mathcal{C}^{+}which we shall call $\mathcal{C}^{(n)}$. This subspace can be thought of as the image of H_{n} under the closure map $\wedge: H_{n} \rightarrow \mathcal{C}^{(n)}$. For an n-tangle $T \in H_{n}$, we denote its image under this closure map into $\mathcal{C}^{(n)}$ as $\wedge(T)$ or \hat{T}.

The subspace $\mathcal{C}^{(n)}$ is then spanned by monomials in $\left\{A_{m}\right\}$, with $m \in \mathbb{Z}^{+}$, of total weight n, where $\operatorname{wt}\left(A_{m}\right)=m$. It is clear that this spanning set consists of $\pi(n)$ elements, the number of partitions of $n . \mathcal{C}^{+}$is then graded as an algebra

$$
\mathcal{C}^{+}=\bigoplus_{n=0}^{\infty} \mathcal{C}^{(n)}
$$

We can now extend our view of the skein of the annulus to include strings oriented in both directions. We do this through considering the closure of oriented (n, p)-tangles in the annulus. Equivalently, this is achieved through wiring the surface $R_{n, p}^{n, p}$ into the annulus $S^{1} \times I$, analagous to the way shown in Figure 1.11.

We denote the algebra formed through considering the image of $H_{n, p}$ under the closure map by $\mathcal{C}^{(n, p)} \subset \mathcal{C}$.

Unlike the case for $\mathcal{C}^{(n)}$ where $\mathcal{C}^{(n)} \cap \mathcal{C}^{(n-1)}=\emptyset$, we have that

$$
\mathcal{C}^{(n, p)} \supset \mathcal{C}^{(n-1, p-1)} \supset \mathcal{C}^{(n-2, p-2)} \supset \cdots \supset \begin{cases}\mathcal{C}^{(n-p, 0)} & \text { if } \min (n, p)=p, \\ \mathcal{C}^{(0, p-n)} & \text { if } \min (n, p)=n,\end{cases}
$$

however, it should be noted that for each $\mathcal{C}^{(i, j)}$ in the sequence above, the difference $i-j$ remains constant throughout. Also

$$
\begin{aligned}
\mathcal{C}^{(m, 0)} & \cong \mathcal{C}_{(-)}^{(m)} \\
\text { and } \mathcal{C}^{(0, m)} & \cong \mathcal{C}_{(+)}^{(m)},
\end{aligned}
$$

where the $(-)$ or $(+)$ subscripts indicate the direction of the strings around the centre of the annulus. However, we do have that $\mathcal{C}^{\left(n_{1}, p_{1}\right)} \cap \mathcal{C}^{\left(n_{2}, p_{2}\right)}=\emptyset$ if $n_{1}-p_{1} \neq n_{2}-p_{2}$.

We find that $\mathcal{C}^{(n, p)}$ is spanned by suitably weighted monomials in

$$
\left\{A_{-n}, \ldots, A_{-1}, A_{0}, A_{1}, \ldots, A_{p}\right\} .
$$

We can see that

$$
\mathcal{C}^{(n, p)}=\left(\mathcal{C}_{(-)}^{(n)} \times \mathcal{C}_{(+)}^{(p)}\right)+\mathcal{C}^{(n-1, p-1)} .
$$

The spanning set of $\mathcal{C}^{(n, p)}$ then consists of $\pi(n, p)$ elements where

$$
\begin{aligned}
\pi(n, p) & :=\sum_{j=0}^{k} \pi(n-j) \pi(p-j) \\
& (=\pi(n) \pi(p)+\cdots+\pi(n-k) \pi(p-k))
\end{aligned}
$$

where $k=\min (n, p)$.
Similar to the grading of \mathcal{C}^{+}with the $\mathcal{C}^{(n)}$ we can think of the full skein \mathcal{C} in terms of the $\mathcal{C}^{(n, p)}$

$$
\mathcal{C}=\bigoplus_{k=-\infty}^{\infty}\left(\bigcup_{n, p \geq 0}\left\{\mathcal{C}^{(n, p)}: n-p=k\right\}\right)
$$

All that is left for us to do now is to use an example to illustrate what we meant by $\mathcal{C}^{(n, p)}$ being spanned by "suitably weighted" monomials in the range $\left\{A_{i}:-n \leq i \leq p\right\}$.

Example. Consider when $n=4$ and $p=2$. The spanning set of $\mathcal{C}^{(4,2)}$ consists of $15(=5 \cdot 2+3 \cdot 1+2 \cdot 1)$ elements, since

$$
\mathcal{C}^{(4,2)}=\left(\mathcal{C}_{(-)}^{(4)} \times \mathcal{C}_{(+)}^{(2)}\right)+\left(\mathcal{C}_{(-)}^{(3)} \times \mathcal{C}_{(+)}^{(1)}\right)+\left(\mathcal{C}_{(-)}^{(2)} \times \mathcal{C}_{(+)}^{(0)}\right) .
$$

The spanning set is therefore

$$
\begin{aligned}
&\left\{A_{-4} A_{2}, A_{-4} A_{1}^{2}, A_{-3} A_{-1} A_{2}, A_{-3} A_{-1} A_{1}^{2}, A_{-2}^{2} A_{2}, A_{-2}^{2} A_{1}^{2}, A_{-2} A_{-1}^{2} A_{2}\right. \\
&\left.A_{-2} A_{-1}^{2} A_{1}^{2}, A_{-1}^{4} A_{2}, A_{-1}^{4} A_{1}^{2}, A_{-3} A_{1}, A_{-2} A_{-1} A_{1}, A_{-1}^{3} A_{1}, A_{-2}, A_{-1}^{2}\right\}
\end{aligned}
$$

where, for example, the element $A_{-3} A_{1}$ is obtained from closing an element in $H_{4,2}$ as shown in Figure 1.12.

Figure 1.12: The generator $A_{-3} A_{1}$.

1.7.2 The skein \mathcal{A}

Consider again the annulus $S^{1} \times I$. Let the outer boundary curve be C_{1} and the inner boundary curve C_{2}. Now pick points $\gamma_{1} \in C_{1}$ and $\gamma_{2} \in C_{2}$ such that γ_{1} is an output point and γ_{2} is an input point, and denote these by $\gamma_{1}^{\text {out }}$ and $\gamma_{2}^{\text {in }}$ respectively.

Let F be the surface $S^{1} \times I$ with an associated set of boundary points $\left\{\gamma_{1}^{\text {out }}, \gamma_{2}^{\text {in }}\right\}$ as described above. Then $\mathcal{S}(F)=\mathcal{S}\left(S^{1} \times I,\left\{\gamma_{1}^{\text {out }}, \gamma_{2}^{\text {in }}\right\}\right)$ is the

Homfly skein of the surface represented diagramatically in Figure 1.13. We shall denote this skein by \mathcal{A}.

Figure 1.13: The annulus with two boundary points.

Similar to \mathcal{C}, the skein \mathcal{A} becomes an algebra under the product induced by placing one annulus outside another. The identity element this time cannot be the empty diagram due to the points specified on the boundary. It is the element $e \in \mathcal{A}$ represented by the diagram shown in Figure 1.14, obtained by joining the two boundary points by a single straight arc.

Figure 1.14: $e \in \mathcal{A}$.

A further element of \mathcal{A}, also with no crossings, we shall call $a \in \mathcal{A}$ and represent it by the diagram shown in Figure 1.15. From this, powers, a^{m} for $m \in \mathbb{Z}$, can be constructed, giving for example the elements shown in Figure 1.16.

Another property that \mathcal{A} has in common with \mathcal{C} is
Theorem 1.2 (Morton). As an algebra, \mathcal{A} is commutative.
However, unlike the case of \mathcal{C} this is not immediately obvious. After the introduction of a bit more technology, we offer a proof from [Mor02b].
Remark. A skein which is isomorphic to \mathcal{A} is used by Kawagoe [Kaw98] and other authors. Their version is based on the annulus with input and output

Figure 1.15: $a \in \mathcal{A}$.

Figure 1.16: a^{-1} and $a^{2} \in \mathcal{A}$.
points both on the same boundary component. More recently its use has been adopted by the author as its unexpected algebraic properties allow for some satisfyingly clean proofs. For more work on this interesting skein from this viewpoint, see also [Mor02b], and work by Lukac [Luk01].

We also have two bilinear products which involve the skein \mathcal{A}. These are $l: \mathcal{C} \times \mathcal{A} \rightarrow \mathcal{A}$ and $r: \mathcal{A} \times \mathcal{C} \rightarrow \mathcal{A}$ and are induced by placing an element of \mathcal{C} respectively under or over an element of \mathcal{A}. For example, recall that $A_{1} \in \mathcal{C}$ is represented by a single counterclockwise loop, so this gives

and

We now give the proof which was promised above.
Proof of Theorem 1.2 [Mor02b]. Using standard skein theory techniques we can represent any element of \mathcal{A} as a linear combination of tangles consisting of a totally descending arc lying over a number of closed curves. This is achieved through ensuring that on traversing an arc, each time one encircles the centre of the annulus it is passing below the part already traversed, and if not the skein relations can be used to change crossings as required. Each
such tangle represents $l\left(c_{m}, a^{m}\right)=l\left(c_{m}, e\right) a^{m}$ for some m and some $c_{m} \in \mathcal{C}$. The general element of \mathcal{A} can then be written as a Laurent polynomial

$$
\sum_{m \in \mathbb{Z}} l\left(c_{m}, e\right) a^{m}
$$

in a, with coefficients in the commutative subalgebra $l(\mathcal{C}, e) \subset \mathcal{A}$. Since a commutes with $l(\mathcal{C}, e)$ it follows that any two elements of \mathcal{A} commute.

The subalgebras $l(\mathcal{C}, e)$ and $r(e, \mathcal{C})$ are both isomorphic, but they are not equal. We can use their difference to define a sort of commutator map

$$
[, e]: \mathcal{C} \rightarrow \mathcal{A}
$$

where for $c \in \mathcal{C},[c, e]=l(c, e)-r(e, c)$.
Finally let us define a type of closure map particular to this skein \mathcal{A}. Our map will take an element of \mathcal{A} and make it an element of \mathcal{C} by joining the two boundary points over the top of the annulus. We have

As we alluded to above, we shall not study the skein \mathcal{A} here independently, rather use it as a tool, capitalizing on its unexpected algebraic properties.

Chapter 2

Murphy Operators

Historically, the Murphy operators have appeared in various arenas. Initially they were defined independently in the works of Jucys [Juc71] and Murphy [Mur81] as certain sums of transpositions giving elements of the group algebra $\mathbb{C}\left[S_{n}\right]$ of the symmetric group.
Remark. The first reference [Juc71] appears in a then little known Lithuanian journal of theoretical physics. As a result of this it was some time before its content was generally known, hence [Mur81] was published independently by Murphy. As an acknowledgement of this situation we will refer to the algebraic objects of interest as Jucys-Murphy elements.

Let the Jucys-Murphy elements be defined by $m(1)=0$ and:

$$
\begin{equation*}
m(j)=\sum_{i=1}^{j-1}(i j) \in \mathbb{C}\left[S_{n}\right], \quad \text { for } j=2, \ldots, n \tag{2.1}
\end{equation*}
$$

These elements have two well-known properties; firstly they all commute with one-another, and also every symmetric polynomial in them can be shown to lie in the centre of the algebra, $Z\left(\mathbb{C}\left[S_{n}\right]\right)$.

For example, $m(3)=(13)+(23), m(4)=(14)+(24)+(34)$, and

$$
\begin{aligned}
m(3) m(4)= & (13)(14)+(13)(24)+(13)(34) \\
& +(23)(14)+(23)(24)+(23)(34) \\
= & (34)(13)+(24)(13)+(14)(13) \\
& +(14)(23)+(34)(23)+(24)(23) \\
= & m(4) m(3) .
\end{aligned}
$$

2.1 Murphy operators in the Hecke algebras

Now given that the Hecke algebra, H_{n} of type A_{n-1} is a deformation of the group algebra $\mathbb{C}\left[S_{n}\right]$ of the symmetric group, it would be a natural question to ask if there exists a deformed analogue of the Jucys-Murphy elements defined in (2.1).

Such a definition is given by Dipper and James in [DJ87] using a simple deformation of the transpositions. This deformation of the transpositions corresponds geometrically to the positive permutation braid $\omega_{(i j)} \in H_{n}$ for $i<j$ shown in Figure 2.1, where positive permutation braids have all crossings positive.

Figure 2.1: The positive transposition braid $\omega_{(i j)} \in H_{n}$.

Remark. Positive permutation braids are first defined by Elrifai and Morton in [EM94]. They subsequently appear in many places such as [Ais96, AM98, Mor02b].

Before we define these elements explicitly, we make the following observations. Again, these elements, denoted $M(j)$, all commute, and also every symmetric polynomial in them lie in the centre of H_{n}. Moreover, Dipper and James showed that for generic values of the deformation parameter these account for the whole of the centre. This was then extended by Mathas [Mat99] to include the previously omitted non-semisimple case.

Furthermore, Katriel, Abdessalam and Chakrabarti [KAC95] observed the stronger result that in fact any central element can be expressed as a polynomial in just the sum $M=\sum_{j=1}^{n} M(j)$ of the Murphy operators.

Before moving on, we observe that Ram [Ram97] offers generalizations of the Jucys-Murphy elements in other settings. He considers the arbitrary Weyl groups and Hecke algebras of types A_{n}, B_{n}, D_{n} and G_{2}. He also observes that the Hecke algebras of types F_{4}, E_{6} and E_{7} are also within easy reach of the techniques he uses.

Now using the skein model for H_{n} we find that there are elegant geometric representations of the Murphy operators. The observations that follow in this section are due to the work of Ram [Ram97] and Morton [Mor02b]. This skein theoretic viewpoint immediately facilitates the proofs of the properties stated above.

Definition 1. The Murphy operator $M(j) \in H_{n}, j=1, \ldots, n$ is defined by $M(1)=0$ and

$$
\begin{equation*}
M(j)=\sum_{i=1}^{j-1} \omega_{(i j)} . \tag{2.2}
\end{equation*}
$$

These elements clearly project to the Jucys-Murphy elements $m(j) \in$ $\mathbb{C}\left[S_{n}\right]$, therefore (2.2) is the deformed analogue of (2.1).

Proving that these elements possess the properties described above require a bit of algebraic work. As noted above Ram [Ram97] and Morton [Mor02b] found geometric representations of the Murphy operators which are easier to manipulate and indeed make certain properties obvious with no work required. We observe that the sum of the Murphy operators, M, defined above, can be written as:

$$
M=\sum_{j=1}^{n} M(j)=\sum_{i<j} \omega_{(i j)} .
$$

Theorem 2.1 (Ram). The Murphy operator $M(j)$ can be represented by a single braid $T(j)$, up to linear combination with the identity.

Theorem 2.2 (Morton). The sum M of the Murphy operators can be represented in H_{n} by a single tangle $T^{(n)}$, again up to linear combination with the identity.

Before embarking on our journey through these elegant proofs, we require one piece of new notation. Let the identity braid on l strings be denoted by \mathbb{I}_{l} for $l \leq n$ and given a tangle T on $n-l$ strings then we write $T \otimes \mathbb{I}_{l} \in H_{n}$ for the juxtaposition of T and the identity.

Proof (of Theorem 2.1 [Ram97]). Let $T(j)$ be the element of H_{n} represented by the braid shown in Figure 2.2.

