The Burau matrix and Fiedler's invariant for a closed braid

H.R.Morton ${ }^{1}$
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, England.

Abstract

It is shown how Fiedler's 'small state-sum' invariant for a braid β can be calculated from the 2 -variable Alexander polynomial of the link which consists of the closed braid $\hat{\beta}$ together with the braid axis A.

AMS Classification numbers Primary: 57M25. Keywords: small state-sum, Fiedler's invariant, closed braid, Burau matrix, 2-variable Alexander polynomial.

Original version April 1997, revised November 1997.

[^0]
1 Introduction

In a recent paper [1] Fiedler introduced a simple invariant for a knot K in a line bundle over a surface F by means of a 'small' state-sum, which keeps a count of features of the links resulting from smoothing each crossing of the projection of K on F. The invariant takes values in a quotient of the integer group ring of $H_{1}(F)$. Fiedler gives a number of applications of his general construction. In particular, where K is a closed braid, and can thus be regarded as a knot in a solid torus V, his method gives an invariant of a braid $\beta \in B_{n}$ in $\mathbf{Z}\left[H_{1}(V)\right]=\mathbf{Z}\left[x^{ \pm 1}\right]$ modulo the relation $x^{n}=1$. This invariant depends only on the closure of the braid in V and hence gives an invariant of β up to conjugacy in B_{n}. Its behaviour under Birman and Menasco's exchange moves has been used to help in detecting when two braids may be related by such a move.

The purpose of this paper is to show how Fiedler's invariant for a closed braid $\hat{\beta}$ can be found in terms of the Burau representation of β, and hence from the 2-variable Alexander polynomial of the link $\hat{\beta} \cup A$ consisting of the closed braid $\hat{\beta}$ and its axis A. Its construction here from the Alexander polynomial can be compared with methods which yield Vassiliev invariants of degree 1 in other contexts, and suggests possible interpretations of Fiedler's invariants as Vassiliev invariants of degree 1 in the line bundle.

Having seen how the special case of Fiedler's invariant is related to an Alexander polynomial I finish the paper with a suggestion of extracting similar invariants from the 2-variable Alexander polynomial of a more general 2-component link. These might be regarded as degree 1 Vassiliev invariants of one component of the link when considered as a knot in the complement of the other component. It would be interesting to know if there was any similar state sum interpretation of these invariants in the more general setting.

2 Burau matrices

I make use of the fact that the 2 -variable Alexander polynomial $\Delta_{\hat{\beta} \cup A}(t, x)$ of a closed braid and its axis can be calculated as the characteristic polynomial, $\operatorname{det}(I-x \bar{B}(t))$, of the reduced $(n-1) \times(n-1)$ Burau matrix $\bar{B}(t)$ of the braid β, [2]. Since the full $n \times n$ Burau matrix $B(t)$ is conjugate to $\left(\begin{array}{cc}\bar{B}(t) & \mathbf{v} \\ \mathbf{0} & 1\end{array}\right)$ we can write

$$
(1-x) \Delta_{\hat{\beta} \cup A}(t, x)=\operatorname{det}(I-x B(t))
$$

Put $t=e^{h}$ in $\operatorname{det}(I-x B(t))=1+b_{1}(t) x+\cdots+b_{n}(t) x^{n}$, and expand this as a power series in h to give

$$
\operatorname{det}\left(I-x B\left(e^{h}\right)\right)=\sum_{i=0}^{\infty} a_{i}(x) h^{i},
$$

where each coefficient $a_{i}(x)$ is a polynomial in x of degree at most n.
When we set $h=0$, and thus $t=1$, we must get $\Delta_{A}(x) \times\left(1-x^{n}\right)$ by the Torres-Fox formula, since the two components A and $\hat{\beta}$ of the link have linking number n. Hence $a_{0}(x)=1-x^{n}$. Setting $x=0$ shows also that $a_{1}(x)=$ $f_{1} x+f_{2} x^{2}+\cdots+f_{n} x^{n}$ for some integers f_{1}, \ldots, f_{n}. We know that the determinant of the Burau matrix is $(-t)^{w(\beta)}$, where $w(\beta)$ is the writhe of the braid, and so $b_{n}(t)=(-1)^{n}(-t)^{w(\beta)}$. Now $w(\beta)=n-1 \bmod 2$ since β closes to a single component. Hence $b_{n}\left(e^{h}\right)=-1-w(\beta) h+O\left(h^{2}\right)$, giving $f_{n}=-w(\beta)$. We shall relate the remaining coefficients f_{1}, \ldots, f_{n-1} directly to Fiedler's invariant.

