POSITIVITY OF KNOT POLYNOMIALS ON POSITIVE LINKS¹

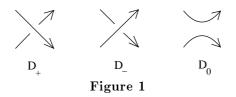
PETER R. CROMWELL and HUGH R. MORTON Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 3BX, England morton@liv.ac.uk

ABSTRACT

We answer a question of Jones concerning the positivity of the two-variable (Homfly) knot polynomial P_L when L is a positive link. We show that, in this case, $P_L(v, z)$ is a positive polynomial in z when $v \in (0, 1)$.

In the past five years there has been an explosion of activity in knot theory. It was sparked off by Jones' discovery [3] of a new polynomial invariant for links and the subsequent development of a two-variable generalisation. The two-variable polynomial link invariant was discovered simultaneously by several groups of mathematicians [2, 6] working independently, and for an oriented link L it is denoted $P_L(v, z)$.

Jones remarked to the second author that the functions $P_L(s^n, s^{-1} - s)$ for various n derived from P_L are always positive for $s \in (0, 1)$ when L can be presented as the closure of a positive braid. He asked whether this positivity result still holds for the wider class of positive links, that is, for the set of oriented links which possess a diagram in which every crossing is of the type labelled D_+ in figure 1.



The function $P_L(s^n, s^{-1} - s)$ was originally seen to be positive for $s \in (0, 1)$ on the class of positive closed braids by regarding it in the more physically significant context as a link invariant derived from the fundamental representation of the quantum group $SU(n)_q$ with $s^2 = q$. The result for positive braids is also an immediate consequence of the calculation of P_L as formulated in [5].

The referee has informed us of a related but unpublished result of van Buskirk, who has shown that $P_L(iv, z)$, multiplied by a suitable power of *i*, has positive coefficients when *L* is a closed positive braid. This result does not extend to positive links in general. Jones' question, however, does have an affirmative answer.

The case n = 0 gives the familiar Alexander polynomial Δ_L , in the form

$$P_L(1, s^{-1} - s) = \Delta_L(s^2)$$

which, in turn, is closely related to the Conway polynomial ∇_L , where

$$P_L(1,z) = \nabla_L(z).$$

In [1] the first author showed that $\nabla_L(z)$ is positive when L is a positive non-split link and z > 0. The same technique also shows the following:

¹Appears in J. Knot Theory Ramif. 1 (1992), 203-206

Theorem 1 For any positive link L the polynomial $P_L(v, z)$ in z has positive coefficients when $v \in (0, 1)$.

Remark. An affirmative answer to Jones' question is an easy corollary, for when $s \in (0, 1)$ then $s^n \in (0, 1)$ and $s^{-1} - s > 0$.

If L is a non-split link then the theorem holds on the interval (0,1] since, when v = 1, $P_L(v, z)$ is the Conway polynomial which is positive in this case, [1] corollary 3.2.

Proof : The polynomial P_L can be defined recursively by a relation between three oriented link diagrams D_+ , D_- and D_0 which are identical except within a small neighbourhood where they differ as shown in figure 1. The recurrence relation

$$v^{-1}P(D_{+}) - vP(D_{-}) = zP(D_{0})$$

together with the normalising relation

P(unknot) = 1.

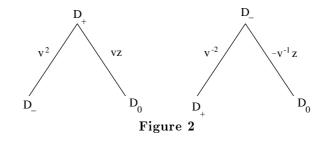
can be used to calculate the polynomial of any oriented link since any diagram can be converted into a diagram of a trivial link by switching cross-overs. This combinatorial approach to the construction of P is detailed in [4] where it is shown that the resulting polynomial depends only on the link and not on the order in which the crossings are analysed.

A particular calculation of P_L for a link L can be recorded by a rooted binary tree in which the vertices are labelled by link diagrams and the edges with monomials in v and z such that

- (1) the root vertex is labelled with a diagram of L,
- (2) each terminal vertex is labelled with a trivial link,
- (3) each triple (parent, leftchild, rightchild) is of the form

$$(D_+, D_-, D_0)$$
 or (D_-, D_+, D_0) ,

(4) each edge is labelled as in figure 2.



A path in the tree from the root to a terminal vertex represents a sequence of crossing switches and eliminations that converts L to a trivial link. It was shown in [1] theorem 2 that on each such path no crossing needs to be altered more than once.

Let π_i denote the product of the edge labels for the edges on the (unique) path between a terminal vertex T_i and the root, and let μ_i denote the number of components in the trivial link that labels T_i . Then

$$P_L(v,z) = \sum_i \pi_i \,\delta^{(\mu_i-1)}$$

where $\delta = \frac{v^{-1} - v}{z}$.

Suppose that the diagram of L is positive so that all its crossings are of type D_+ . Then it follows from [1] theorem 2 that every triple (parent, leftchild, rightchild) in the tree has the form (D_+, D_-, D_0) . Hence each application of the recurrence relation is of the form

$$P(D_{+}) = v^{2}P(D_{-}) + vzP(D_{0}).$$

Thus all the π_i 's are products of positive monomials, and hence are positive. Therefore, P_L is a sum of positive terms.

Example. Let K denote the knot 6_3 . Then $\nabla_K(z) = z^4 + z^2 + 1$. However, $P_K(\frac{1}{2}, 1) = -\frac{3}{2}$ and hence K is not a positive knot. In fact, 6_3 is the first non-positive knot which has a positive Conway polynomial. (The knot 6_3 can also shown to be non-positive by the methods in [1].)

Acknowledgements

The first author wishes to thank SERC for funding a postdoctoral fellowship at the University College of North Wales, Bangor.

References

- P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989) 535– 552.
- [2] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.
- [3] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111.
- W. B. R. Lickorish and K. C. Millett, A polynomial invariant for oriented links, Topology 26 (1987) 107–141.
- [5] H. R. Morton, Polynomials from braids, Contemporary Math. 78 (1988) 575-585.
- [6] J. H. Przytycki and P. Traczyk, *Invariants of links of Conway type*, Kobe J. Math. 4 (1987) 115–139.