Using the framed Homfly skein relation

Figure 2.2: $T(j) \in H_{n}$.
on the crossing indicated we see that

$$
\begin{aligned}
& =\ldots \text { (repeated applications of the skein relations) } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\left(s-s^{-1}\right) \sum_{i=1}^{j-1} \omega_{(i j)}+\mathbb{I}_{n} \\
& =\left(s-s^{-1}\right) M(j)+\mathbb{I}_{n} \text {. }
\end{aligned}
$$

Therefore,

$$
M(j)=\frac{T(j)-\mathbb{I}_{n}}{s-s^{-1}}
$$

Remark. Theorem 2.1 enables us to consider the geometrically more appealing elements $T(j)$ in place of the $M(j)$, provided $s-s^{-1} \neq 0$, or in other words we are away from $\mathbb{C}\left[S_{n}\right]$.

In fact, these elements are not only geometrically more appealing, it is also the case that algebraically they are much easier to work with. Mathas [Mat99] remarks that the original definitions for Murphy operators are quite hard to work with and defines \mathcal{L}-Murphy operators which have the same properties as the elements $T(j)$, in particular Theorem 2.1. Results are then proved for the \mathcal{L}-Murphy operators.
Remark. It is pictorially clear that the elements $T(j)$ all commute.

Remark. The product of the $T(j)$ is the full curl (often denoted in braid theory by Δ^{2}), clearly a central element. However, it is not immediately obvious that their sum is central.

Proof (of Theorem 2.2 [Mor02b]). Let $T^{(n)}$ be the element of H_{n} represented by the tangle $T^{(n)}$, as shown in Figure 2.3.

Figure 2.3: $T^{(n)} \in H_{n}$.

Applying the skein relation to the crossing indicated we have

$$
\begin{aligned}
& T^{(n)}=\frac{\uparrow_{11}^{11} \mid}{|11|} \\
& =\left(s-s^{-1}\right)\left(\frac{\left\lvert\, \frac{11}{11} \uparrow \uparrow\right.}{|11| \mid}+\left(\left.\frac{\left|\frac{11}{11}\right|}{|11|} \right\rvert\,\right.\right. \\
& =\ldots \text { (repeated applications of the skein relations) } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\left(s-s^{-1}\right) v^{-1} \sum_{j=1}^{n} T(j)+T^{(0)} \otimes \mathbb{I}_{n} \text {. }
\end{aligned}
$$

Now since the term $T^{(0)} \otimes \mathbb{I}_{n}$ is simply a disjoint trivial loop alongside the identity braid, we can remove the loop at the expense of the scalar $\delta=\frac{v^{-1}-v}{s-s^{-1}}$.

Therefore, using the result of Theorem 2.1, we have

$$
\begin{aligned}
T^{(n)} & =\left(s-s^{-1}\right) v^{-1} \sum_{j=1}^{n} T(j)+\frac{v^{-1}-v}{s-s^{-1}} \mathbb{I}_{n} \\
& =\left(s-s^{-1}\right) v^{-1} \sum_{j=1}^{n}\left(\left(s-s^{-1}\right) M(j)+\mathbb{I}_{n}\right)+\frac{v^{-1}-v}{s-s^{-1}} \mathbb{I}_{n} \\
& =\left(s-s^{-1}\right)^{2} v^{-1} M+\left(\left(s-s^{-1}\right) v^{-1} n+\frac{v^{-1}-v}{s-s^{-1}}\right) \mathbb{I}_{n} .
\end{aligned}
$$

Pictorially it is very clear that the element $T^{(n)}$ is central in H_{n}, therefore, it is an immediate corollary of Theorem 2.2 that the element M is central.

2.2 The Murphy operators and idempotents of the Hecke algebra

Recall the set of idempotent elements in H_{n} defined in Section 1.5.1. They are denoted e_{λ}, one for each partition λ of n, with \emptyset being the unique partition of 0 . We now consider the effect of these idempotents on the element $T^{(n)}$. Using skein theoretic techniques it is easy to prove the following corollary of Theorem 19 in [AM98] (see also [Mor02b]),

Corollary (of Theorem 19, [AM98]). $T^{(n)} e_{\lambda}=t_{\lambda} e_{\lambda}$ where

$$
t_{\lambda}=\left(s-s^{-1}\right) v^{-1} \sum_{\substack{c, \text { cells } \\ \text { in } \lambda}} s^{2 c n(c)}+\delta .
$$

Moreover, the scalars t_{λ} are different for each partition λ.
If we were then to reverse the orientation of the encircling string in $T^{(n)}$ we obtain another central element in H_{n}. We shall call this element $\bar{T}^{(n)}$. Then, using similar techniques, one can show

Lemma 2.3 ([MH02]). $\bar{T}^{(n)} e_{\lambda}=\bar{t}_{\lambda} e_{\lambda}$ where

$$
\bar{t}_{\lambda}=-\left(s-s^{-1}\right) v \sum_{\substack{c, \text { cells } \\ \text { in } \lambda}} s^{-2 c n(c)}+\delta .
$$

Moreover, the scalars \bar{t}_{λ} are different for each partition λ.

Remark. An alternative proof to this lemma could be made through considering these elements wired into the skein of the annulus combined with the effect of the mirror map. Then it can be shown that the e_{λ} are invariant under the mirror map and clearly ${ }^{-}\left(T^{(n)}\right)=\bar{T}^{(n)}$. We also recall that the mirror map inverts the scalars v and s in the coefficient ring. Applying these facts to the preceding corollary, the result follows immediately.

We remarked above that the product of the Murphy operators is the full curl, Δ^{2}. This too is a well-known central element. It would therefore be interesting to ask the effect of the idempotent elements e_{λ} on Δ^{2}.

For our purposes we choose not to adopt the notation Δ^{2}, but instead use $F_{n} \in H_{n}$ for the full curl on n strings. We have in terms of the Murphy operators the inductive definition

$$
F_{n}=v T(n)\left(F_{n-1} \otimes \mathbb{I}_{1}\right),
$$

which gives $F_{n}=v^{n} \prod_{j=1}^{n} T(j)$. We then have
Theorem 2.4 (Aiston-Morton). Let λ be a Young diagram with $|\lambda|=n$. Then $F_{n} e_{\lambda}=f_{\lambda} e_{\lambda}$, where

$$
\begin{aligned}
f_{\lambda} & =v^{-|\lambda|} s^{n_{\lambda}} \\
\text { and } \quad n_{\lambda} & =\sum_{(i, j) \in \lambda} 2(j-i) .
\end{aligned}
$$

2.3 Symmetric functions and the skein of the annulus

The theory of symmetric polynomials has been well studied and there are many texts giving a good description with the well-known authority being [Mac79]. In this section we consider elements in the Hecke algebra and their closure in \mathcal{C} within this context of symmetric functions.

Again recall the set of idempotent elements in H_{n} as described in Section 1.5.1. Here we consider the two simplest, those which correspond to the single row and single column Young diagrams.

Let w_{π} be the positive permutation braid ([EM94]) corresponding to $\pi \in$ S_{n}. Define two quasi-idempotents by

$$
a_{n}=\sum_{\pi \in S_{n}} s^{l(\pi)} w_{\pi} \quad \text { and } \quad b_{n}=\sum_{\pi \in S_{n}}(-s)^{-l(\pi)} w_{\pi},
$$

where $l(\pi)=\operatorname{wr}\left(w_{\pi}\right)$, the writhe of the braid w_{π}. We recall that the writhe of the braid (also known as the algebraic crossing number) is the sum of the signs of the crossings.

Lemma 2.5.

$$
a_{n}=a_{n-1} g_{n},
$$

where $g_{n}=1+s \sigma_{n-1}+s^{2} \sigma_{n-1} \sigma_{n-2}+\ldots+s^{n-1} \sigma_{n-1} \cdot \ldots \cdot \sigma_{1}$.
In the above lemma the σ_{i} correspond to the usual braid group generators, for the braid group B_{n}.

We have $g_{n+1}=1+s \sigma_{n} g_{n}$, and also the immediate skein relation

for tangles on $n+1$ strings.
Lemma 2.6. For any braid $\beta \in B_{n}$ we have $a_{n} \beta=\phi_{s}(\beta) a_{n}=\beta a_{n}$, where $\phi_{s}(\beta)=s^{w r(\beta)}$.

Analogous results for b_{n} hold, replacing s with s^{-1} throughout.
We can then see that the element a_{n} satisfies

$$
a_{n}^{2}=\phi_{s}\left(a_{n}\right) a_{n}=\phi_{s}\left(a_{n-1}\right) \phi_{s}\left(g_{n}\right) a_{n}
$$

Now since $\phi_{s}\left(g_{n}\right)=1+s^{2}+\ldots+s^{2 n-2}=s^{n-1}[n]$ with $[k]=\frac{s^{k}-s^{-k}}{s-s^{-1}}$, we have immediately
Corollary. We can write

$$
s^{n-1}[n] h_{n}=h_{n-1} g_{n},
$$

where $h_{n}=a_{n} / \phi_{s}\left(a_{n}\right)$ is the true idempotent.
The element h_{n} constructed above is the idempotent which corresponds to the single row Young diagram with n cells. The single column idempotent, denoted e_{n}, is constructed in an analogous way from b_{n}. It can be obtained from h_{n} by using $-s^{-1}$ in place of s.

With a slight abuse of the notation we write $h_{n}, e_{n} \in \mathcal{C}$ for the closures $\wedge\left(h_{n}\right), \wedge\left(e_{n}\right)$ in \mathcal{C}.

The skein \mathcal{C}^{+}when considered as an algebra is spanned by the monomials in $\left\{h_{m}: m \geq 0\right\}$.
Remark. These elements have already been studied by Aiston in [Ais96], however, there the notations $Q_{c_{n}}$ and $Q_{d_{n}}$ are used in place of e_{n} and h_{n}. Morton adopts this more suggestive notation in [Mor02b] to make it clear that it is the combination of these elements and symmetric function techniques that is being exploited.

Write

$$
\begin{aligned}
H(t) & =1+\sum_{n=1}^{\infty} h_{n} t^{n} \\
\text { and } \quad E(t) & =1+\sum_{n=1}^{\infty} e_{n} t^{n}
\end{aligned}
$$

for the generating function of the elements $\left\{h_{n}\right\}$ and $\left\{e_{n}\right\}$ respectively, when considered as formal power series with coefficients in \mathcal{C}.

Theorem 2.7 (Aiston).

$$
E(-t) H(t)=1
$$

as a power series in \mathcal{C}.
We shall regard the elements h_{n} and e_{n} formally as respectively the $n^{\text {th }}$ complete and elementary symmetric functions in a suitably large number N of variables x_{1}, \ldots, x_{N}, setting

$$
\begin{aligned}
H(t) & =\prod_{i=1}^{N} \frac{1}{1-x_{i} t} \\
\text { and } \quad E(t) & =\prod_{i=1}^{N}\left(1+x_{i} t\right)
\end{aligned}
$$

Now consider the wiring induced from considering the diagram

with n strings running around the annulus. Such a wiring is a linear map $W_{n}: R_{n+1}^{n+1} \rightarrow \mathcal{A}$. It is easy to see from the drawing of some simple pictures that given a tangle $T \in H_{n}$ which is included in H_{n+1} as the element $T \otimes \mathbb{I}_{1}$ has the property

$$
W_{n}\left(T \otimes \mathbb{I}_{1}\right)=W_{n-1}(T) a
$$

This is clear because the final string leaving the top right-hand corner of T passes around the annulus one final time before going to the output point of the annulus, it is this that contributes the a. Also, $W_{n}\left(\mathbb{I}_{n}\right)=a^{n}$.

Theorem 2.8 (Morton). The elements $W_{n}\left(h_{n+1}\right), W_{n}\left(\mathbb{I}_{1} \otimes h_{n}\right)$ and $l\left(h_{n}, e\right)$ in \mathcal{A} satisfy the linear relation

$$
[n+1] W_{n}\left(h_{n+1}\right)=s^{-1}[n] W_{n}\left(\mathbb{I}_{1} \otimes h_{n}\right)+l\left(h_{n}, e\right) .
$$

Proof. [Mor02b] Recall the relation given above,

This immediately gives $W_{n}\left(h_{n} g_{n+1}\right)=W_{n}\left(g_{n} h_{n}\right)+s^{n} W_{n}\left(h_{n} \sigma_{n} \cdots \sigma_{1}\right)$. Now using the now familiar style of manipulation using the skein relations we can also show that $g_{n} h_{n}=s^{n-1}[n] h_{n}$ and $W_{n}\left(h_{n} \sigma_{n} \cdots \sigma_{1}\right)=l\left(h_{n}, e\right)$. This combined with a previous result that $s^{n}[n+1] h_{n+1}=h_{n} g_{n+1}$ the result follows immediately.

Let $Y_{n}=[n+1] W_{n}\left(h_{n+1}\right)$ and use this to define another formal power series

$$
Y(t)=\sum_{n=0}^{\infty} Y_{n} t^{n}
$$

We then obtain the following corollary
Corollary. As power series with coefficients in \mathcal{A} we have

$$
\begin{equation*}
l(H(t), e)=\left(e-s^{-1} a t\right) Y(t) \tag{2.3}
\end{equation*}
$$

Proof. We know that $W_{n}\left(h_{n}\right)=W_{n-1}\left(h_{n}\right) a$ or equivalently since \mathcal{A} is commutative $W_{n}\left(h_{n}\right)=a W_{n-1}\left(h_{n}\right)$. We can therefore rewrite the expression for Y_{n} as

$$
Y_{n}=s^{-1} a Y_{n-1}+l\left(h_{n}, e\right) .
$$

Therefore,

$$
Y(t)=s^{-1} a t Y(t)+l(H(t), e)
$$

The result now follows immediately.
Following appropriate use of the mirror map on the skein \mathcal{A} the following result is an immediate consequence of the previous corollary

Proposition 2.9. As power series with coefficients in \mathcal{A} we have

$$
\begin{equation*}
r(e, H(t))=(e-s a t) Y(t) . \tag{2.4}
\end{equation*}
$$

Combining these results gives

$$
[H(t), e]=\left(s-s^{-1}\right) a t Y(t) .
$$

This result also appears in the same context in [Luk01].
We finally offer one further result which will be essential in certain subsequent results. The element of \mathcal{C} to appear here is the formal power sum of the variables $x_{i}, P_{m}=\sum_{i=1}^{N} x_{i}^{m}$.

Theorem 2.10. For $m \geq 1$ we have $\left[P_{m}, e\right]=\left(s^{m}-s^{-m}\right) a^{m}$.
Proof. First recall the Newton power series equation

$$
\sum_{m=1}^{\infty} \frac{P_{m}}{m} t^{m}=\ln H(t) .
$$

Now, taking logarithms of equations 2.3 and 2.4, then subtracting, we have

$$
\begin{aligned}
\ln \left(e-s^{-1} a t\right)-\ln (e-s a t) & =\ln (l(H(t), e))-\ln (r(e, H(t))) \\
& =l(\ln (H(t)), e)-r(e, \ln (H(t))) \\
& =\sum_{m=1}^{\infty}\left[\frac{P_{m}}{m} t^{m}, e\right] .
\end{aligned}
$$

Now $\ln \left(e-s^{-1} a t\right)=-\sum_{m=1}^{\infty} \frac{s^{-m} a^{m} t^{m}}{m}$. Finally, comparing coefficients of t^{m}, the result follows.

2.4 Symmetric functions of the Murphy operators

The work that appears in this section is intended to summarise the results of Morton in [Mor02b] with a view to extending them later à la [Mor02a].

Morton introduces a new relation between the Hecke algebras and the skein of the annulus. This relation is a very natural homomorphism ψ_{n} from \mathcal{C} to the centre of each algebra H_{n}.

