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Abstract

In [2] it was conjectured that the coloured Jones function of a framed knot K, or
equivalently the Jones polynomials of all parallels of K, is sufficient to determine the
Alexander polynomial of K. An explicit formula was proposed in terms of the power
series expansion JKk(h) = Ti<

d°=oad(k)hd, where JKk(h) is the SU(2)q quantum
invariant of K when coloured by the irreducible module of dimension k, and q = eh

is the quantum group parameter.
In this paper I show that the explicit formula does give the Alexander polynomial

when K is any torus knot.

1. Introduction

Invariants for a framed knot K defined using a quantum group *& have been
described [5] in terms of ' colouring' the knot K with a ^-module. Any choice VA of
^-module determines a power series J(K;VA)eQ[[h]], which can generally be
rewritten as a Laurent polynomial with integer coefficients in q = eh. The invariant
is additive under sums of modules, while using the tensor product of two modules on
a knot K gives the same invariant as that of the link K(2) with two parallel strands,
when each strand is coloured by one of the two modules. It is thus usual to interpret
the whole collection of invariants, for all ^-modules, as a linear function J(K) from
the representation ring M of IS to Q[[^]], where $ is taken as linear combinations of
irreducible ^-modules, and the coefficients in M are drawn from Q[[A]], [3].

The coloured Jones function JK k(h), which is the subject of this paper, refers to
the quantum group ^ = SU(2)g, and is given in the notation above by
J K *(^) = J{K\ Vk), where Vk is the unique fc-dimensional ^-module. Thus JK k(h) is
a power series in h,

The coefficients ad(k) have been shown in [2] to be odd polynomials in k of degree at
most 2d+l. In the power series for the normalized function JK k(h)/[k], where

_ exp(hk/2)-exp(-hk/2)
L J ~ exp (ft/2)-exp(-A/2)

is the function J0,k(h) for the unknot 0 with zero framing, the coefficient of hd is then
an even polynomial in k of degree at most 2d.
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Denote by J\ k(h) the coloured Jones function where the framing of K is altered
to the zero framing. It is shown in [2] that the degree of the coefficients of hd as
polynomials in k then reduces by at least 2. It is conjectured there that the degree
in the normalized form J%ik(h)/[k] reduces from 2d, when the framing is non-zero, to
at most d in the case of zero framing. Thus when written as

l,d-0

this first conjecture in [2] is that bld = 0 for I > d.
The second conjecture is that the terms in kdhd give the Alexander polynomial of

K in the form

£ bdd(khf = l/AK(efcft).

The aim of this paper is to show that the formula is correct in the case where K is
any torus knot. The main effort is needed in showing, by explicit calculations, that
J\ k(h)/[k], for a torus knot K, satisfies the bounds on degrees in the first conjecture,
and then identifying the terms in (kh)d. For this I draw on more general results about
quantum invariants of cables, which I summarize in the next section, before
specializing to the case of SU(2)g and torus knots.

2. Invariants of cables

Explicit details of how to calculate the ^-invariants for a cable about a framed
knot K in terms of the invariants of K are given by Rosso and Jones [4]; a similar
description by Strickland appears in [6]. I shall give a brief summary of these results.

Write K(mp) for the (m,p) cable about K, where m and p are co-prime and K(mp)

is best described, as a framed knot, in terms of the (m, m) tangle T illustrated below
(Fig. 1), by decorating a correctly framed diagram of A' with the closure in the
annulus of the diagram Tp. Further details of,this terminology can be found in [3].
As so defined, the (m,p) cable has m strands, making p/rn full twists relative to the
framing of K; the choice of framing corresponds to a choice of parallel which lies on
the surface of the torus neighbourhood of K, alongside the cable itself. The notation
is consistent with the description of the 2-parallel of K as the (2,0) cable about K;
in their paper, Rosso and Jones use the reverse order for m and p. I have reluctantly
avoided using (p, q) cables in view of the other meaning for gin a quantum group.

There is a relation between the functions J{K(m p)) and J{K) given, independently
of A", in terms of two linear maps F: & -> 2̂ and \jrm :<M-*3%. The map F gives the effect
on the ^-invariant of a framing change on K. When an extra positive curl is added
to the framed knot K to make K' then J(K') = J(K) oF, as a function on M. In terms
of the notation above, K' = K(1 ^ and we have more generally that

Every irreducible FAe5? is an eigenvector for F, whose eigenvalue /A e Q[[h]] has the
form /A = ehv*, where px is independent of h and can be found explicitly in terms of
the Killing form for the classical Lie algebra corresponding to ^ . For example, in the
case of SU(2)g, with Vx = Vk taken to be the fc-dimensional irreducible then
A = eft(fc2-1)/4.
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T =

Fig. 1.

by setting Fl(VA) = ethv*Vx forFor each t e Q we can define a linear map
each irreducible FA.

