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Abstract.

This thesis examines the connections between the quantum group invariants
for the quantum groups U,(sl{(N)) and the Homfly skein of the annulus.

A Gyoja [G] constructed idempotent elements of the Hecke algebras of type A
which specialise to the Young symmetrisers of the group algebra of the symmetric
group CS,,. We construct skein theoretic versions of these idempotents. For each
Young diagram A we construct an element of the Homfly skein of the annulus

@, for which
J(L;V)\N"'?V)\k) = XN(LI >|<Q>\1 Ll l—lLk *Q)\k)

where J(L;V,,,..., V), ) is the U,(sl(NV))-invariant of a link L coloured by the
representations Vy,, ..., V),, Xy is obtained from the framed Homfly polynomial
by making (/N dependent) substitutions for the variables of the Homfly polyno-
mial in terms of ¢ and L; * @y, U--- U Ly * @5, is a satellite of the link L. We
show that if we evaluate Xy when ¢ a primitive root of unity we can restrict
our attention to a limited set of colours among which we identify an element
Q.. If every component of a link is coloured by €2, then we can normalise X'y to
produce a 3-manifold invariant.
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Introduction.

The motivation for this thesis is to describe algebraic results about quantum
group invariants combinatorially using the language of linear skein theory.

Quantum groups were discovered in 1985 by Drinfel’d [D1] and independently
by Jimbo [Jil]. They can be thought of as 1-parameter deformations of Lie alge-
bras. In this thesis we are interested only with the quantum groups U,(sl(NN)),
derived from the Lie algebras sl{(N). Kulish and Reshetikhin [KR] produced
link invariants which generalised the Jones polynomial, using representations of
the quantum group U,(sl(2)). Reshetikhin and Turaev [RT1]| generalised the
method, producing knot invariants from any quantum group. These invariants
depend on the isotopy class of the link and a choice of colouring. A colour is
a representation of the quantum group and a colouring is a choice of colour for
each component of the link. We identify a fundamental colour, an irreducible
representation for which every other irreducible representation is a summand of
some tensor power.

Meanwhile, several groups [FYHLMO, PT]| had introduced a 2-variable poly-
nomial, now called the Homfly polynomial. The Jones polynomial can be ob-
tained from the Homfly polynomial by making substitutions for the two variables.
The Homfly polynomial can be described combinatorially but turns out to be
closely related to the quantum group invariants for the quantum group U, (sl{(N)).
Turaev [T1] showed that upon appropriate substitutions for the variables, the
U,(sl(N))-invariants of a link can be calculated directly from the Homfly polyno-
mial if the fundamental colour is applied to every component of the link. Thus,
we have a connection between the algebraic world of quantum groups and the
combinatorial world of the Homfly polynomial.

In this thesis we calculate patterns (link diagrams in an annulus) that allow us
to calculate the U,(sl(NV)) invariants of a link L with any colouring by calculating
the Homfly polynomial of an appropriate satellite of L.



The contents of this thesis can be summarised as follows.

Chapter 1 covers some of the definitions of classical knot theory relevant to
this thesis.

Chapter 2 is an introduction to the combinatorial theory underpinning the
results of subsequent chapters. We define the Homfly polynomial and derive
the framed Homfly polynomial. We discuss the skein theory associated with the
framed Homfly polynomial. The second half of this chapter is devoted to the
combinatorial properties of Young diagrams. These will be used in Chapter 3
to describe the representation ring of the quantum group U,(sl()N)) for generic
values of ¢.

In Chapter 3, Hopf algebras are discussed and the quantum group U,(sl(N))
is defined. The irreducible representations of U,(sl(/N)) are indexed by the Young
diagrams with fewer than N rows. We demonstrate how to construct knot in-
variants from quantum groups. We finish by stating Turaev’s theorem which
relates the quantum invariants of U, (sl(/N)) with fundamental colouring and the
framed Homfly polynomial.

Chapter 4 is the main body of the thesis. Here we discuss Hecke algebras of
type A and their connections with the Homfly skein theory of Chapter 2. Gyoja
[G] gave an algebraic construction for idempotent elements of the Hecke algebra
and we use the connections with skein theory to give versions of these elements as
linear combinations of braids. We prove that these idempotents, interpreted as
endomorphisms of tensor powers of the fundamental representation of U, (sl(NN)),
are the projection maps onto the irreducible summands. We denote the closure
of the projector onto the irreducible module indexed by the Young diagram A
by Q. The @, provide the patterns required to calculate the the U,(sl(N))-
invariant of a knot coloured by the irreducible module Vy in terms of the framed
Homfly polynomial of the satellite knot K x Q). We define Xy to be the framed
Homfly polynomial with the substitution of variables required to equate it with
the quantum invariants for U,(sl(N)). We show that the @), work for all N at
once. We demonstrate that the ), satisfy the product rules of the ring of Young
diagrams, in particular, that they are given by the Giambelli formula for .

In Chapter 5 we extend link invariants to invariants of 3-manifolds. It was
shown by Lickorish [Lil] that every 3-manifold can be obtained from a framed
link by surgery. We evaluate X’y when ¢ is a primitive rth root of unity. We
demonstrate that we can work with a restricted set of linear combinations of



colours which form a finite dimensional vector space. The finite dimensionality
allows us to define a colour €2, for which Xy behaves nicely under the Kirby
moves. Hence, we can derive a 3-manifold invariant from Xy by appropriate
normalisation. When N = 2, Morton and Strickland [MS] showed that evaluation
at a root of unity gives rise to a 3-manifold invariant which is equivalent to the
3-manifold invariant of Reshetikhin and Turaev [RT2]. This chapter extends the
ideas of [MS] to all values of N.



Chapter 1

The preliminaries.

1.1 Introduction.

In this chapter we look at some of the classical theory of knots. Much of the
detail can be found in the books by Burde and Zieschang [BZ], Rolfsen [Ro] and
Adams [Ad]. The first two books have the flavour of algebraic topology, whereas
the third book is more elementary.

We introduce the concepts required for the subsequent chapters.

1.2 Basic Definitions.

1.2.1 Definitions.

A topological knot is an embedding of the circle, S* into R® or S®.

A link L, with |L| components, is an embedding of |L| copies of S* into R?
or S®. We will denote a link with ¥ components by L = Ly U Ly U --- U L. We
call the link oriented if each component of L has an orientation.

Given two embeddings fy,f; : S' — S3 we say that they are isotopic if there
exists an embedding F : S x I — S® x I such that F(z,t) = (f(z,t),t), for
ze S tel=][0,1] with f(z,0) = fo(z) and f(z,1) = fi ().

The two embeddings are ambient isotopic if there is a level preserving isotopy



H:S*x1— S®x1I,with H(y,t) = (hy(y),t), where f; = hyo fy and hy = id. If
the knots are oriented we further require that the isotopy preserves orientation.

These definitions are extended to links in the obvious way.
We will call two links equivalent if they are ambient isotopic.

To avoid pathological behaviour, we shall restrict ourselves to the category of
piecewise linear (p-1) links, i.e. to links which are ambient isotopic to a collection
of simple closed polygons in R* or S3. Such links are called tame.

We adjust our definitions of isotopy and ambient isotopy to insist that the
mappings f(z,t) and h; must be p-1 embeddings for all t.

We shall call two p-1 knots p-I equivalent if they are p-1 ambient isotopic.

1.2.2 Notes.

The definition of ambient isotopy prevents us from “unknotting” the knot by
pulling it tight, as in the diagram below.

@ & O

Obviously if we were allowed to do this then the subject of knot theory would
be much simpler.

Two tame knots are ambient isotopic if and only if they are p-1 ambient
isotopic. Hence, for tame knots the two relations are the same.

From now on, we shall assume that we are working in the piecewise linear
category. The prefix piecewise linear will be omitted.

1.2.3 Definitions.

A link diagram is a projection of a link, along a given direction, on to a plane.
The image must have only a finite number of singular points, each a transverse
double point with the over and under crossings distinguished.

We will define the sign of a crossing, £(c), by the prescription

10



1.2.4 Theorem.[Re]

Let D and D’ be diagrams of links L and L'. The links L and L' are equivalent if
and only if D’ can be obtained from D by applying a finite number of the moves

k RI RI

described below.

RII

/

> _an_
N \u\’

We shall call these the Reidemeister moves I, I1 and I11.

Proof. A proof of this Theorem can be found in [BZ].

1.2.5 Definition.

Fix a particular diagram of an oriented link L and let L; and L, be two compo-
nents of L. The linking number, 1k(Ly, L), of the two components is defined to
be

Ik(Ly, Ly) =) _e(c).

c

where the sum is taken over the crossings, ¢, of Ly over L, and £(c) = £1 is the
sign of the crossing, ¢

11



1.2.6 Proposition.

Linking number is an ambient isotopy invariant of oriented links and
lk(Ll, LQ) - lk(LQ, Ll) .

The linking number is unchanged if we reverse the orientation of both compo-
nents and switches sign if we reverse the orientation of one of the components.

Proof. Consider how the linking number changes under the three Rei-
demeister moves. The RI move only involves one component, so the linking
number is unchanged. The number of crossings and their signs are unchanged
under RIII and therefore so is linking number. With the RII move, two cross-
ings are created (or removed). However, they appear with opposite sign so there
is no net change in the linking number.

To see the second statement, view the diagram from below. Each crossing of
L, over Ly becomes a crossing of L, over L; with the same sign.

The last two statements can be shown by considering what happens to the

sign of a crossing if the orientation of one or both strings is reversed. -

1.2.7 Definition.

A framed link is a link L with a chosen parallel curve for each component. If the
link is oriented the parallel curves inherit their orientations from the components.
Below we give two examples of framed trefoil knots.

- -~

In this thesis all framed link diagrams will be assumed to have blackboard framing
(i.e. the parallel curve will be assumed to lie in the plane of the paper). With

this assumption a framed knot will be uniquely determined by its diagram. Our
previous examples will therefore be drawn as follows:

& &,

12



1.2.8 Definition.

Two framed knots are said to be regularly isotopic (or framed equivalent) if they
are ambient isotopic and the linking numbers of the parallel curves with the link
components agree.

Obviously, although our two examples are ambient isotopic they are not
framed equivalent, since the linking number of the knot and its parallel is +3 for
the knot on the left and +2 for the one on the right.

Most of the link invariants we are concerned with in this thesis are regular
isotopy invariants. The following Proposition expresses regular isotopy in terms
of Reidemeister moves. This interpretation of regular isotopy is the one that we
will use in subsequent chapters.

1.2.9 Proposition.

Two framed links are equivalent if their diagrams are related by a series of RIT
and RIII moves and the following move

Proof. Firstly we rule out the first Reidemeister move, on the grounds
that it changes the linking number of the component with its parallel. From

the pictures below it is easy to see that adding the full curl adjusts the linking
number by +1.

The linking number remains unchanged under RI1 and RIII using similar rea-
soning to that in the proof of Proposition 1.2.6.

In fact we can switch a curl from one side of the string to the other using
RIT and RIII.

We use the Whitney trick, shown in Figure 1.1, to cancel curls of opposite
sign which occur on the opposite sides of a string.

13
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Figure 1.1: The Whitney trick for introducing or cancelling curls.
If we have two curls of opposite sign on the same side of a string, then we can

cancel them by considering the link as a whole. We can pass the string under
every other crossing in the link using RII and RIII, as shown below.

XX
D

Therefore, if L is a link, with two adjacent curls of opposite sign on the same
side of the string, we can proceed as follows

G

14



Note that we have used only RII and RIII moves to achieve this. We can,
therefore add or remove pairs of curls with opposite sign at will and preserve the
regular isotopy class of a link diagram. Hence,

\ \
= C\/\/ = \/

Thus, moving a curl from one side of the string to the other can be achieved
in a finite number of RIT and RIII moves. Therefore if two link diagrams are

regular isotopic, we can obtain one from the other in a finite number of R/ and

RIII moves. =

1.2.10 Definition.

Let D be a diagram of a link L. The writhe, w(D), is the signed crossing number
of the diagram, i.e. w(D) = Y ,£(c) over the crossings in D.

Writhe is an invariant of framed links. The proof of this fact is very similar
to that for Proposition 1.2.6 concerning linking numbers. For a knot diagram
the writhe is equal to the linking number of the framed knot with its parallel
curve. This number is sometimes called the framing of the knot.

1.3 Braids.

1.3.1 Definition.

Let I denote the unit interval [0, 1]. Consider the cube I x I x I. Fix n pairs of
points, namely (1/2,i/(n+1),0) and (1/2,i/(n+1),1) fori =1...n. We define
a braid on n strings to be the following. Attach a string to each of the n points
(1/2,i/n + 1,1). The other end of the string is attached to (1/2,j/n + 1,0) for
some j = 1...n. We insist no two strings are attached to the same point. We
further insist that the strings can’t turn back on themselves at any point i.e. for
any t € [0,1] each string intersects the plane z = ¢ exactly once.

Two braids are equivalent if one can be obtained from the other by a finite
number of RII and RIII moves, relative to the fixed boundary points.

15



1.3.2 Proposition.[A]

The set of all n-string braids forms a group, B,,, under product. The product of
two braids, B and C, is given by concatenation, as in the figure below.

B
C

BC =

Notice that we are taking multiplication on the right rather than the left.
The braid group has a presentation

o, 1=1,...n—1 0,0, = 0,0 li—jl>1
0i0;4103 = 034100441

where o; corresponds to the braid where the (i + 1)st string crosses over the ith

\

string and no other strings cross.

i

Pictorially, the second set of relations is a version of the third Reidemeister move,

1.3.3 Definition.

For each permutation 7 € S,, we will define an n-braid w, called a positive
permutation braid. It is uniquely determined by the following properties :
1. All strings are oriented from top to bottom.

2. String ¢ joins the point numbered 7 at the top of the braid to the point
numbered 7(i) at the bottom of the braid.

3. All the crossings occur with positive sign.

4. The ith and the jth strings cross at most once.

16



We can think of the braid as sitting in layers, with the first string at the back
and the nth string at the front.

We will define the negative permutation braid in exactly the same manner as
the positive permutation braid except that we will demand that all the crossing
be negative. We shall denote this braid by w_!.

Note that, perversely, w,w-! # 1 in general but, wﬂw;_ll will always be the
identity braid. For example if 7 = (431) € S, then

3 NSY
o (PA T

\J |
o (M

1.3.4 Comment.

The positive permutation braids were first identified by Elrifai and Morton [EM].
Morton and Traczyk [MT] showed that they form a basis for the Hecke algebra.
They will be the elements from which we will build our idempotent elements in
Chapter 4.

1.4 New knots from old.

1.4.1 Definition.

Let P be a knot contained in a standardly embedded solid torus 7. A disc in T
is called a meridinal disc if it bounds a meridian. We require P to be essential
in 7' (P must intersect every meridinal disc of T'). Let C' be a knot in S® and
let 7" be a tubular neighbourhood of C. Let h : T — T’ be a homeomorphism.
Then h(P) is a satellite knot with companion C' and pattern P.

17



1.4.2 Remarks.

In some definitions there is the further requirement that A is faithful (i.e. h
takes the preferred meridian and longitude of 7" onto the preferred meridian
and longitude of T"). This would determine the satellite of C' uniquely for a
given pattern. However, there is an alternative definition which defines the
satellite for a framed companion knot. The framing determines the choice of
homeomorphism in the previous definition by identifying a preferred curve on 1"
to which the longitude of T should be mapped, therefore, it is essential to have
an agreed framing on the companion knot. Let C' be a framed knot and P be
a knot diagram in an annulus. The parallel of C' determines an embedding of
an annulus in S3. Let S be the image of P under the embedding. We call S a
satellite knot. The knot C' is called the companion knot and P is known as the
pattern. The knot S will sometimes be denoted as C' * P.

If the pattern P is framed then S will be framed, inheriting its framing from
P. The condition that h is faithful corresponds to the requirement that the knot
C has zero framing in this definition. The example in Figure 1.2 is of a satellite
of the figure of eight knot. This satellite construction lies at the heart of the

@'E
3@

Figure 1.2: A satellite of the figure-eight knot with framing —1.

connection between quantum invariants of coloured links and the framed Homfly
polynomial. In Chapter 4, we calculate a pattern, (), for each colour, V', and
show that the quantum invariant of a knot, K coloured by V is equal to the
framed Homfly polynomial of the satellite K * ().

18



Chapter 2

Combinatorial results.

2.1 Introduction.

We first discuss the Homfly polynomial and some basic skein theory. Connections
between these and the quantum invariants of links will be established in Chapter
3.

We then look at partitions and Young diagrams. The approach is combina-
torial, making use of the connections between Young diagrams and symmetric
polynomials. I.G. Macdonald gives a detailed account of the theory of symmetric
functions and their connections with Young diagrams in [Mac].

We describe a ring structure on the set of Young diagrams, set up to reflect
the representation theory of the Lie algebra sl(N) and its quantum enveloping
algebra, which will be discussed in Chapter 3. Connections with the representa-
tion theory of the group algebra CS,, and the Hecke algebras of type A will be
established in Chapter 4.

2.2 The Homfly polynomial.

2.2.1 Definition.

The Homfly polynomial, P(L) € Clv™!, 2], is an ambient isotopy invariant of
an oriented link L which is multiplicative over distant union. It was discovered

19



by several groups; [FYHLMO, PT].
It is determined up to a scalar multiple by the skein relation
v ' P(L,) —vP(L_) = zP(Ly).
where L, L_ and L, are oriented links which differ only in the disc indicated
A X
L> /L_ Ly
We normalise P by setting the value of the Homfly polynomial for the empty

link to be 1 (rather than the more usual normalisation, P({)) = 1.) As a direct
consequence of the skein relation

below.

-1

P(LLUO)="

P(L),
where L U O denotes the link L together with a distant simple closed curve.

We will often write skein relations schematically. For example we can describe
the skein relation of the Homfly polynomial pictorially as

vIP(K) - vP(X) = =P()()
The Homfly polynomial is invariant under all three Reidemeister moves, although
this can’t be proved directly from the skein relation.

If, instead, we require a regular isotopy invariant we must modify the Homfly
polynomial to take account of changes in the writhe of a link. We will work with
X (L) € Clz**, v*! 21, which is an invariant of framed oriented links. We will
call X the framed Homfly polynomaial. Discussion of this invariant can be found
in sections 18 and 19, Chapter 6 of Kauffman’s book [K1] and also in [M2].

It is constructed from the Homfly polynomial by extending the coefficient
ring to include an indeterminate 2 and setting X'(L) = (zv~")*P P(L), where
w(D) is the writhe of the knot diagram. The following relation, therefore, holds

X (t/Q) = (zvhHX (j)

The skein relation needs to be adjusted to take account of this curl relation. The
framed skein relation is

e (X) e (X) == () ()

20



Set z=s5—s"'and § = (v™! —v)/z. Following Morton and Traczyk, [MT], we
will set A to be a quotient of the ring of polynomials in z*!, v*!, z and §,

A=Clz* vt 2,6 <vt v =062> .

It is easy to see from its construction that the framed Homfly polynomial is an
element of A. The variable ¢ is introduced to keep track of the occurrences of

2~ and allows for specialisations of A in which z is mapped to 0.

2.2.2 Notation.

We will denote the evaluation of P(L)/6 at v = 1, by V(L). Note that when we
calculate the Homfly polynomial we can always reduce diagrams to a collection
of unknots, therefore, P(L) always has a factor of §. The value of V on the

v (O)-1

(Note that if we had normalised P(v,z) to be 1 on the unknot, then the value
of V(L) would be exactly the Homfly polynomial evaluated at v = 1.)

unknot is 1,

We can calculate V from A" by setting x = v = 1.

Since P is an ambient isotopy invariant, V is also an ambient isotopy invariant
which is polynomial in z. It satisfies the skein relation

V(R) -V (X)) ==v() ()

From the skein relation, we have

0= 9 ([bde) - 7 () == (D ) -

Therefore, if L is a split link then V(L) = 0.

2.2.3 Remarks.

We introduce V here because we use the fact that it vanishes on split links to
prove Proposition 4.8.2. In fact the invariant V is a well known invariant called
the Conway polynomial. It is closely related to the Alexander polynomial and
pre-dates the Homfly polynomial. We define it in terms of the Homfly polynomial
here as it will only appear in this context in this thesis. Details of the original
definition can be found in J.H. Conway’s paper [C].

21



2.3 Skein theory.

Skein theory was first introduced by J.H. Conway, [C]. Here we are interested
in the skein theory associated to the Homfly polynomial. In particular we are
interested in the skein theory of the annulus and its connections to satellite knots.
The Homfly skein theory is discussed in detail in the work of Lickorish and Millet
[LiM, Li2].

2.3.1 Definition.

Let F be a planar surface. If F' has boundary, we fix a (possibly empty) set of
distinguished points on the boundary.

In this context we define a diagram in F to be a collection of oriented closed
curves and arcs joining the distinguished boundary points, allowing only simple
crossings. Two diagrams are equivalent if one can be obtained from the other by
a finite number of Reidemeister moves 11 and I11.

Let D(F) be the set of A-linear combinations of diagrams in F', up to equiv-
alence.

2.3.2 Examples.
If F = R? then D(F) is the set of A-linear combinations of oriented link dia-
grams.

Let F' = S' x I be an annulus. In this case D(F) is the set of linear combi-

nations of link diagrams such as the one below.

Set I = [0,1] and fix integers n and m. Let F = I* with distinguished
boundary points at (i/(m~+1),0) fori =1...m and (j/(n+1),1)forj=1...n.
Then D(F') will be the set of A-linear combinations of diagrams such as the one

22



below, in the case where m =n =3
I
\I/ —/

Y\

We will call such diagrams tangles.