First take D to be the diagram

D then determines a map $\psi_{n}: \mathcal{C} \rightarrow H_{n}$ which is induced by placing $X \in \mathcal{C}$ around the encircling loop in D and the identity $\mathbb{I}_{n} \in H_{n}$ on the arc. We therefore have:

$$
\begin{aligned}
\psi_{n}: \mathcal{C} & \rightarrow H_{n} \\
\cdot \hat{X}_{X} & \left.\mapsto \underbrace{|\Perp|}_{|\Perp|}\right|_{X} \in H_{n} .
\end{aligned}
$$

Clearly

Therefore, ψ_{n} defines an algebra homomorphism. Also, it is obvious that the elements $\psi_{n}(X)$ lies in the centre of H_{n} for all $X \in \mathcal{C}$.

We shall say that the element $T^{(n)}$ is "almost equal" to the sum $\sum_{j=1}^{n} T(j)$. Denote this by

$$
T^{(n)} \approx \sum_{j=1}^{n} T(j)
$$

By this we mean that $T^{(n)}$ is equal to a scalar multiple of $\sum_{j=1}^{n} T(j)$ up to a linear combination with the identity as in Theorem 2.2. Also we observe that $T^{(n)}=\psi_{n}\left(X_{1}\right)$ for $X_{1}=A_{1} \in \mathcal{C}$. Morton then enquires whether there is an element X_{2} such that $\psi_{n}\left(X_{2}\right) \approx \sum_{j=1}^{n} T(j)^{2}$, or indeed more generally, whether there are X_{m} such that $\psi_{n}\left(X_{m}\right) \approx \sum_{j=1}^{n} T(j)^{m}$ for any value m.

The surprising part of this result is not that there exist such elements in \mathcal{C}, but that there exist elements which are independent of n which have this property.

Theorem 2.11. For any n we have

$$
\psi_{n}\left(P_{m}\right)-\psi_{0}\left(P_{m}\right)=\left(s^{m}-s^{-m}\right) v^{-m} \sum_{j=1}^{n} T(j)^{m}
$$

Figure 2.4: The diagram D which induces the wiring V_{n}.

Proof. First define the wiring $V_{n}: \mathcal{A} \rightarrow H_{n}$ induced by the diagram D shown in Figure 2.4.

It is clear that for any $X \in \mathcal{C}$, we have

$$
\begin{aligned}
& V_{n}(l(X, e))
\end{aligned}=\psi_{n}(X)
$$

We also observe that $V_{n}(a)=v^{-1} T(n)$ and hence inductively we have $V_{n}\left(a^{m}\right)=$ $v^{-m} T(n)^{m}$.

Therefore $\psi_{n}\left(P_{m}\right)-\psi_{n-1}\left(P_{m}\right) \otimes \mathbb{I}_{1}=\left(s^{m}-s^{-m}\right) v^{-m} T(n)^{m}$, and by induction on n we have

$$
\psi_{n}\left(P_{m}\right)-\psi_{0}\left(P_{m}\right) \otimes \mathbb{I}_{n}=\left(s^{m}-s^{-m}\right) v^{-m} \sum_{j=1}^{n} T(j)^{m}
$$

which we abbreviate using the standard inclusion of $H_{n-1} \subset H_{n}$ to obtain the result.

In [Ais96], Aiston shows that $[m] P_{m}$ is the sum

$$
[m] P_{m}=\prod^{-1}+\cdots+1 / \nmid+\cdots+\cdots+1 / 1
$$

The proof she gives requires significant knowledge of results about $\operatorname{sl}(N)_{q}$ representations. Morton offers another proof later in [Mor02a] which is purely skein theoretic.

We end this section with one final result.
Theorem 2.12. The image of ψ_{n} is the whole centre of H_{n}.

Proof. It is shown by Dipper, James and Mathas [DJ87, Mat99] that symmetric polynomials in the Murphy operators account for the whole of the centre of H_{n}. The power sums P_{m} are a generating set for the symmetric polynomials. Now by Theorem 2.11 the result follows.

2.5 A set of Murphy operators in $H_{n, p}$

Since the family of algebras $H_{n, p}$ can be thought of as a generalization of the Hecke algebra, an immediate question is whether one can find a set of elements with similar properties in this more general setting.

For some of the results in this section we shall adopt the approach used by Morton in [Mor02b] and [Mor02a] as they have been exhibited above.

We follow an analogous procedure in $H_{n, p}$ as in H_{n}. Firstly let us consider the elements of $H_{n, p}$ represented by the tangles $T^{(n, p)}$ and $\bar{T}^{(n, p)}$ which are constructed in a similar way to $T^{(n)}$ and $\bar{T}^{(n)}$ respectively. We show $T^{(n, p)}$ diagramatically in Figure 2.5.

Figure 2.5: The (n, p)-tangle $T^{(n, p)}$.

Definition 2. (see [MW],[Had]) Let $H_{n, p}^{(i)}$ denote the sub-algebra of $H_{n, p}$ spanned by elements with "at least" i pairs of strings turning back.

Remark. An (n, p)-tangle is said to have "at least" l pairs of strings which turn back if it can be written as a product $T_{1} T_{2}$ of an $\{(n, p),(n-l, p-l)\}$ tangle T_{1} and an $\{(n-l, p-l),(n, p)\}$-tangle T_{2} as illustrated in Figure 2.6.
Remark. The $H_{n, p}^{(i)}$ are two-sided ideals and there is a filtration:

$$
H_{n, p} \cong H_{n, p}^{(0)} \triangleright H_{n, p}^{(1)} \triangleright \cdots \triangleright H_{n, p}^{(k)},
$$

where $k=\min (n, p)$.
We use a similar notation of $\mathbb{I}_{l, m} \in H_{n, p}$ for the identity on l strings down and m strings up, with $l \leq n$ and $m \leq p$.

Figure 2.6: A tangle with at least l pairs of strings which turn back.

Lemma 2.13.

$$
\begin{aligned}
& T^{(n, p)}=T^{(n, p) \prime}+w, \\
& \bar{T}^{(n, p)}=\bar{T}^{(n, p) \prime}+\bar{w},
\end{aligned}
$$

where

$$
\begin{aligned}
T^{(n, p) \prime} & =T_{(-)}^{(n)} \otimes \mathbb{I}_{p}^{(+)}+\mathbb{I}_{n}^{(-)} \otimes T_{(+)}^{(p)}-\delta \mathbb{I}_{n, p}, \\
\bar{T}^{(n, p) \prime} & =\bar{T}_{(-)}^{(n)} \otimes \mathbb{I}_{(+)}^{(p)}+\mathbb{I}_{(-)}^{(n)} \otimes \bar{T}_{(+)}^{(p)}-\delta \mathbb{I}_{(-)}^{(n)} \otimes \mathbb{I}_{(+)}^{(p)}
\end{aligned}
$$

and $w, \bar{w} \in H_{n, p}^{(1)}$.
Proof. We prove the result for $T^{(n, p)}$, with the result for $\bar{T}^{(n, p)}$ following in exactly the same way. Throughout this proof, we use a standard notation setting $s-s^{-1}=z$.

We first define some elements in $H_{n, p}$ represented by tangles as shown in Figure 2.7.

Now applying the skein relation once to $T^{(n, p)}$ we obtain:

$$
\begin{aligned}
& =T^{(n, p-1)} \otimes \mathbb{I}_{1}^{(+)}+z v^{-1} A(p) \text {. }
\end{aligned}
$$

Figure 2.7: The elements $T(j)$ and $A(j)$ for $1 \leq j \leq p$.

Repeated application of the skein relation in this way will clearly yield:

$$
\begin{align*}
T^{(n, p)} & =T^{(n, 0)} \otimes \mathbb{I}_{p}^{(+)}+z v^{-1} \sum_{j=1}^{p} A(j) \\
& =T_{(-)}^{(n)} \otimes \mathbb{I}_{p}^{(+)}+z v^{-1} \sum_{j=1}^{p} A(j) \tag{2.5}
\end{align*}
$$

Now observe, similar to a result in [Mor02b], we can find:

Combining equations 2.5 and 2.6 , we see that we are only left to show that:

$$
z v^{-1} \sum_{j=1}^{p} A(j)=z v^{-1} \sum_{j=1}^{p} T(j)+w,
$$

for $w \in H_{n, p}^{(1)}$.
Let $w=\sum_{j=1}^{p} w(j)$. We must now show that for each j, with $1 \leq j \leq p$, there exists a $w(j)$ such that:

$$
z v^{-1} A(j)=z v^{-1} T(j)+w(j)
$$

Now,

$$
\begin{aligned}
& =\cdots \text { (repeating application of the skein relation) }
\end{aligned}
$$

$$
\begin{aligned}
& =z v^{-1} T(j)+w(j) .
\end{aligned}
$$

with $w(j) \in H_{n, p}^{(1)}$.
The result follows.
We therefore suggest a potential set of Murphy operators in $H_{n, p}$. These are then the elements $T(j)$ defined for the first n strings (as with the H_{n} case in Figure 2.2 except the strings are obviously oriented in the opposite direction and we then take its inverse). In addition to this set of n elements, we add the $A(j)$ defined in Figure 2.7, defined for the last p strings. These elements are shown in Figure 2.8.

Figure 2.8: The elements $T(j)$ for $1 \leq i \leq n$ and $A(j)$ for $1 \leq j \leq p$.

We find, similar to Theorem 2.2 that
Theorem 2.14. The sum of these Murphy operators is almost equal to $T^{(n, p)}$.

Proof. It is not difficult to show using the skein relations that

$$
T^{(n, p)}=\left(s-s^{-1}\right)\left(-v \sum_{j=1}^{n} T(j)+v^{-1} \sum_{j=1}^{p} A(j)\right)+\frac{v^{-1}-v}{s-s^{-1}} \mathbb{I}_{n, p}
$$

This is achieved through an analogous method to the one used previously to show that $T^{(n)}=\left(s-s^{-1}\right) v^{-1} \sum_{j=1}^{n} T(j)+T^{(0)} \otimes \mathbb{I}_{n}$ in the standard Hecke algebra case, except this time one must pay particular attention to the orietation of the strings. By the definition of almost equal the result follows immediately.

2.6 The Murphy operators and idempotents of $H_{n, p}$

We can then use earlier information, combined with Lemma 2.13 to prove the following proposition concerning the elements $e_{(\lambda, \mu)}^{\prime}=e_{\lambda}^{(-)} \otimes e_{\mu}^{(+)}$as discussed above.

Proposition 2.15.

$$
\begin{aligned}
T^{(n, p)} e_{\lambda, \mu}^{\prime} & =t_{\lambda, \mu} e_{\lambda, \mu}^{\prime}+w e_{\lambda, \mu}^{\prime} \\
\text { and } \quad \bar{T}^{(n, p)} e_{\lambda, \mu}^{\prime} & =\bar{t}_{\lambda, \mu} e_{\lambda, \mu}^{\prime}+\bar{w} e_{\lambda, \mu}^{\prime},
\end{aligned}
$$

where,

$$
\begin{aligned}
& t_{\lambda, \mu}=\left(s-s^{-1}\right)\left(-v \sum_{\substack{\text { cellls } \\
\text { in }}} s^{-2(\text { content })}+v^{-1} \sum_{\substack{\text { cells } \\
\text { in } \mu}} s^{2(\text { content })}\right)+\delta \\
& \text { and } \\
& \bar{t}_{\lambda, \mu}=\left(s-s^{-1}\right)\left(v^{-1} \sum_{\substack{\text { cells } \\
\text { in } \lambda}} s^{2(\text { content })}-v \sum_{\substack{\text { cells } \\
\text { in } \mu}} s^{-2(\text { content })}\right)+\delta .
\end{aligned}
$$

Here we had fixed $|\lambda|$ and $|\mu|$ with values n and p respectively. In fact, we find that $t_{\lambda, \mu}$ and $\bar{t}_{\lambda, \mu}$ have the following property:

Lemma 2.16. As λ and μ vary over all choices of Young diagram, the values of $t_{\lambda, \mu}$ are all distinct; as are the values of $\bar{t}_{\lambda, \mu}$.

Remark. An equivalent way of stating Lemma 2.16 is that if $t_{\lambda, \mu}=t_{\lambda^{\prime}, \mu^{\prime}}$ then $\lambda=\lambda^{\prime}$ and $\mu=\mu^{\prime}$ (similarly for the $\bar{t}_{\lambda, \mu}$).

Proof. (of Lemma 2.16) We prove the first part of the lemma and note that the second part follows immediately due to the observation that $\bar{t}_{\lambda, \mu}=t_{\mu, \lambda}$.

Given $f(s, v)=t_{\lambda, \mu}$ we now show how to recover the Young diagrams λ and μ.

From the formula for $t_{\lambda, \mu}$ in Lemma 2.15 we see that $f(s, v)-\delta$ is a Laurent polynomial in s and v, and must be of the form:

$$
\left(s-s^{-1}\right)\left(-v P(s)+v^{-1} Q(s)\right) .
$$

Now consider $P(s)$ and $Q(s)$ individually. It is clear that these are also Laurent polynomials, this time only in the variable s. We have

$$
\begin{aligned}
P(s) & =\sum a_{i} s^{-2 i} \\
\text { and } \quad Q(s) & =\sum b_{j} s^{2 j},
\end{aligned}
$$

where a_{i} is the number of cells in λ with content i, and similarly, b_{j} is the number of cells in μ with content j. Hence we can uniquely construct λ and μ.

Extending the notion of the full curl into the $H_{n, p}$ setting, we use the notation $F_{n, p} \in H_{n, p}$. Again, $F_{n, p}$ is central in $H_{n, p}$. In terms of our set of Murphy operators we have

$$
F_{n, p}=v^{n+p} \prod_{j=1}^{n} T(j)^{-1} \prod_{j=1}^{p} A(j) .
$$

We now offer without proof a lemma comparable to Lemma 2.13.

Lemma 2.17.

$$
F_{n, p}=F_{n, 0} \otimes F_{0, p}+u
$$

where $u \in H_{n, p}^{(1)}$.
Continuing with this theme we have the following proposition, combining the result of Theorem 2.4 and the techniques of Proposition 2.15.

Proposition 2.18.

$$
F_{n, p} e_{(\lambda, \mu)}^{\prime}=f_{(\lambda, \mu)} e_{(\lambda, \mu)}^{\prime}+u e_{(\lambda, \mu)}^{\prime}
$$

where $f_{(\lambda, \mu)}=v^{|\lambda|-|\mu|} s^{-n_{\lambda}+n_{\mu}}$, and $n_{\lambda}=\sum_{(i, j) \in \lambda} 2(j-i)$ and $n_{\mu}=\sum_{(i, j) \in \mu} 2(j-$ $i)$.

2.7 Supersymmetric polynomials in the Murphy operators

Why should we have chosen this decomposition of $T^{(n, p)}$ to give a set of Murphy operators in $H_{n, p}$? Is there a symmetric function type result in this setting? Well, first we prove the following, a generalization of Theorem 2.11. First we introduce a natural generalisation of the map ψ_{n} into the $H_{n, p}$ arena and call it $\psi_{n, p}$. Similarly, this defines an algebra homomorphism on $H_{n, p}$, and all elements $\psi_{n, p}$ lie in the centre of $H_{n, p}$.