The second map \jrm M^-Sft. which features in the description of the cable
invariants is a ring homomorphism which is also known as the mth Adams operation.
An account of the Adams operations is given by Atiyah in [1]. The element ^m(FA)
can be denned on the representation ring of the corresponding classical Lie algebra,
which is isomorphic to the ring 52, in terms of the permutation action of the cyclic
group Cm on the tensor product Vfm. The element xjfm{Vx) is an integer linear
combination of irreducibles in 52, which may be calculated by classical means.

In the case of 8U(N) the ring 52 may be identified with the ring of symmetric
polynomials in N indeterminates xx, ...,xN, with x1x2...xN = 1, and thus with the
ring ofpolynomials in the elementary symmetric functions cx = x1-\ \-xN,c2, ...,cN_v

In this case the map \jrm:(%->!% is induced by ftm{xt) = (xt)
m.

There is an extensive literature on the description of the representation ring & for
SU(N) in which irreducible representations FA are indexed by Young diagrams; for
example, calculations in Weyl[7] give determinantal formulae for FA as a polynomial
in {c;} which can be found readily from the Young diagram of FA. Conventionally ĉ
is represented by the Young diagram with a single column of j cells, and corresponds
to the jth exterior power of the 'fundamental' iV-dimensional representation cx of
SU{N).

The description for the invariant of a cable in terms of the invariant of the original
knot, for any quantum group ^', can be summarized in the following theorem, which
appears in [4] and [6].

THEOREM (Rosso-Jones, Strickland). The quantum invariant J{K(m p))for the (m,p)
cable about K is given by

as a function on the representation ring !M of the quantum group. I

Thus, when we find ^(F^,) = SaA FA, with aAeZ and FA irreducible, we have

Now in the case of the quantum group SU(2)q the ring 3& is isomorphic to the
polynomial ring in one variable c1 = x + x'1, or equally to the symmetric part of the
Laurent polynomial ring in x. We have a basis of irreducibles in 52 consisting of

xk — x~k

x—x
for fc>0€N.
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The map \lrm.0t^-^, is the ring homomorphism given by tym(x) = xm. Thus

S» / , say.

To identify the coefficients aA we may write

in the full Laurent polynomial ring on x. For A < 0 set aA = — a_x and
/ A = / _ A = c*«±A)'-1)/4. Then

AeN

= 2 (L)plma,x\
where aA is found from the equation

AeZ

Now for A = 2rm± 1 we have/A = s^~1)/2 = s2rV±2rm, with s = eh'2. Thus

3. Calculations for torus knots

The goal is to calculate JLk(h) = J(L; Vk), where L is the (m,p) torus knot. Then
L = K(m,p), where K = 0 is the unknot with zero framing. Now the invariant
J(O): ^? -> Q[[^-]] is a ring homomorphism defined on the full Laurent polynomial ring
by XY-+S = eh/2. Using the theorem above, we can write JLk(h) = J(O(m p); Vk) =
J{O;Fplm{fm(Vk))). We thus have

(*-l)/2
[s-s-1)JLk{h)= 2 (s2'-'!'»J'+2'-Vm+1-«2r2'np-2rVm-1).

r—(fc-l)/2

To calculate the formula proposed for the Alexander polynomial we must first
normalize the Jones function to find J^ k(h)/[k], where

s —s J

and J% k is the Jones function when the framing of L is altered to zero. Our
calculation of JL k(h) above has been made from a diagram with writhe mp, so that
Jt,k(h) =fkmvJL,k{h) = s-2mv^+c)JLk{h), where we set c = (Jfc-l)/2. This gives an
explicit expression

IcM. n-fc\ L,k\rl) c-2mp(c2+c) V IO2r2mp+2rp+2rm+l c,2r2mp—2rp+2rm-l\
(& — S ) — — S Z J V6 ~ s )

L*"] r—c

= /(s;c), say.
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The first part of the conjecture concerns I(s, c)/(sk — s~k) as a function of k = 2c + 1
and h, and says that the coefficient oihd in this function is a polynomial of degree no
more than d in k. Since sk — s~k is a power series in (kh) the conjecture holds if and
only if it holds for I(s, c) as a function of h and k, and thus equally as a function of
h and c.