More importantly, we shall be concerned with a subset of these diagrams.
Firstly we will insist that there are n boundary points at both the top and the
bottom of the rectangle. Secondly, we insist that the points at the top are inputs
and those at the bottom are outputs. By this, we mean that the strings which
meet, the top of the square are oriented into the square and the strings which
meet the bottom of the square are oriented out of it. We shall denote the set
of such diagrams by D(R?) . The set of n-string braids is contained in D(R}),
however, the diagram above is not an element of D(R3) since two of its strings
turn back on themselves.

2.3.3 Definition.

The framed Homfly skein S(F') of a planar surface F' with a distinguished set
of boundary points is the quotient of D(F') by the relations

S D ]
@ e

Again, it is a consequence that

O - o

where O is a null-homotopic loop in F.

and

The following definition explains how to map the linear skein of one surface,
F, into the linear skein of another, F”.

A wiring w of F' into F' is a choice of inclusion of F' into F” and a choice of
a fixed diagram of curves and arcs in F'\F. The boundary of this fixed diagram
is the union of the distinguished sets of F' and F”.

Examples of this can be found in Examples 2.3.5.
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2.3.4 Theorem.

A wiring of F' into F' induces a linear map of the skein of F' into the skein of F’
defined by

Sw): S(F) — S(F')

D — w(D)
where w(D) is the inclusion of the diagram D in the fixed diagram described
above.
Proof. Suppose a collection of diagrams in S(F') satisfy the skein rela-

tions. Since the relations are defined locally, the diagrams will continue to satisfy

the relations when we extend to S(F"). .

In fact we can extend this idea to wiring several surfaces, Fi, Fs,...,F;, into
a surface F. This gives us a multi-linear map

S(Fy) x S(Fy) x --- x S(F,) — S(F)

In some of the following examples this idea will be used to turn linear skein
modules into algebras.

2.3.5 Examples.

We can wire the rectangle R} into the annulus as indicated below.

This element will be called the closure of the tangle. For a tangle T we will
denote its closure by T.

There is an obvious wiring of the annulus into the plane by “forgetting” the
annulus.
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Two copies of the rectangle R} can be wired together as follows,

YW=—n—1¥

YWW=—n—1Y

Yy =—n— y

This gives us a bi-linear map S(R}]) x S(R}) — S(R}y) which defines a product
on S(R}). Therefore, S(R}) is an algebra over A.

The next example also defines a product this time in S(S* x I). A wiring of
S(S' x I) x §(S' x I — S(S! x I) is given by the following diagram

©

The two annuli are stacked one inside the other. This product is obviously
commutative (lift the inner annulus up and stretch it so that the outer one will
fit on the inside of it). Hence S(S* x I) is a commutative A-algebra.

2.3.6 Notation.

Let C = S(S* x I) as a A-algebra. Let C™ be the sub-algebra generated by
the diagrams which have all their strings running anti-clockwise through some
meridian.

2.3.7 Theorem.[T2]

The framed Homfly skein C* is freely generated as an algebra by ¢, m € NN,
where ¢ is the closure of the braid in the picture below.

e

- m—
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2.3.8 Corollary

The algebra C* is graded. Let C™ be the linear space spanned by all the terms
(o) (@i )72 -+ - (i )7» where S0 i jx = n. Then

ct= éoa cm
n=0

(Note that C™ is the linear space of all diagrams with algebraic intersection
equal to n on some meridional arc.)

Proof. By Theorem 2.3.7, every element of C* is a A-linear combination
of such monomials. Since the elements ;! generate C* freely as an algebra, the
monomials must generate C* as a A-module.

Let ¢™ e ¢ and ™ e ¢™. Without loss of generality we can assume
that they are monomials. Let

™ = (@) (@Y - (9l
with >0, i;j; = m, and

™ = () () (o)

Wlth E;:l ktlt = n. Then

) () — (@) (i) (QOZ)jp(%OkJﬂ)h(@lz)lz ()

is a monomial in C™*™ as required.

2.3.9 Comment

Note that all the elements of C(™ are linear combinations of terms, each of which
has exactly n strings running anti-clockwise through some meridian.

2.3.10 Theorem.[MT]

Let w : S(R") — S(S! x I) be the wiring as described in the first example in
Examples 2.3.5. Define
W= U w(S(R)
nelN
Then W is a sub-algebra of C, namely the sub-algebra C*.
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Proof. It is obvious that W is closed under addition, product and scalar
multiplication. It is also clear that W C C* since the arcs in the fixed diagram
all run round anti-clockwise.

To see that C* C W consider a element ¢ € CT. For each term in the
expression ¢ there is a meridian somewhere through which all the strings pass
in the same direction. If we cut along each of these meridians and open out the
resulting rectangles we obtain an element of S(R}), for some whole number n,

which closes to ¢ as required. -

2.3.11 Motivation.

We can think of C as a collection of patterns for satellite links. In Chapter 3
we introduce quantum link invariants, which depend on the link and a choice
of colouring. At the end of Chapter 4 we show that these quantum invariants
can be calculated by finding the framed Homfly polynomial of certain satellites
of the link, with an appropriate specialisation of the ring A. Since we are only
concerned with the framed Homfly polynomial of these satellite links and any
two patterns which are equivalent in C will produce satellite links with the same
framed Homfly polynomials, we can assume that the patterns are elements of C.

In fact, a property of the quantum invariants allows us just to consider patterns
inC".

2.4 Partitions.

2.4.1 Definitions.

Fix a natural number n € IN. Set A = (A, Ay, ---, \), with \; e N, SF A, =n
and Ay > X\y > --- > \,.. We call X a partition of n.

Often it is stipulated that the A; must be non-zero, however, since we wish
to compare partitions of different numbers later, we allow our partitions to have
a finite number of zeros at the end. We will make no distinction between two
partitions which differ only by a collection of zeros.

We shall formally include (0) as a partition of 0.

We can represent a partition of n by a Young diagram, a collection of n cells
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arranged in rows, with A; cells in the first row, A, cells in the second row and
so forth. We shall abuse notation by denoting both the partition and its Young
diagram by A. Note that the Young diagram for (0) is the empty diagram.

We define the size of a partition, denoted by |A| = 3; A;, to be the number
of cells in the Young diagram.

The conjugate of X\, Y, is the partition obtained from X by setting A/ to be
the number of A\; > 4. In terms of Young diagrams, AY is the diagram whose
rows are the columns of .

Suppose that A is a Young diagram with n cells and T'()\) is an assignment
of the numbers 1 to n to the cells of A such that they increase from left to right
and top to bottom. We call T'(\) a standard tableau.

We can define a total ordering on the set of Young diagrams using the lexico-
graphic order. Set A = (A,---,Ax) and g = (u1, -+, ptn)- Let j be the smallest
value of ¢ for which A\; — p; # 0. If A\; — p; is positive then A\ > p.

Note that we do not insist that A and g are both partitions of the same
natural number or that they have the same number of rows. If £k < m we can
add a collection of empty rows to A so that \; — p; is well defined for 7 > k.

For a given cell in a Young diagram we define the hook length to be the
number of cells below it in the same column and to the right of it in the same
row. The cell itself is included in the count.

2.4.2 Example.

Let A = (4,2,1), then |A\| = 7. The Young diagram for this partition is
[ ]

A =

It follows that AY = (3,2,1,1) and has the following Young diagram
|

Az =

Below we give two examples of standard tableaux for the partition A.

1]2]4]7] 1{2]3]5]|
6 6

3 4
El 7]
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The diagram below shows the hook lengths for each cell in .

4] 2] 1]
1

[~]w]|o

2.4.3 Definition.

Let each Young diagram determine a vertex of a graph. An edge will join p
to A if u can be obtained from A by removing one cell. Figure 2.1 shows the
graph for Young diagrams with up to 7 cells, arranged in increasing size down
the page. This graph is usually used to indicate how irreducible representations
of the Hecke algebra, H,, (respectively CS,,) decompose when restricted to rep-
resentations of H, | (respectively CS,, ;). It is known as a Brattelli diagram.
We will return to these topics in Chapter 4.

We define two integers, d, and o, recursively using the graph. Let dg = 1.
The integer oy is not defined. Instead we set og = —1 and o5 = 1. We then
define

d>\ = Zd}(
O\ = ZO’X

where the sum is over all those Young diagrams with one fewer cell which are
connected to A by an edge of the graph. In fact there is a closed formula for d.

2.4.4 Proposition.[FRT]

The number of standard tableaux of the Young diagram A is d, and
n!
~ [Thook lengths

where |A| = n. n

dy

2.5 The ring of Young diagrams.

Next we put a ring structure on the set of formal A-linear combinations of Young
diagrams. It is devised to have the same structure constants as the ring of repre-
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sentations of the Lie algebra sl(IN). However, it is defined purely combinatorially
and completely independently of N.

We have already mentioned that, in Chapter 3, we introduce quantum in-
variants which depend on a coloured link. In fact a colouring is a choice of an
element of this ring for each component of the link. In Chapter 4, therefore, we
need only to construct an element, Q5 € C, for each Young diagram )\, for which
the framed Homfly polynomial of the satellite C'x Q) is the quantum invariant of
C coloured by A. Since the Young diagrams span the ring we will then be able
to calculate the quantum invariant of a link with any colouring via the framed
Homfly polynomial.

2.5.1 Definitions.

The ring of Young diagrams, Y, is defined to be the set of formal A-linear combi-
nations of Young diagrams where addition is given by formal linear combination
and the product is defined by the following formula

AL = Z ay, -
w|=[Al+|ul
where the structure constants, a3 ,, are the the Littlewood-Richardson coefficients
This product is associative and commutative with identity the empty partition.
Neither of these properties is obvious from the combinatorics; they follow from
the representation theory of Lie algebras, described in Proposition 3.4.9.

These coefficients can be calculated combinatorially as the number of ways
the diagram v can be obtained from a strict expansion of A by pu, as follows.

Let A= (Ay,---,Ax) and p = (p1,,- -+, i) be two Young diagrams.

A p-expansion of X is obtained by first adding p; boxes to A, each labelled
with a 1. No two boxes can be placed in the same column and the result must
be a legitimate Young diagram. Then add u, boxes labelled 2 (respecting the
same rules) and continue until you have added p,, boxes labelled m. At each
stage no two cells with the same label can appear in the same column.

For any given cell, let n; be the number of cells numbered ¢ above and to the
right of it (including the cell itself). The expansion is called strict if, for any cell,
i < j implies that n; > n,;.
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A clear description of this method of calculating the Littlewood-Richardson
coefficients can be found in [J].

2.5.2 Remarks.

Let Y™ be the linear space generated by the Young diagrams with exactly n
cells, then

Y=pv™
n=0

Note that, with respect to this decomposition, the ring is graded, i.e. if A € Y™
and g € Y™ then Ay € Yt

2.5.3 Proposition.

The ring Y is generated as a polynomial ring by the Young diagrams with a
single column.

Proof. The proof goes by induction on the number of columns and the
number of cells in the final column. The empty diagram can be thought of as a
single column with no cells. It is obvious that any Young diagram with a single
columns can be written as a polynomial in the Young diagrams with one column.

Now, assume that we know the result for all Young diagrams with at most
m columns and fewer than & cells in the last column. Write AV = (AY, -, \))
with )\, = k. Let pu be the Young diagram obtained from A by removing the
last column. Since p has m — 1 columns, there is an expression for yx in terms of
the diagrams with a single column. Certainly A is a summand of p ¢;. Since the
only way to add k cells to p to obtain A is to add the ith cell of ¢, to the ¢th row
of u, the scalar a;\L ¢, must be 1. Following the rules of strict expansion all the
other summands of i ¢, must have at most m columns and at most k — 1 cells in
the mth column. They, therefore, have an expression in terms of the diagrams
with a single column. Thus we have an expression for A in terms of the diagrams

with a single column. =
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2.5.4 Remarks.

Let ¢; be the diagram with a single column of ¢ cells. There is a formula which
will express any Young diagram, A, as a polynomial in the ¢;, known as the
Giambelli formula.

If A= (X, Ay, ..., \¢) is a Young diagram with A\; = m then A" will have m
rows and the formula for A in terms of the ¢; is given by

Cay C\Y+1 7 CO\V4m-1
= Cxy -1 Gy B m—2
C\y —m+1 CAY,—m+42 - Cry,

As there is an obvious symmetry between the rows and columns, it is not too
surprising that there is a similar formula for A in terms of the Young diagrams
with one row. Let d; denote the Young diagram with one row of i cells, then

dA1 dA1-|—1 o d>\1+k—1
d>\2—1 d>\2 U d>\2+k—2
A= . . : :
dkk—k)-}-l dkk—k)-}-Q e d)xk

2.5.5 Notation.

We will denote the ring of polynomials in an infinite number of indeterminates
over A, by R.
Roo :A[017027"'7Ci7"']'

Note that since they are both freely generated A-algebras on a countably
infinite set of generators, R, is isomorphic to C*. We shall return to the rela-
tionship between these two rings in Chapter 4.

2.5.6 Lemma.

Let ¢; be of weight i. The ring R, is graded by weighted degree. (For definitions
of weight and weighted degree see Definition 5.2.12.)
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Proof. Define R to be the linear space generated by monomials of
weighted degree n. Every monomial is in R for some n. Every polynomial in

R is a linear combination of these monomials, therefore,
o
R =P RY.
n=0

Weighted degree behaves additively under multiplication of monomials and it

follows that R, is graded. -

2.5.7 Proposition.
The ring Y is isomorphic to R.

Proof. Define an algebra homomorphism f: R, — Y by

=h
f ¢ — l|.

This is surjective by Proposition 2.5.3.

By definition, f : R — Y™ The Young diagrams with n cells form a
linear basis of Y. We know that the monomials of weighted degree n are a

linear basis for Réﬁ).

Since f is surjective they must span Y (™. By Lemma
2.5.8, we see that this spanning set has cardinality equal to the the number of
partitions of n. Therefore, the images of the monomials must be a linear basis

for Y™ and hence, f must be injective. -

2.5.8 Lemma.

Let c¢; have weight . The number of monomials of weighted degree n in R, is
equal to the number of partitions of n.

Proof. Let ¢f'c/?---¢/™ be a monomial of weighted degree n. We can
assume, without loss of generality, that 7y > i, > --- > 4,. The monomial
is of weighted degree n if and only if >}-, 7.7, = n. This, however, uniquely
describes the partition of n with j, columns of length 4;. This establishes a
one to one relationship between the partitions of size n» and the monomials of

weighted degree n. =
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2.5.9 Remarks.

We next examine the product structure of Y in more detail. Consider the product
of a Young diagram with a single column and one with a single row. What Young
diagrams can be obtained by applying the rules of strict expansion? If we add
the cells from the single row to the single column each cell must be placed in a
different column. Hence, there are only two possibilities; one cell is added to the
first column and all the others start new columns or all the cells from the single
row start a new column. The corresponding diagrams have the shape of a hook.

For k,1 > 0, write p, € Y for the Young diagram below, with £+ —1 cells,

-— | =

kﬁ EIHI
s
Then taking co =dy=1€Y,
del = dl lf k =0

Pr+1, + Megy1  otherwise.

Note that py1 = ¢, and that p,; = d.

2.5.10 Proposition.[We]

Let
C(X)=> (-1 X*  and D(X)=Y dX'
k=0 =0

be formal power series with coefficients in Y. These series satisfy the relation

C(X)D(X) = 1.

Proof. Let C(X)D(X) = Y0_gan,X™ with a,, = Yio(=1)Fced,, -
Then ag = cody = 1. For m > 0,

am = Z (_l)kckdm—k

k=0
m—1
= dm + Z ((_l)k(p’k-i-l,m—k + llfk,m—k-i-l)) + (_l)mcm
k=1

35



m—1

m
= dm + Z(_l)kiluk,m—lﬁ-l + Z (_1)kluk,m—k+1 + (_1)mcm
k=2 k=1
= dm + (_l)m_lpfm,l + (_]-)llfl,m + (_]-)mcm
m—1
+ 3 (1) (kb1 — Bemert1)
k=2

= dp —dpm+ (=)™ e — ) — 0
= 0.

2.5.11 Definition.

Let Ry be the quotient ring
Ry =R/ (e, =0; Vk > N) .
It is obvious that Ry = Alcy, -+, en].
We will denote the quotient homomorphism by py : Roe — Ry

To interpret Proposition 2.5.10 in Ry, set Cy(X) to be the image of C'(X)
in the quotient ring. Then

Cy(X)=1—c X+ + (=1)Yex XV,
This polynomial can be formally factorised;
Cy(X) =TI, (1 — 2, X).

Thus ¢y, is the kth elementary symmetric function in {z;},. In particular
N
cC1 = Z Z;.

=1

The ring Ry can, therefore, be thought of as the ring of symmetric polynomials
in {z;}¥,. In this interpretation, d; is the [th complete symmetric polynomial,
i.e. the sum of all the monomials of degree [.

We shall see C'y again in Section 4.9 and in Proposition 5.2.15.
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2.5.12 Proposition.

The ring R is isomorphic to the quotient, Yy, of the ring Y, given by setting
all Young diagrams with more than N rows equal to zero.

Proof. Recall that we have an isomorphism f : R, — Y. Let I denote
the image, in Y, of the ideal in R, generated by the ¢; for 1 > N. Let Z be the
ideal given by setting all Young diagrams with more than /N rows equal to zero.
We need to show that these two ideals are the same. It is clear that I C Z, since
¢; has more than N rows if ¢ > N. To show that Z C I, consider the Giambelli
polynomial of ), in terms of the ¢;. If A has more than N rows then A\ > N and
so the entries in the top row of the matrix are all elements of I. Expanding by

the top row we see that A € I as required. -

2.5.13 Remarks.

Proposition 2.5.10 is used extensively at the end of Chapter 4, to find an alterna-
tive generating set for C* to that of Turaev (see Theorem 2.3.7). The generators
are elements of C* which correspond to the power sums 3, 27, in Ry. It is well
known that these generate the ring of symmetric functions. The expression for
the mth power sum in C* will be a linear combination of the closures of m braids
on m strings.
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Chapter 3

Quantum group invariants.

3.1 Introduction.

Quantum groups were introduced by Drinfel’d [D1] and Jimbo [Jil]. They are
certain types of Hopf algebra obtained from the universal enveloping algebras of
semi-simple Lie algebras by a 1-parameter deformation.

The first part of the chapter will discuss Hopf algebras and the construction
of quantum groups for generic values of a parameter ¢q. We will then go on to
investigate how link invariants are constructed from quantum groups.

We leave discussion of quantum groups at a root of unity and 3-manifold
invariants until Chapter 5.

3.2 Hopf algebras.

3.2.1 Definition.

A coalgebra is a triple (C, A, €) where C' is a vector space over a field k with
linear maps A : ' — C®C and € : C' — k, such that the diagrams in Figure 3.1
commute. We say that the coalgebra is coassociative and counital. The map A
is called the comultiplication and the map € is called the counit

The tensor product C'® C'is generated by the elements x © y, where x and y
are elements of C'. Therefore, if z € C'®C', we can express z in terms of elements
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koC &L cwc 25 cwk

Figure 3.1: The comultiplication is coassociative and counital.

of this form,

This is known as Sweedler’s notation, [Sw], for elements of C'® C. We will use
it often in this chapter. Let 2 € C, then A(z) = ¥, 2} ® x; .

A bialgebra is a vector space, A, which has both algebra and coalgebra struc-
ture, i.e. it has a multiplication, unit, comultiplication and counit.

Let A be an algebra, with multiplication u and unit 7, and let C' be a coalgebra
as above. Let f,g € Hom(C, A). We define the convolution product as follows

frg=po(feg)oA,

or in the Sweedler notation

frg(@) =3 fla)g(ai).

Let (A, i, m,A,€) be a bialgebra. An anti-automorphism S of A is called an
antipode if
Sxl=1xS=noe

While not all bialgebras have an antipode, if the antipode exists it can be shown
to be unique.

A Hopf algebra is a bialgebra with antipode.
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3.2.2 Example.

Let g be a Lie algebra with universal enveloping algebra U(g), then, U(g) is a
Hopf algebra. The antipode, comultiplication and counit are defined by

S(g) =

(g)—g®1+1®g Vgeg.

e(g) =

3.2.3 Definitions.

A Hopf algebra A is called quasi-triangular (or, sometimes, quasi-cocommutative)

if there exists an invertible element R of the algebra A® A such that for all x € A,
we have

A°(z) = RA(x)R™.
Here A" =74 4 0 A and 74 4 is the flip map
T:ARA - A®A
Zx; ®x;-’ — Zx;’ ®x;.
Such an element is called a universal R-matriz.

A quasi-triangular Hopf algebra is braided if the universal R-matrix satisfies
the relations
(A®1)R = RizRas (3.1)

(1®A)R = RizRi» (3.2)

where, if R =), s; ® t; in Sweedler notation,

R13:ZSi®1®tia
2

Rip=) s0t;®1

and
R23221®Sz®t1

Set u to be

u = ZS(tz)s
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This element is invertible with
u_l = ZtlSQ(SZ) .
The element u has the property that for any element a € A,
uau ' = S*(a).

A ribbon Hopf algebra is a quasi-triangular Hopf algebra, A, with a central
element y € A such that

v’ =uS(u), Sy =y, ey =1

and
A(y) = (RyiRyy) "y ®y).

The element uy~! also has the following properties;
(wy Da(uy ') ' =5%a) VacA, (3.3)

(which follows immediately from the fact that the relation holds for u and that
y is central) and

Z s;yu it = Z tiuyLs; . (3.4)

Let A be a quasi-triangular Hopf algebra. We denote by RepA the category
of finite dimensional linear representations of A. Its objects are A-modules and
its morphisms are module homomorphisms. The comultiplication of A induces
a tensor product on RepA. The action of a € A on V ® W is given by

a-(veow)=> by qw,

where A(a) = 3 b; ® ¢;. The antipode allows us to turn the dual linear spaces
into A-modules. Let V* = Hom(V,A). The action of A on V* is given by

a-(f(x)) = f(S(a)-x) Ve e V.