Theorem 2.19. The central elements $\psi_{n, p}\left(P_{m}\right)$ of $H_{n, p}$ can be written, up to a linear combination with the identity, as the power sum difference

$$
-v^{m} \sum_{j=1}^{n} T(j)^{m}+v^{-m} \sum_{j=1}^{p} A(j)^{m} .
$$

Proof. Using the techniques displayed in Theorem 2.11 and changing the wiring appropriately for the left n strings we find
$\psi_{n, p}\left(P_{m}\right)-\psi_{0,0}\left(P_{m}\right) \otimes \mathbb{I}_{n, p}=\left(s^{m}-s^{-m}\right)\left(-v^{m} \sum_{j=1}^{n} T(j)^{m}+v^{-m} \sum_{j=1}^{p} A(j)^{m}\right)$.

Now this does not quite resemble the power sum found in the H_{n} setting for the standard symmetric functions, however, Stembridge discusses supersymmetric polynomials in [Ste84]. Such polynomials appear in terms of two sets of commuting variables $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ say. For a polynomial in these variables to be called supersymmetric they must satisfy the following properties:

1. the polynomial is invariant under permutations of the variables $\left\{x_{i}\right\}$;
2. the polynomial is invariant under permutations of the variables $\left\{y_{i}\right\}$;
3. when the substitution $x_{1}=y_{1}=t$ is made, the resulting polynomial is independent of t.

Stembridge then continues to prove that the set of supersymmetric polynomials is in fact generated by the power sum difference $\sum x_{i}^{m}-\sum y_{i}^{m}$, proving a conjecture of Scheunert [Sch84]

We then see that the central elements $\psi_{n, p}(X)$ can be written as such a supersymmetric polynomial in two sets of commuting elements, up to a linear combination with the identity.

Remark. There is an element of choice associated with this set of Murphy operators given here. For example, conjugating all of them by a fixed element will not alter their supersymmetric polynomials.

We end this section, and indeed chapter, with a currently unproved, but morally reasonable conjecture.

Conjecture (Morton). The image of $\psi_{n, p}$ is the whole centre of $H_{n, p}$.
Remark. Morton remarks that although it is possible to prove this for the H_{n} case (see Theorem 2.12), there does not at present exist an immediate skein theory proof for either the H_{n} and certainly not the more general $H_{n, p}$ case. The information that currently seems to be lacking is an upper bound on the dimension of the centre in the generic case $n, p>0$.

Chapter 3

The Homfly Polynomial Of Generalized Hopf Links

In this chapter we see how to use some of the results of the previous chapter to calculate the Homfly polynomial of a class of links we shall call generalized Hopf links. This work will follow that described in [MH02] by Morton and the author. Although this chapter can be considered as self-contained, it acts very well to whet one's appetite for what is to follow.

3.1 Initial motivation

In [Cha00], T.-H. Chan discusses the Homfly polynomial of reverse string parallels $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ of the Hopf link. Using results described previously, we find that the computations which were more labour intensive in [Cha00] become simplified. A further generalization is then readily available to allow us to calculate the Homfly polynomial of satellites of the Hopf link which consists of a reverse string parallel around one component combined with a completely general reverse string decoration on the other.

3.2 Satellites of Hopf links

The Hopf link is the simplest non-trivial link involving just two unknots linked together. When giving this link orientation, two distinct links are formed. We shall call these H_{+}and H_{-}, as shown in Figure 3.1.

The Homfly polynomial of these links can easily be calculated with the

Figure 3.1: The links H_{+}and H_{-}.

Homfly polynomial skein relations. We have that:

$$
\begin{aligned}
P\left(H_{+}\right) & =\left(\frac{v^{-1}-v}{s-s^{-1}}\right)^{2}+v^{-2}-1 ; \\
\text { and } P\left(H_{-}\right) & =\left(\frac{v^{-1}-v}{s-s^{-1}}\right)^{2}+v^{2}-1
\end{aligned}
$$

We now use H_{+}and H_{-}as starting points for the construction of satellite links. We do this by considering the two components of the Hopf links and decorating them. For example, take P_{1} and P_{2} as diagrams in the annulus. Now starting with H_{+}, we decorate its two components with P_{1} and P_{2} respectively, obtaining a new link in the plane which we shall call $H_{+}\left(P_{1}, P_{2}\right)$, as shown in Figure 3.2. Now clearly $H_{+}\left(P_{1}, P_{2}\right)$ and $H_{+}\left(P_{2}, P_{1}\right)$ are equivalent

Figure 3.2: The link $H_{+}\left(P_{1}, P_{2}\right)$.
links. An analogous construction is now possible for H_{-}.
With such a construction, it is possible to realise a variety of links. In particular, the generalized Hopf links which are the topic of [Cha00] can be constructed. For example, if we take P_{1} and P_{2} as shown in Figure 3.3, then $H_{+}\left(P_{1}, P_{2}\right)$ is the link Chan refers to as $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$. This link is shown in Figure 3.4, somewhat rearranged from how it appears in [Cha00]. This change of view will be seen to be beneficial in our approach.

Figure 3.3: The diagrams P_{1} and P_{2}.

With such links in mind, we make the following observation, using the notation that the image of a link H under the involution $*$, described in Section 1.3, shall be denoted H^{*}
Observation. The links

$$
H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right), H\left(n_{1}, n_{2} ; k_{1}, k_{2}\right), H\left(k_{2}, k_{1} ; n_{2}, n_{1}\right), H\left(n_{2}, n_{1} ; k_{2}, k_{1}\right),
$$

and

$$
H^{*}\left(k_{2}, k_{1} ; n_{1}, n_{2}\right), H^{*}\left(n_{1}, n_{2} ; k_{2}, k_{1}\right), H^{*}\left(k_{1}, k_{2} ; n_{2}, n_{1}\right), H^{*}\left(n_{2}, n_{1} ; k_{1}, k_{2}\right),
$$

are all equivalent links. For example it is trivial to see that reordering the four groups of strings $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ will give $H\left(k_{2}, k_{1} ; n_{2}, n_{1}\right)$.

3.3 Maps on the skein of the annulus, \mathcal{C}

We now define two natural linear maps, φ and $\bar{\varphi}$, on the skein of the annulus in the following way; take an element $X \in \mathcal{C}$ and encircle it once with a single oriented loop. The orientations are opposite for φ and $\bar{\varphi}$. We define these maps pictorially as follows:

Now reconsider the satellites of Hopf links discussed earlier in this chapter, but this time as elements of the skein of the annulus \mathcal{C}. We can then use

Figure 3.4: The generalized Hopf link $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$.
compositions of the maps φ and $\bar{\varphi}$ to construct a subset of such links. In particular, for the element $A=A_{1}^{n_{1}} A_{-1}^{n_{2}} \in \mathcal{C}$, we have

$$
H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)=\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}(A)\right) .
$$

It therefore seems a reasonable proposition that to aid our investigation of the links $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ and their Homfly polynomial, we should look more closely at the maps φ and $\bar{\varphi}$, in particular at their eigenvalues. We shall achieve this during the remainder of this chapter through considering certain already familiar subspaces of \mathcal{C} and the restrictions of the maps φ and $\bar{\varphi}$ to these subspaces.

3.4 Eigenvectors and eigenvalues of the maps φ and $\bar{\varphi}$

We begin with the H_{n} case. Take an element $S \in H_{n}$ with $\hat{S} \in \mathcal{C}^{(n)}$ and compose it with $T^{(n)}$. Then $\wedge\left(S T^{(n)}\right)=\varphi(\hat{S})$. Similarly $\wedge\left(S \bar{T}^{(n)}\right)=\bar{\varphi}(\hat{S})$.

The restrictions $\left.\varphi\right|_{\mathcal{C}^{(n)}}$ and $\left.\bar{\varphi}\right|_{\mathcal{C}^{(n)}}$ clearly carry $\mathcal{C}^{(n)}$ to itself.
Theorem 3.1 ([Mor02b]). The eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n)}}$ are all distinct as are the eigenvalues of $\left.\bar{\varphi}\right|_{\mathcal{C}^{(n)}}$.

Proof. We prove the first statement with the second following in exactly the same way.

Set $Q_{\lambda}=\hat{e}_{\lambda} \in \mathcal{C}^{(n)}$. Then the closure of $T^{(n)} e_{\lambda}$ is $\varphi\left(Q_{\lambda}\right)$. However, $T^{(n)} e_{\lambda}=t_{\lambda} e_{\lambda}$, hence $\varphi\left(Q_{\lambda}\right)=t_{\lambda} Q_{\lambda}$. The element Q_{λ} is then an eigenvector of φ with eigenvalue t_{λ}. There are $\pi(n)$ of these eigenvectors, and the eigenvalues are all distinct by [AM98]. Since $\mathcal{C}^{(n)}$ is spanned by $\pi(n)$ elements we can deduce that the elements Q_{λ} form a basis for $\mathcal{C}^{(n)}$ and that the eigenspaces are all 1-dimensional.

This proof is quite instructive as it establishes that the Q_{λ} with $|\lambda|=n$ are a basis for $\mathcal{C}^{(n)}$. Hence any element in $\mathcal{C}^{(n)}$ can be written as a linear combination of the Q_{λ} with $|\lambda|=n$. It also follows that any element of $\mathcal{C}^{(n)}$ which is an eigenvector of φ (and similarly $\bar{\varphi}$) must be a multiple of some Q_{λ}. Finally, we notice that the eigenvalues of the φ and $\bar{\varphi}$ are the t_{λ} and \bar{t}_{λ} we found earlier in Chapter 2.

We now extend our view to the $H_{n, p}$ case. First recall the scalars $t_{(\lambda, \mu)}$ and $\bar{t}_{(\lambda, \mu)}$ discussed in Chapter 2. We go straight into some important results about these values.
Theorem 3.2. The $t_{\lambda, \mu}$ and $\bar{t}_{\lambda, \mu}$ are eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n, p)}}$ and $\left.\bar{\varphi}\right|_{\mathcal{C}^{(n, p)}}$ respectively. Moreover, they occur with multiplicity 1.
Proof. We prove the result for the $t_{\lambda, \mu}$ with an identical argument proving the result for the $\bar{t}_{\lambda, \mu}$.

Fix an integer k such that $k=p-n$ and $k \geq 0$ (in other words $p \geq n-$ the case for $p<n$ is identical). Write $\mathcal{C}^{(n, p)}$ as $\mathcal{C}^{(n, k+n)}$ and do induction on n.

For $n=0$ we have that $\mathcal{C}^{(0, k)} \cong \mathcal{C}^{(k)}$. Now for $|\lambda|=0$ and $|\mu|=k$ we have that $t_{\lambda, \mu}=t_{\mu}$. Moreover, in the proof of Theorem 3.1 we saw that the t_{μ} with $|\mu|=k$ are eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(k)}}$. Now since $\mathcal{C}^{(k)} \cong \mathcal{C}^{(0, k)} \subset \mathcal{C}^{(n, k+n)}$ for all n, the t_{μ} are also eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}$.

Now assume that for $|\lambda|<n$ and $|\mu|<k+n$ the $t_{\lambda, \mu}$ are eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(\lambda \lambda|,|\mu|)}}$. Since $\mathcal{C}^{(|\lambda|,|\mu|)} \subset \mathcal{C}^{(n, k+n)}$ the $t_{\lambda, \mu}$ are also eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}$.

Consider the $t_{\lambda, \mu}$ with $|\lambda|=n$ and $|\mu|=k+n$. By the inductive hypothesis these $t_{\lambda, \mu}$ are not eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n-1, k+n-1)}}$ since we have $\pi(n-1, k+n-1)$ eigenvalues and $\mathcal{C}^{(n-1, k+n-1)}$ is spanned by $\pi(n-1, k+n-1)$ elements and by Lemma 2.16 we have that if $t_{\lambda, \mu}=t_{\lambda^{\prime}, \mu^{\prime}}$ then $\lambda=\lambda^{\prime}$ and $\mu=\mu^{\prime}$.

Define elements $Q_{\lambda, \mu}^{\prime}:=Q_{\lambda}^{(-)} \cdot Q_{\mu}^{(+)}\left(=\wedge\left(e_{\lambda, \mu}^{\prime}\right)\right)$ with $|\lambda|=n$ and $|\mu|=$ $k+n$. Clearly $Q_{\lambda, \mu}^{\prime} \in \mathcal{C}^{(n, k+n)}$.

Now by Lemma 2.15,

$$
\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}\left(Q_{\lambda, \mu}^{\prime}\right)=t_{\lambda, \mu} Q_{\lambda, \mu}^{\prime}+w^{\prime}
$$

where $w^{\prime} \in \mathcal{C}^{(n-1, k+n-1)}$.
We can find a $v \in \mathcal{C}^{(n-1, k+n-1)}$ such that $\left(\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}-t_{\lambda, \mu} I\right)(v)=w^{\prime}$.
Now consider $Q_{\lambda, \mu}^{\prime}-v$. This is clearly non-zero. We find:

$$
\begin{aligned}
\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}\left(Q_{\lambda, \mu}^{\prime}-v\right) & =\left.\varphi\right|_{\mathcal{C}_{(n, k+n)}}\left(Q_{\lambda, \mu}^{\prime}\right)-\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}(v)+t_{\lambda, \mu} v-t_{\lambda, \mu} v \\
& =\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}\left(Q_{\lambda, \mu}^{\prime}\right)-w^{\prime}-t_{\lambda, \mu} v \\
& =t_{\lambda, \mu} Q_{\lambda, \mu}^{\prime}+w^{\prime}-w^{\prime}-t_{\lambda, \mu} v \\
& =t_{\lambda, \mu}\left(Q_{\lambda, \mu}^{\prime}-v\right) .
\end{aligned}
$$

Hence such $t_{\lambda, \mu}$ are eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n, k+n)}}$.
Hence by induction, we have that the $t_{\lambda, \mu}$, with $|\lambda| \leq n,|\mu| \leq p$ and $|\lambda|-|\mu|=n-p$, are eigenvalues of $\left.\varphi\right|_{\mathcal{C}^{(n, p)}}$.

Moreover, we have found at least $\pi(n, p)$ eigenvalues for $\left.\varphi\right|_{\mathcal{C}^{(n, p)}}$. But $\mathcal{C}^{(n, p)}$ is known to be spanned by $\pi(n, p)$ elements, so $\left.\varphi\right|_{\mathcal{C}^{(n, p)}}$ has at most $\pi(n, p)$ different eigenvalues. Hence it has exactly $\pi(n, p)$ eigenvalues each with multiplicity one.

We now state two useful corollaries.
Corollary. There is a basis of $\mathcal{C}^{(n, p)}$ given by:

$$
\left\{Q_{\lambda, \mu}:|\lambda| \leq n,|\mu| \leq p,|\lambda|-|\mu|=n-p\right\}
$$

such that:

$$
\varphi\left(Q_{\lambda, \mu}\right)=t_{\lambda, \mu} Q_{\lambda, \mu} \quad \text { and } \quad \bar{\varphi}\left(Q_{\lambda, \mu}\right)=\bar{t}_{\lambda, \mu} Q_{\lambda, \mu} .
$$

Corollary. Every eigenvector of φ and $\bar{\varphi}$ is a multiple of one such basis element.

Remark. The eigenvalues $t_{\lambda, \mu}$ and $\bar{t}_{\lambda, \mu}$ correspond to the eigenvalues of the matrix M in equation (1.1) of [Cha00], found there only for $1 \leq k_{1}+k_{2} \leq 5$ and $k_{2} \leq k_{1}$. Chan uses the Homfly polynomial based on parameters l and m,
which are variants of v and z. The numbers $\sqrt{m^{2}-4}$ in Chan's eigenvalues ρ_{i} and ρ_{i}^{*} correspond to the parameter s here with $z=s-s^{-1}$, which features strongly in our eigenvalues $t_{\lambda, \mu}$ and $\bar{t}_{\lambda, \mu}$. Our use of s is the feature which allows us to give simple formulae for the Gyoja-Aiston elements Q_{λ} and to extend in principle to $Q_{\lambda, \mu}$.