The second part of the conjecture states that the terms in kdhd in J£ k{h)/[k] are
given by l/AL(ekh). For the torus knot L the Alexander polynomial is given by

A ( h ) ( S ){S S >L" ' (sm-s-m)(sp-s-p)

Now write /m a x (s, c) for the sum of the terms in kdhd in I(s, c). The second conjecture
then becomes

or equivalently

I shall now complete the analysis of/(s,c) = (sk — s~k) J\ k(h)/[k] = (s — s"1) J^ k(h)
using two propositions, the first of which proves the first conjecture for L, while the
second, after a short argument, proves that the Alexander polynomial for torus knots
is given by the formula above from the coloured Jones function.

PROPOSITION 1. The coefficient of hd in the function I(s,c) is a polynomial of
degree ^d in c.

PROPOSITION 2. The terms in cdhd in I(s,c) can be written as

n2mpc „—2mpc

Proof of proposition 1. Write I(s, c) in terms of H = mph and set eH = s2mp = Q. It
is enough to show that the coefficient of Hd has degree ^ d in c.

Write a = i/2p and b = I/2m. Then

c
-)r2+2rb+2ra+2ab nr*-2rb+2ra-2ab\V (Qr2+2rb+2ra+2ab Qr

where (j>{r) = r2 + 2r(a + b) + 2ab — c2 — c = (r + a + b)2 — a2 — b2 — c2 — c. We then have
I(s,c) = l^Pd{a,b,c)Hd, with

Pd(a,b,c) = ± £ (<f>(r))d-(<f>(r-2b))d.
(I • r = - c

We have to establish that Pd{a, b, c) has degree ^ dine for all a and b. Now Pd(a, b, c)
is clearly a polynomial in b and so if we can show that the coefficient of cl for I > d
is zero for all positive integer values of b it must then be identically zero.
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It is thus enough to prove that Pd(a, b, c) has degree^ d in c under the assumption
that 6 G N . In this case

_

d\Pd

c
- V Ci- ZJ W.

r—c

(a,b,c)

\4>(r) Qtir-lb

b

= 2 (00
r=-6+l

c

r—c

c

= S '
r-c-26+1

6

= S 0
r—6+1

r — b + c))d-

c-26

r—c-26

r—c-26

6-1
i>(r+c-b) _ V Qt>(r-c-b)

r—6

6-1

r—6

and so

Each of the summands is a polynomial of degree < rf in c, since (f>{r — b + c) =
(r + a±c)2 — a2 — b2 — c2 — c=(r + a)2±2c(r + a)—c — a2 — b2 is l inear in c. T h e
limits in these sums do not involve c, and hence Pd(a,b,c) has degree ^ d in c. I

Proof of proposition 2. To find the terms in cdhd in I(s,c) it is enough to find the
term in cd in Pd(a, b, c). We need only isolate the term in cd in each of the summands
{<j>(r — b + c))d. Now from the calculation above this will be {±2c(r + a) — c)d and so the
term in cd in Pd(a,b, c) is

S (2c(r + a)-c)d- "^ (-2c(r + a)-c)
r—6+1 r—b

This is also the coefficient of Hd in

J(S,C)= 2
r—6+1 r—6

2 ^"-'(-r^f H
r—6+1 / Vr—6

inica

r—6+1

£26c_Q-26c

Thus J(s, c) gives the terms in caHd, and hence those in cdhd, in the function I(s, c).
These may be rewritten in terms of s, m and p, by putting Q = s2mp, and recalling
that 2pa = 1 and 2mb = 1, to give

J(s,c) =

This completes the proof of Proposition 2. I

To finish the proof of the Alexander polynomial formula for torus knots, as stated
in terms of k, observe that /max(s,c), which was denned to be the terms in kdhd in
I(s,c), can be found from J(s,c), the terms in cdhd in I(s,c), by putting k = 2c. This
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follows, since by Proposition 1 the highest degree coefficient of hd in I(s, c) is kd, and
the substitution k = 2c + 1 in I(s, c) will have the same effect on the terms in cdhd as
would the substitution k = 2c. Thus

_ { s - s ) { s s )
^max (s= c ) — smpk _ s-mpk '

and the check on the formula for torus knots is complete.

Remark. It is interesting that the proof of proposition 1 was most easily carried out
by assuming that b was an integer, whereas in the actual application b = (2m)"1 and
m is an. integer.

I am grateful to Paul Melvin, who encouraged some of my early explicit
computations, and to Paul Strickland, whose further computational checks in low
degree gave me enough confirmation to persist in trying to construct an analytical
solution. Finally I must thank my colleague, Kit Nair, for the helpful discussions
which led to the solution given here.
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