There is a canonical isomorphism V' = V**, with

a-x =S5%a) v=(uau™) .
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3.2.4 Definition.

Let A be a ribbon Hopf algebra. We define the quantum dimension of an object V'

in RepA to be the trace of the linear operator f : V — V, where f : v — uy '-z.

In general, if g : V — V we define tr,(g) to be the trace of z — (uy™') - g(z) i.e.

try(g) =tr(fog).

3.2.5 Theorem.

The universal R-matrix satisfies the equation
RisRi3Ry3 = Ry3 B3Ry .

This is known as the quantum Yang-Baxter equation.

Proof.

RiyRi3Ry; = Rpp(A®1)(R) by equation 3.1
= (A" ®1)(R)R1y

(Taa ® 1)(A @ 1)(R) Ry

= (744 ® 1)(Ri3R93) Ryy

(RosRi3) Ry -

3.2.6 Comment.

More information about Hopf algebras can be found in [Ab] and [Sw].

3.3 Representing Lie algebras

In this section we provide a rough guide to the representation theory of semi-
simple complex Lie algebras. Although we will not explicitly calculate the rep-
resentations of s/(N), the terminology developed will be used in the subsequent
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sections. The details can be found in several books. The approach we follow
here is that of J.E. Humphreys [H].

Let g be a semi-simple Lie algebra. We can find a maximal abelian sub-
algebra, h which acts diagonally on g, under the adjoint representation. We call
such a sub-algebra a Cartan sub-algebra. We, therefore, have a decomposition of
g with respect to this action,

g=ho(Pe.),

where g, = {X € g: HX = «(H)X, VH € h}. We call a a root of g. Every
set of roots has a base, a subset of roots {a;} for which every root, (3, can be
written as a linear combination of the roots in the base, with coefficients either
all positive integers or all negative integers. If the coefficients are positive we
call # a positive root. Otherwise (3 is a negative root.

Let V' be a finite dimensional g-module. Since h is abelian, it will act diag-
onally on V' and V' will decompose in an analogous way to g,

where Vg = {v € V: Hv = (H)v VH € h}. Now g, takes V; onto Vjs,,. Let
v € V. We call v mazimal if v € Kerg,, for all positive roots a. Let U(G) be
the universal enveloping algebra of the Lie algebra g. If V = U(G).v we call v
a highest weight vector, with highest weight 3. Obviously, in this case V is a
simple module. We call # dominant integral if 3(H) > 0 for all H € h.

3.3.1 Theorem.

For each weight (3, there is an irreducible finite dimensional representation Vj,
with highest weight [ if and only if # is dominant integral. ]

The proof of this Theorem can be found in [H].

3.4 The Lie algebra s/(N).

Firstly, we define the Lie algebra sl(/N) and its universal enveloping algebra. We
then describe the ring of (complex) representations of the universal enveloping
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algebra of sl(N). We will not calculate explicit representations but, we will
identify an index set for the irreducible representations and state how the tensor
product of two irreducibles decomposes in terms of this index set.

3.4.1 Definition.

The Lie algebra sl(NV) is the complex vector space of N x N matrices with zero
trace. The Lie bracket is given by [X,Y] = XY — YV X.

3.4.2 Theorem.|[Se]

The universal enveloping algebra U(sl(N)) is generated by {X;,Y;, H;}¥,, with
the relations

Also, for ¢ # j

1—a;;

1—a; o
S () s o
k=0 k
and
l—aij 1 — Qs
> (-1 ( ”) Yrvy, R =g
= k 2 J7

where a;; is the (7, j)th entry in the Cartan matrix. For s/(/N) the Cartan matrix
is given by

2 ifi=y

0  otherwise.
In this presentation of the universal enveloping algebra, the elements H; generate
the Cartan sub-algebra as defined in section 3.3.

3.4.3 Theorem.[FH]

The irreducible representations of the universal enveloping algebra U(sl(N)) are
indexed by the Young diagrams with at most N rows. The irreducible represen-
tations V) and V), are isomorphic if and only if A\; — y; is a constant independent
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of i for 1 < i < N. We have complete reducibility of representations. [}

3.4.4 Remarks.

This theorem implies that if two irreducible representations are isomorphic then
their Young diagrams must differ by a collection of columns with N cells. The
irreducible modules are, therefore, uniquely indexed by Young diagrams with
fewer than N rows.

The fundamental representation of si(/V) (i.e. that of dimension V) is indexed
by the Young diagram with one cell, O.

The problem of finding the coefficients for the decomposition of tensor prod-
ucts is known as the Clebsch-Gordan problem. For sl(N), the decomposition of
the tensor product is known. Let V) and V, be simple modules indexed by the
Young diagrams A and p respectively. Then

VA ® Vu == ZCLKMVV
where the af, are the Littlewood-Richardson coefficients described in Chapter

2, with the assumption that V,, = 0 if v has more than N rows.

3.4.5 Proposition.

Let V) be some irreducible representation of sl(N), with A = (A, Ay, -+, An).
Setting a; = \; — A\j4q for i < N and ay = Ay, we have

N N N
A= (Zaiazaia"'azai)'
i=1 1=2 i=N
Then (V))* = V-, where
N-1 -2
)‘*:(Zaia aia"'aal)
=1 =1

Pictorially, A* is the Young diagram which remains if you remove A from a A\; x N
grid of cells and rotate the picture through 7. [ ]
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3.4.6 Example.
For v = (4,2,1), we give v* for N = 3, 4 and 5.

vt =(3,2) v =(4,3,2) v =(4,4,3,2)

3.4.7 Definition.

Let [V}] denote the isomorphism class of the representation V. Form the free
abelian group, Ry, on these classes, quotiented out by the relations [V] = [V'| ®
[V"] whenever V' is isomorphic to V' @ V". The complete reducibility of the
representations of s/(NN) implies that Ry is free abelian. We give Ry a ring
structure by defining the product to be the tensor product of representations.

3.4.8 Comment.

Note that we have a minor notation problem here. The representation ring
Ry defined in this chapter is isomorphic to a quotient of the ring Ry defined
in Chapter 2, the extra relation being ¢ = 1. However, this extra condition
doesn’t make any material difference to any of the results in Chapter 2, we can
just substitute ¢y = 1 into any formula. Therefore, from now on we shall take
Ry to be the quotient of R, which sets ¢, =0, for £ > N and ¢y = 1.

Note, however, that with this adjustment the grading of Ry by the number
of cells is destroyed.
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3.4.9 Proposition.

The ring Ry is isomorphic to the ring Yy/ < ¢y =1 >, where Yy is as defined
in Chapter 2.

Proof. This just a restatement of the representation theory in terms of

Young diagrams. -

3.5 The quantum enveloping algebra.

In this section we shall define U,(sl(N)), the quantum enveloping algebra of
sl(N) for generic values of ¢q. We shall consider the situation when ¢ is primitive
root of unity in Chapter 5. The construction given here follows that given by
Drinfel’d in [D1] and independently by Jimbo in [Jil] for a general semi-simple
Lie algebra.

We then describe its irreducible representations. Results of Rosso [R] and
Lusztig [L] showed that for a generic value of ¢ the representations are deforma-
tions of those for U(sl(N)).

The subject of quantum groups is covered extensively in Kassel’s book [Ka].

3.5.1 Definition.

For a parameter & set ¢ = e®. Let s = e"?. Let n € Z. We define the associated

quantum integer [n] to be

g —gn
=S

The quantum binomial is then given by the formula

N =

where [n]! = [n][n —1]---[1].

Let G = {X,,Y;, K;}i¥,. The quantum enveloping algebra U,(sl(N)) is the
quotient of the free algebra over G by the following relations,
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K,—K !
1 s—s=1

KZX] = SainjKi, Kl)/j = Siai]‘)/jKi,
and for i # j

1—a;; 1 —

S [ st oo
k=0

1—a;; 1 — a.
> (_Dk[ LYY =0
k=0

where a;; is the (4, 7)th entry in the Cartan matrix.

Note that setting K; = exp(hH;/2) and taking s = e/2 then these relations
become the relations for the universal enveloping algebra U(sl(NN)), as given in
Definition 3.4.2, when h — 0.

3.5.2 Proposition.[D2, Ji2, T1]

The quantum enveloping algebra of sl(N) is a quasi-triangular Hopf algebra.
The antipode, comultiplication and counit are defined as follows,

SY;) =-YK7", €Y)=0, AY)=YV,®K +1®Y],
S(K;) = K; ', e(K)=1, AK)=K®K,.

The R-matrix for the fundamental representation is given by
R = Si% (Z €ii X 6jj + SZ@Z'Z' & €ii + (S — 871) Zeij X 6ji)
i#j i i<j

where e;; is the N x N elementary matrix with (k,[)th entry ¢;;6;, and in which

s~V is taken to be e /2N m

3.5.3 Remarks.

Calculations of the R-matrix for the fundamental representation can be found
in [D2, Ji2]. The version given here is that of Drinfel’d.
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3.5.4 Theorem.[Ji2, L, R]

Any simple integrable highest weight module V' of U(sl(NN)) admits a quantum
deformation: there exists a simple U,(sI(N)) module V such that V specialises
to V as ¢ tends to 1; the dimensions of the weight spaces of vV (with respect to
K;) are the same as those of the corresponding weight spaces of V' (with respect
to the H;). u

3.5.5 Remarks.

This result is proved for Lie algebras of type A by Rosso (The si(2)) case is dealt
with by Jimbo). The general reslut is the work of Lusztig.

We therefore have an isomorphism between the representation ring of the Lie
algebra and that of the quantum group. All the properties of the representation
ring of the Lie algebra will, therefore, carry through to the quantum group.

3.6 The quantum group link invariants.

3.6.1 Introduction.

We first give the instructions for building an invariant given a link diagram ,
some U, (sl(N))—modules and some module homomorphisms. Only then will we
deal with the technicalities of determining the homomorphisms and the relations
between them.

3.6.2 A basic construction method.

Let L =L, ULy, U---L; be a framed link, with diagram D. The diagram can
be regularly isotopped so that it lies in levels. In each level all but two of the
strings will run through parallel. One pair of strings will either cross over, form
a cap or form a cup.

We colour L by assigning a representation of U,(sl(N)), V;, to each component
L;. At any point in the diagram where a string is running from top to bottom
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of a level it is coloured with the representation colouring that component. If the
string has the reverse orientation it is coloured by the dual module.

Each of these layers will determine a module homomorphism, which will be
built up from the elementary tangles of crossings, cups and caps. The pictorial
rules in Figure 3.2 describe how we can compose them. Let 7" be a coloured tan-
gle, i.e. a tangle with an irreducible module assigned to each of its components.
We denote by J(T') the module homomorphism obtained from the composition
of the module homomorphism determined by each elementary layer. Note we
can only define J(T'S) if the colourings are compatible. In Figure 3.2 we re-
quire [ = m and V; = W, for i = 1...m to be able to compose the module
homomorphisms in this way.

JT): Vi@V, —V e oV

’

S JS) Wi oW, —W, o---W,,
S
- J(TS) = J(T) o J(S),

s[T J(T®S)=J(T)® J(S).

Figure 3.2: The pictorial composition of the module homomorphisms.

Applying these to a link diagram we can construct a module homomorphism,
from the scalars to the scalars, dependent on the diagram and the colouring.

3.6.3 Example.

Figure 3.3 shows a figure-eight knot, K, coloured by the module V" and arranged
into layers. Each layer determines a module homomorphism from the module
at the top of the layer to the module at the bottom, as indicated on the right
hand side. Taking the compositions of these, the knot K determines a module
homomorphism from the scalars at the top of the picture to the scalars at the
bottom.
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C[Sil/N]
!
Vevr

l
VeVreVeVr

!
VRVeVieV*
vV J !

VeVvieVeV*
l
VeVeVeV
|
VPRV eVieV
l
VeV

!
C[S:I:I/N]

Figure 3.3: The figure-eight knot arranged in layers.
3.6.4 Definitions.

We define the elementary module homomorphisms for each of the elementary
tangles. The definitions given here are those of [RT2]. A detailed description of
the U,(sl(2)) case can be found in [KM].

The straight string will correspond to the identity homomorphism of the

\L V - IdV

Let Ry be the map assigned to the positive crossing

colour.

V\W
A

RV,W:TV,WR:V@)W - WeV.
TRY Y Ly s

where
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The negative crossing coloured by V and W (as shown below) will correspond
to the homomorphism R;va .
V w

X

Although neither 7y, nor R are module homomorphisms, it turns out that their
composite is. The cup and cap homomorphisms are given in Figure 3.4, with the
assumption that the string oriented downward is coloured by V.

L wivrev gt

fove— f(v)

u UV eV - stV

v @ f = f((uy™").v)

f\ AN S VeV

1!—>Zi€i®€i

m AN S VeV

1Y, e @ (yute

Figure 3.4: The cup and cap homomorphisms.

3.6.5 Theorem.[RT1]

The maps Ry, Ry, \/, \, v and M\ are module homomorphisms. They
satisfy the identities described pictorially by the Reidemeister moves RII and
RIII.

They also satisfy the pictorial identities of Figure 3.5 (and those obtained
from Figure 3.5 by changing the sign of the crossing) with all possible colourings
and orientations.

The relations of Figure 3.6 also hold for all possible choices of orientation.
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(a)m [\/](b)L/\)
RENERNRY

Figure 3.5: The pictorial isotopy relations between the homomorphisms.

<
<
<
&

X
URRVRAENA

Figure 3.6: Further relations between the module homomorphisms.
Let J(L; Vi, Vs, -+, V}) denote the module homomorphism determined by the

link L, coloured by Vi, ..., Vi. Then J(L;V;,V,,---,V}) is a regular isotopy in-
variant. n

93



3.6.6 Comment.

If the tangle T" below is coloured by a simple module then, by Schur’s Lemma, it
must represent either the zero homomorphism or a scalar multiple of the identity.

The Whitney trick (shown in Figure 1.1) implies that the homomorphism deter-
mined by 7" must be a non-zero isomorphism, hence

V}ﬂ - b ij

for some non-zero scalar f,.

3.6.7 Proposition.

Let T be a coloured (n,n) tangle with associated module homomorphism J(T').
Let L be a coloured link which is the closure of 7. Then

J(L) = tr, J(T).

where tr, is as defined in Definition 3.2.4. ]

3.6.8 Proposition.

Let L; be a component of an oriented link L. Let V; be the colour assigned to
L;. Define L to be the link L with the orientation of L; reversed and the colour
V; replaced by V;*.

J(L;‘/la"'av;lfla‘/;a‘/;ﬁ»la'"Vk):J(Z;‘/la'"7‘/;'717‘/;;*7‘/;4»17""/]{:)
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3.7 Quantum invariants and the Homfly
polynomial.

In this section we give an explicit formula for the U,(sl(/N)) invariants in terms
of the framed Homfly polynomial X', when all components are coloured by the
irreducible representation V.

3.7.1 Theorem.[T1]

The invariant J(L; Vg, -+, Vg) is given as a function of s by the framed Homfly

“UN and v = sV,

polynomial X'(L), evaluated at x = s
Proof. In this proof, we consider the universal R-matrix constructed by
Drinfel’d, given in Proposition 3.5.2. The method of proof follows that of Turaev
in [T1]. The notation in [T1] is not consistent with our notation. What we denote

1/N h/2N

by s = e"? is denoted by —¢ in [T1]. When we write s/ we shall mean e

rather than any other Nth root of s.

The invariant J(L;Vq,---,V4) is a function of s, since it is a module endo-
morphism of the ring C[s*'/"], as described in Example 3.6.3.

The universal R-matrix in [D2] differs from that given in [T1] by a multiple
of e"/?N | Therefore, by [T1], the R-matrix for the fundamental representation
satisfies the following relation,

SUNR — s7YNR™ = (s — s71)Id®?.

Therefore, with the substitution z = s~V X and J(L), will satisfy the same
skein relation. We next consider the substitution for v, by comparing the values
of the two invariants on the unknot with zero framing. For the framed Homfly
polynomial

(O)-25

The U,(sl(N)) invariant for the unknot is calculated in [T1] to be

N _ .-N
sV —s
1(O)-5=r
s—§
These two values agree for v = s~ or v = —s”. We require, however, that

v — 1ash — 0. Since s = €"/2, this forces the choice of substitution for v
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to be v = sV, The curl factor for X is given by zv='.

By Schur’s Lemma,
since the curl on a string coloured by Vg is an endomorphism of a simple module
which commutes with all other endomorphisms, it must be a scalar multiple of
the identity. Also, since a positive and a negative curl cancel each other out,
the scalar for the negative curl must be the inverse of that for the positive curl.

Denote by «, the scalar for the positive curl. From

Sl/NJ<X)> _ s—l/NJQ\”)) = (8—8‘1)J<><> )

we see that o must satisfy the quadratic relation

O[2 _S—I/N(SN _S—N)a_S—Q/N — 0,

and therefore, o = sV% or @ = —s V- ~. Since we wish the curl factor to tend
to 1 as h tends to 0, we set = s¥~% = zp~!

With the substitutions z = s /¥ and v = sV, the Homfly polynomial
satisfies the same skein relations as the quantum invariant J(L) and the two
invariants have the same value on the unknot with zero framing. Thus we have

proved the theorem. -

3.7.2 Remarks and notation.

The obvious question to ask is “Can a similar formula be found for quantum
invariants of links coloured by higher dimensional representations?”

The answer is yes. In Chapter 4, we will show how to find patterns, @Q,, for
each Young diagram, \, such that when |A| = n we can take @y as the closure
of some (n,n)-tangle T which represents the projection map from V" onto Vj,
when coloured by V5. We can then apply the above theorem to the satellite of
a knot, with ), as pattern, to find the quantum invariant of the knot coloured
by Vy. A feature of the construction is that (), is completely independent of N.
We state a version of the “Satellite Theorem” here for completeness. The proof
can be found on page 89, Theorem 4.6.16.

We will denote the evaluation of the framed Homfly polynomial at v = s~

and . = s /N by Xy.
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3.7.3 Theorem.

For each Young diagram, ), there exists @ € C* for which, given a link L,

J(L;VM,...,VM) = Xn(L; * Qy, I_I...I_IL,C*Q)%)
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Chapter 4

Idempotents of the Hecke algebra.

4.1 Introduction.

In this chapter we construct quasi-idempotent elements of the Hecke algebra
following the prescription set out by A. Gyoja in [G]. We will build our idempo-
tents from the positive permutation braids, which are a set of generators for the
Hecke algebra, as described in [Jo2]. Positive permutation braids (see Definition
1.3.3) were first defined by Elrifai and Morton [EM]. Details of the relationship
between them and the Hecke algebras can be found in [M2].

We will exploit the relationships between the Hecke algebras, the braid groups
and the skein theory of Chapter 2 to obtain quasi-idempotent elements of the
Hecke algebra expressed as linear combinations of braids. The closures of these
elements in the skein of the annulus provide the patterns required for the Satellite
Theorem 3.7.3. They provide the key to the translation between the skein theory
and the quantum group representations.

At the end of this chapter there is some discussion of recent work by Yokota
[Y]. Connections between this thesis and Yokota’s work are indicated at appro-
priate places during this chapter.
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4.2 The Hecke algebras.

4.2.1 Definitions.

The nth Hecke algebra (of type A), over the ring A (defined in Definition 2.2.1),
will be denoted H,,. It has the following presentation,

O'Z'O'j:O'jO'i : |Z—j|>1

. o; +1=1,...n—1 .
H, = 0i0i410; = 0441070441 )
-1
T

ai—xai_lzz,

where z = s—s!. Notice that v doesn’t appear in the presentation. However, we
will see later that H,, is isomorphic to S(R}:). The indeterminate v is required to
keep track of framing of these diagrams.Elements of H,, ® H,, can be written as
linear combinations of terms of the form h, ® h,,, where h, € H, and h,, € H,,.

These terms are represented in S(RnT7) by the juxtaposition of a tangle in

S(R}) with a tangle in S(R]).

If we set v = x = s = 1, we recover a presentation of the symmetric group
algebra CS,,. It is obvious from the presentation that H, is isomorphic to a
quotient of the group algebra AB,, where B, is the n-string braid group as
described in Proposition 1.3.2.

4.2.2 Proposition.[MT]

The Hecke algebra, H,, is isomorphic to S(Ry). As a A-module, it is freely
generated by the n! positive permutation braids. [

4.3 Connections with the symmetric group
algebras.

In this section we consider the representation theory of the symmetric group
algebra, CS,,. We then discuss the relationship between the representations of
CS,, and those of H,,.

It is well known that the number of distinct irreducible representations of
CS,, is equal to the number of conjugacy classes of S,,. The conjugacy classes
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of the symmetric group are determined by the cycle type of the permutations,
therefore, the number of irreducible representations of CS,, is equal to the number
of partitions of n. For CS,,, we can give a direct relation between the conjugacy
classes and the irreducible representations.

The following results are well known in the theory of representations of the
symmetric group. Details can be found in James’ book [Ja] and in the first few
chapters of Fulton and Harris’ book [FH].

4.3.1 Definitions.

Let D be a standard tableau of the Young diagram A. Set
Pp ={pe€ S, : p preserves the rows of D}

Qp = {q € S,, : q preserves the columns of D}.
We define two elements Ap, Bp € CS,, by

Ap=Yp, Bp= Y (-1)9q

pEPp q€QD

where [(q) is the length of the permutation q. The Young symmetriser, Cp, is
defined to be
CD = ADBD S CSn

4.3.2 Comment.

As with the braid group in Chapter 1, we will take the product to act on the
right. Thus, pq is the permutation obtained by performing p and then q.