Unlike the Gyoja-Aiston elements Q_{λ} which are known and have been well-studied, their generalisations the $Q_{\lambda, \mu}$ described in the above Corollary are not well-understood. We shall show in the following section how they can be found explicitly.

3.5 The Homfly polynomials of some generalized Hopf links

Here we apply the techniques described above to show how computation of the Homfly polynomial ofF some generalized Hopf links is possible.

3.5.1 The Homfly polynomial of $H\left(k_{1}, k_{2} ; n, 0\right)$

Consider $H\left(k_{1}, k_{2} ; n, 0\right)$ in the skein of the annulus. Then we have

$$
H\left(k_{1}, k_{2} ; n, 0\right)=\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(A_{1}^{n}\right)\right) .
$$

Now since the maps φ and $\bar{\varphi}$ are linear maps, we know that for the Q_{λ},

$$
\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(Q_{\lambda}\right)\right)=t_{\lambda}^{k_{1}} \bar{t}_{\lambda}^{k_{2}} Q_{\lambda}
$$

Also, since the Q_{λ} are a basis or the skein $\mathcal{C}^{(n)}$, we have

$$
A_{1}^{n}=\sum_{|\lambda|=n} d_{\lambda} Q_{\lambda}
$$

for constants d_{λ}. The d_{λ} can be calculated by several means, for example by counting the number of standard tableaux of shape λ. Consider the Young diagram $\lambda=(2,2)$, there are two possible standard tableau. The first has the top two cells enumerated 1 and 2 and the bottom two cells 3 and 4, the second has the top two cells enumerated 1 and 3 and the bottom two cells 2 and 4.

Therefore,

$$
\begin{aligned}
H\left(k_{1}, k_{2} ; n, 0\right) & =\sum_{|\lambda|=n} d_{\lambda} \varphi^{k_{1}}\left(\bar{\varphi}^{-k_{2}}\left(Q_{\lambda}\right)\right) \\
& =\sum_{|\lambda|=n} d_{\lambda} t_{\lambda}^{k_{1}} \bar{t}_{\lambda}^{k_{2}} Q_{\lambda} .
\end{aligned}
$$

So evaluating in the plane (using the work of [AM98]), we find

$$
P\left(H\left(k_{1}, k_{2} ; n, 0\right)\right)=\sum_{|\lambda|=n} d_{\lambda} t_{\lambda}^{k_{1}} \bar{t}_{\lambda}^{k_{2}}\left(\prod_{(i, j) \in \lambda} \frac{v^{-1} s^{j-i}-v s^{i-j}}{s^{\mathrm{hl}(i, j)}-s^{-\mathrm{hl}(i, j)}}\right),
$$

where $\mathrm{hl}(i, j)$ is the hook-length of the cell (i, j), in row i and column j.

3.5.2 The Homfly polynomial of $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$

Consider, in a similar way to above, $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$ as an element of the skein \mathcal{C}. Then we have

$$
H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)=\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(A_{1}^{n_{1}} A_{-1}^{n_{2}}\right)\right) .
$$

Similar to the restricted case above, we have

$$
\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(Q_{\lambda, \mu}\right)\right)=t_{\lambda, \mu}^{k_{1}} \bar{t}_{\lambda, \mu}^{k_{2}} Q_{\lambda, \mu}
$$

and

$$
A_{1}^{n_{1}} A_{-1}^{n_{2}}=\sum_{\substack{|\lambda| \leq n_{2} \\|\mu| n_{1} \\|\lambda|-|\mu|=n_{2}-n_{1}}} d_{\lambda, \mu} Q_{\lambda, \mu}
$$

for constants $d_{\lambda, \mu}$. These constants can be calculated in terms of appropriate d_{λ} and d_{μ} (see previous section).
Theorem 3.3 ([Ste87]). The numbers $d_{\lambda, \mu}$ can be found from the following formula:

$$
d_{\lambda, \mu}=m!\binom{n_{2}}{m}\binom{n_{1}}{m} d_{\lambda} d_{\mu}
$$

where $|\lambda| \leq n_{2},|\mu| \leq n_{1}$ and $m=n_{2}-|\lambda|=n_{1}-|\mu|$.
Therefore,

$$
\begin{aligned}
H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)= & \sum_{\substack{|\lambda| \leq n_{2} \\
|\mu| n_{1} \\
|\lambda|-|\mu|=n_{2}-n_{1}}} d_{\lambda, \mu} \varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(Q_{\lambda, \mu}\right)\right) \\
= & \sum_{\substack{|\lambda| \leq n_{2} \\
\mu\left|\leq n_{1}\\
\right| \lambda\left|-|\mu|=n_{2}-n_{1}\right.}} d_{\lambda, \mu} t_{\lambda, \mu}^{k_{1}} \bar{t}_{\lambda, \mu}^{k_{2}} Q_{\lambda, \mu} .
\end{aligned}
$$

At present, we do not have a general closed formula for $P\left(H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)\right)$ due to lack of information about the elements $Q_{\lambda, \mu}$.

We can, however, make explicit calculations in individual cases as illustrated by the following example.

Figure 3.5: The link $H\left(k_{1}, k_{2} ; 1,2\right)$ in \mathcal{C}.

Example. Consider $H\left(k_{1}, k_{2} ; 1,2\right) \in \mathcal{C}^{(2,1)}$, as shown in Figure 3.5.
Then

$$
H\left(k_{1}, k_{2} ; 1,2\right)=\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(A_{1} A_{-1}^{2}\right)\right),
$$

where, by Theorem 3.3,

$$
\begin{equation*}
A_{1} A_{-1}^{2}=Q_{\square, \square}+2 Q_{\square, \emptyset}+Q_{\square, \square} . \tag{3.1}
\end{equation*}
$$

However, we can also find, by using powers of trivial Gyoja-Aiston elements Q_{\square}, with appropriate orientation, that since $A_{1}=Q_{\square}^{(+)}$and $A_{-1}=Q_{\square}^{(-)}$we have

$$
A_{1} A_{-1}^{2}=\left(Q_{\square}^{(-)}\right)^{2} Q_{\square}^{(+)} .
$$

Moreover, these elements are known to satisfy the Littlewood-Richardson rule for multiplication of Young diagrams ([Ais96]), so

$$
\begin{align*}
A_{1} A_{-1}^{2} & =\left(Q_{\square}^{(-)}+Q_{\square}^{(-)}\right) Q_{\square}^{(+)} \\
& =Q_{\square}^{(-)} Q_{\square}^{(+)}+Q_{\square}^{(-)} Q_{\square}^{(+)} \\
& =Q_{\square, \square}^{\prime}+Q_{\boxminus, \square}^{\prime} . \tag{3.2}
\end{align*}
$$

Now combining equations 3.1 and 3.2 with the observation that

$$
Q_{\square, \emptyset}=Q_{\square, \emptyset}^{\prime}=Q_{\square}^{(-)} Q_{\emptyset}^{(+)}
$$

and assuming symmetry under conjugation of Young diagrams, we have

$$
\begin{aligned}
Q_{\square, \square} & =Q_{\square, \square}^{\prime}-Q_{\square, \emptyset^{\prime}}^{\prime} \\
\text { and } Q_{\square, \square} & =Q_{\square, \square}^{\prime}-Q_{\square, \emptyset}^{\prime} .
\end{aligned}
$$

Hence, evaluating in the plane, we find,

$$
\begin{align*}
P\left(H\left(k_{1}, k_{2} ; 1,2\right)\right)= & P\left(\varphi^{k_{1}}\left(\bar{\varphi}^{k_{2}}\left(A_{1} A_{-1}^{2}\right)\right)\right) \\
= & t_{\square, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}} P\left(Q_{\square, \square}\right) \\
& +2 t_{\square, \emptyset}^{k_{1}} \bar{t}_{\square, \emptyset}^{k_{2}} P\left(Q_{\square, \emptyset}\right)+t_{\boxminus, \square}^{k_{1}} \bar{t}_{\boxminus, \square}^{k_{2}} P\left(Q_{\boxminus, \square}\right) \\
= & t_{\square, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}}\left(P\left(Q_{\square, \square}^{\prime}\right)-P\left(Q_{\square, \emptyset}^{\prime}\right)\right) \\
& +2 t_{\square, \emptyset}^{k_{1}} \bar{t}_{\square, \emptyset}^{k_{2}} P\left(Q_{\square, \emptyset}^{\prime}\right)+t_{\boxminus, \square}^{k_{1}} \bar{t}_{\boxminus, \square}^{k_{2}}\left(P\left(Q_{\boxminus, \square}^{\prime}-P\left(Q_{\square, \emptyset}^{\prime}\right)\right)\right. \\
= & t_{\square, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}} P\left(Q_{\square, \square}^{\prime}\right) \\
& +\left(2 t_{\square, \emptyset}^{k_{1}} \bar{t}_{\square, \emptyset}^{k_{2}}-t_{\square, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}}-t_{\boxminus, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}}\right) P\left(Q_{\square, \emptyset}^{\prime}\right) \tag{3.3}\\
& +t_{\boxminus, \square}^{k_{1}} \bar{t}_{\square, \square}^{k_{2}} P\left(Q_{\boxminus, \square}^{\prime}\right)
\end{align*}
$$

From the definition of the $Q_{\lambda, \mu}^{\prime}$, we can now use the results in [AM98] to find $P\left(Q_{\square, \emptyset}^{\prime}\right), P\left(Q_{\square, \square}^{\prime}\right)$ and $P\left(Q_{\square, \square}^{\prime}\right)$. We have:

$$
\begin{aligned}
P\left(Q_{\square, \emptyset}^{\prime}\right) & =\frac{v^{-1}-v}{s-s^{-1}}, \\
P\left(Q_{\square, \square}^{\prime}\right) & =\left(\frac{v^{-1}-v}{s^{2}-s^{-2}}\right)\left(\frac{v^{-1} s-v s^{-1}}{s-s^{-1}}\right)\left(\frac{v^{-1}-v}{s-s^{-1}}\right), \\
\text { and } P\left(Q_{\square, \square}^{\prime}\right) & =\left(\frac{v^{-1}-v}{s^{2}-s^{-2}}\right)\left(\frac{v^{-1} s^{-1}-v s}{s-s^{-1}}\right)\left(\frac{v^{-1}-v}{s-s^{-1}}\right) .
\end{aligned}
$$

Then using Proposition 2.15 we find:

$$
\begin{aligned}
t_{\square, \emptyset} & =-v\left(s-s^{-1}\right)+\delta, \\
t_{\square, \square} & =\left(s-s^{-1}\right)\left(-v\left(1+s^{-2}\right)+v^{-1}\right)+\delta, \\
t_{日, \square} & =\left(s-s^{-1}\right)\left(-v\left(1+s^{2}\right)+v^{-1}\right)+\delta,
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{t}_{\square, \emptyset} & =v^{-1}\left(s-s^{-1}\right)+\delta, \\
\bar{t}_{\square, \square} & =\left(s-s^{-1}\right)\left(v^{-1}\left(1+s^{2}\right)-v\right)+\delta, \\
\bar{t}_{\square, \square} & =\left(s-s^{-1}\right)\left(v^{-1}\left(1+s^{-2}\right)-v\right)+\delta .
\end{aligned}
$$

Substitution of these values into equation 3.3 then gives $P\left(H\left(k_{1}, k_{2} ; 1,2\right)\right)$ immediately.

3.6 Some final remarks

We can in principle write any given element of the skein $X \in \mathcal{C}$ as a linear combination of the basis elements $Q_{\lambda, \mu}$. Therefore, one can find $\varphi(X)$ and $\bar{\varphi}(X)$, and hence readily evaluate the Homfly polynomial of $H\left(k_{1}, k_{2} ; X\right):=$ $H_{+}\left(X, A_{1}^{k_{1}} A_{-1}^{k_{2}}\right)$. The special case $X=A_{1}^{n_{1}} A_{-1}^{n_{2}}$ gives $H\left(k_{1}, k_{2} ; n_{1}, n_{2}\right)$.

In order to be able to write any element of the skein as a linear combination of the basis elements $Q_{\lambda, \mu}$ we must deepen our understanding of these elements. We aim to begin this quest in the next chapter.

Before we embark of this journey we look at some other work related to the findings of the current chapter.

3.6.1 The Homfly polynomial of the decorated Hopf link

Morton and Lukac [Luk01, ML03] show how to calculate the Homfly polynomial of any satellite of the Hopf link, when the decorations are chosen from the more restricted setting of \mathcal{C}^{+}.

This is achieved since the decorations are spanned in the Homfly skein of the annulus by the well-known elements Q_{λ}. The paper shows that the Homfly polynomial of the Hopf link decorated by Q_{λ} on one component and Q_{μ} on the other, denoted $\langle\lambda, \mu\rangle$, depends on the Schur symmetric function s_{μ} of an explicit power series depending on λ.

3.6.2 Kauffman polynomials of generalized Hopf links

The techniques developed and used to produce the results of this chapter have been adopted by Zhong and Lu in [ZL02] to investigate the Kauffman polynomials of generalized Hopf links.

They considered the Kauffman skein module of the solid torus which is defined and constructed in an analogous way to the Homfly skein of the
annulus, obviously using the unoriented Kauffman skein relations in place of the Homfly skein relations.

Following [MH02], Zhong and Lu define a map φ on the Kauffman skein module and then calculate eigenvalues c_{λ}. These are then also shown to be distinct for different λ.

Chapter 4

A Basis For The Skein Of The Annulus, \mathcal{C}

In the previous chapter we introduced a basis for the full Homfly skein of the annulus. We referred to these skein elements as $Q_{\lambda, \mu}$ where λ and μ are Young diagrams. These basis elements were identified as being eigenvectors of the natural linear skein maps φ and $\bar{\varphi}$ which see the addition of a meridian loop of the annulus.

In this chapter we aim to construct a matrix of simple skein elements whose determinant gives an explicit expression for $Q_{\lambda, \mu}$. Before we can hope to get to that stage we must do some background work. As a taster, we offer some initial observations to the behaviour of the $Q_{\lambda, \mu}$ at a very basic level.

4.1 Basic behaviour of the $Q_{\lambda, \mu}$

It is known that the $Q_{\lambda, \mu} \in \mathcal{C}$ are indexed by pairs of Young diagrams. In this section we ask how these elements behave under multiplication. Since we still have limited knowledge of these elements, we limit ourselves to considering the multiplication by trivial elements, or, in other words

$$
Q_{\lambda, \mu} \cdot Q_{\square, \emptyset} \quad \text { and } \quad Q_{\lambda, \mu} \cdot Q_{\emptyset, \square} .
$$

For Young diagrams, such multiplication is illustrated by the Brattelli diagram. For pairs of Young diagrams we can offer an analogue to the Brattelli diagram, it is adapted from a construction offered by Kosuda and Murakami in [KM93]. To illustrate our construction we now build a Brattelli type diagram for the set of Young diagrams relevant to the subspace of \mathcal{C} with $n=2$
and $p=1, \mathcal{C}^{(2,1)}$. Our diagram is as follows

We notice that to move from one level to the next, we are either multiplying the preceding pairs of Young diagrams by (\square, \emptyset) (the first two steps) or by (\emptyset, \square) (the final step). When multiplying a pair of Young diagrams by (\square, \emptyset) the resulting pairs will either have and extra cell on the left Young diagram, or one less cell on the right Young diagram. Conversely, when multiplying a pair of Young diagrams by (\emptyset, \square) the resulting pairs will either have and extra cell on the right Young diagram, or one less cell on the left Young diagram.
Remark. Due to the commutativity in \mathcal{C} we can build up this diagram with identical results even if we were to change the order of the steps.