3 Fiedler's braid invariant.

Fiedler's invariant F_{β} for an n-braid β which closes to a single curve is a symmetric Laurent polynomial, which is even or odd depending on the parity of n. Suppose that the braid

$$
\beta=\prod_{r=1}^{k} \sigma_{i_{r}}^{\varepsilon_{r}}
$$

has been given in terms of the Artin generators σ_{i}, where $\varepsilon_{r}= \pm 1$. Suppose that the product reads from top to bottom in the braid and the strings are oriented downwards. For the r th crossing define a positive integer $m(r)$ by smoothing the crossing and following the 'ascending string' at the smoothed crossing around the closed braid until it closes again after $m(r)$ turns around the axis. Here the ascending string means the string which starts from the end of the overcrossing, and is thus string i_{r} for a positive crossing and string $i_{r}+1$ for a negative crossing. Fiedler's polynomial $F_{\beta}(X)$ is defined as a sum over the k crossings of β by

$$
F_{\beta}(X)=\sum_{r=1}^{k} \varepsilon_{r} X^{2 m(r)-n}
$$

For a given m we can then write the coefficient of $X^{2 m-n}$ as $\sum_{m(r)=m} \varepsilon_{r}$.
Theorem 1 Let the n-string braid β have Burau matrix $B(t)$, and write $\operatorname{det}(I-$ $\left.x B\left(e^{h}\right)\right)=a_{0}(x)+a_{1}(x) h+O\left(h^{2}\right)$. Fiedler's polynomial for β satisfies

$$
F_{\beta}\left(x^{1 / 2}\right)=\left(f_{1} x+\cdots+f_{n-1} x^{n-1}\right) x^{-\left(\frac{n}{2}\right)}
$$

where $a_{1}(x)=f_{1} x+\cdots+f_{n-1} x^{n-1}+f_{n} x^{n}$.
Proof: Use the classical trace formula for the characteristic polynomial of a matrix B. Suppose that B has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then B^{m} has eigenvalues
$\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}$ and $\operatorname{det}(I-x B)=\prod_{i=1}^{n}\left(1-x \lambda_{i}\right)$. Hence

$$
\begin{aligned}
\ln (\operatorname{det}(I-x B)) & =\sum_{i=1}^{n} \ln \left(I-x \lambda_{i}\right)=-\sum_{m=1}^{\infty} \sum_{i=1}^{n} \frac{1}{m} x^{m} \lambda_{i}^{m} \\
& =-\sum_{m=1}^{\infty} \frac{x^{m}}{m} \operatorname{tr}\left(B^{m}\right),
\end{aligned}
$$

as power series in x.
Now expand $\ln \left(a_{0}(x)+a_{1}(x) h+\cdots\right)$ as a power series in h, only as far as the term in h. We get

$$
\begin{aligned}
& \begin{aligned}
\ln \left(a_{0}(x)+a_{1}(x) h+\cdots\right) & =\ln a_{0}(x)+\ln \left(1+\frac{a_{1}(x)}{a_{0}(x)} h+O\left(h^{2}\right)\right) \\
& =\ln a_{0}(x)+\frac{a_{1}(x)}{a_{0}(x)} h+O\left(h^{2}\right)
\end{aligned} \\
& =-x^{n}-x^{2 n} / 2-\cdots+h\left(f_{1} x+f_{2} x^{2}+\cdots+f_{n} x^{n}\right)\left(1+x^{n}+x^{2 n}+\cdots\right)+O\left(h^{2}\right)
\end{aligned}
$$

The trace formula above applied to $B\left(e^{h}\right)$ shows at once that $\operatorname{tr}\left(\left(B\left(e^{h}\right)\right)^{m}\right)=$ $-m f_{m} h+O\left(h^{2}\right)$ for $1 \leq m<n$.

The proof will be completed by relating the term in h in the trace of this matrix to the appropriate coefficient of Fiedler's polynomial. It is thus enough to show that $\operatorname{tr}\left(\left(B\left(e^{h}\right)\right)^{m}\right)=-m\left(\sum_{m(r)=m} \varepsilon_{r}\right) h+O\left(h^{2}\right)$ for $1 \leq m<n$.