4.3.3 Example.

Let D be the Young tableau given below,

2[3]4]
6

e

Then Pp is generated by the set of transpositions {(12), (23), (34), (56)} and Qp
is generated by the set {(15), (57), (26)}.
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4.3.4 Lemma.

Let D and D' be different Young tableaux for the same Young diagram. We can
find some permutation 7 for which

CD = TODrTil .

Proof. Let 7 be the permutation which takes the label in a given cell of
D to the label in the corresponding cell of D’. Note that 7 takes the rows of D
to the rows of D' and the columns of D to the columns of D'.

Let p' € Pp. Then 7p'77! is a permutation which takes the rows of D to the
rows of D, i.e. 7p'r™! € Pp. For any p € Pp, 7(77'pr)r™' = pand 7 'pris a
permutation of the rows of D'. Hence

Pp={mpt7t:p' € Py},

therefore,
AD = TADITil .

Similarly, we have that
BD = TBDrTil .

Hence

OD — ADBD
TApT B!
TADIBD/Til

= 7Cp7 .

4.3.5 Theorem.

The element Cp is a quasi-idempotent i.e.
C% = CLDOD .
for some non-zero scalar ap. Let ¢p = % Cp, then cp is a genuine idempotent.

The image of CS,, under right multiplication by cp is a simple left module
of CS,,. Thus CS,,cp is a minimal left ideal. Every minimal left ideal of CS,, is
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equal to CS,,cp for some tableau D, therefore the cp determine all the simple
CS,, modules

Two ideals CS,cp and CS,cp are isomorphic if and only if D and D' are
tableaux of the same Young diagram.

The ideal CS,,cpCS,, is a minimal two-sided ideal. Let D, denote the set of
tableaux for the Young diagram A, then

CSnCDCSn = @ CSnCDI .

D'eDy,

If we fix one Young tableau D) for each Young diagram A with n cells we obtain
a direct sum decomposition for CS,,,

€S, = @ €S,cp,CS, .

[Al=n

Sketch proof. We indicate how to proceed to prove that C, is a quasi-
idempotent. First we must prove the following two statements:

1. CpCpr =0 when D and D' are tableaux for different Young diagrams.

2. For all x € S,, the element C'pxCp is a scalar multiple of Cp.
The proof then proceeds as follows. Let Vp = CS,,cp. Then, by statement 2,
cpVp C CS,cp. Suppose that W is a sub-representation of Vp, then cpW is

either 0 or Ccp. However, if W = Ccp then Vp C W. A similar argument can
be used to show that C% is a non-zero multiple of Cp.

Suppose that CS,,Cp = CS,Cp and that D is a tableau for the Young
diagram A. If we multiply by Cp on the left then CS,,Cpr will be non-zero if and
only if D' is also a tableau for the Young diagram .

The details of this proof can be found in [FH].

4.3.6 Comments and notation.

The details of the proof have been omitted because we will be using an identical
method to prove that we have idempotent elements of the Hecke algebra.
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Let T'()\) be the standard tableau whose cells are numbered 1 to n, from left
to right, from top to bottom.

In view of Lemma 4.3.4 and Theorem 4.3.5, we will abuse notation by writ-
ing C) for the quasi-idempotent Cp constructed using D = T(A). All other
idempotents for the same Young diagram will be conjugate and the irreducible
representations they index will be isomorphic.

We will denote by a, and c,, respectively, the scalar and genuine idempotent
associated with C.

The decomposition of CS,, given in Theorem 4.3.5 can be restated using this
notation:

€S, = P €5,c,CS, .

Al=n

4.3.7 Proposition.[FRT]

The dimension of the simple CS,,-module CS,,¢c, is equal to the number of stan-
dard tableaux, which by Proposition 2.4.4 can be calculated as

n!

dy = dim E5,0, = [1hook lengths

Therefore the dimension of the subspace €S, c,CS,, is d3. [

4.3.8 Remarks.

Details of the last result, due to J.S. Frame, G. de B. Robinson and R.M. Thrall,
can be found in G.D. James book on the representation theory of the symmetric
groups [Jal.

The calculation of the scalar ay can be found in [FH, p54]. In fact,

ay = H hook lengths.

Since a, is invertible in CS,,, Theorem 4.3.5 will hold with C) in place of c,.
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4.3.9 Theorem.[B, Go]

Every irreducible representation of H,, is a deformation of some irreducible rep-
resentation of CS,,. [

4.4 Construction of the idempotent elements.

By Theorem 4.3.9, we need only to find idempotent elements of the Hecke algebra
which specialise to the Young symmetrisers and we have all the irreducible repre-
sentations of H,,. We first produce building blocks from which we will construct
quasi-idempotent elements.

Much of the earlier part of this section is based on the paper by Morton [M2].

4.4.1 Definition.

Let F, (01,09, -+,0,_1) be defined as follows,

En(o-lao-Za"'ao-nfl) = Z Wr
TESy

where w, is the positive permutation braid associated to the permutation 7 as
defined in Definition 1.3.3.

4.4.2 Theorem.[M2]

For each i, we can factorise F,, in H,,, as

E, = EW(0;+1)
= (o;+1)EY

where
IR S
m(t)<m(i+1)
Proof. We will show this for the case E, = (1 + Ji)Er(f); the other case

works similarly.
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For each permutation 7, consider 7' = (i,7 + 1)7. Exactly one of the pair
reverses the order of i and ¢4 1. Suppose that it is 7', so that 7(i) < 7(i+1), then
the braid o;w, is a positive permutation braid, with permutation 7', therefore,
we have that o,w, = w,». Hence,

E, = Zwvr

TES,

= > wet > we
m(i)<m(i+1) o (i)>m (i+1)

= Z Wy + Z oWy
w(i)<m(i+1) w(i)<m(i+1)

= (I+0) > w.

w(i)<m(i+1)

as required.

Given a scalar v, we may substitute vo; for o; in w,. The element

Ww(’YUla U 770—71—1) - 7l(ﬂ)wﬂ'(0—17 e 70n—1)

where [() is the length of the permutation. Note that the length of a permuta-
tion, 7, is equal to the writhe of its positive permutation braid, w,.

4.4.3 Definition.

The quadratic relation in H,, can be factorised,
(0i —a)(o;i=b)=0 Vi,
where ¢ = —xs~! and b = xs.
We define a,, to be
a, = E,(—a oy, —a oy, -, —a" oy )

and b,, to be
bn - En(_bilo—la _b710—27 ) _bilo—n—l)

where a and b are the roots of the quadratic equation.
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4.4.4 Examples.

Note that a; = b; is just a single string. The expression for a, is

as :H—i—x_ls %
by :H—x_ls_l %

Note that if we set + = s = 1 then a,, and b, are just the Young symmetriser

and

and anti-symmetriser for CS,,.

4.4.5 Proposition.

We can factorise a,, and b,, as
=(1-a"'0;)a? =a(1 - a'oy)
(1=0"'o)b = b (1 - b~'oy)

where 4 = S <riry ( a) My and b = Loy enirn () P

Proof. The proof of this result can be deduced directly from the proof of

4.4.2 by substituting —a~'o; for o;. .

4.4.6 Remark.

Since 1—a ™"

(0; — a). Similarly, b, has a left (respectively right) factor (o; — b). Therefore,

0; = —a~'(0;—a), the element a,, has a right (respectively left) factor

since (0; — a)(o; — b) = 0, we have that a,b,, = 0 (respectively b,,a, = 0), for
every n, m > 1.

We shall make repeated use of this factorisation throughout this chapter.

4.4.7 Theorem.[M2]

Let ¢, and ¢, be linear homomorphisms from the Hecke algebra, H,,, to the ring
of scalars A defined by ¢,(0;) = a and ¢,(0;) =bfori =1,...,n — 1. Then for
all h € H,,

a,h = ¢y(h)a, = ha,
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and
bunh = ¢u(h)b, = hb,, .

Proof. It is enough to show this for each o;, 1 < i < n. Applying Propo-
sition 4.4.5 and the factorisation of the quadratic relation we have that

an(o; —b) = —aal?(0; — a)(o; —b) =0

and therefore

a,0; = ba,, .

4.4.8 Remarks.

In his paper [G], A. Gyoja constructed idempotent elements of H,, which spe-
cialise to the Young symmetrisers. We shall construct versions of these idem-
potents in S(R;) by appealing to the isomorphism between H, and S(R}) es-
tablished by Morton and Traczyk [MT]. As in our construction of the Young
symmetrisers we shall index our idempotents by the Young diagrams with n
cells. However, we shall really be referring to the tableau 7'(\) whose cells are
numbered from 1 to n left to right, from top to bottom.

We show below that the elements constructed for other tableaux with the
same Young diagram are conjugate to the elements we produce. Since the main
goal is to look at the closure of these idempotents, and conjugate elements in
H,, will close to the same element of CT, it is legitimate to work with a preferred
tableau.

Throughout we shall illustrate the method of construction using the partition
v=(4,2,1).

N

3[4]

A

I
N~
—~

X
N

I

[N]x]-

o

We can consider a 3-dimensional picture for the idempotents, which will be
given as linear combinations of braids in a cube rather than their diagrams
in a rectangle. Recall that the Young symmetriser is a sum of products of
permutations which preserve the rows and permutations which preserve columns.
The idea is to replace permutations with positive permutation braids in the rows
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and columns of the Young diagram. However, in terms of calculation the 3-
dimensional viewpoint has certain disadvantages. For example, although the
pictures of the idempotents are intuitive in 3-dimensions, we cannot compose
them directly with each other. We will, therefore, do calculations with a 2-
dimensional version. It will, however, be useful to bear in mind the 3-dimensional
picture on occasion. For example, if we take the closure of the diagram in C* then
the order of the strings in not so tightly constrained. We give the 3-dimensional
picture for v in Figure 4.1. Note how the strings are first grouped in rows and
then in columns. Although the braids sit in the vertical plane the boxes are drawn
in the horizontal plane to give the impression of how closely the idempotent is
related to the shape of the Young diagram. Yokota [Y] doesn’t interpret the

Figure 4.1: The 3-dimensional quasi-idempotent associated to v.

quasi-idempotents in this 3-dimensional way. However, a 3-dimensional picture
of his elements é, would carry an extra copy of the lower Young diagram, labelled
with the b;, on top. Note that Theorem 4.4.7 is stated in [Y, equation 7].

From now on we will work with a 2-dimensional picture. We use the labels
in the cells of the tableau to provide an ordering for the strings of the braids
upon flattening the picture. With this in mind, it is not difficult to see that the
idempotents for two tableaux, D and D', with the same Young diagram will be
conjugate. Let 7 be the permutation which takes the labels of D to those of D'.
If e, is the idempotent associated to D then w, 1epw; ' will be the idempotent
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associated to D'. For example if D = T'(v) and

5[ 7]

Blw

D' =

Y

[o]n]-

then 7 = (235)(476).

4.4.9 Definitions.

We will draw A as a line of cells, with cells from the same row of A grouped
together. We will sometimes draw in the rows of cells of the Young diagram (in
feint dotted lines) to emphasize this grouping. To each cell we assign a braid
string. On the collection of strings which correspond to the ith row of A\, we
place ay,. We will denote this linear combination of braids by E(a).

Similarly we define E\(b) by replacing a,, by b,, for 1 <i <k, in the above
definition.

E,(a) =

Recall that we obtain A\Y from A by interchanging rows and columns.

Note, however, that this doesn’t take T'(\) to T'(A\Y). Under the exchange of
rows and columns the cell labelled i by T'()) is taken to some cell of \V. Let j
be the number assigned to this cell by T'(\Y). We define the permutation m by
my(i) = j. Let T(\)Y be the image of T'(\) under the interchange of rows and
columns. For the Young diagram v we have

1| 5] 7| 11213}
2|6 45
Tw)' = B . Tw') = [
4] | 7]
and
(1234567
™=\1 46725 3)"



Let w,, be the positive permutation braid associated with the permutation 7.
We define e, € H,, to be the element

ex = Ey(a)wy, By (b)w, !

TV *

The element e, is shown in Figure 4.2.

a | [

Figure 4.2: The quasi-idempotent e,,.

4.4.10 Remark.

This picture can be obtained from the 3-dimensional picture by sliding the rows
apart at the top of the diagram and sliding the columns apart at the bottom. The
permutation braid w,, provides a way of flattening the 3-dimensional picture.
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4.4.11 Theorem.

For each Young diagram A, with n cells, e, is a quasi-idempotent element of H,,,
i.e.
2 _
X = Q)€

for some scalar «.

Let A # u be two Young diagrams both with n cells then e, and e, are

o
orthogonal in H,,

exe, =0  for X # p.

4.5 Proof of Theorem 4.4.11.

To prove this theorem we need some further definitions and results. The proof
of Theorem 4.4.11 is deferred until page 77.

4.5.1 Definition.

Let A and g be two Young diagrams with |A\| = |u| = n. We will call them
inseparable if every permutation m € S, sends some pair of numbers in the same
row of T'(\) to the same row of T'(u).

If there is some permutation for which no pair of numbers in the same row of
T()\) are mapped to the same row of T'(1) then we say that A and p are separable.

4.5.2 Example.

For any Young diagram )\, the pair A and A" are separable. For example, the
permutation 7, will always separate a Young diagram and its conjugate. Note
that if ¢ is a transposition which switches two numbers in the same row of T'(\)
(respectively T'(\Y)) then ¢ty (respectively myt) will also separate the two Young
diagrams. (Recall that we are multiplication to act on the right.)
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4.5.3 Definition.

Let R()) be the set of permutations of 7'(\) which preserve the rows of T'(\). For
example R(v) is generated by the set of transpositions {(12),(23), (34), (56)}.

4.5.4 Lemma.

Let A and p be two Young diagrams, both with n cells. If A > y then A and p"
are inseparable.

Proof. This is shown by induction on the number of cells.
n = 1. Here A = p and the result is vacuously true.

n=2.If X\ > p, then A = and g =H. Hence z¥ = X\. Now ) and p both
have one row, so both cells in A are permuted to cells in the same row of u"
under either of the permutations in S,, hence A and ;" are inseparable.

We now assume the result for all i < n, and deduce the result for |\| = |u| = n.
Let A = (A, Ag, -+, Ax) and let u = (pg, fay - f). We have two cases to
consider.

Case:\; > p;. Note that p; is the number of rows in p. Here the number of
cells in the first row of ) is greater than the number of rows in uV, therefore,
any permutation must map at least two numbers from the first row of A to the
same row of 11V, so the two Young diagrams can’t be separable.

Case:\; = p;. For any Young diagram «, let 7(«) be the Young diagram obtained
from a by removing the first row. Since A\; = py, then |r(\)| = |r(p)| < n, and
since A > p, it follows that r(\) > r(u). Hence, by induction, 7(\) and 7(u)"
are inseparable.

It remains to prove that if 7(\) and r(u)" are inseparable, then so are A and
p”. In fact we show that if A and p" are separable then so are 7(\) and 7(u)".

Let m be the permutation which separates A and p". Since \; = p;, the
number of cells in the first row of \ is equal to the number of rows of u¥. As
7 separates, it must send exactly one cell from the first row of A to each row
of pu. We can suppose, without loss of generality, that it is the first cell in each
row of p, for if not, there is a transposition s € R(\") which will switch the
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first cell of the row with the image of the cell in the first row of A, and 7s is
a permutation in S,,, which also separates A and p". We can now restrict = to
all but the first row of A\, and its image will be exactly the cells of r(p)¥. This

restricted permutation must, therefore, separate 7(\) and r(u)Y. .

4.5.5 Corollary.

Given any two Young diagrams, A and pu, either

1. X and p" are inseparable.
2. AV and p are inseparable.

3. A= p.

It therefore follows that if A and ;" are separable and \ # u, then AV and p are
inseparable.

Proof. Given any two Young diagrams, either case 3 holds or A > p or
A < p. By Lemma 4.5.4, if A > p, then case 1 holds and if A < p, then case 2

holds. ]

The following lemma is at the crux of proving that the quasi-idempotents are
orthogonal. Roughly speaking, the lemma says that if two strings leave a box
labelled a; and arrive at a box labelled b; then, whatever happens in between,
then the braid combination is equal to 0 as an element of the Hecke algebra.

4.5.6 Lemma.

Given any two Young diagrams, A # u with |[A| = |g|, if A and p are inseparable
then
E)\(G)HnEu(b) = 0

and
Eu(b)HnEA(a) =0.
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Proof. We will show that Ey(a)H,E,(b) = 0. The proof of the second
statement is similar.

Since H, is spanned by positive permutation braids, it is enough to show
that F)(a)w,E,(b) = 0 for an arbitrary positive permutation braid, w,.

Since A and p are inseparable, there are two cells in some row of A, the [th
say, which are sent to two cells in the same row of u, the pth say, by w;,.

Suppose that the two cells in the [th row of A are not adjacent. We can find
a transposition, 3, for which wsw, sends two adjacent cells of the Ith row of A
to the pth row of . Now [ preserves the rows of A i.e. € R()). In fact 3 only
permutes strings in the /th row of A. Hence ayws = ¢(ws)a,,. Therefore, at the
expense of a scalar, we can assume that the two cells are an adjacent pair, ¢ and
1+ 1 say.

Similarly, we can suppose the two cells in g are an adjacent pair j and j + 1,
again at the expense of some scalar. Note that

OiWr = Wr0j . (41)

By Proposition 4.4.5 we know that

a, = CLE\Z,)(1 —a o) = —aflag\zl)(gi —a),

and

b, = (L= b7"o)b) = —b7"(o; — b)bS) .
Hence E)(a)w,E,(b) has the term (0; — a)w,(0; — b) in its expression. This is
demonstrated pictorially in Figure 4.3. By equation 4.1 (0; — a)w, = w,(0; — a),
therefore, we can rewrite this subexpression as w,(o; — a)(o; —b).

Now (0; —a)(o; — b) =0 € H,, therefore, E\(a)H,E,(b) = 0.

4.5.7 Lemma.

Let 7 be a permutation which separates A and \Y. We can find permutations
p1 € R()\) and py € R(\Y) for which p,7py = 7).

Proof. Recall that A; is the number of rows in A with at least j cells.
Since 7 separates A and \Y, exactly one cell from the jth row of A must be sent
to each of the first A; rows of A".
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(i) (i)
a, a,

| o |

| i DR | @

5]
0 - )
byt) by’

Figure 4.3: A subexpression of E)(a)w,E,(b).

(This can be seen by considering each row of A in turn. There are exactly A
rows in Y. Exactly one cell from the first row of A must be sent to each row
of \V by 7, since 7 separates. Only the rows of \Y with more than one cell will
have spaces left after we have dealt with the image of the first row of A under 7.
The number of such rows is exactly A, and so forth.)

We can find a permutation p; ; € R(\) which reorders the cells in the jth
row of A, so that , for 1 < ¢ < A;, the ith cell of the row is sent to the ith row of
AV by py ;.

Note that, since p; ; only permutes cells in the jth row of A, all the cycles
in p;; are disjoint from those in p; j if j # j' and so they commute. Set
P = H?:l p1,;- Then p; € R(N).

Similarly, for the jth row of A\Y, we can find a permutation p,; € R(AY),
which reorders the cells in the jth row of AV, so that the ith cell is the image of
a cell in the ith row of A, under p;7p, ;. Let py = H;‘;l paj € R(XY). Then p;7p,
sends the ith cell of the jth row of A to the jth cell of the ith row of AV, i.e. it

interchanges rows and columns. Hence 7, = p;7p, as required. -

4.5.8 Example.

In this example, we show how to calculate p; and p, for the Young diagram v.

Recall that v = QH:D The permutation 7 = (%gg?gg) separates v and v".

1[2[3]4][5]6][7 7, [5][7(3][6]4] [2][1

Note that 7 sends the third cell of the first row of v to the first row of vV
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whereas 7, sends the first cell of the first row to the first row of v¥. Therefore
p1,1 must send 1 to 3. By similar arguments we find that p; ; = (%Z%%ggg) and

p12 = p13 = 1. Hence p; = p;; and p;7 is as follows,

1]2[3[4][s[6] [7] £, [4[3/1]2][5]6] 7] T, [5[7]1][6]2] [3][4]

(Note that the permutations refer to the position of the cell in the diagram rather
than the labels the cells carry.)

We then find that p,; = (%%ﬁggg) and pyp = G%%%Zgg)

NOting that p2,3 = p2’4 = ]_7 we have that P2 = (%%%%Zgg)

'5[7]1] [6]2] [3] [4] 22, [1[5[7] [2]6] 3] [4]

Therefore,

pips = (1324)(172645)(123)(45)
= (247365)

= 7,.

4.5.9 Corollary.

With A, 7, p; and p, as defined in Lemma 4.5.7, we have that

= -1 —1.
Wr = W, 1w W,

Proof. From Lemma 4.5.7, we have that 7 = p_'m\p;". We must prove
that W,=1wr,w,=1 1S a positive permutation braid. We know that wy-1 € R()),
w1 € R(X\Y) and they are both positive permutation braids. Note that w,,
doesn’t cross strings belonging to the same row of A or the same row of \Y.
Suppose w1 crosses the ith and the jth string. Since pr' € R()), the ith and
Jth string must belong to the same row of A. The braid w,, does not cross these
two strings since it doesn’t cross any two strings in the same row of A. Since
wy, separates A and AY, the ith and jth strings will end up in different rows of
AY. Since w,-1 € R(AY) it will not cross over two strings in different rows of

AY. Similar arguments show that if one of the three braids, w prts Wyt and wy,

P2
crosses a pair of strings, neither of the other two braids will. Therefore, since
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the three braids are positive permutation braids, w pp 1 Wy Wyt is a braid which

crosses no two strings more than once and all the crossings have positive sign.

Hence w; and w,-1wy ,w -1 are two positive permutation braids which represent
1 2

the same permutation and must, therefore, be the same braid. -

4.5.10 Proof of Theorem 4.4.11.

We will first show that e, is quasi-idempotent.