We use these observations to give the following two rules:
$Q_{\lambda, \mu} \cdot Q_{\square, \emptyset}\left(=Q_{\square, \emptyset} \cdot Q_{\lambda, \mu}\right)=\sum_{\left\{\left(\lambda^{\prime}, \mu\right):\left|\lambda^{\prime}\right|=|\lambda|+1, \lambda \subset \lambda^{\prime}\right\}} Q_{\lambda^{\prime}, \mu}+\sum_{\left\{\left(\lambda, \mu^{\prime}\right):\left|\mu^{\prime}\right|=|\mu|-1, \mu^{\prime} \subset \mu\right\}} Q_{\lambda, \mu^{\prime}}$,
$Q_{\lambda, \mu} \cdot Q_{\emptyset, \square}\left(=Q_{\emptyset, \square} \cdot Q_{\lambda, \mu}\right)=\sum_{\left\{\left(\lambda^{\prime}, \mu\right):\left|\lambda^{\prime}\right|=|\lambda|-1, \lambda^{\prime} \subset \lambda\right\}} Q_{\lambda^{\prime}, \mu}+\sum_{\left\{\left(\lambda, \mu^{\prime}\right):\left|\mu^{\prime}\right|=|\mu|+1, \mu \subset \mu^{\prime}\right\}} Q_{\lambda, \mu^{\prime}}$.
As a final observation, the number of different paths to a pair of Young diagrams (λ, μ) from top-to-bottom corresponds to the integer $d_{\lambda, \mu}$ given by an explicit formula by Stembridge in Theorem 3.3.

4.2 A spanning set for \mathcal{C}

Recall from Chapter 2 the elements of H_{n} denoted h_{n} and e_{n} which correspond respectively to the single row and single column Young diagrams with
n cells. We now consider these elements wired into the annulus, and with a slight abuse of notation we write $h_{n}, e_{n} \in \mathcal{C}$ for the closures $\wedge\left(h_{n}\right), \wedge\left(e_{n}\right)$ in \mathcal{C}. It can be demonstrated using a symmetric function approach that the skein \mathcal{C}^{+}, when considered as an algebra, is spanned by monomials in the $\left\{h_{m}: m \geq 0\right\}$.

Now consider the image of these elements under the involution $*$. We have $*\left(h_{n}\right):=h_{n}^{*}$ and $*\left(e_{n}\right):=e_{n}^{*}$. Similarly, the skein \mathcal{C}^{-}is spanned by monomials in the $\left\{h_{l}^{*}: l \geq 0\right\}$.

Combining these sets, the whole skein \mathcal{C} is spanned by monomials in $\left\{h_{l}^{*}, h_{m}: l, m \geq 0\right\}$.

4.3 Some elements of \mathcal{A}

Now, if we keep the elements we have just defined in mind, and recall the maps $l: \mathcal{C} \times \mathcal{A} \rightarrow \mathcal{A}$ and $r: \mathcal{A} \times \mathcal{C} \rightarrow \mathcal{A}$, we can define the following elements of \mathcal{A}. Let

Now given these two elements of \mathcal{A} we define

which satisfies the relation

$$
\begin{equation*}
y_{n}=s^{-1} a y_{n-1}+l_{n} . \tag{4.1}
\end{equation*}
$$

Applying the mirror map, ${ }^{-}$to these elements of \mathcal{A} we notice

$$
\bar{y}_{n}=y_{n} ; \quad \bar{a}=a ; \quad \bar{l}_{n}=r_{n} ; \quad s \mapsto s^{-1},
$$

so (4.1) becomes

$$
\begin{equation*}
y_{n}=s a y_{n-1}+r_{n} . \tag{4.2}
\end{equation*}
$$

We define further elements of \mathcal{A}. We have

Similarly we obtain the relation

$$
\begin{equation*}
y_{n}^{*}=s^{-1} a^{-1} y_{n-1}^{*}+l_{n}^{*} \tag{4.3}
\end{equation*}
$$

and under the mirror map this becomes

$$
\begin{equation*}
y_{n}^{*}=s a^{-1} y_{n-1}^{*}+r_{n}^{*} . \tag{4.4}
\end{equation*}
$$

We re-write relations (4.4) and (4.3) in order that they are similar in style to (4.1) and (4.2) respectively. We get

$$
\text { and } \begin{align*}
y_{n-1}^{*} & =s^{-1} a y_{n}^{*}+\gamma_{n-1}^{*} \tag{4.5}\\
y_{n-1}^{*} & =s a y_{n}^{*}+\rho_{n-1}^{*} . \tag{4.6}
\end{align*}
$$

with $\gamma_{n-1}^{*}=-s^{-1} a r_{n}^{*}$ and $\rho_{n-1}^{*}=-s a l_{n}^{*}$.
Now solving pairs of equations $(4.1,4.2)$ and $(4.5,4.6)$ we obtain

$$
\begin{align*}
\left(s-s^{-1}\right) y_{n} & =s l_{n}-s^{-1} r_{n} \tag{4.7}\\
\text { and } \quad\left(s-s^{-1}\right) y_{n-1}^{*} & =s \gamma_{n-1}^{*}-s^{-1} \rho_{n-1}^{*} . \tag{4.8}
\end{align*}
$$

Finally let us recall the closure map we defined on \mathcal{A}. We have

4.4 Some matrix results

In this section we introduce a system of abbreviations for matrices in order to facilitate the path to our goal. Then using these abbreviations we give some results for determinants of certain matrices of skein elements.

4.4.1 Fixed indexing matrices

Here we describe the idea of a fixed indexing matrix (FIM), each of which having associated to it an indexing vector (IV). One main feature of the matrices to be considered here is that rows will either contain elements for which all are starred or all are non-starred.

The IV will contain the indices of the elements in the first column of the FIM, the remaining indices then being determined such that the indices of elements in starred rows decrease sequentially and the indices of elements in non-starred rows increase sequentially.

We shall think of the FIM and the IV as a pair which defines a matrix. We write $M=(A, V)$ for the matrix M represented by the FIM A and the IV V.

Further simplification of notation is possible due to the specific format of the matrices we are interested in. In each FIM we shall only give one row to represent each of the starred and non-starred rows. This will be possible since the elements in any column will be of a similar type, differing only in the indices of its elements. Furthermore, there will be a similarity in elements along rows, with changes occuring in the $j^{\text {th }}$ column, for a fixed j. An example will help to clarify this description.

Example. Let A be the 8×8 FIM

$$
A=\left(\begin{array}{cccccc}
a^{*} & \cdots & b^{*} & b^{*} & c^{*} & \cdots \\
\hline a & \cdots & b & b & c & \cdots
\end{array}\right)
$$

and V be the IV

$$
V=\left(\begin{array}{l}
3 \\
4 \\
3 \\
5 \\
\hline 1 \\
2 \\
3 \\
1
\end{array}\right),
$$

then taking $j=4$, we have the matrix M represented by A and V is

$$
M=(A, V)=\left(\begin{array}{cccccccc}
a_{3}^{*} & a_{2}^{*} & a_{1}^{*} & b_{0}^{*} & b_{-1}^{*} & c_{-2}^{*} & c_{-3}^{*} & c_{-4}^{*} \\
a_{4}^{*} & a_{3}^{*} & a_{2}^{*} & b_{1}^{*} & b_{0}^{*} & c_{-1}^{*} & c_{-2}^{*} & c_{-3}^{*} \\
a_{3}^{*} & a_{2}^{*} & a_{1}^{*} & b_{0}^{*} & b_{-1}^{*} & c_{-2}^{*} & c_{-3}^{*} & c_{-4}^{*} \\
a_{5}^{*} & a_{4}^{*} & a_{3}^{*} & b_{2}^{*} & b_{1}^{*} & c_{0}^{*} & c_{-1}^{*} & c_{-2}^{*} \\
a_{1} & a_{2} & a_{3} & b_{4} & b_{5} & c_{6} & c_{7} & c_{8} \\
a_{2} & a_{3} & a_{4} & b_{5} & b_{6} & c_{7} & c_{8} & c_{9} \\
a_{3} & a_{4} & a_{5} & b_{6} & b_{7} & c_{8} & c_{9} & c_{10} \\
a_{1} & a_{2} & a_{3} & b_{4} & b_{5} & c_{6} & c_{7} & c_{8}
\end{array}\right) .
$$

In the forthcoming sections, the matrices we will use will all be of size $\left(k^{*}+k\right) \times\left(k^{*}+k\right)$ with the top k^{*} rows being starred and the bottom k non-starred. Furthermore, there will be only two different indexing vectors required. We define them now.

Definition 3. Let V_{1} and V_{2} be the ($k^{*}+k$)-row IV's

$$
V_{1}:=\left(\begin{array}{c}
i_{1}-1 \\
i_{2}-1 \\
\vdots \\
i_{k^{*}}-1 \\
\hline i_{k^{*}+1} \\
i_{k^{*}+2} \\
\vdots \\
i_{k^{*}+k}
\end{array}\right) \quad \text { and } \quad V_{2}:=V_{1}+\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
\hline 0 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{k^{*}} \\
\hline i_{k^{*}+1} \\
i_{k^{*}+2} \\
\vdots \\
i_{k^{*}+k}
\end{array}\right) .
$$

4.4.2 Matrices of skein elements

Recall the various skein elements constructed and defined in Section 4.3 and the relations between them. We shall now use the notation developed above to state and prove some results for elements of the skein \mathcal{A} which are determinants of matrices of these simple skein elements.

Lemma 4.1. For all $j \geq 1$ we have

$$
\begin{aligned}
& \operatorname{det}\left(\left(\right), V_{1}\right)= \\
& \operatorname{det}\left(\left(\begin{array}{cccccc}
& \begin{array}{c}
j \\
\downarrow \\
\gamma^{*}
\end{array} & \cdots & y^{*} & y^{*} & \rho^{*} \\
& \cdots \\
l & \cdots & y & y & r & \cdots
\end{array}\right), V_{1}\right) .
\end{aligned}
$$

Proof. Apply column operation

$$
c_{j+1} \mapsto s a c_{j}+c_{j+1}
$$

using (4.6) on starred rows and (4.2) on non-starred rows.
Corollary. For all $j \geq 1$ we have

$$
\begin{align*}
&\left.\operatorname{det}\left(\begin{array}{ccccc}
& \begin{array}{c}
j \\
\downarrow \\
\gamma^{*}
\end{array} & \cdots & y^{*} & \rho^{*} \\
l & \cdots & y & r & \cdots
\end{array}\right), V_{1}\right)= \\
& \operatorname{det}\left(\begin{array}{cccc}
\gamma^{*} & \cdots & y^{*} & \cdots \\
\left.\left.\begin{array}{llll}
\downarrow \\
l & \cdots & y & \cdots
\end{array}\right), V_{1}\right)
\end{array}\right. \tag{4.9}
\end{align*}
$$

Lemma 4.2. For all $j \geq 1$ we have

$$
\begin{aligned}
&\left.\operatorname{det}\left(\begin{array}{cccccc}
& \begin{array}{c}
j \\
\downarrow
\end{array} \\
\begin{array}{ccccc}
\gamma^{*} & \cdots & y^{*} & y^{*} & \gamma^{*} \\
l & \cdots & y & y & l \\
\hline
\end{array} & \cdots
\end{array}\right), V_{1}\right)= \\
&\left.\operatorname{det}\left(\begin{array}{ccccc}
& & \begin{array}{ccc}
\gamma^{*} & \cdots & y^{*} \\
\downarrow & \gamma^{*} & \cdots \\
l & \cdots & y
\end{array} l & \cdots
\end{array}\right), V_{1}\right)
\end{aligned}
$$

Proof. Apply column operation

$$
c_{j+1} \mapsto-s^{-1} a c_{j}+c_{j+1}
$$

using (4.5) on starred rows and (4.1) on non-starred rows.

Corollary. For all $j \geq 1$ we have

$$
\begin{align*}
&\left.\operatorname{det}\left(\begin{array}{cccc}
& \begin{array}{c}
j \\
\downarrow \\
\gamma^{*}
\end{array} & \cdots & y^{*} \\
l & \cdots & y^{\prime} & \cdots
\end{array}\right), V_{1}\right)= \\
&\left.\operatorname{det}\left(\begin{array}{ccccc}
& \left(\begin{array}{cccc}
\gamma^{*} & \cdots & y^{*} & \gamma^{*} \\
l & \cdots \\
l & \cdots & y & l
\end{array}\right. & \cdots
\end{array}\right), V_{1}\right) \tag{4.10}
\end{align*}
$$

Lemma 4.3. For all $j \geq 1$ we have

$$
\begin{aligned}
& \operatorname{det}\left(\left(\right), V_{1}\right)= \\
& \operatorname{det}\left(\left(\right), V_{1}\right) .
\end{aligned}
$$

Proof. Combine determinantal equations 4.9 and 4.10.

Definition 4.

(a) $\quad \Delta_{k^{*}+k}:=\operatorname{det}\left(\left(\begin{array}{cc}\gamma^{*} & \cdots\end{array}\right), V_{1}\right) \in \mathcal{A} ;$
(b) $\quad \Delta_{0}:=\operatorname{det}\left(\left(\begin{array}{cc}\rho^{*} & \cdots \\ r & \cdots\end{array}\right), V_{1}\right) \in \mathcal{A}$;
(c) In general, for $j \geq 0$,

$$
\Delta_{j}:=\operatorname{det}\left(\right.
$$

Lemma 4.4. For all $j \geq 1$ we have

$$
\left.\left(s-s^{-1}\right) \operatorname{det}\left(\right), V_{1}\right)=s \Delta_{j}-s^{-1} \Delta_{j-1} .
$$

Proof.

$$
\begin{aligned}
& \left(s-s^{-1}\right) \operatorname{det}\left(\left(\right), V_{1}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{ccccc}
\gamma^{*} & \cdots & \left(s-s^{-1}\right) y^{*} & \rho^{*} & \cdots \\
\hline l & \cdots & \left(s-s^{-1}\right) y & r & \cdots
\end{array}\right), V_{1}\right) \\
& { }_{\downarrow}^{j} \\
& =\operatorname{det}\left(\left(\begin{array}{ccccc}
\gamma^{*} & \cdots & s \gamma^{*}-s^{-1} \rho^{*} & \rho^{*} & \ldots \\
\hline l & \cdots & s l-s^{-1} r & r & \cdots
\end{array}\right), V_{1}\right) \\
& \text { (using equations (4.7) and (4.8)) } \\
& =\operatorname{det}\left(\begin{array}{ccccc}
& \left.\begin{array}{ccc}
\gamma^{*} & \cdots & s \gamma^{*} \\
& \rho^{*} & \cdots \\
l & \cdots & s l \\
& r & \cdots
\end{array}\right), V_{1}
\end{array}\right) \\
& -\operatorname{det}\left(\left(\begin{array}{ccccc}
& \stackrel{j}{\gamma^{*}} & \cdots & s^{-1} \rho^{*} & \rho^{*} \\
\cdots & \cdots \\
l & \cdots & s^{-1} r & r & \cdots
\end{array}\right), V_{1}\right) \\
& =s \Delta_{j}-s^{-1} \Delta_{j-1}
\end{aligned}
$$

Furthermore,
Lemma 4.5.

$$
\left(s-s^{-1}\right) \sum_{j=1}^{k^{*}+k} s^{2 j-1} \operatorname{det}\left(\left(\begin{array}{ccccc}
& \begin{array}{c}
\gamma^{*} \\
\\
\cdots
\end{array} & y^{*} & \rho^{*} & \cdots \\
\hline l & \cdots & y & r & \cdots
\end{array}\right), V_{1}\right)=
$$

Proof.

$$
\begin{aligned}
&\left(s-s^{-1}\right) \sum_{j=1}^{k^{*}+k} s^{2 j-1} \operatorname{det}\left(\left(\begin{array}{ccccc}
\gamma^{*} & \cdots & y^{*} & \rho^{*} & \cdots \\
l & \cdots & y & r & \cdots
\end{array}\right), V_{1}\right) \\
&=\sum_{j=1}^{j} s^{2 j-1}\left(s-s^{-1}\right) \operatorname{det}\left(\begin{array}{cccc}
k^{*}+k \\
\gamma^{*} & \cdots & y^{*} & \rho^{*} \\
l & \cdots & y & r
\end{array}\right) \\
& \hline=\sum_{j=1}^{k^{*}+k} s^{2 j-1}\left(s \Delta_{j}-s^{-1} \Delta_{j-1}\right) \\
&=s_{1}^{2\left(k^{*}+k\right)} \Delta_{k^{*}+k}-\Delta_{0} .
\end{aligned}
$$

4.5 The final push

In this section we combine all the results of the preceding sections to take us to our final goal, explicitly identifying a basis for the Homfly skein of the annulus \mathcal{C}.