The Burau representation $\rho: B_{n} \rightarrow G L\left(n, \mathbf{Z}\left[t^{ \pm 1}\right]\right)$ is the group homomorphism defined on the elementary braid σ_{i} by

$$
\rho\left(\sigma_{i}\right)=B_{i}=\left(\begin{array}{c|cc|c}
I_{i-1} & 0 & 0 \\
\hline 0 & 1-t & t & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline
\end{array}\right)
$$

The Burau matrix for the given braid β is then

$$
B(t)=\rho(\beta)=\prod_{r=1}^{k} B_{i_{r}}^{\varepsilon_{r}} .
$$

Now

We can similarly write $B_{i}^{-1}=T_{i}+h P_{i}^{-}+O\left(h^{2}\right)$ where

$$
P_{i}^{-}=\left(\begin{array}{c|r|c}
0_{i-1} & 0 & 0 \\
\hline 0 & 0 & 0 \\
-1 & 1 & 0 \\
\hline 0 & 0 & 0_{n-i-1}
\end{array}\right) .
$$

Then

$$
\left(B\left(e^{h}\right)\right)^{m}=\left(\prod_{r=1}^{k}\left(T_{i_{r}}+h P_{i_{r}}^{ \pm}\right)\right)^{m}+O\left(h^{2}\right) .
$$

We can write a matrix of the form $M=\prod_{r=1}^{l}\left(C_{r}+h D_{r}\right)$ as $M=C_{1} C_{2} \ldots C_{l}+h\left(D_{1} C_{2} \ldots C_{l}+C_{1} D_{2} C_{3} \ldots C_{l}+\cdots+C_{1} C_{2} \ldots C_{l-1} D_{l}\right)+O\left(h^{2}\right)$, and then

$$
\operatorname{tr} M=\operatorname{tr}\left(C_{1} C_{2} \ldots C_{l}\right)+h\left(\operatorname{tr}\left(D_{1} C_{2} \ldots C_{l}\right)+\operatorname{tr}\left(C_{1} D_{2} C_{3} \ldots C_{l}\right)+\cdots\right)+O\left(h^{2}\right) .
$$

The term in h can be rewritten as

$$
\operatorname{tr}\left(C_{2} \ldots C_{l} D_{1}\right)+\operatorname{tr}\left(C_{3} \ldots C_{l} C_{1} D_{2}\right)+\cdots+\operatorname{tr}\left(C_{1} C_{2} \ldots C_{l-1} D_{l}\right)
$$

by cycling the matrices so that the r th product ends with the matrix D_{r}.
Apply this to find the term in h in $\operatorname{tr}\left(\left(B\left(e^{h}\right)\right)^{m}\right.$ as the sum of $m k$ terms, each of which is the trace of the product of $m k$ matrices of the form $T_{i_{r+1}} \ldots T_{i_{r-1}} P_{i_{r}}^{ \pm}$ with sign \pm according to the sign of ε_{r}. For each of the k crossings of the original braid the matrix $T_{i_{r+1}} \ldots T_{i_{r-1}} P_{i_{r}}^{ \pm}$occurs m times in the sum. Thus

$$
f_{m}=-\sum_{r=1}^{k} \operatorname{tr}\left(T_{i_{r+1}} \ldots T_{i_{r-1}} P_{i_{r}}^{ \pm}\right) .
$$

The proof of theorem 1 will be completed by showing that

$$
\operatorname{tr}\left(T_{i_{r+1}} \ldots T_{i_{r-1}} P_{i_{r}}^{ \pm}\right)= \begin{cases}-\varepsilon_{r} & \text { if } m(r)=m \\ 0 & \text { otherwise }\end{cases}
$$

The matrix T_{i} is the permutation matrix for the transposition $(i i+1)$. Hence a product of these matrices is also a permutation matrix, T say, whose permutation is the product π of the corresponding transpositions. Then the entries in T satisfy

$$
T_{i j}= \begin{cases}1 & \text { if } i=\pi(j) \\ 0 & \text { otherwise }\end{cases}
$$

The matrix $T=T_{i_{r+1}} \ldots T_{i_{r-1}}$ above is thus a permutation matrix with permutation $\pi_{r}^{(m)}$, say. Notice that the permutation corresponding to the product $T T_{i_{r}}$ is conjugate to the permutation of the braid β^{m}. Under the assumption that β closes to a single curve this will be the m th power of an n-cycle, and will hence not fix any number when $1 \leq m<n$. Hence $\pi_{r}^{(m)}$ can not carry i_{r} to $i_{r}+1$ or vice versa, in this range.

If the r th crossing is smoothed and the strings i_{r} and $i_{r}+1$ are followed upwards around the braid m times, with $m<n$, they will not pass through the smoothed crossing. They then become the strings $\pi_{r}^{(m)}\left(i_{r}\right)$ and $\pi_{r}^{(m)}\left(i_{r}+1\right)$ respectively when they return to the level of the bottom of the r th crossing. Now
when $\varepsilon_{r}=+1$ the ascending string at the r th crossing, which is string i_{r}, returns to position i_{r} after the permutation $\pi_{r}^{(m)}$ if and only if $m=m(r)$. Similarly when $\varepsilon_{r}=-1$ the ascending string, in this case string $i_{r}+1$ returns to position $i_{r}+1$ exactly when $m=m(r)$.