-1
v where

We know that €3 = E\(a) h Eyv(b)w
h = wr, Exv(b)wy |, Bx(a)wy, -

We can express h as a linear combination of positive permutation braids,

h= > 7w, .

TESTL

Then

3= > Y Ex(a)w; Exv(b)wy, .
TESK

A similar argument to Lemma 4.5.6 shows that if 7 doesn’t separate A\ and \V,
then E)(a)w,E,v(b) = 0. Hence, we need only consider those 7 which separate
A and \Y. In this case we can write w, = w,—1wr, w1 for some py € R()) and
ps € R(AY), by Lemma 4.5.7.

Now, by Theorem 4.4.7

Ex(a)w,-1 = ¢p(w,-1)Ex(a)
and
u)p2—1E>\(b) = ¢a(wp2—1)E>\(b) .
Therefore, if we set
a(7) = Pp(w,-1)Pa(w,1)

and

Q) = Z a(7)yr

TESH

we have that e3 = ayey as required.
Suppose now that A # . We can see readily that eye, = 0. For
ExEy — E/\(CL)LUTAE/\\/ (b)w ' Eu(a)quEﬂv (b)wv:l

TV wV "
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Since A\ # pu, either A and " are inseparable or A and p are inseparable by
Corollary 4.5.5. If AY and p are inseparable, then by Lemma 4.5.6,

By (05, By(a) = 0.
If X\ and p" are inseparable, then by Lemma 4.5.6,
Fx(0) (e, Bav (D)or, Fy(a)os, ) By () = 0.

Hence, if A # pu, then ey and e, are orthogonal as required. ]

4.5.11 Comment.

The orthogonality of the quasi-idempotents is proved in [Y, Proposition 2.9], also
using the fact that a symmetriser and and anti-symmetriser must be joined by
two strings.

4.6 Specialisation of the Hecke algebra.

We wish to show that the quasi-idempotent elements we have produced specialise
to the Young symmetrisers when we set v =x = s = 1. From this we can show
that the ideals H, ey H,, are the minimal two-sided ideals of H,, and so correspond
to the simple modules.

4.6.1 Notation.

Let g : A — C denote the ring homomorphism defined by
g(x) = g(v) =g(s) =1.
Note that g(z) = g(s — s ') =0.
We can regard C as a A-module, with the action of A given by
r-w=g(r)jw Vrel weC.

Therefore, H,, ®, C is a A-module. In fact, we can give H, ®, C a C-algebra
structure, the action of C being given by

(r@w) v =rxww Yww eC, z€H,.
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We define the product by
(h@w)(h'@w')=hh @ww"  Vh,h' e H,, w,w eC

4.6.2 Lemma

The C-algebra H,, ®, C is generated by {o;®1 : i=1...n—1}. ]

4.6.3 Proposition.

There is an C-algebra isomorphism,
fiH,®,C— CS,,

defined by
flo;@1)=(ii+1).

Proof. First, note that any relation in H, ®, C must be inherited from
one of the two algebras or the definition of the tensor product. Therefore, the
following is a complete list of relations in H, ©, C.
If [ = j| = 2, then
(Ji ® ].)(O'j ® ].) = 0,0y ®1
= oj0;,®1
Fori=1... n—2,
(0i+1 ® 1)(0’2 ® 1)(Ji+1 ® 1) = 0,410,041 ® 1
= 0;0,410; ®1

= (0;®1)(0;41 ®1)(0;®1).

From the definition of tensor product, rh ® 1 = h ® g(r), for r € A, h € H,.
Therefore, fori =1... n—1,

02l = v7'o;@l—z0;'®@1—(s—s")1®1
= 0;i®g(a™) —o7 ®g(r) - 1@g(s—s7")
= oel-0'®l
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If we define f : H, ® C— CS,, by 0; — (i i + 1) then it is obvious that f is

an isomorphism since the two algebras have identical presentations. -

4.6.4 Notation.

We will write [ : H,, — CS,,, for the composite map
H 2H oA"Y H octcs,.
Then I' is a ring homomorphism satisfying
[(ro;) =g(r)(ii+1) for r € A.

We shall sometimes describe the effect of [ as “specialising H,, to CS,,”.

4.6.5 Proposition.

The image of the quasi-idempotent e, under I' is the Young symmetriser C', €
CSh,
F(ek) == C)\ .

Proof. In order to prevent the notation becoming too clumsy, we will
denote the Young tableau T'(\) by D and the tableau T'(\)Y by DV.

Recall that C, = ApBp, where

AD = Z p, BD = Z (_1)l(q)Q7

pEPp 9€QD

Pp is the set of permutations in S,, which preserve the rows of D and @)p is the
set of permutations which preserve the columns.

Recall, also, that in the construction of ey, it was mentioned that the tableau
D is implicitly involved and that with respect to this tableau we can define

Ex(a)= ) (xs_l)_l(p)wp'

PEPD
Now g((zs~) 7)) =1 and I'(w,) = p. Hence
['(Ex(a)) = Ap.
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;_11 specialises to Bp.
A

It remains to show that w,, E\v(b)w

wﬂE/\v (b)w;;l = Z (—.’L‘S)_l(p)wTApr;A_H,
pEPpv

which specialises to
Z (—1)71(17)71')\]771';1 .

pEPD\/

Note that, since 7, sends columns of D to rows of DY, p preserves rows
of DV and 7, ! takes rows of DV to columns of D, each term in this sum is
a permutation that preserves the columns of D. We need only show that any
permutation which preserves the columns of D can be uniquely written in this
form.

Suppose ¢ € Q. We can show that 7, '¢gmy € Ppv by using similar arguments
to those above. Obviously ¢ = 7y (7} 'qmy )Ty "

Since conjugating by 7, is an isomorphism, no two elements of ()p will give
rise to the same element of Ppv or vice versa. Also note that the sign of a
permutation is preserved by conjugation therefore,

S () mpmt = 3 (<))

pEPpv 9€Qp

= > (1) "7

9€QD

Noting that (—1)74® = (=1)49) we have shown that

F(e,\) = CA .
]
4.6.6 Remark.
So far we have been able to work with A as the ring
A= v s8]/ <v i —v=6(s—s) > .
1/N N

We now wish to show that, with the substitutions z = s~ and v = s,
the closures of our elements ey, will provide the required patterns to prove the

Satellite Theorem 3.7.3.
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Note that with these substitutions ¢ becomes a genuine Laurent polynomial
in s,

sV — s N
b= T NI N N
s—5
Therefore, the framed Homfly polynomial of a knot, evaluated at z = s~'/V, v =

s~V will be a Laurent polynomial in s'/V. However, to ensure the invertibility

h/2

of the scalar «vy we must further make the substitution of s = ¢"/* and write

everything as a power series in terms of A. The ring homomorphism ¢ defined
in 4.6.1 is now defined by g(h) = 0.

From this point, therefore, we will take A to be the ring of power series in h,
C[h]. We will then be able to prove invertibility of certain elements of A simply
by showing that they have non-zero constant term.

4.6.7 Lemma.

The scalar «, is invertible in A = C[h].

Proof. To show that v, is invertible, consider what happens to e3 upon
specialisation. Since ey specialises to Cy and T is a ring homomorphism, €3
specialises to C%. Now

C} = a,C,

and since ayey, = €3, a;, must specialise to a, € Q. Therefore, as a power series
in h, the element o, must have a non-zero constant term and must be invertible.

4.6.8 Remark.

In the proof of the last Lemma, it was noted that under I" the scalar ay, specialised
to the scalar a,, i.e.
['(ay) = [[ hook lengths.

In particular, note that this is non-zero and corresponds to the evaluation of
at v+ = s = v = 1. This fact will be used in the proof of Theorem 4.8.8.
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4.6.9 Theorem.

With the substitutions described above, the Hecke algebra H,, has a direct sum
decomposition

H,= @ Hye\H,
[A|l=n

where the 2-sided ideals H, e, H, have A-dimension d3.

Proof. Recall that CS,, has a complex vector space basis given by the n!
permutations, {m; : i=1...n!} in S,.

By Proposition 4.2.2, H, is freely generated as a A-module by the n! positive
permutation braids, {w; : ¢ =1...n!}. Under I, a positive permutation braid
is taken to its associated permutation. We may choose the ordering so that
I'(w;) = m;. By Theorem 4.3.5

CS, = @ €S,C\CS, .
It is an immediate consequence of Theorem 4.3.5 and Proposition 4.6.5 that
r (@ Hne,\Hn) = (S, .
[Al=n

Since T is surjective, we can find v; € @ -, HnexH, for which T'(v;) = m;. We
can write v; as a linear combination of the positive permutation braids

n!
=1

Let B be the n! x n! matrix whose (ij)th entry is b;;. It is enough to show that
the determinant of this matrix is non-zero, since then w; € @ H, e\ H,, for each ¢
and thus H, = @ H,eyH, as required.

We know that I'(v; — w;) = 0, therefore, in CS,,,

(9(bii) — 1)mi + Zg(bij)wj =0.
i#j

However, since the m; are a vector space basis for CS,,, this implies that

g(bij) = 6;;
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where 0;; is the Kronecker delta. Hence b;; is a power series in h which has
non-zero constant term if and only if ¢ = j. We can write B as

B=1+hB

for some matrix B’. It follows that the determinant of B is a power series in h
with constant coefficient 1 and hence is invertible in A = C[h] as required.

A consequence of this result is that {w; : ¢ = 1...n!} is a A-basis for
@\M:n Hnex\Hn'

Let 0, denote the A-dimension of H, ey H,, for each A. From the first part of
this proof, we have that

> 0y =nl. (4.2)
[A|l=n
Since I'(ey) = C and T is surjective,

From the classical result Proposition 4.3.7, the dimension of CS,,C,CS,, as a
complex vector space is d3. By Theorem 4.3.5 it follows that

> di=nl. (4.4)

[A|l=n

Suppose that H,e)H, has A-basis {w;,w,,...,w;}. By equation 4.3, the set
{T'(w,),T(wy), ..., I'(wys)} must span CS,,C,CS,,. Therefore, for each A,

O\ > d3. (4.5)

Combining equations 4.4 and 4.2 we have that

|A|l=n |A|l=n

Equations 4.5 and 4.6 together imply that 9y = d3 as required.

4.6.10 Comments.

We can now reintroduce the quantum group invariants of Chapter 3 and prove
Theorem 3.7.3. First we formalise an idea that was implicit in the construction

84



of the quantum group invariants. Given a diagram in R, we have a recipe for

constructing an element of the endomorphism ring of V", where V4 denotes the
fundamental representation of U,(sl(N)). Theorem 3.7.1 allows us to consider
elements of S(R}) since two tangles which are equivalent in S(R]) give rise to
the same module endomorphism, provided we work with A = C[h]. Thus we
obtain a representation of the Hecke algebra H,, on End(V$™).

4.6.11 Theorem.[Ji2]

Recall that V;; denotes the fundamental representation of U,(sI(N)). For each n
and N, there is a representation of the Hecke algebra H,, on End(V5"),

¢ : H, — End(V5")

given by the substitutions z = s™/N andv=sN and 0, ~ 1 ®--- 1@ R ®
1®---® 1 where the R sits in the (i,7 + 1) position of the n-fold tensor. This
homomorphism is surjective. ]

We wish to consider the images of the endomorphisms ¢(ey). First we prove
the following Lemma.

4.6.12 Lemma.

Let A = (A1, Ag, -+, Ap) and AY = (A, Ay, -+, \),) be a Young diagram and its
conjugate diagram. The representation V) is the only summand to occur in both
Cav @ Gy @ -+ v, and dy, ®dy, ®--- ®@d,,. It occurs with multiplicity 1.

Proof. By considering the leading terms of the two Giambelli formulae for
A, we see that A is a summand in the decomposition of both the tensor products.
The main work is to show that it is the only summand common to both products.

Any summand of ¢yv @ ¢y ® -+ ® ¢y must come from a succession of strict
expansions of ¢yv, by columns labelled from 1 to A;. The only cells which can
be added to the first row must carry the label 1. Therefore, at each stage we
can add at most one cell to the first row. It follows that any summand of
Cav @y ®---@cyy can have at most A; cells in the first row. If a summand has
A; cells in the first row we can use a similar argument to show that it must have
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at most Ay in the second row and so forth. Continuing in this manner, we must
either obtain A as a summand or at some point the length of the first column
must be increased to be longer than Y. Such a diagram, therefore, cannot be a
summand of dy, ® dy, ® - -- @ d,, since at most A\Y — 1 cells can be added to the
first column of d,,. This follows from the fact that no two cells with the same
label can be placed in the same column of a strict expansion.

From this description, it is clear that in either tensor product there is only one
way to obtain A via a strict expansion. The multiplicity of V), must, therefore,
be 1.

]
4.6.13 Lemma.
The scalars « for the Young diagrams rm and H are given by
am = s[2], ag = s712].
Proof. We give the proof for e¢5. The proof for g is similar.
2
eéj = <H + a7's %)
_ -1, \ 22 o
= H + 2z s A + X °s é
!
_ -1 -1 -1\
—H—l—2xs%v+xs<s(ss)%v+msu>
= (1+5) ‘ ‘ + (2+s(s—s))als %
_ -1 2y, —1. \
=  s(s+s7) H + (1452 s A
= s[2]e
]

4.6.14 Theorem.

The endomorphism ¢(ey) of Vi¥" is a scalar multiple of the projection map onto
a single copy of the irreducible U, (sl(N))-module V.

Proof. The proof is an induction on n.
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n = 1. Since eq is the identity in H; and ¢ is an algebra homomorphism, ¢(eq)
must be the identity map as required.

n =2.

We have the following decomposition for V2,

The endomorphism ring has dimension 2 and is spanned by, for example, the
identity and the R-matrix. Thus since ¢(e,) is a non-zero linear combination of
these two maps, it must be non-zero.

We know that e1eq = 0 as elements of the Hecke algebra, therefore, their
images must be disjoint; the image of ¢(e—) being either Vi or VH' The image
of qﬁ(eB) will then be the complementary summand.

By Schur’s Lemma, upon restriction to the appropriate irreducible module,
the homomorphisms, being non-zero, must be isomorphisms. Since ¢(e)? =
axp(er), it follows that upon restriction to the irreducible summand the map
is a scalar multiple of the identity map i.e. up to a scalar, ¢(e) is a projection
onto one of the irreducible summands. Similarly, ng(eH) must be a projection
onto the other summand.

We decide which summand is the image by applying Theorem 3.7.1. Evalu-

ating the framed Homfly polynomial at z = s~/ and v = s~V we find that
L
L (o) = NIV + 1712,
[0
which is the quantum dimension of V7. On the other hand
L,
—X(epg) = [NV - 1)/[2].

which is the quantum dimension of VB'
We now assume that the result is true for all n < k.

n==%k.

This is split into two cases. The cases where the Young diagram is a single
row or single column require a little more thought and will be dealt with later.
For now, assume A is a Young diagram with k& cells and at least two columns and
two rows.
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Consider the skein diagram for e,. By the induction hypothesis, the image
of ¢(ey) is contained in the image of the composition of the projection map to
dy, ®dy, ® -+ ®dy, and the projection map to ¢y ® cyy @ -+- @ Cyy,.

By Lemma 4.6.12, the image of ¢(ey) must, therefore, be either 0 or the
irreducible V). Hence, applying Schur’s Lemma, ¢(e,)|y, is an isomorphism or
the zero homomorphism. Fortunately, ¢(ey) cannot be the zero homomorphism
since Theorem 4.6.11 says that ¢ is surjective and by Lemma 4.6.12, no other
ideal Hye, H, could possibly contain the preimage of the projection map for Vj.
Therefore, ¢(ey) must be an isomorphism of Vy and ¢(e3) = d(ey)? = aro(ey).
We know that «y is non-zero, and therefore ¢(e,) must be a scalar multiple of
the identity when restricted to V3. Hence ¢(ey) is ay times the projection map
as required.

A=d,.

Set \' = d,_;. We know that (ey ® 1)ey, is a non-zero scalar multiple of the
element ey. Hence the image of ¢(e,) is a summand of the image of ¢(e)y ®1). By
the induction hypothesis, the image of ¢(e,) is therefore a summand of d,,_; @ V.
This decomposes into two summands, d, + V,,, where y = (n — 1,1). But we
have already shown that ¢(e,) is the projection map from V" onto V, and since
A and p are orthogonal, the image of ¢(e,) must be disjoint from V,,. Hence it
must be d,,. We use similar arguments to those above to show that ¢(e,) is not
the zero map and is in fact the required projection. The proof for the case A = ¢,

is similar.
]

4.6.15 Remarks and notation.

Note that the above proof implies that the endomorphism ¢(ey) is the zero map
if and only if it is projecting onto the zero module in U,(sl(N)). Therefore, ¢(e,)
will be the zero homomorphism if and only if A has more than /N rows.

A consequence of the above result is that e, behaves nicely under framing
change. In the quantum invariant set up, we know that
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for some scalar, f,. It follows that

[

P = fréex.

The value of fy, calculated in [M1] by evaluating the full twist coloured by ¢{"
in two ways, is

where

_AIAL = Do
A dx
and oy and d, are as defined in Definition 2.4.3. It is not difficult to show that n,
is always an integer. It satisfies the following recursive relation. Let A" denote the
Young diagram obtained from A by removing the first column (which contains
AY cells). Then
na =y 4 2N+ A = (A))?

We will now prove the Satellite Theorem 3.7.3. Write ¢, for the genuine idem-
potent z-ey. Let Q) = &, be its closure in C™.

4.6.16 Theorem.

Let C' be a framed knot coloured by the irreducible representation V. Let S be
the satellite knot C' x 2, with companion C' and pattern ). Then

J(C5Vy) = An(S).
The result also holds for links where each component coloured by V), is decorated

by Q).

Proof. If X has n cells then Vy is a summand of V5" with multiplicity d.
The knot C' is the closure of some (1, 1) tangle, say T. Let T™ be the n-string
parallel of T'. Then
J(T™) on — n
Dipen GV = Xjp=n tudyVy

for scalars
b, = J(T; Vu) €A.

89



Now S is the closure of ¢, o (™. Therefore, applying Proposition 3.6.7 and
Theorem 3.7.1

XN(S) = J(S;VD,V[],"',V[])
= try(J(e)) o J(T™; Vi, Vi, - -+, Vi)
= tr(J(ex) o J(T;VE™)).

By Theorem 4.6.14, we know that .J(e,) is the projection onto the irreducible
summand Vjy, therefore,

try(J(ex) o J(T; VE™)) = J(C; Vy).

Now, assume that L is a link with £ components and that the kth component
is coloured by V), where |A\| = n. We can present L as the closure of a (1,1)-
tangle, T, (by cutting open the kth component). Let 7 be the tangle obtained
from T by taking the n-string parallel of the kth component of L. Then

J(LiVays s Va Vo) = trg(J(T5 Ve, Va5 Vay))
= try(J(exT™; (Vay, -, Val,s Vi -+, Vi)
= try(J(e)) o J(T™;Vy,, ..., Vo, Vi - -, Vi)
= J(L5Va, e Vo, Vs Vi),

where L' is the link obtained from L by decorating the kth component with
Q»,- We can repeat this process for each component, to obtain a link with every

component coloured by V5 and we can then apply Theorem 3.7.1. -

4.6.17 Comments and notation.

Theorem 4.6.16 holds only if we are very careful about how we index the rep-
resentations of U, (sl(N)). We must restrict ourselves to those Young diagrams
with fewer than N rows. Later we will show that if we instead restrict our set
of colours to the representations which correspond to Young diagrams with a
single column then if ¢; is the zero module (i.e. k& > N) then the substitu-
tions for x and v will kill Xy. Since the representation ring Ry is generated
as an algebra by these representations, in theory, we can calculate all possi-
ble U,(sl(N))-invariants by colouring with polynomials in this restricted set of
colours. Hence we can calculate the quantum invariants of any link with any
colouring for all N at once.
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We will show that the patterns @), are given by the Giambelli polynomials
for the Young diagrams A. From this and the above comment it will follow that
we will be able to calculate the quantum invariants for all N at once without
having to express every colour as a polynomial in the Young diagrams with a
single row.

4.7 Genuine idempotents and the skein of the
annulus.

The last theorem required genuine idempotent elements of the Hecke algebras.
So far, we have only calculated the scalar a, for three Young diagrams, namely
0, (0 and H.

Here we calculate the scalars « for the Young diagrams cj, d; and py,; for
every k, [ € IN.

4.7.1 Remarks and notation.

To avoid clumsy notation, we shall denote the quasi-idempotent associated to
the Young diagram s by ey, where i, is the hook-shaped diagram as defined
in Remarks 2.5.9 and shown below.

el —

THEES
piy =K I

| O

Similarly, we will denote the scalar by «y,; rather than «,, ,. Hence

K,

2 _
€r1 = Ok i€k -

We will also denote by @y, the closure of the genuine idempotent in C* related

to the Young diagram s :
1
Qry = — €k
) ak,l )

In the diagrams, we will represent the elements E;(a) and E;(b) by boxes.
The boxes representing £(b), corresponding to columns in the Young diagram,
will be shaded to distinguish them from those boxes representing the elements
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E;(a), which correspond to the rows. We shall label the boxes by the number of

strings they involve. For example, e, ; will be pictured as a shaded box bearing
the label k.

If &' > k then €k 1€k,1 = ¢a(ek,1)ekr,1 and if ' > [ then €11 = ¢b(61,l)61,lr.
Therefore, oy = ¢,(ex1), which we calculate by induction.

First we will prove a Lemma which will be used repeatedly to manipulate the
quasi-idempotents.