Firstly we are required to define some further matrices.

Definition 5.

(a) $\quad \Delta_{k^{*}+k}^{\prime}:=\operatorname{det}\left(\left(\begin{array}{cc}r^{*} & \cdots \\ l & \cdots\end{array}\right), V_{2}\right) \in \mathcal{A} ;$
(b) $\quad \Delta_{0}^{\prime}:=\operatorname{det}\left(\left(\begin{array}{ll}l^{*} & \cdots \\ r & \cdots\end{array}\right), V_{2}\right) \in \mathcal{A} ;$

Now relating these matrices to those defined in Definition 4 we find
Proposition 4.6. The following relations hold:
(i) $\Delta_{k^{*}+k}^{\prime}=\left(-s a^{-1}\right)^{k^{*}} \Delta_{k^{*}+k}$,
(ii) $\Delta_{0}^{\prime}=\left(-s^{-1} a^{-1}\right)^{k^{*}} \Delta_{0}$.

Proof. To the left hand side of the relations apply the facts that $r_{i}^{*}=$ $-s a^{-1} \gamma_{i-1}^{*}$ and $l_{i}^{*}=-s^{-1} a^{-1} \rho_{i-1}^{*}$ respectively to the top k^{*} rows. We also allow for the shift in indices on the top k^{*} rows with the change in indexing vector. The relations follow immediately.

The following lemma uses all the results of the previous section to give a relation for elements in \mathcal{C} through application of the closure map $\diamond: \mathcal{A} \rightarrow \mathcal{C}$.

Lemma 4.7.

$$
\begin{aligned}
s^{2 k^{*}}\left(s^{2 k} \diamond\left(\Delta_{k^{*}+k}^{\prime}\right)\right. & \left.-\diamond\left(\Delta_{0}^{\prime}\right)\right)= \\
& \sum_{j=1}^{k^{*}+k} s^{2 j}\left(\delta \operatorname{det}\left(\left(\begin{array}{cc}
h^{*} & \cdots \\
h & \cdots
\end{array}\right), V_{2}\right)\right. \\
& \left.\left.\quad-\operatorname{det}\left(\begin{array}{cccc}
h^{*} & \cdots & \bar{\varphi}\left(h^{*}\right) & h^{*} \\
\vdots & \cdots \\
h & \cdots & s^{-2} \bar{\varphi}(h) & h \\
\cdots
\end{array}\right), V_{2}\right)\right)
\end{aligned}
$$

Proof. We begin with the left hand side of the equation:

$$
\begin{aligned}
& s^{2 k^{*}}\left(s^{2 k} \diamond\left(\Delta_{k^{*}+k}^{\prime}\right)-\diamond\left(\Delta_{0}^{\prime}\right)\right) \\
= & \diamond\left(s^{2 k^{*}}\left(s^{2 k} \Delta_{k^{*}+k}^{\prime}\right)-\Delta_{0}^{\prime}\right) \\
& \quad(\text { since } \diamond \text { is a linear map }) \\
= & \diamond\left(s^{2 k^{*}}\left(s^{2 k}\left(-s a^{-1}\right)^{k^{*}} \Delta_{k^{*}+k}-\left(-s^{-1} a^{-1}\right)^{k^{*}} \Delta_{0}\right)\right) \\
& \quad(\text { by Proposition 4.6) } \\
= & \diamond\left(\left(-a^{-1} s\right)^{k^{*}}\left(s^{2\left(k^{*}+k\right)} \Delta_{k^{*}+k}-\Delta_{0}\right)\right)
\end{aligned}
$$

$$
\left.=\diamond\left(\left(-a^{-1} s\right)^{k^{*}}\left(s-s^{-1}\right) \sum_{j=1}^{k^{*}+k} s^{2 j-1} \operatorname{det}\left(\begin{array}{ccccc}
\gamma^{*} & \cdots & y^{*} & \rho^{*} & \cdots \\
\hline & \cdots & y & r & \cdots
\end{array}\right), V_{1}\right)\right)
$$

(by Lemma 4.5)
$\left.=\diamond\left(\left(-a^{-1} s\right)^{k^{*}}\left(s-s^{-1}\right) \sum_{j=1}^{k^{*}+k} s^{2 j-1} \operatorname{det}\left(\begin{array}{cccc} & \begin{array}{ccc}\gamma^{*} & \cdots & y^{*} \\ \hline\end{array} & \gamma^{*} & \cdots \\ l & \cdots & y & l\end{array}\right), V_{1}\right)\right)$
(by Lemma 4.3)
$=\diamond\left(\sum_{j=1}^{k^{*}+k}\left(-a^{-1} s\right)^{k^{*}} s^{2 j-1} \operatorname{det}\left(\left(\begin{array}{ccccc}\gamma^{*} & \cdots & s \gamma^{*}-s^{-1} \rho^{*} & \gamma^{*} & \cdots \\ \hline l & \cdots & s l-s^{-1} r & l & \cdots\end{array}\right), V_{1}\right)\right)$
(after multiplying column j by $\left(s-s^{-1}\right)$ and using relations (4.7,4.8))

$$
\begin{aligned}
& =\diamond\left(\sum_{j=1}^{k^{*}+k}\left(-a^{-1} s\right)^{k^{*}} s^{2 j} \operatorname{det}\left(\left(\begin{array}{cc}
\gamma^{*} & \cdots \\
l & \cdots
\end{array}\right), V_{1}\right)\right) \\
& -\diamond\left(\sum_{j=1}^{k^{*}+k}\left(-a^{-1} s\right)^{k^{*}} s^{2(j-1)} \operatorname{det}\left(\begin{array}{cccc}
& \left.\begin{array}{cccc}
\gamma^{*} & \cdots & \rho^{*} & \gamma^{*} \\
\hline l & \cdots & r & l \\
l & \cdots
\end{array}\right), V_{1}
\end{array}\right)\right)
\end{aligned}
$$

(by splitting the matrices with the entries in the $j^{\text {th }}$ column)

$$
\begin{aligned}
= & \sum_{j=1}^{k^{*}+k} s^{2 j} \diamond\left(\operatorname{det}\left(\left(\begin{array}{cc}
r^{*} & \cdots \\
l & \cdots
\end{array}\right), V_{2}\right)\right) \\
& \left.\quad-\sum_{j=1}^{k^{*}+k} s^{2 j} \diamond\left(\operatorname{det}\left(\begin{array}{lllll}
r^{*} & \cdots & l^{*} & r^{*} & \cdots \\
l & \cdots & s^{-2} r & l & \cdots
\end{array}\right), V_{2}\right)\right)
\end{aligned}
$$

We now apply the closure map to the determinants and recalling the skein map $\bar{\varphi}$ we see the result follows.

We now calculate the values of $\bar{\varphi}\left(h_{n}^{*}\right)$ and $\bar{\varphi}\left(h_{n}\right)$.

Proposition 4.8.

$$
\begin{aligned}
\bar{\varphi}\left(h_{n}^{*}\right) & =\left(v^{-1}\left(s^{2 n-1}-s^{-1}\right)+\delta\right) h_{n}^{*} \\
\text { and } \quad \bar{\varphi}\left(h_{n}\right) & =\left(v\left(s^{-2 n+1}-s\right)+\delta\right) h_{n} .
\end{aligned}
$$

Proof. We are considering the idempotent closures h_{n}^{*} and h_{n}, therefore we are interested in the single row Young diagram with n cells. We apply the results for the values of t_{λ} and \bar{t}_{λ} given in Chapter 2 (see also [MH02]), where $\lambda=(n)$ with the content of the cells being (from left-to-right) $0,1,2, \ldots$, $n-1$. After some cancellation, the results follow.

Corollary (of Lemma 4.7 and Proposition 4.8).

$$
\begin{aligned}
& \left.s^{2 j} \operatorname{det}\left(\begin{array}{cccc}
\substack{\downarrow \\
h^{*} \\
\hline \\
h \\
\cdots} & \bar{\varphi}\left(h^{*}\right) & h^{*} & \cdots \\
s^{-2} \bar{\varphi}(h) & h & \cdots
\end{array}\right), V_{2}\right)= \\
& \begin{array}{c}
j \\
\downarrow
\end{array} \\
& \left.\operatorname{det}\left(\begin{array}{ccccc}
h^{*} & \cdots & \left(v^{-1} s^{2 i_{r}+1}+s^{2 j}\left(\delta-s^{-1} v^{-1}\right)\right) h_{i_{r}-j+1}^{*} & h^{*} & \cdots \\
\hline h & \cdots & \left(v s^{1-2 i_{r}}+s^{2 j}\left(s^{-2} \delta-v s^{-1}\right)\right) h_{i_{r}+j-1} & h & \cdots
\end{array}\right), V_{2}\right)
\end{aligned}
$$

where i_{r} is the value in the $r^{\text {th }}$ row of the indexing vector V_{2}.

Proof. The result is immediate after finding the index for the $j^{\text {th }}$ column from the indexing vector.

We notice the following about the second summand of the scalars multiplying the $h_{i_{r}-j+1}^{*}$ and the $h_{i_{r}+j-1}$ in the previous matrix.

Proposition 4.9.

$$
\delta-s^{-1} v^{-1}=s^{-2} \delta-s^{-1} v .
$$

Proof. Since $\delta=\frac{v^{-1}-v}{s-s^{-1}}$, we have

$$
\begin{aligned}
\delta\left(s-s^{-1}\right) & =v^{-1}-v \\
\Rightarrow \quad s \delta-v^{-1} & =s^{-1} \delta-v \\
\Rightarrow \quad \delta-s^{-1} v^{-1} & =s^{-2} \delta-s^{-1} v .
\end{aligned}
$$

From this point we shall define

$$
A_{\lambda, \mu}:=\operatorname{det}\left(\left(\begin{array}{cc}
h^{*} & \cdots \\
h & \cdots
\end{array}\right), V_{2}\right),
$$

and let

$$
\begin{aligned}
& \beta_{i j}^{*} \\
\text { and } & :=\theta_{i}^{*}+\nu_{j}, \\
\beta_{i j} & :=\theta_{i}+\nu_{j},
\end{aligned}
$$

where

$$
\begin{aligned}
\theta_{i}^{*} & :=v^{-1} s^{2 i_{r}+1}, \\
\theta_{i} & :=v s^{1-2 i_{r}}, \\
\text { and } \quad \nu_{j} & :=s^{2 j}\left(\delta-s^{-1} v^{-1}\right) .
\end{aligned}
$$

As explained, the entries in V_{2} determine the values of the subscripts of the entries in $A_{\lambda, \mu}$. Here, the entries of V_{2} will be associated with the number of cells in the Young diagrams λ and μ, although we shall not indicate here how this association is made.

Therefore we have

$$
\begin{aligned}
& s^{2 j} \operatorname{det}\left(\left(\begin{array}{ccccc}
& h^{*} & \cdots & \bar{\varphi}\left(h^{*}\right) & h^{*} \\
\hline & \cdots \\
h & \cdots & s^{-2} \bar{\varphi}(h) & h & \cdots
\end{array}\right), V_{2}\right)= \\
& \operatorname{det}\left(\left(\right), V_{2}\right)
\end{aligned}
$$

Lemma 4.10.

$$
\begin{aligned}
& \sum_{j=1}^{k^{*}+k} s^{2 j} \operatorname{det}\left(\left(\begin{array}{ccccc}
h^{*} & \cdots & \bar{\varphi}\left(h^{*}\right) & h^{*} & \cdots \\
\hline h & \cdots & s^{-2} \bar{\varphi}(h) & h & \cdots
\end{array}\right), V_{2}\right)= \\
& \left(\beta_{11}^{*}+\cdots+\beta_{k^{*} k^{*}}^{*}+\beta_{k^{*}+1, k^{*}+1}+\cdots+\beta_{k^{*}+k, k^{*}+k}\right) A_{\lambda, \mu} .
\end{aligned}
$$

Proof. We combine the previous statements noting that

$$
\begin{aligned}
& \left.\sum_{j=1}^{k^{*}+k} s^{2 j} \operatorname{det}\left(\begin{array}{ccccc}
h^{*} & \cdots & \bar{\varphi}\left(h^{*}\right) & h^{*} & \cdots
\end{array}\right), V_{2}\right)= \\
& h \\
& h \\
& \cdots
\end{aligned} s^{-2} \bar{\varphi}(h)
$$

Now apply a general formula noted by Lukac in [Luk01] (see also [Luk]) for variables $w_{i j}$ and π_{i},
$\sum_{j=1}^{r} \operatorname{det}\left(\begin{array}{ccccccc}w_{11} & \cdots & w_{1 j-1} & \pi_{1} w_{1 j} & w_{1 j+1} & \cdots & w_{1 r} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ w_{r 1} & \cdots & w_{r j-1} & \pi_{r} w_{1 j} & w_{r j+1} & \cdots & w_{r r}\end{array}\right)=p \operatorname{det}\left(\begin{array}{ccc}w_{11} & \cdots & w_{1 r} \\ \vdots & & \vdots \\ w_{r 1} & \cdots & w_{r r}\end{array}\right)$
where $p=\pi_{1}+\cdots+\pi_{r}$. The result follows.
In the following theorem we shall gain a glimpse of the eigenvectors $Q_{\lambda, \mu}$, as required.