The matrices $P_{i_{r}}^{ \pm}$have only two non-zero entries. Suppose first that $\varepsilon_{r}=+1$. Then $\operatorname{tr}\left(T P_{i_{r}}^{+}\right)$is the sum of two terms. The off-diagonal entry gives a contribution only if the permutation matrix T maps it onto the diagonal. This requires $\pi_{r}^{(m)}\left(i_{r}\right)=i_{r}+1$, which was excluded above. The diagonal entry contributes -1 if and only $\pi_{r}^{(m)}\left(i_{r}\right)=i_{r}$, which is the condition that $m=m(r)$. Thus when $\varepsilon_{r}=+1$ we get a contribution of $-\varepsilon_{r}$ to the trace if and only if $m=m(r)$, and zero otherwise.

A similar argument holds when $\varepsilon_{r}=-1$. Again the off-diagonal entry does not contribute to the trace, while the diagonal entry contributes +1 if and only if $\pi_{r}^{(m)}\left(i_{r}+1\right)=i_{r}+1$. This corresponds once more to the condition that $m=m(r)$, and so in each case we have a contribution of $-\varepsilon_{r}$ if and only if $m=m(r)$. The total coefficient of h in $\operatorname{tr}\left(\left(B\left(e^{h}\right)^{m}\right)\right.$ is then $-m \sum_{m=m(r)} \varepsilon_{r}$, showing that $f_{m}=\sum_{m=m(r)} \varepsilon_{r}$ as claimed. This completes the proof of theorem 1.

4 Determination from an Alexander polynomial.

If we are given the Alexander polynomial of the closed braid $\hat{\beta}$ and its axis A as a 2-variable polynomial we can recover Fiedler's invariant for the braid. First multiply by $1-x$, where x is the variable for the axis. This gives the characteristic polynomial of the Burau matrix for β, up to multiplication by a power of x and a power of t, and a sign. Put $t=e^{h}$ and expand as a power series in h with coefficients depending on x. Then multiply by a power of x and a sign to make the constant term $1-x^{n}$. The result will be the characteristic polynomial used above, up to a power of $t=e^{h}$. Extract the coefficient $f_{0}+f_{1} x+\cdots+f_{n-1} x^{n-1}+f_{n} x^{n}$ of h. This will contain the Fiedler polynomial as before in the terms $f_{1} x+\cdots+f_{n-1} x^{n-1}$, while the remaining terms will come from a factor of $t^{f_{0}}$ and will satisfy $f_{0}+f_{n}=$ $-w(\beta)$.

A similar interpretation looks plausible for the coefficients of the linear terms in h_{1}, \ldots, h_{k} when the Alexander polynomial of a closed braid with k components and its axis is expanded in terms of the meridian generator x for the axis and meridians $t_{i}=e^{h_{i}}$ for the components. This polynomial can again be written in terms of the characteristic polynomial of a suitable 'coloured' Burau matrix. The eventual coefficient of h_{i} should then have contributions from the overcrossings of the corresponding component of the closed braid, as in the Fiedler polynomial above.

As a possible extension to the case of a general link L with two components X and T say, we might put $t=e^{h}$ in the Alexander polynomial $\Delta_{X \cup T}(x, t)$ of L
and consider only the terms $a_{0}(x)+a_{1}(x) h$ up to degree 1 in h. The polynomial $a_{0}(x)$ is $\Delta_{X}(x)\left(1-x^{n}\right) /(1-x)$, where n is the linking number of X and T, and $\Delta_{X}(x)$ is the Alexander polynomial of X. Now consider $a_{1}(x)$ as a polynomial modulo the ideal generated by $a_{0}(x)$. This is an invariant of L as it is unaffected by any ambiguity of powers of x and t in the Alexander polynomial. This seems to me to be the nearest analogue to Fiedler's invariant for the link component T with meridian t when regarded as a knot in the complement of X; in the case of a closed braid we take X as the braid axis and T as the closed braid. It looks likely to be a Vassiliev invariant of type 1 for knots in the complement of X. There is not, however, any obvious candidate for a state-sum construction of this invariant along Fiedler's lines when the component X is knotted.

References

[1] T. Fiedler. 'A small state-sum invariant for knots'. Topology, 32 (1993), 281294.
[2] H.R.Morton. 'Infinitely many fibred knots having the same Alexander polynomial'. Topology, 17 (1978), 101-104.

[^0]: ${ }^{1}$ This work was carried out during the low-dimensional topology program at MSRI, Berkeley in 1996-97. I am grateful to MSRI for their support.