4.7.2 Lemma.

In H,, we can decompose e;; into a linear combination of terms which involve

€1,0-1-
-1
-2 ' T
ey = ey 1®ey; + X:(I_IS)ZJr1 P
i=0 | d |
fr
-
-2 ) C
= + > (a7 ts) ! o) -
=0 Il‘l/\l |
Similarly,
k-1
k—2 ) T
€kl = €p—1,1 ®€1,1 + Z(—xilé’il)ﬂrl T
7]
-ji=
k-1
k—2 ) T
_ + 37 ~1g=1)i+l o
i=0 | d |
A
- =
Proof. We give the proof for e; ;. The proof of the result for e;; differs

only in the weights assigned to the crossings.
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Let w, be a positive permutation braid on k strings, with (k) = i. Define a

permutation 7’ € S; by
() 1< m(j) <i
(4.7)

PG =1 k j=k
()1 i<n() <k

Note that 7' is uniquely determined by . Let 7; denote the permutation

The positive permutation braid w,, has k — ¢ positive crossings,
(BB

= MW

We, =

z .
ék—l —

The braid w,w,, is a positive permutation braid, since the kth string doesn’t

cross any string in w,.. Hence

Wyt W, = W,y

for some permutation p € S;. Now

p(j) = m(7'(4)),

hence,
™ () 1<7'(j) <i
p(j)=4{ (@) +1 i<7(j) <k
i (i) = k

From its definition, 7'(j) = 7n(j) for 7'(j) < 4, and when ¢ < 7'(j) < k, then
7'(j) = n(j) — 1. Finally if 7'(j) = k then j = k, therefore

7(4) 1<7'(j) <i
i) =0 7 -141 i<n()<h
i =m(k) j=k

Therefore,
Wy = wwrwm .
Given a permutation 7 € S, and a fixed i, the permutation 7’ is uniquely
determined by m. Suppose we have two permutations 7m,my € Sy with m(k) =

Ty(k) =i and 1, = my. When 1 < 7(5) < i, then

m(j) = m(j) = m(j).
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Therefore, 1 < my(j) < i and this implies that
1< m(j) <i.

Hence,
my(j) = ma(j) = m()) -
We can similarly show that for i < m(j) < k,

proving uniqueness.

Now, suppose we take p € S, for which p(k) = k and fix i. Define = as
follows,

1< p(j
(i) = q pU)+1 i< p(j) <k
j=k.

Then 7 is uniquely determined by p and p = «'.

We have established that any positive permutation braid, w,, with m(k) =i
can be written uniquely as a product of a permutation braid in which the kth
string passes straight through and w,, and that all such products occur.

Hence, taking into account the weighting given to the crossings in ey, we
get
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as required. -

4.7.3 Proposition.

The scalar oy (associated to the Young diagram cy) is given by

(k]!
1 = HED2

The scalar for ay; (associated to d;) is given by

]!

M= S
Proof. We will prove the result for the Young diagrams c¢;. The proof for
d; is almost identical.

First, recall that e, ; = by, as defined in Definition 4.4.3, and that b, could
“swallow” any braid on k strings at the expense of a scalar as described in
Theorem 4.4.7. The proof goes by induction.

For k =1 we know that a;; =1=1/s".

For k > 1, note that for any i € IN, a;; = ¢,(e;1). By Lemma 4.7.2

(_x—ls—l)i-i—l [TT1FA

L] |

_|_
Il ?\T
(=] )
NpANE

.
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where the braid

R

in the ¢th summand has 7 positive crossings. Therefore, by the induction hy-
pothesis and Theorem 4.4.7

2 [k_l] = 71 —1\i+1 —1\e+1
i = anEapt T2 | (Cr s )T (s )
[k—1]! [k—1]t &
- <S(k23k+2)/2 + 5(k2—3k+2)/2 Z
(k=1 (1+s ¥ [k—1]
R GEDYE g k1 k1

U ((s —s s R - >>

s(k2—k)/2 (s — s 1) h+l

[k —1]! [sh—ls — g 2h+lgk-1
SR ( (s —s71) > k1

(k]!
Gh(k—1)72 Ok1

as required.

|
4.7.4 Proposition.
The scalar oy, defined in Remarks 4.7.1, is
[k+1—-1][k—=1]1[l-1]
Xkt = S(R(h—1)—I(I—1))/2 :
Proof. First, we give a different presentation of ej;, which is easier to

work with,
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Therefore, applying Lemma 4.7.2

-

: ey

|

9]
I
I

in

Wil
mij
o

—\

|
+
i
8
[V

-1 71)i+1

Y

Now, apply Theorem 4.4.7, first to the boxes with ¢ positive crossings and then
to the strings which join white and shaded boxes :

i
gﬁ

B

[\")
\
\—,};
N AR

—\

(_x—ls—l)i-i-l

i

=Y

B

=Y

I
VR
~ kSl
Il |
o (]

—~~
8
L
»
L
~
+
=
—~~
|
8
»

L
~
N—

j:_\
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il

= -z (gs—%—l> (25)' " (ws) 0D ——

T
-

.

| X
Sl

_ —xfl(sfl—|—---—|—872k+3)($8)7(l71)| .l. (/
\

k

The coefficient of the last diagram simplifies

xil(sfl S 872k+3)(x8)7(l71) — x7187k+1(8k72 NS 87k+2)(x8)7(171)

= ot TR — 1)(2s) (Y.

Apply Lemma 4.7.2 to the lower of the two rows of [ cells and then use Theorem
4.4.7 to obtain

| m/
\I = gl ||| F (v7's)" iy |L
IEE

k /L'ﬁ /L'W

N
|
N

<.
Il
o

= (—55871)041,1710%71,1 [k ]
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N

Note that

To see this, note that the [ — 1st and /th strings are two strings of e;; which are
also adjacent strings in e, ;. We can factorise both e,; and e, ; by Proposition
4.4.5, to obtain the term

(011 —a)(o1_1 —b) =0.

Therefore,

ei,z = Qp_1,100 €k + ka[k—1](335)7([71)(335)1710%—1,1041,1—1

= (ap_r 00y + s7Fk — ag_ 1100, 1)ery

Now, applying Proposition 4.7.3,
s [k — Lo 110001
[k —1]'[ —1]! 7] s~k — 1]
s(k—1)(k—2)/2 s D2 T g 1-2)/2

[k =11 = 1] (7] + s7F[k — 1]
— T sk—Dk-2)2 g lI—1)/2gl—1

[k — 11 — 1)1 [ sl=k(sih1 — g=1=k=1 4 gh=1=l _ —k+1-1)
— T sk—Dk-2)2 ( s I=D/2gl=1(5 — 1) )

[k - ]-]’ [l - ].]' k1 (Sl+k_1 _ S—Z—k)-i-l)
SN (k—2)/2g-10-1)/2 | ° G5

Q1,101 +
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k—1'l = 1]'[k +1—1]
slk—D(k—2)+2(k—1)}/25 1(1-1)/2
k=1l =11k +1—1]

sk(k=1)/2=1(1-1)/2

as required.

4.7.5 Remarks.

We can easily show that the scalar oy specialises to the scalar a,, , defined in
Remarks 4.3.8.

For the Young digram sy, the hook length of the corner cell is given by
k +1—1. Down the column the cells have hook lengths £ — 1, £ —2, ..., 2, 1.
Along the row, the product of the hook lengths is (I — 1)!. Therefore,

[I hook lengths = (k + 1+ 1)(k — 1)!(l — 1)!
Now, since [i] — i as s — 1, it follows that aj; specialises to a, as expected.

Recall that @y denotes the closure of the genuine idempotent (1/cy) ey.

4.7.6 Proposition.

The elements Q) form a free A-basis for C*.

Proof. We will show that the set {Q, : |\ = n} is a A- basis for (™),
By Theorem 2.3.10 we have a surjective linear map

w: S(RY) — ™.

By Proposition 4.2.2, since S(R?) is isomorphic to H,, every element of C™) can
be expressed as the closure of some element h € H,,.

Let ¢ € C™. Choose h € H, such that h=c. By Theorem 4.6.9, we can
write

ho= 3 hyexhy
[A|l=n
= Z (1/c) h)ﬁihw

[Al=n
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Therefore,

¢ = > (1/an) hyeihy

[A|l=n
= Z(l/%) €ATL;€A
[A|l=n
where
hy = hyhy .

The remainder of the proof applies the techniques used in the proof of Theorem
4.4.11 (the proof can be found on p.77). From the definition of e,
6>\h>\6>\ = EX(CL) (CUT)\E/\\/ (b)w_l h,\E,\(a)wﬂ) E/\\/ (b)w_l

TV TV *

-1

We can write wy, Eyv (b)wy |, haE)(a)wy, as a linear combination of positive per-

mutation braids, say >, v,w,. Therefore
exhyey = Z%Ek(a)wTE/\v(b)w;;V )
If 7 is a permutation which doesn’t separate A and A" then

E\(a)w,Eywv(b)w;!, =0,

TV
When 7 does separate A and AV, then by Lemma 4.5.7 we can find permutations

p1 € R()) and py € R(\Y) for which

Wr = wﬂlwﬂxwﬂz .

Substituting this into our expression for eyhyey, we can remove w, and w,, at
the expense of some scalar, 3(1) € A. Therefore,

exhyey = Z B(T)7-ex -

Thus
¢ = X /ey (Ti0)a
[A|l=n a
= Z Q@
[A|l=n
where

= 2%5(7) eAN.

101



We have, therefore, shown that given any element of C(™ we can express it as a A-
linear combination of the @, for which A has n cells. Therefore, {Qy : |\ =n}
spans C™. In fact, this set is a basis. By Corollary 2.3.8 and Lemma 2.5.8
the A-dimension of C™ is equal to the number of partitions of n. We have a
set of this cardinality which spans C(™, hence, since A is a commutative ring,

{Q\ : €Y} isa A-basis for Ct. =

We next wish to calculate the value of the framed Homfly polynomial X
(defined in Definition 2.2.1) for the unknot decorated by Q;. From this we
derive the value of the unknot decorated by @) ,.

4.7.7 Proposition.

kogy=lg=(i=1) _ gi-1
X(Qk,l) = H

=1

gt — gt

Proof. The result follows by an induction on k, starting at k =1,

1

vaw-r(O) -2t

Assume that we have the result for all + < k. It is enough to show that

7187k+1 — Vs

Y@ - (- ) Qo) (1)

P
as we can then use the induction hypothesis to obtain

vlg Rl gkl k=l —lo—itl _ il
s

X = . :
(Qk,l) k _ ka: 7,1:—[1 gt — gt

,U—ls—z—i—l _ ,Usz—l

SZ_S 7

We now establish equation 4.8. Recall that since we are working in C*, we
can slide pieces of tangle off the top of a diagram and reintroduce them at the

bottom.
1 .
X(Qk,l) = —X(ek,l)

Q1
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1 k—2
_ Py 4 =11yt
il | = AP
1 v i—w ‘ ‘ ‘
= X
Qg1 §s—s1 Lﬂkl—’_‘
E—2
e
i=0
-1 E—2
. ak*l,l v — v —9i—1
(e v

[k sMEEL2 (vl —

(k]! s-DE=2)/2 \ g — g

k=1 [ =1 _ gy _ v7187k+1(8k71 .
s— 8§~

(K]

Sk71(v71 EEPTSPS v’ls*%”)

_ ( ) X(Qeor1)

sk — gk

plg TR gk
s

k-1
k_ gk > X(Qk—l,l) .

Therefore,

as required.

4.7.8 Corollary.

T ’U_IS_k—'_l[k — ]_]> X(Qk—l,l)

T ) ) X(Qp-1,1)

Evaluating the framed Homfly polynomial at v = s™" and z = s

1 for k=N
(@) = { 0 fork>N.
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Proof. By Proposition 4.7.7

Q) =11 -

T __ A
Faiet st — s
When i =N +1and v =s7%
plg—(i=1) _ il GNg=N-141 _ ~N N+1-1
gt — g1 o gN+1 _ g—(N+1)
1-1
T GNFL _ g~ (N+D)

= 0.
Therefore, since this term is a factor of Xy (Qy,1), for k > N,
XN(Qk),l) =0 for k> N.

By Proposition 4.7.7

(=) (vTsTh —ws) (v ts™NHE — psN )
n(@ua) = (s—s71) (s2—s52) (sNV — s N)
_ (SN o S—N) (SN—l o 87N+1) (8 o 8—1)
(s —s~1) (s —s72) (sN —s~=N)
= 1.

4.7.9 Proposition.

Let L be a link with n components. Let L’ be the satellite of L, obtained from
L by decorating the ith component by the pattern @)y, for ¢+ < n and the nth
component of L by Q. If £ > N then

Proof. The link L can be presented as the closure of a (1,1)-tangle, T,

on the nth component. Therefore, we can present L' as the closure of 7" o ¢ ;
which is a (k, k) tangle. (Here €51 = (1/cv1) €1

LI = 1/04]6’1
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Since 7" is an element of S(RY), it can be swallowed up by e, at the expense
of a scalar, y(T"). Therefore,

A (T7exs) = T Xy (@)
Now by Proposition 4.7.7, since k > N,
Xy (er1) =0,

therefore,

4.7.10 Lemma.

The following relation holds, at v = s~ and z = s~'/V:

N N d
Xy = o7 'sTV[N] Ay /
L N | [N ] W

where the relationship is local, i.e. if two link diagrams are identical except

where shown in the above relation, then X’y will evaluate to the same value on
either diagram.

Proof. For readability, we express the equalities as equalities between
diagrams, despite the fact it is the values of Xy for each diagram which are
equal.

— (= ts ! U] | by Lemma 4.7.2

_ ‘ - (]

[ N ]
= _(Jil(_xlsl)m(_ml)i) % by Prop. 4.7.9




|
4.7.11 Lemma.
Let L; and L, be two link diagrams which differ only where shown.
Ly Ly
The framed Homfly polynomial of L, is equal to that of L,
Proof. To prove this, we consider the value of the framed Homfly poly-

nomial, X'. To make the proof easier to read, we will write down equalities as
if they held for the diagrams, although the equalities will hold only for their
quantum invariants.

by Lemma 4.7.10
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by Theorem 4.4.7

We can apply Lemma 4.7.10 to the first term of the expression on the righthand
side, to obtain

T

- (f‘”’s‘N[N](—xs—l)—z(N_l)

( x1s™N[N]

— a5 N[N](s - s—1><—xs—1>-2<N—”) E

We now simplify the coefficient of L; in the above expression.
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r 35N s 1) 2(N-1)
[N]( ) —ZS—N[N](S_ 871)(_l,871)72(N71)

z1s™N[N] -7
— pINGIN2 N N(N Ny 2N
gV GIN=2 N N=2(N =)
— g EN(PNR N2y o2
_ p2Ng2

Upon setting z = s~/ we have that

as required. -

Lemma 4.7.11 is a specific case of [Y, Lemma 1.3], namely [Y, equation 20].
The more general result in not needed in this thesis.

4.7.12 Proposition.

Let L =L,ULyl---UL, be an n-component link. Denote the link obtained
from L by removing the nth component by L’. Suppose the ith component is
coloured by V), for i« <mn and that V), = cy. Then

Xy (L) = Xy(L').

Proof. By Lemma 4.7.11, we can switch the sign of any crossing which
involves the nth component of L without altering the value of the invariant.
Therefore, we can assume the nth component of L is unlinked from all the other
components. Further, we can unknot the component to obtain a distant union
of L' and an unknot decorated by @y ;. Therefore, evaluating Xy, we get

XN(L) = XN(LIUQN,I)
= (L)X (@n,)
= Xy(L) by Proposition 4.7.8.
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4.7.13 Remarks.

A consequence of Propositions 4.7.9 and 4.7.12 is that we can calculate the
U,(sl(N)) invariants for all N at once, so long as we stick to colouring links with
the ¢;. However, since the ¢; generate R, as an algebra, we can calculate every
quantum invariant, as a linear combination of links coloured by the ¢;.

We next demonstrate that a relationship which we know to hold in R, also
holds in C* and go on to calculate the value of X for the unknot decorated by
Q1. It is not difficult to establish the value of X'(Q;,) directly (as we did for
X(Qy.1), but the indirect approach taken here is used in the proof of Proposition
4.9.8. We first establish a skein theoretic result for C*.

4.7.14 Lemma.

Consider the closures of the ey, in the skein of the annulus, i.e. €, € C*. The
following relation holds :

' ekrg+ 5 [kepgp = s" [l + k] e e, -

Proof. For the sake of simplicity, the pictures only show the tangle which
we close to form an element S(S! x I'). However, since we are working with the
closures, we can slide pieces of the diagram off the top and place them on the
bottom of the picture without changing the diagram as an element in the skein
of the annulus.

Cht1) = ‘| o1 |

<.
Il
o
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where there are 7 crossings in the braid

)

Since we are working in the skein of the annulus, we can slide this braid around

the annulus so that it appears under e, ;. The properties of e;; mean that we
can remove each of these braids at the expense of a scalar, (—xs~1)". We obtain

ék+1,l — | I | | k | + Z (_x—ls—l)i—l—l(_xs—l)i

€kl+1 =

Hence

sy + s ¥k eri = (s'[1]+s7F[k])ér

= Slik [l + k] é\l,l é\k,l
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4.7.15 Comment.

A version of Lemma 4.7.14 appears as [Y, Lemma 1.2]. However, since Yokota’s
quasi-idempotents contain an extra row of antisymmetrisers, the expression in-
volves a term which is not one of the quasi-idempotents. Thus the idea that this
is the “Giambelli polynomial” for the decomposition of e ;e;; is not emphasised.

4.7.16 Proposition.

The idempotents (), satisfy

Qi1+ Qrr1 = Qr1Qry -

Note that this is the decomposition of the product of ¢, and d; in the ring of
Young diagrams.

Proof. From Lemma 4.7.14 we know that

sl ars11Qrirg + 5 Fklar 1 Qrisr = 8 1+ Ko 10,1 Qr1 Quy

Now
s' 1ot B UK + [[E)I[ — 1]1skE-D/2g-10-1)/2
SR+ klogany, R[4 k]skED2 D2 K1)
o
= Glkgk
= 1.
Similarly,
s Pk s R[R][K A+ [k — 1P D2 gD/
SR+ Kloggaony S R[] + k]sFCD/2g D2 [R]I]!
ok
T kgl
= 1.
Therefore

Qi1+ Qrr1 = Qr1Qry -
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4.7.17 Proposition.

Let us denote by Q¢(X) and Qp(X) the power series

o0

Qc(X) =Y (-1)*Qp X"

k=0

and

X) = Z Qqu .
1=0

(These formal power series are can be thought of as C* versions of the formal
power series, C'(X) and D(X), defined in Proposition 2.5.10.) Then,

Qe(¥)05(¥) = ( L(-1#Qu ¥ ) (L ux) =1,
k=0
Proof. The coefficient of X° in Q¢ (X)Qp(X) is given by Qp1Q1,¢ which

is the empty knot, which acts as the identity in CT. Therefore, the coefficient of
X%in Qc(X)Qp(X) is 1. Tt remains to show that the coefficient of X™ is zero
for m > 0 i.e.

m

Z(_l)ka,lQl,m—]g =0.

k=0
To do this we use the relation established in Proposition 4.7.16.

SN Q@i = Qum+(—1)"Quma
k=0
-1

+ > (-1 (Qk-l—l,m—k + Qk,m—k+1)

1

3

=
Il

= Ql,m ( )QOl + Z Qk—l—lm k

+ > (D" Qpirm—r

= Ql,m + (_l)QO,l + (_l)m_lQm,l + (_I)Ql,m
m—2

+ Z (—1)F (Qkﬂ,mw — Qk+1,mfk)
k=1
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The following Lemma, which provides a factorisation for X(Qc (X)), was
suggested, in it’s present form, by Morton.

4.7.18 Lemma.

We can express X'(Q¢(X)) as an infinite product of rational functions in X with
coefficients in the ring A.

00 1 — 2}82k+1X
X(QC(X)) = kl_[ 1 — p-lg2ktly
=0

Proof. Let us denote the right hand side by P(X). As a formal power
series,

P(X) = Zer” .
r=0
Note that
1 —wvsX

P = Tx

P(s*X)
and so
(1—v1sX)P(X) = (1 —vsX)P(s*X).
Expand both sides as power series in X and compare coefficients of X" *!. Then

—1 _ o 2r42 2r+1
Pry1 =V Spr =35 Pry1 — VS DPr,

and so
(0715 — ps?rtl)

DPry1 = (1 —_ SQH'Q) DPr
8T+1(1}ST _ v—ls—r)
ST (sT L — S—r—1)p7‘
(vs" —v7ls™")

(51 — S—(r+1))p7"

The value of p, is given by setting X = 0,

po=P(0)=1.
Therefore, for » > 0,
ropsiTl = U—IS—(i—l)
p'r‘ - Zl:[o Si . Sii
r v—ls—(i 1) vsi—l
= -1 - -
I
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Thus,

4.7.19 Proposition.

The value of the framed Homfly polynomial on the unknot decorated by (), is

I 1ai-1 o o—(i-1)
v S vSs
X(Ql,l) = H gl _ g
=1

Proof. This result can be proved directly, as for X'(Q,1), but in light of
Lemma 4.7.18 we give the following, more elegant proof. By Proposition 4.7.17,

X(QcQp) = X (Qc)X(Qp) =1.
Therefore, by Lemma 4.7.18
00 | _ p-lg2k+l X

X (Qp) = H 1 — ps2ktl Y

k=0

The power series expansion of X' (Qp) is therefore given by writing v for v™! in

the power series X' (Q¢). Therefore,

X)) = Y ((—1)l ﬁ v ”.18“> X!