Theorem 4.11. $A_{\lambda, \mu}$ is a scalar multiple of $Q_{\lambda, \mu}$.
Proof. Recall the statement of Lemma 4.7. The left-hand-side, on calculating the effect of the closure map, is

$$
s^{2 k^{*}}\left(s^{2 k} \diamond\left(\Delta_{k^{*}+k}^{\prime}\right)-\diamond\left(\Delta_{0}^{\prime}\right)\right)=s^{2\left(k^{*}+k\right)} \delta A_{\lambda, \mu}-s^{2 k^{*}} \bar{\varphi}\left(A_{\lambda, \mu}\right) .
$$

The right-hand-side, through the preceding manipulation, is

$$
\begin{aligned}
\sum_{j=1}^{k^{*}+k} s^{2 j}\left(\delta \operatorname{det}\left(\left(\begin{array}{cc}
h^{*} & \cdots
\end{array}\right), V_{2}\right)\right. & \left.\left.-\operatorname{det}\left(\begin{array}{cccc}
\begin{array}{cc}
h^{*} & \cdots
\end{array} & \bar{\varphi}\left(h^{*}\right) & h^{*} & \cdots \\
\hline h & \cdots
\end{array}\right), V_{2}\right)\right) \\
& =\left(\left(\sum_{j=1}^{k^{*}+k} s^{2 j}\right) \delta-\left(\sum_{j=1}^{k^{*}} \beta_{j j}^{*}+\sum_{j=k^{*}+1}^{k^{*}+k} \beta_{j j}\right)\right) A_{\lambda, \mu} .
\end{aligned}
$$

Combining these two statements yields, on re-arranging

$$
s^{2 k^{*}} \bar{\varphi}\left(A_{\lambda, \mu}\right)=\left(\left(s^{2\left(k^{*}+k\right)}-\sum_{j=1}^{k^{*}+k} s^{2 j}\right) \delta+\sum_{j=1}^{k^{*}} \beta_{j j}^{*}+\sum_{j=k^{*}+1}^{k^{*}+k} \beta_{j j}\right) A_{\lambda, \mu} .
$$

Now, in Chapter 3 we had a result that stated that every eigenvector of $\bar{\varphi}$ is a multiple of one such $Q_{\lambda, \mu}$. We have seen that $A_{\lambda, \mu}$ is an eigenvector of $\bar{\varphi}$, or is zero. We can confirm that it is non-zero by comparing the specialisation of $\left.<A_{\lambda, \mu}\right\rangle$ (the evaluation of $A_{\lambda, \mu}$ in the plane), when $v=s^{N}$ with a suitable $\left\langle Q_{\nu}\right\rangle$, for large enough N. Hence the result follows.

Once we have identified the eigenvalue of $A_{\lambda, \mu}$ as $t_{\lambda, \mu}$, we then know that $A_{\lambda, \mu}$ is a multiple of $Q_{\lambda, \mu}$ and can hence identify the indexing vector appropriate for pairs of Young diagrams (λ, μ).

Chapter 5

A Survey Of Related Work

We end this work with a brief chapter to discuss some recent work of other authors. The work to be discussed here takes a very different approach to the subject with a larger emphasis on algebra and lesser so on the geometric interpretation. It is still however a close relative of what we have been discussing here in the preceding chapters.

5.1 Centralizer algebras of mixed tensor representations

Various parties have discussed a construction similar to the generalized Hecke algebra $H_{n, p}$ discussed here. Its construction however is different from the geometric approach we adopted.

Firstly we consider a one variable algebra. For this algebra, the variable q can be considered in the same context as the variable for the Hecke algebra variant described previously and denoted $H_{n}(q)$. According to Jimbo [Jim86], the Hecke algebra $H_{n}(q)$ is the centralizer of the action of the special linear group $H_{q}\left(s l_{r}\right)$ on $\otimes^{n} V_{q}$ where V_{q} is the natural r-dimensional representation of $U_{q}\left(s l_{r}\right)$. This is also sometimes called the vector representation.

This is then extended to an algebra denoted $H_{n, p}(q)$. This is then defined to be the centralizer of the action of the general linear group $U_{q}\left(g l_{r}\right)$ on $\left(\otimes^{n} V_{q}^{*}\right) \otimes\left(\otimes^{p} V_{q}\right)$ where V_{q} is again the natural r - dimensional representation of $U_{q}\left(s l_{r}\right)$ and V_{q}^{*} its dual.

Such an algebra is considered by Kosuda and Murakami [KM92, KM93] and also by Halverson [Hal96]. The connection is made by these authors between this algebra and the Homfly polynomial of closed (n, p)-tangles.

Perhaps more fitting for our approach, Leduc introduces a two variable algebra in a similar way [Led94], denoted $A_{n, p}(z, q)$ where the q appears as
it does above, and the z corresponds to the v we see in the coefficient ring for $H_{n, p}$ and is present to deal with any curls within the tangles. The δ we use is the equivalent to the x used by Leduc.

Leduc offers a convenient way to see how these algebras, shortened now to $A_{n, p}$, display the natural embedding described earlier. We know that $A_{k, l} \subseteq A_{n, p}$ for $0 \leq k \leq n$ and $0 \leq l \leq p$. We then see that the algebras $A_{n, p}$ can be arranged in the form of Pascal's triangle.

In this triangle we may say that an algebra $A_{k, l}$ is a subalgebra of $A_{n, p}$ if and only if there is a path from $A_{k, l}$ to $A_{n, p}$ proceeding from top-to-bottom obeying the directions of the arrows. We also notice that the outer points of the triangle are isomorphic to the Hecke algebra, and the sum $i+j$ for each $A_{i, j}$ is constant at each level.
Remark. Leduc gives a presentation of $A_{n, p}$ in terms of generators and relations (Definition 2.2, [Led94]). The presentation given is isomorphic to the presentation given by the author in the main theorem of [Had] where it is proved to be a presentation for the skein theoretic algebra.

In all these pieces of work, the idea of indexing by pairs of Young diagrams is present, however unlike the approach taken in Chapter 4, they use a concept they describe as staircases.

Leduc ends his thesis [Led94] with a description of the potential connection between this algebra and calculating the Homfly polynomial for closures of tangles.

Barcelo and Ram offer a survey to some of this work and more besides in [BR99]. Their survey is primarily from the point of view of combinatorial
representation theory and hence they include much that is beyond the scope of this thesis. They do include a comprehensive list of references.

Remark. In other related work by Kosuda [Kos99], irreducible representations of the Hecke category \mathcal{H} are shown to define isotopy invariants of oriented tangles. The set of oriented tangles (up to isotopy) forms a category denoted $\mathcal{O} \mathcal{T} \mathcal{A}$. Following Turaev [Tur90], the Hecke category \mathcal{H} is defined as $\mathcal{O} \mathcal{T} \mathcal{A}$ factored by the Homfly skein relations. This method is then used to compute the Homfly polynomial in [Kos97].

5.2 The Homfly skein module of $S^{1} \times S^{2}$

Gilmer and Zhong discuss the Homfly skein module of $S^{1} \times S^{2}$ in [GZ]. This skein $\mathcal{S}\left(S^{1} \times S^{2}\right)$ is described as a certain quotient of $\mathcal{S}\left(S^{1} \times D^{2}\right)$, denoted in the preceeding chapters by \mathcal{C}. In order to discuss this quotient, the authors first give a basis for the skein $\mathcal{S}\left(S^{1} \times D^{2}\right)$ in terms of closures of the Aiston-Morton idempotents of the Hecke algebra. They offer the following proposition, re-written here using our terminology.

Proposition 5.1. \mathcal{C} has a countable infinite basis given by $Q_{\lambda, \mu}^{\prime}$ where λ and μ vary over all Young diagrams.

The space $S^{1} \times S^{2}$ is then considered to be obtained by adding a 2 -handle and a 3 -handle to the solid torus. The skein of this space is studied via considering another skein, $\mathcal{S}\left(S^{1} \times D^{2}, A, B\right)$, the skein of the solid torus with an input point A and an output point B.

Two bases are then given for $\mathcal{S}\left(S^{1} \times D^{2}, A, B\right)$. The first is given in terms of the basis of $\mathcal{S}\left(S^{1} \times D^{2}\right)$ given by Turaev and denoted here, using our terminology, by the set

$$
\left\{A_{m}: m \in \mathbb{Z}\right\} .
$$

The second basis is related to the basis of \mathcal{C} described above as $Q_{\lambda, \mu}^{\prime}$, the closures of two suitably oriented Aiston-Morton idempotent elements.

5.3 Concluding remarks

The author hopes that through this work some interesting questions have been answered. On the one hand it is hoped that the answering of these questions goes a small way in improving our understanding of this area of skein theory; on the other, one hopes that more questions are raised as a result.

Bibliography

[Ais96] A.K. Aiston. Skein theoretic idempotents of Hecke algebras and quantum group invariants. PhD thesis, University of Liverpool, 1996.
[AM98] A.K. Aiston and H.R. Morton. Idempotents of Hecke algebras of type A. J. Knot Theory Ramif., 7(4):463-487, 1998.
[BR99] H. Barcelo and A. Ram. Combinatorial representation theory. In New perspectives in algebraic combinatorics (Berkley, CA, 199697) Math. Sci. Res. Inst. Publ. Volume 38, pages 23-90. Cambridge University Press, Cambridge, 1999.
[Cha00] T.-H. Chan. HOMFLY polynomial of some generalized Hopf links. J. Knot Theory Ramif., 9(7):865-883, 2000.
[Con70] J.H. Conway. An enumeration of knots and links, and some of their algebraic properties. In J. Leech, editor, Computational Problems in Abstract Algebra, Proceedings of a Conference held at Oxford under the auspices of the Science Research Council Atlas Computer Laboratory, $29^{\text {th }}$ August to $2^{\text {nd }}$ September 1967, pages 329-358. Pergamon Press, Oxford, 1970.
[DJ87] R. Dipper and G.D. James. Blocks and idempotents of Hecke algebras of general linear groups. Proc. London Math. Soc., 54:5782, 1987.
[EM94] E.M. Elrifai and H.R. Morton. Algorithms for positive braids. Quart. J. Math. Oxford., 45(2):479-497, 1994.
[FH91] W. Fulton and J. Harris. Representation theory - a first course. G.T.M. Springer Verlag, 1991.
[FYH ${ }^{+85]}$ P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K.C. Millet, and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.), 12(2):239-246, 1985.
[Gyo86] A. Gyoja. A q-analogue of Young symmetrizers. Osaka J. Math., 23:841-852, 1986.
[GZ] P.M. Gilmer and J. Zhong. On the HOMFLYPT skein module of $s^{1} \times s^{2}$. Preprint: arXiv:math.GT/0007125, 2000.
[Had] R.J. Hadji. Knots, tangles and algebras. M.Sc. Dissertation, University of Liverpool (1999).
[Ha196] T. Halverson. Characters of the centralizer algebras of mixed tensor representations of $G L(r, \mathbb{C})$ and the quantum group $U_{q}(g l(r, \mathbb{C}))$. Pacific J. Math., 174(2):359-410, 1996.
[Jim86] M. Jimbo. Quantum R-matrix for the generalized Toda system. Comm. Math. Phys., 102:537-547, 1986.
[Jon85] V.F.R. Jones. A polynomial invariant for knots via von Neuman algebras. Bull. Amer. Math. Soc. (N.S.), 12:103-111, 1985.
[Jon87] V.F.R. Jones. Hecke algebra representations of braid groups and link polynomials. Ann. Math., 126:335-388, 1987.
[Jon90] V.F.R. Jones. Groups, representations and physics. Adams Hilger, 1990.
[Juc71] A. Jucys. Factorization of Young's projection operators for symmetric groups. Litovsk. Fiz. Sb., 11:1-10, 1971.
[KAC95] J. Katriel, B. Abdessalam, and A. Chakrabarti. The fundamental invariant of the Hecke algebra $H_{n}(q)$ characterizes the representations of $H_{n}(q), S_{n}, S U_{q}(N)$ and $S U(N)$. J. Math. Phys., 36:5139-5158, 1995.
[Kaw98] K. Kawagoe. On the skeins in the annulus and applications to invariants of 3-manifolds. J. Knot Theory Ramif., 7:187-203, 1998.
[KM92] M. Kosuda and J. Murakami. The centralizer algebras of mixed tensor representations of $U_{q}\left(g l_{n}\right)$ and the HOMFLY polynomial of links. Proc. Japan Acad., 68 (A):148-151, 1992.
[KM93] M. Kosuda and J. Murakami. Centralizer algebras of the mixed tensor representations of quantum groups $U_{q}(g l(n, \mathbb{C}))$. Osaka J. Math., 30:475-507, 1993.
[Kos97] M. Kosuda. The HOMFLY invariant of closed tangles. Ryukyu Math. J., 10:1-22, 1997.
[Kos99] M. Kosuda. The irreducible representations of the Hecke category. J. Algebra, 215(1):135-184, 1999.
[Led94] R.E. Leduc. A two-parameter version of the centralizer algebra of the mixed tensor representations of the general linear group and the quantum general linear group. PhD thesis, University of Wisconsin-Madison, 1994.
[Luk] S.G. Lukac. Idempotents of the Hecke algebra become Schur functions in the skein of the annulus. Preprint: Accepted for publication in Math. Proc. Camb. Phil. Soc.
[Luk01] S.G. Lukac. Homfly skeins and the Hopf link. PhD thesis, University of Liverpool, 2001.
[Mac79] I.G. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press, 1979.
[Mat99] A. Mathas. Murphy operators and the centre of the Iwahori-Hecke algebras of type A. J. Alg. Comb., 9:295-313, 1999.
[MH02] H.R. Morton and R.J. Hadji. Homfly polynomials of generalized Hopf links. Alg. Geom. Top., 2:11-32, 2002.
[ML03] H.R. Morton and S.G. Lukac. The Homfly polynomial of the decorated Hopf link. J. Knot Theory Ramif., 12:395-416, 2003.
[Mor93] H.R. Morton. Invariants of links and 3-manifolds from skein theory and from quantum groups. In M. Bozhüyük, editor, Proceedings of the NATO Summer Institute in Erzurum 1992, NATO ASI Series C 399, pages 107-156. Kluwer, 1993.
[Mor02a] H.R. Morton. Power sums and Homfly skein theory. In Invariants of Knots and 3-Manifolds (Kyoto 2001), pages 235-244. Geometry \& Topology Monographs, Volume 4, 2002.
[Mor02b] H.R. Morton. Skein theory and the Murphy operators. J. Knot Theory Ramif., 11(4):475-492, 2002.
[MT90] H.R. Morton and P. Traczyk. Knots and algebras. In E. MartinPeinador and A. Rodez Usan, editors, Contribuciones Mathematicas en homenaje al profesor D. Antonio Plans Sanz de Bremond, pages 201-220. University of Zaragoza, 1990.
[Mur81] G.E. Murphy. A new construction of Young's seminormal representation of the symmetric groups. J. Algebra, 69:287-297, 1981.
[MW] H.R. Morton and A.J. Wassermann. String algebras and oriented tangles. Personal communication of notes from the first author.
[PT87] J. Przytycki and P. Traczyk. Invariants of links of Conway type. Kobe J. Math., 4:115-139, 1987.
[Ram97] A. Ram. Seminormal representations of Weyl groups and IwahoriHecke algebras. Proc. London Math. Soc., 75:99-133, 1997.
[Rei32] K. Reidemeister. Knotentheorie, volume 1 of Ergebn. Math. Grenzgeb. Bd. Springer-Verlag, 1932.
[Sch84] M. Scheunert. Casimir elements of Lie superalgebras. In Differential Geometry Methods in Mathematical Physics, pages 115-124. Reidel, Dordrecht, 1984.
[Ste84] J.R. Stembridge. A characterization of supersymmetric polynomials. J. Algebra, 95:439-444, 1984.
[Ste87] J.R. Stembridge. Rational tableaux and the tensor algebra of $g l_{n}$. J. Combin. Theory, 46:79-120, 1987.
[Tur90] V.G. Turaev. Operator invariants of tangles and R-matrices. Math. USSR Izv., 35:411-444, 1990.
[Tur97] V.G. Turaev. The Conway and Kauffman modules of the solid torus with an appendix on the operator invariants of tangles. Progress in Knot Theory and Related Topics, 56:90-102, 1997.
[Wey46] H. Weyl. The classical groups and their invariants and representations. Princeton University Press, 1946.
[ZL02] J.K. Zhong and B. Lu. The Kauffman polynomials of generalized Hopf links. J. Knot Theory Ramif., 11(8):1291-1306, 2002.