2 —1
=0 =1 § S
00 Lop—lgi—1 — vs—(z—l) l
= 2\l —%== X
=0 \i=1
and hence,
I, =11 —(i—1)
v S — VS
X(Ql,l) = ' gl — g—i

4.7.20 Corollary.

The denominator of Xy (Q;;) is “no worse than” [N — 1]!. By this we mean
that there are no poles at any roots of unity of order N or larger. This will be
important in Chapter 5.
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Proof. By Proposition 4.7.19

. (Ufl - U) (12718 — vs’l) o (quslfl _ vs—lﬂ)
B ) Ry P =)
Therefore,
Vo) (s —s Vel (Vs — s st
An(Qiy) = (s—s 1) (2 — 57) =51
NN+ [Nl
S i

It is clear that if [ < N, then the result is true. Suppose [ > N. Then
[N][N +1]---[2N = 2][2N — 1][2N]--- [N +1 —1]
[][2]--- [N = 1][N][N +1]--- [N + [ — N]
L+1[l+2]---[l+N—1]

[N —1]! '

Xn(Q1)

We next prove a result concerning the dual Young diagrams for the c;.

4.7.21 Proposition.

XN(Qk,l) = XN(Qka,l) .

Proof. By Proposition 4.7.7 and Theorem 4.6.16
N—k (N —j+l _ ~Nj-1
An(Qn-r1) = 11 e ]Sj __szj ’
sz—k gN—j+1 _ g~N+j-1
- i1 §h — 577
B @ [N —1] [k + 1]
SR IN-A]
_ [V]!
[N — k]! [k]!
B @ [N —k+1]
T
= Xn(Qk1)-
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4.7.22 Comment.

This result follows automatically from the properties of the quantum group in-
variants since the Young diagram cy_j is the index for the dual representation
of ¢, in Ry.

Later, we will show that this holds for all Young diagrams and their duals.
This will be important when we come to define a 3-manifold invariant in Chapter
5.

4.8 A homomorphism from R to C+.

We next define an algebra homomorphism from R, to C*. Later, we will demon-
strate a set of generators for C* by considering the image of a generating set of
R, under this homomorphism.

4.8.1 Definition.

We define the algebra homomorphism 0 : R, — C* by

0(c;) = Q. VieN

4.8.2 Proposition.

The homomorphism € is an algebra isomorphism.

Proof. For this proof, we denote Q)., by ;.

The ring R, is defined to be the free algebra generated by ¢;, ¢ € IN. Hence,
the homomorphism 6 is an isomorphism if we can show that the elements Q);
generate C* as a free algebra.

By 2.3.7, the elements ¢, m € IN, generate C* freely, as an algebra, where
o is the closure of the braid in Figure 4.4.

By induction on n, we will show that ¢, can be expressed in terms of the
Q;, for i < n. Thus, {Q; : i € IN} generates C* as an algebra.
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N

- m—,

Figure 4.4: The braid which closes to o} € C*.

For n = 1, we have that Q; = ¢, and we are done.

Now, assume that we have an expression for ¢, in terms of the Q; for all
m < n. It follows from the definition of C™ (see Corollary 2.3.8) that @Q,, € C™.
Therefore, there is an expression for (), in terms of monomials of weighted
degree n in the ¢;f. The monomials of weighted degree n can be indexed by
the partitions of n, hence

[A|=n

for some scalars 3y € A.

The aim is to prove that 3, is invertible in A. Then, by the induction hy-
pothesis, we can write ¢, in terms of the @;, with 7 < n. This then proves that
the elements @); generate C* as an algebra.

Recall from Notation 2.2.2, that the Conway polynomial can be calculated
from the framed Homfly polynomial by setting z = v = 1.

Note that all the terms on the right hand side, except for ¢, are split links.
Since the Conway polynomial is 0 on any split link and ¢;} is ambient isotopic
to the unknot,

!

V(@n) =V (Bupn) = By

where [, is the evaluation of §, at z = v = 1.

Since we are working in A = C[A], f3, is invertible if and only if it has non-
zero constant term when written in terms of h. Recall that the power series
expressions for z and v, in terms of h, have constant term 1. Therefore the
constant term of /3, is equal to that of 3.. If we can show that the constant term
of V(@Q,) is non-zero, we have shown that (3, is invertible.

Consider calculating the constant term of V for each positive permutation
braid in @,,.
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For a link, L, with £ components the Conway polynomial, written as a poly-
nomial in z has the form

V(L) = m;z*~" + higher order terms in z,

where my, is a scalar depending on the linking numbers of the components of L.
For a knot, K,
V(K) =1+ higher order terms in z.

Since z = s — 57!, as a power series in A
2z = h 4+ higher order terms in h.

Therefore, no power of z contributes to the constant term of V(@Q,,). Hence the
only terms of (),, which contribute to the constant term of V, as a power series
in h, are those positive permutation braids which close to knots.

An n-string positive permutation braid closes to a knot if and only if the
permutation has order n. Let m be such a permutation. The coefficient of w, in
Qn is (—x's7H)™). Since 7 is of order n,

I(r)=n—-1 mod 2.

—1,-1

The constant term of (—2~'s71)"™  as a power series in A, is therefore, (—1)"~".

There are (n—1)! such positive permutation braids and therefore the constant
term of V(Q,) is (—1)""'(n — 1)!. Hence 3, is invertible in A = C[h].

By induction, we can write ¢, in terms of @; for any n € IN. Since the
elements o, generate CT as an algebra it follows that the elements @; will also
generate CT as an algebra. Thus,  is surjective.

It remains to show that C* is generated freely by @;, i € IN.

Since {Q; : i € IN} generates C* as an algebra, the set of monomials in
the @; must span C* as a A-module. The set of monomials fll f; e ‘ZZ for
which >, 4,5, = n, generate C™ as a A-module. We already know that C(™ is
freely generated by a set of elements with cardinality the number of partitions
of n. A similar count to that of Lemma 2.5.8 will show that we have exactly this
number of monomials. Therefore, since A is commutative, the monomials form a
free A-basis for C™. We know that Ct = DN C™, therefore the set of all the
monomials forms a free A-basis for C*. Tt follows that {Q; : i € IN} generates

C™T as a free algebra. =
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We next demonstrate that #(d;) = @, and that 0(ug;) = Q. The aim is
to prove that #(\) = @, for any Young diagram .

4.8.3 Proposition.

Under €, the Young diagram with a single row of [ cells is mapped to the closure
of the genuine idempotent (1/a4 ) ey,

O(di) = Quy -
Proof. We already know that C'(X)D(X) = 1. Therefore, for m > 1,
Z(—l)kadm,k =0.
k=0

Since # is an algebra isomorphism,

i(_]‘)ke(ck)g(dm—k) =0.

k=0

The proof is an induction on the number of cells.

We know that d, = ¢;, therefore

0(dy) = Q1
as required.

Assume we have the result for d;, for © < m. We consider the sum

m

Z(_l)ka,lQl,m—k .

k=0
It follows from the induction hypothesis that

m

Y (1) Q1 Qum ik = Qum + i(—l)kﬁ(ck)ﬂ(dmk) .

k=0
By Proposition 4.7.17, we know that

m

Z (_1)ka,1Q1,m_k =0.

k=0
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Therefore, by the induction hypothesis

0 = Qut LD () ~ 3D B0l
= Qu—0(dy)
Since 6 is an algebra isomorphism, it follows that
0(dn) = Qm

as required. .

From this result, we can find the images of the hook shaped diagrams s,

under #, by induction. The proof is a direct application of the skein relation
deduced in Lemma 4.7.14.

4.8.4 Proposition.

The images of ji;; under ¢, for £ > 1, [ > 1 are given by

9(/%,1) = (l/ak,l) ék,z = Qk,l-

The scalar oy is given in Proposition 4.7.4 as

[k+1—1][k—1]1[1—1]!
S(k(k—1)—1(1—1))/2 :

Qg1 =

Proof. We go by induction on the number of cells, and the length of the
first column, noting that 6(p,,) = 6(d,) for every [, by Proposition 4.8.3. It
follows that we have the result for m = 1.

The induction step works as follows. We assume the result for all diagrams
with n cells where n < m. We also assume we know the result for all hook
shaped diagrams with m cells and at most k cells in the first column. Since 0 is
an algebra isomorphism,

9(“k+1,mfk) = 9(demfk) - e(ﬂk,mkarl) .

Now, by the induction hypothesis and Lemma 4.7.14
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O(crdm—r) — O(Hkm—ri1)
Sk (k=1)/2 g=(m—Fk)(m—k=1)/2

(]! [m — ]! ]
(iﬁi:ﬂA SR >

[m] €kt1im—k T W Chom ki1
g(k(k=1)=(m—k+1)(m—k))/2 A

S(k27k7m2+2mk+mfk2fk)/2 gk
- W T — K]
8(k2—k—m2+2mk+m—k2—k)/28—m+k
+< & — 1] [m — ]! ]
S(kQ—k—mQ—I—ka—kz—m—l—k)/Q

[m] [k — 1]![m — k]! > Chym—k+1

S(me +2mk+m)/2

(k' [m — k — 1]![m] Ck+1,m—k

S—m2+2mk—m)/2 _ S—m2+2mk—m)/2
* ( [m] [k —1]! [m — k]! > Chom—kt1

S(k—l—l)k/Q—(m—k)(m—k—l)/Q

(E+1)—D!'(m—k)—1'[(k+1)+ (m—k) —1] Chtlm—k »

- Qk+1,m7k

as required. -

To show that #(\) = @, for every Young diagram A, we require the following
Lemma.
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4.8.5 Lemma.

Let Q(y1, Y2, y3) be a polynomial in 3 variables.

Q(yh Y2, y3) = Z G yil y? y:l;,?’
;eC icIN?

Suppose that Q(y3’ ’ Yy, y3) is identically equal to zero for every value of N € IN.
Then

Q(yla Y2, y3) =0.

Proof. We suppose that Q(y1, ys, y3) is not identically zero and show that
this leads to a contradiction. Let j be the largest of the indexes i (in the lexico-
graphic ordering) for which ¢; # 0. We claim that, for N large enough, this is
the only term that contributes to the highest power of 5 in Q(y2”, yY, y3). Now

QUus" ' ys) = Y yy N RN
i
We wish to show that if we choose N large enough then
GIN? + joN 4 jg > i;N? + iy N + i5.
for all i < j with ¢; # 0. Suppose that j; > ¢;. Then

(12 — jQ)N (13— Js)

i — i )N?+ (jy — ig)N + (j3 —i3) >0 <= N?>_ =~ S
(1 — 1) (J2 —4a) (Ja — i) (1 — 1) (j1 —11)

Now for any a, b € Q

aN +b
e —0 as N — o0,
Therefore, we can find n; € IN for which
N2> (42 _jQ)N—i- (i3 — Js) VN > ns
(j1 — 1) (1 — 1) '
If jl = 7:1 and jg > 7:2 then
S . i3 — J3
(Jo—9)N+(js—i3) >0 <— N>-——".
J2 — 12
Therefore . .
L 3 —J3
ey
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Finally, if j; = ¢; and j5 = iy then j3 > i3 by the assumption that i < j.
Therefore
J3—i3 >0 VN eN

as required. We can take n; = 1.

Since @ is a polynomial the number of i for which ¢; is non-zero is finite.
Hence, we can set n to be the maximum of the n;. Then for every N > n

N2+ joN +js > ;N> +i,N +i3  Vi<]j.
Therefore, for N > n, ¢; is the coefficient of the largest power of y; in
QY yY,y;). However, for any N € N, Q(y3",yY,ys) is identically zero.

Therefore, ¢; = 0 which contradicts the assumption that it was non-zero. There-

fore Q(y1,y2,y3) must also be identically zero. .

4.8.6 Remark.

The above result will hold, even if we know only that Q(yY", &, y5) if identically
zero only for all N > m say. Taking n' = max{n,m} we can still derive the
contradiction, since ¢; will be forced to be zero for N > n'.

4.8.7 Lemma.[TW]

Let s be a primitive root of unity and A and g be two ¢-admissible Young
diagrams (see Definition 5.2.1). Recall that J(H;V),V,) denotes the quantum
invariant for the Hopf link (with positive linking) with one component coloured
by V) and the other by V,,. Set M to be the matrix (M, ,) where

My, = J(H; V), V,),

where the indexing set runs over all g-admissible diagrams. Then M is invertible.
|

4.8.8 Theorem.

The image of the Young diagram A under the algebra isomorphism 6 is ),
O(A) = Qx-
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The element (), therefore, is given by the Giambelli formula for .

Proof. Let GG denote the Giambelli formula for A in terms of the ¢;. Since

f is an algebra isomorphism
O(N\) = 0(G,) -

Hence, 0(A\) € C™ where n is the number of cells in \.

By Proposition 4.7.6 we can express #(\) — @y as a linear combination of the
(), where p is a Young diagram with n cells;

O —Qx= D bauQy- (4.9)

||=n

We will show that by, = 0 for every u with n cells. Then, since Proposition 4.8.2
proves that # is an algebra isomorphism

O(A) = Qx
as required.

Suppose by, # 0 for some p. We will show that this assumption leads to a
contradiction. From the proof of Proposition 4.7.6, we know that by, is a Laurent
polynomial in x, v and s divided by some power of (s — s~ !). Therefore, when

we substitute s = =" and v = ™", we have a Laurent polynomial in 2 (with a
finite number of isolated poles and zeros) or the zero polynomial. Let (3, denote

the scalar obtained from b,, by making these substitutions.

We will show that 3y, is identically zero, for any N > n. Assuming that
we have shown that (3, is zero we can apply Lemma 4.8.5, as follows, to show
that by, = 0, giving us the required contradiction. If we remove a factor of the
largest power of s, and the smallest powers of x and v from b,,, we see that by,
is the product of a Laurent monomial and a “genuine” polynomial in z, v and

I, We can then apply Lemma 4.8.5 to the

1

t = s~ ! divided by a power of s — s~
polynomial (with 3, = v, y» =t = 57" and y3 = x) to determine that b,, = 0.
This contradicts the assumption that b, was non-zero. Therefore, b, = 0 for

every Young diagram p with n cells.

To show that 3,, = 0 we consider how it behaves in a neighbourhood of
xr = 1. It is possible that x = 1 is a pole, or a zero of 3,,. However, since all
poles and zeros are isolated there is some neighbourhood of = 1 for which £,
is well defined and non-zero. Note also that we know that 1/« is well defined
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and non-zero at * = s = 1 from Remark 4.6.8. We can therefore choose a
neighbourhood of = 1 for which both (,, and 1/a,, are both well defined and
non-zero.

In particular, we can pick p € IN for which z = e 2™/PN lies in this neigh-
bourhood. Therefore, the scalars §y and 1/«y are well defined and non-zero at
the primitive pth root of unity s = e*™/?. Set r, to be minimum value of p for
which this is true.

We can find such an 7, for every by, which is not identically zero. Set r to
be the maximum of all the r, and 2N. (We require r > 2N since all the Young
diagrams of size n must fit into a rectangle of length » — N and height N — 1.)

Order the Young diagrams with fewer than N rows and at most r— N columns
(for example by size). We can extend the expression for #(\) — @, to a linear
combination of these Young diagrams by setting by, = 0 if |u;] # n.

Given any link, if we decorate any component by #(\) and calculate Xy,
for any N > n, this will evaluate to the same Laurent polynomial in x as Xy
evaluated on the link with the component decorated by Q. This follows from the
definition of the quantum invariants, Theorem 4.6.16 and the fact that 6(\) =
6(Gy) where G, is the Giambelli polynomial for A in terms of the ¢;.

In particular if H denotes the Hopf link

J(H; pi 0(A) = Qx) = Zﬁ,\,ujJ(H;Mi,Mj) =0. (4.10)

then for each ¢

Define the matrix J(H) by setting the (i, j)th entry to be the value of the
U,(sl(N)) quantum invariant for the Hopf link with one component coloured by
p; and the other by s;.

We can rewrite the set of equations 4.10 in matrix form :

0
J(H; i, 1) B = :
0
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By Lemma 4.8.7 the matrix J(H) is invertible and this implies that 3\, is
zero for all p;. However, since we assumed that (3, was non-zero this is a
contradiction.

Therefore, 3y, = 0 for all ;1 and hence we have proved that

() = Qx.

4.8.9 Comments.

It is worth noting that for many sizes of Young diagram there is a more direct
proof of this result. Recall from Remarks 4.6.15 that the elements (0, behave
nicely under change of framing. Let U, denote the unknot with framing n € Z.
Then

X (U, xQy) = [} 0x
where 6, denotes the value of X evaluated on the unknot decorated by @,.
Therefore, if we set

9()‘) - Q)\ = ZbuQu
m

by Lemma 4.8.5
X (Un # (0(X) = Q1)) = 0.

This gives rise to a set of linear equations namely

1 R | Dyus Oy 0
fm fug e fum bm 6#2 0
fgl f[,2LQ T f/fm b.u3 6#3 - 0 )
Zﬁil ;7;71 e Zzznil bum6um 0

where m is the number of Young diagrams with |A| cells. The matrix is a Van-
dermonde matrix and is invertible if and only if f,, # f,, for i # j. If the matrix
is invertible then b, = 0 for every p and 9(\) = @,.

For |A\| = 1, 2, 3, 4 and 5 this is not a problem. Unfortunately there are
some pairs of Young diagrams with the same number of cells which have the
same curl factor. For example, when |[\| = 6. The two diagrams in Figure
—6.46

4.5(a) have the same curl factor, z*%v . Other cases arise when there is more

than one Young diagram with a fixed number of cells which is self conjugate
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(i.e. has reflectional symmetry along the leading diagonal). For these Young
diagrams o, = 0, therefore, the curl factor for such Young diagrams is ey lul,
For example, when |\| = 8, there are two distinct Young diagrams which are
both self conjugate. These are shown in Figure 4.5(b). Hence, the matrix is not

Figure 4.5: Young diagrams with the same curl factors.

invertible when n = 6 or n = 8. These are not the only cases, although I can
see no way of predicting when pairs of Young diagrams with this property will
occur.

4.8.10 Corollary to Theorem 4.8.8.

Given N and any Young diagram A
Xn(Qy) = Xn (@)

Proof. Let G, denote the Giambelli polynomial for A with ¢; = 0 for
¢t > N and ¢y = 1. This is an identity in Ry. The Giambelli polynomial G,
for A*, in Ry can be described by taking that for A\ and replacing c¢; by cy_;
for ©+ < N. Now, we know from Proposition 4.7.21 that the invariant of the
unknot decorated by ¢; is equal to that of the unknot decorated by cy_;. Also,
because we are considering the unknot, the invariant of the unknot decorated by
puv is equal to the product of the invariant of the unknot decorated by p and the
invariant of the unknot decorated by v. Hence, by Theorem 4.8.8

Xy(Qx) = An(0(Gy-))
Xy (0(Gy))
= An(Qn).
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4.8.11 Proposition.

Let T be an (n,n) tangle which closes to ¢ € C™. Suppose that for all A with
|A| = n there exist 7, € A such that

J(T5 Vo, Va) = 32 Vi
[A|l=n
where 7, is obtained from 7, by setting v = s~ and 2 = s '/V. Then

o( Z MA) =c.

[A|=n

Proof. We can write any element of C™ as a linear combination of ele-
ments (), where A has n cells. In particular
c= Z AR
[A|l=n
for some coefficients v, € A, where cis the closure of T'. Since f is an isomorphism
0(d> A =c.
[A|l=n

Now

0D mA) =D mQx.

[A|l=n [Al=n

1

We will denote the evaluation of v, at = s/~ and v = s~V by 3.

Let H = H; U H, denote the Hopf link (as in the proof of Theorem 4.8.8).
We can think of H as the closure of the (1,1) tangle S shown below.

S:Ql_D

For any Young diagram p with less than N rows

S nJ(H; VW) = 3 mdn(Hy+Q, U Hy +Q))

[Al=n [A|=n
= Xy(Hy*Q,UH,x*c)
- XN(Hl*QuLIHZ*f)
= try(J(S;V,, Y mVy)) by Prop. 3.6.7

= Z n;\trq(‘](SQ VwVA))

[Al=n

= Y nJ(H;V,,Th).
[A|l=n
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Thus, for any Young diagram, u, with fewer than N rows

|Z (7a = ) J(H; V;,, Va) = 0.
A|=n

We can use exactly the same techniques as were used in the proof of Theorem
4.8.8 to show that 7y — 7y, = 0 and therefore, that

=1 =0.

Hence,

Z M@\ = Z O

[A|l=n [A|l=n

as required.

4.8.12 Remarks.

The proof of the Theorem 4.8.8 relies upon our knowledge of the representation
ring Ry, quantum invariants and their relation with the framed Homfly poly-
nomial. However, the result is a relationship which holds in C™ and is purely
skein theoretic. It would be pleasing to have a direct proof, in terms of the skein
theory.

We consider the preimage of ¢, next. By Proposition 4.8.11, the preimage
of ¢ is given by the endomorphism of V¥™ represented by the braid in Figure
4.4. Note that ¢! is a torus knot. The quantum invariants of torus knots have
been calculated by Rosso and Jones [JR] and Strickland [S]. We give a simplified
version of Strickland’s result below.

4.8.13 Theorem. [S]

Let m and p be coprime integers. Let K(™P) denote the (m,p) cable of the knot
K. Then
JK"se) = Y IR ).

T€¢m(01)
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where the (m,p)-cable of K is the satellite of K with pattern the pth power of
the tangle

and ¥,,(c;) is the mth Adams operation (see Definition 4.9.1). u

Applying Proposition 4.8.11, Theorem 4.8.13 with p = 1 and Proposition
4.9.2 we obtain the following expression for 6~ !(¢;}):

m

0 (pm) = (zv ) XD LT ek
k=1
where, for a Young diagram A, f, is the framing factor given in Remarks 4.6.15

as
2

Recall that o, and d, are defined in Definition 2.4.3 and a recursive definition
for ny is given in Remarks 4.6.15.

1
For A\ = i ;m_k 11, we have ny = m? — 2mk +m. Therefore f contains only
integer powers of x, v and s.

Let ¢}, denote the m-string braid obtained from ;;, by switching the (m —1)
crossings from positive to negative. By applying Theorem 4.8.13 with p = —1

we see that
m

0 (o) = (20 ) Do (=D Ful I km ki
k=1

and hence, the value of §~!(¢,,) can be obtained by replacing s, z and v by s,

=1 and v~! respectively in the preimage of ;. This can be demonstrated easily
for the case where m = 2, using the skein relations. Note that

S

and
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Thus

The relationship between §~'(

x? 1— r i (s—s ")

—s )0(ct)

z ! sO(p1,2) — @ 19(#21 (s
xl(_3+3)(12) x(
v s H0(m 2) —a” 39(#21)
T ) —a” ISQ(H).

@) and 71

-1 —19(

4.8.14 Proposition.

The following equalities hold :

Proof.

m

= gm! Z(—l)k’lsm’k[k]e(ckdm,k)

k=1
m—1

= o ™IS (1) sFm — k0(cpd k)

k=0

m

l‘ilv Z (_1)k71xmv71Sm72k+19(uk7mik+l)

k=1
m

Z(_1)kflxmflSm72k+19(uk,mik+l)

k=1
m

xm—l Ic 1 §Mm= 2k+1 z Icg z
kX:Il( Z
m
Z 7, 1 M 2k+19(0idm—i)
=1 k}:l

xml_i( () o)

(1—s7%)

m
m—1 i—1 _m+1 _—2
x Z( 1) ts™tls =7
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Since, by Proposition 4.8.3, 7 (=1)'0(c;)0(dn—;) = 0 for m > 0, we can
add multiples of it to ¢;'.

ot = some(xml[m]i(—l)icidm_i)
= e Ocod) + ™ 12 i~ [m])B(eid )

= [l O(codn) mlz (zm>e<dm>

Then

om = z ™ > (-1 (2 3m+1_2k> 0(cidp—;)
k=1

1=0

D Y (1) — 8(cid )

= x_(m_l)' (—1)'s'[m — i)0(cidp—;)-

u
4.8.15 Definition.
We define ®*(X) and &~ (X) to be the following two power series :
F(X) = Y ! (1.11)
m=1
and
P (X) = i omX™ . (4.12)
m=1

We also define “quantum derivatives” of C'(X) and D(X),

=Y (-1)*[klgX*" and D' (X)=>[l]dX"".
k=1 =1
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4.8.16 Proposition.

The following three identities hold :
¢ (X) = —0(C'(xX)D(wsX))

¢~ (X) =0 (C(z~'sX)D'y(z7' X))

and
O (X)=—0(C'(x ' X)D(x "5 X)) .

Proof. The first two identities follow automatically from the definitions.
To show the third identity, note that

> a7 m) (Z(—l)kckdm_k> Xt = 0.
m=1 k=0

We can, therefore, subtract any multiple of the image of this sum under 6 from

®~(X) by applying Proposition 2.5.10. Hence

o.¢] m

P = @) - 3 S e )X

=0

I
K

o kﬁ(—l)k(sk . — k] — [m])0(cpdmr) X

m=1
00 B m s — Sfm+2k: —gm g™ B
= Y Y (=D)F ( - ) O(Crm—r) X"
m=1 k=0 §—8
o0 m _ Jk -k
_ Z gl Z(—l)ks_m+k (L‘i) g(ckdm—k)Xm_l
k=0

S— 85"

m=1

I
K

x—m-}-l Z(—l)k_ls_m+k [k]@(ckdm_k)Xm‘l )
k=0

-1

3

The third equation now follows by comparing the coefficient of X™~! on the

right with that of ¢ (C’(x’lsX)D’q(xle) ) .

4.9 Adams operations.

Here we consider another generating set for the ring Ry. Recall that we can
express the elements of R 5 as symmetric functions in variables x;, fore =1... N.
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It is well known that the power sums >, xj*, m € IN, generate Ry as an algebra.
We will give an expression for the image of the mth power sum, under , as a sum
of m elements in C*. The advantage of these over the elements )y is that the
number of terms in each expression is linear rather than factorial in the number
of cells and all the terms are reasonably simple braids. For the definitions of Cy
and py the reader is referred back to Definition 2.5.11.

4.9.1 Definition.

The Adams operations, {{, }, N, are a family of R y-endomorphisms,
VYm Ry — Ry,
defined by their images on the x; :
V(@) = i

Hence ¢,,(c;) = > 2", the mth Newton power sum. This is well known to be
a polynomial in the ¢; which is independent of N, i.e. there is a polynomial
b (c) € Reo With px(by,) = ¥ (cy) for all N.

4.9.2 Proposition.

The following identities hold for v,,(¢),

¢m(01) = DN (Z(_l)k_lkckdm—k> = DN (Z(_l)k_lﬂk,m—kﬂ) .
k=1 k=1
Proof. The function In(C'(X)) has a formal power series expansion

o0

In(C(X)) = 2_:1 b (C)X™

where b,,(c) is a polynomial in {¢;}72,. Differentiating In(C' (X)) with respect
to X, we get

= C"(X)D(X) = i mby, (¢)X™ 1.
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By comparing coefficients it follows that

mbm(c) = (_l)kkckdmfk

: T

1

= ((—1)kk(ﬂk+1,mfk + ,uk,mkarl)) + (—1)mmﬂm,1
1

T

m—1 m
= (—1)mmﬂm,1 + Z (_l)kk:u“k,mle»l + Z(_l)k_l(k - ]-)llfk,mfk+1
k=1 k=2
m—1
= —Mim T (_1)m(m —m+ I)Mm,l + Z (_1)k(k —k+ ]-)llfk,mfk+1
k=2
= Z(_l)kﬂk,mflﬁrl
k=1

For each NV we have that

In(Cy(X)) = ;ln(l—xiX)

xm

o~ N

m

- _ io: ﬂjm(Cl)Xm‘

Now In(Cn (X)) = py(In(C(X))) and so

77Z)m(cl) = _pN(mbm(C)) :
The result follows directly from this equation.
4.9.3 Remarks.

These formulae are independent of N. For a given N, we find v,,(¢;) by applying
pn- For most purposes we can treat 1,,(c;) as if it were an element of R,.

4.9.4 Lemma.

Let W(X) = Y%, 4, (c;)X™ . Then

T(X) = —C'(X)D(X) = D'(X)C(X).
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Proof. From the proof of 4.9.2 we know that
d

U(X) = - o= I(C(X)) = ~C'(X)D(X).

It remains to note that

1

P00 = () 000 = T

The objective now is to interpret the Adams operations, 1,,(c), as the image
under # of a simple sum of m braids on m-strings.

4.9.5 Definition.

Let ¢; ; € C* be the closure of the diagram given below, with 7 positive crossings
and j negative crossings (so ¢}, = ¢, 10)-

— e —i—

4.9.6 Theorem.

The element v,,(c;) is a scalar multiple of the image of the sum of braids

Fn = xm_lz\\\« X + xm_:}[\\\\/ + g™ 1\\\\{\ 4o g g3 X/\\ N x_mHM

under the homomorphism 6. In fact,

Proof. The proof goes by induction on m.
For m =1 we have P, = ¢; and ¢, (¢;) = 1(¢;). Note that [1] = 1.

Now, assuming the result holds for all £ < m, we can apply Lemma 4.9.7 to
obtain the following,

m—1

o —1\,.m—1—k m—1
Pm - Z (S — S )LU Pk(pO,m—l—]g + mx SOO,m—l .
k=1
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Therefore, by the induction hypothesis,

m—1
Pp=3 (" = ™)™ (g (1) pom 1k +ma™ g
k=1

Using the definition in Lemma 4.9.4 and equation 4.12 it can be shown that

m—1
> "R = sTMO(Wk(e1)) o m—t
k=1

is the coefficient of X™ 2 in
sO(W(sX)) @ (xX) =510 ( V(s X)) D (xX).
Applying Lemma 4.9.4 and Proposition 4.8.16

sO(U(sX)) @™ (xX) — s7'0(U(s7'X)) @ (aX)
= 59(—C"(sX)D(sX)C’(sx’lxX)D'q(:v’lxX))
+5710 (D'(s7' X)C(s7' X)D(a~ s 7' X)C' o (a 7 2 X) )
= 0(s7'D'(s7'X)C(X) = 5Dy (X)C'(X) )

by Proposition 2.5.10. The coefficient of X™ 2 in the expression above is given
by

m—1 m—1

ewm_2>=f9(§:<—4>ﬁkuwz—A»s—m+h%dm_k - §:<—1th——Mksh%dm_k).
k=1 k=1

The coefficient of ¢id,,_; in b,,_5 is

(S—m—I—Qk _ S—m)

0" (-0 - )

s—s1 s—§

= (=1 (ms™™ (k] — k[m])
= (=1)*ms ™ E (k] + (=1)F " k[m] .

Recall that ¢g,,—1 = ¢, and add back on the term ma™'0(pg,,-1). By
Proposition 4.8.14,
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P, =0 (7:2__: (—1)*(ms™ "™ k] — k[m])cpdpm—r

+m mg_—: (—1)Fs[m — k]ckdm_k>

+ m[m]codm>

S P e ) L

_ e(m (1) (mfm] — kim])erder + m[m]codm>
_ e([m@( D hegdmoy = (1) mimlnds

+ m[m]cod,,  + m[m] 7:2_: (—1)kckdm_k>

= 0 ([m]z/)m(cl) + m[m] i(—l)kckdm_k> by Proposition 4.9.2
k=0
= [m]0 (Yp(c1)) + m[m]0 by Proposition 2.5.10

=[]0 (¢¥m(cr))

4.9.7 Lemma.

Let

138



= x .(pi,m—l—z
i=0
Then
m—1
P, = (s — 3_1)$m_1_kpk900,m717k + mxm_l%,mfl .
k=1
Proof. The method here is to switch and smooth the positive crossings in

the braids using the skein relation. Numbering the crossings from bottom left to
top right on the diagrams, we start with the (m — 1)st (positive) crossing.

_ m—1
= T (pO,m—l

+a (xm_Q\\\\/ - xm_i\\\\ﬁ + -+ x_m+4k/_\\ + x—m+2M>

= <P0m 1+ ( S—SI)Pm 1%0,0

e e ol )
= 22" 'y 1+ (s =8 )P 1000

i | SR s S (¥

Applying the skein relation to the (m — 2)nd crossing we then see that

P, = 235m_1<100,m—1 + (s — S_l)(Pm—NOo,o + xPp—2p01) + $m_1900,m—1
+ weighted sum of diagrams with

the (m — 1)st and (m — 2)nd crossings negative.

Applying the skein relation to all the positive (m — 3)rd, (m — 4)th, ..., 2nd
crossings we finally arrive at

m—1 ¢

P = (m—=1)a" " pom+ (s =5 kz: 2" Pepomer-1 + xm*l&\\\
=2
m—1

= (m—1)2" Pyt +(s—s") > xmiliipkcp(),m—k—l

)

Bl
no
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m—1

= (m—1)2" Pyt +(s—s") > xmilfkpk%,m—kq
k=2

—|—(S - S_I)Pl@o,m,Q + xxm_Q@o,mfl

m—1

= mae"™ o1+ (s—s ) > 2" Pepgmk1
k=1

as required. .

We now calculate the framed Homfly polynomial for the Adams operations,
using the formula for ¢, in terms of the logarithm of C'(X). We then show that
this calculation agrees with the calculation of the framed Homfly polynomial for
P,.

4.9.8 Proposition.

" =™
X(O(nle) = S
Proof. From Proposition 4.9.2 we know that

(O (X)) = 3 by(c)X™

m=1

and that for each NV,
VYm(c1) = —pn(mby(c)).

Consider

X(0(In(C(X)))) = X(n(Qc(X)))
_ 1n<oo 1 — ps2k+lx )

Il —— =
k:01 vls X

k=0

B 00 0 _(v82k+1X)m B 00 _(v 182k+1X)m>
kzz:[) (mzz:l m mz::I m
& (v ™) 2hem+

— m TTLXTTL



— Z (v v )Sme<Z(82m)k>
m=1 k=0
B 00 (v—m _ ”m) g™m .
o mX::l m 1 — g2m
Therefore,
pT — ™
X(O0(€) = 1 s
and hence
X)) = o
1/)m 1 - gm — g—m

4.9.9 Remark.

Note that this calculation agrees with the evaluation of X on P,,.

m—1 )
X(Pm) - xm71722X(()0i7m717i)
=0
m—1 ) ) ) 7}_1 -
— 2% xm7172z (xvfl)zferlJrz (S — Sl)
1=
m—1 -1 _
_ Z xm—l—?i(xv—l)—m—i-%—i—l (z - 3—11})
=0
_ milvm—%—l (v —v)
= s — 571
_ (1}_1 _ 7}) m—1 (= 2i
= s _ 8_1 v ; v

s— 8
1
_ (Z — ;_?)vm—lv—m-i-l(vm—l + ”m—3 + + v—m-i—l)
M — ™™
T st

By Theorem 4.9.6
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hence,
vm —m

X(O0(Pm(c1))) = —

§m — g—m

-

which agrees with the calculation in Proposition 4.9.8.

4.10 A discussion of the work of Y. Yokota.

While writing up this thesis, I was given a copy of a preprint by Yokota entitled
“Skeins and quantum SU(N) invariants of 3- manifolds.” [Y]. Some of the results
in this and the subsequent chapter of this thesis also appear in this preprint.
Here I highlight some of the similarities and differences between the two bodies
of work.

Yokota works with the substitutions for x and v in terms of s already in
place, giving a 1-parameter family of skein relations. The idempotent building
blocks f® and ¢*) are, respectively, equal to 1/ay ey and 1/ag e, y. They
are defined inductively rather than directly as in Definition 4.4.3. However, it is
easily verified that the 1/cy €1, and 1/oy 1 ex 1 satisfy the inductive definitions
[Y, equations 5, 6], by applying Lemma 4.7.2. In [Y] the quasi-idempotents
are made by sandwiching a row of symmetrisers f** ® --- ® f* between two
rows of anti-symmetrisers ¢ ® --- ® g™ to produce the element éy. Note,
that upon closure, since the building blocks ¢®*) are idempotent, the two rows of
anti-symmetrisers can be replaced by one, hence,

N 1 .
e\ = €x -

Of}\l‘.‘OéAk OCAY‘.‘O{XXL

The description of Young diagrams in [Y, §2] leads to the row of symmetrisers
appearing in the reverse order and the crossings are all negative (compare Figure
4.2 with [Y, Figure 3.]). However, there is no material difference between e, and
éx. Our elements ey can easily be rearranged to look like those of Yokota. For
example, when working with the Young diagrams i, ; in Proposition 4.7.4 we
rearranged our diagram for e;; to present it in the same form as Yokota’s quasi-
idempotent for p;, to simplify the calculation of ay .

It is worth noting that, even working with idempotent building blocks, the
resulting ¢, is only quasi-idempotent and not an idempotent. Yokota scales this
element to obtain a genuine idempotent.
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The decomposition of the Hecke algebra H,, into minimal 2-sided ideals of
Theorem 4.6.9 relied upon the fact that the idempotents £, specialised to the
Young symmetrisers of the symmetric group algebra CS,,. Yokota makes no use
of this fact. Instead he works purely in the Hecke algebra with the idempotents
associated to the rectangular Young diagrams with [ columns and n rows, where
1<n<N-1.

In [Y, Proposition 2.4], the framed Homfly polynomial is calculated for the
unknot decorated by @, for any Young diagram A. It is reasonably quick to
check that this agrees with our calculations in Propositions 4.7.7 and 4.7.19 for
Qr1 and Q. To show that we can obtain the U,(sl()N)) invariants from X" we
note, in Corollary 4.7.8, that Xy (Qg1) = 0 for £ > N and that Xx(Qny,) = 1.
The case for N 4+ 1 is noted in [Y, equation 19]. The cases where £ > N + 1
follow from the inductive definition of ¢*). In [Y, equation 20] Yokota notes
that a string can be unlinked from a component carrying ¢'™) without altering
the value of Xy, as we observed in Lemma 4.7.11. However we don’t need to
introduce the identities of [Y, Figure 8], rather they arise naturally from the
properties of Xy, for each N, upon making the substitutions for x and v.

In Chapter 5 we extend Xy to a 3-manifold invariant. We show that we have
invariance under the Rourke-Fenn version of the Kirby moves whereas Yokota
works with Kirby’s original handle slides. However, the 3-manifold invariants
arrived at are equal. To see this consider the correction terms. Let L be a k
component link and set

sig(L) =0, —0_.

Since 0, + o_ =k, we have

7l = p(r) ltede(y)orto)

= () Fe(r) 80

(For the definition of sig(L) see Definition 5.5.3, for ¢, ¢, p(r) and c(r) see
Notation 5.5.5.)
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Chapter 5

The 3-manifold invariants.

5.1 Introduction.

In this chapter we demonstrate that the link invariant X'y, defined in Chapter 4,
gives rise to a 3-manifold invariant when evaluated at primitive roots of unity.

We will show that Xy vanishes on any link if any component is coloured by
certain Young diagrams with a single row, when evaluated at a primitive rth root
of unity. Let I denote the ideal generated by these Young diagrams. It follows
that, at any given root of unity, we can calculate the invariant using colours in
the quotient ring Ry /1.

Note that, when q is a root of unity, our scalar ring A is the field of complex
numbers C. The ring Ry /I can be described as a complex vector space (rather
than a free module) and we will construct a basis for this space.

We give a brief description of the construction of 3-manifolds via surgery on
framed links and describe the requirements for a link invariant to determine a
3-manifold invariant.

Finally we provide an example of a 3-manifold invariant by fixing a colour
Q, in Ry/I, and showing how Xy (L) behaves under Kirby moves when every
component of L is coloured by (2,.

Note that throughout this chapter we treat ‘R 5 as an abstract polynomial ring
with indeterminates c;, ¢y, ..., cy_1. The connection with the representation
ring of U, (sl(NN)) is all but forgotten.
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5.2 Two i1ideals and their connection.

In this section we fix ¢ to be a primitive rth root of unity. We describe two
generating sets (which depend on r) and show that they generate the same ideal
of Ry. We will demonstrate a vector space basis for the resulting quotient ring.

5.2.1 Definition.

Fix N and a primitive rth root of unity ¢ with » > N. We define the level [ of ¢
to be
[=r—N.

We call a Young diagram q-admissible if it has fewer than N rows and at most [
columns. We will denote the set of g-admissible diagrams by Diagy .

5.2.2 Notation.

Let 7 be the ideal in Ry generated by the Young diagrams with exactly [ + 1
columns.

We now show that Diagy, is a spanning set for the vector space Ry /Z.

5.2.3 Lemma.

Let A € Ry be a Young diagram with n columns. Then A X ¢; is a linear
combination of diagrams with either n — 1, n or n + 1 columns.

Proof. Let A = (A, Ay, ..., Ar), where £ < N and A\; = n. Label the cells
of ¢; from 1 to 7, top to bottom.

The first cell can be added to A in any position that results in the formation
of a legitimate Young diagram. From the combinatorial rules, any cell labelled
with 7, 7 > 1, must be placed in a position below and to the left of the first
cell, hence, the only possible way of increasing the number of columns is shown
in Figure 5.1 (a). In this case, the number of columns can’t increase further
because of the restrictions on the positions of the other cells.
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A | 1| )\-j-l | A k1 |
| A2 | A1 [ ﬂ

(a) (b) (c)

Figure 5.1: Legitimate strict expansions of .

We have, therefore, shown that any summand of A x ¢; must have at most
n + 1 columns.

To show the second inequality, we need to consider the possible ways that A
can have cells added to give a column with N cells.

Let K = N — m. To reduce the number of columns, we must add m cells
to the first column of A and no more. Any cell to the right of or above these
m cells must have a smaller label. Therefore, these m cells must be labelled
(t —m+1),(¢ = m+2),...,i, and the remaining cells must all have been placed
in the first £ rows, so no other column can have been filled.

This tells us that any summand can have at most one fewer columns than A.

5.2.4 Theorem.

Let A be a Young diagram in Ry with more than [ + 1 columns. Then A can
be expressed as a linear combination of Young diagrams with at most [ columns
modulo Z. Furthermore, if A has [ + 1 + ¢ columns where 0 < ¢ <[ then A can
be expressed as a linear combination of Young diagrams with at least [ +1 — ¢
columns and at most [ columns.

Proof. The proof is an induction on the number of columns and the num-
ber of cells in the final column of the Young diagrams. For any Young diagram A
with [+ 1 columns, A € Z. Therefore, any linear combination of Young diagrams
with all the coefficients equal to 0 will suffice.

Assume that the result is known for all Young diagrams p < A. Let A be the
Young diagram with [ + 1 + ¢ columns and k cells in the last column and A" be
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the Young diagram obtained from A by removing the last column. Then
N xop =X+ p, (5.1)
J

where p; < A for every j. By the induction hypothesis we know that each of the
pj can be expressed as a linear combination of Young diagrams with at most [
columns. It remains to show that A’ x ¢;, can be expressed as a linear combination
of diagrams with at most [ columns. The quotient map p : Ry — Ry/I is a
ring homomorphism, hence, p(\" x ¢;) = p(X') x p(c). Now p(c;) = ¢, modulo
Z. By the induction hypothesis we have an expression for \' € Ry /I as a linear
combination of Young diagrams with at most [ columns. By Lemma 5.2.3, the
product of any of these terms with ¢; contributes terms with at worst one extra
or one fewer column. Therefore, the number of columns for the summands of
p(N x ¢;) is bounded by 0 below and [ + 1 above. Any term with [ + 1 columns
is equivalent to 0 modulo Z. We have thus proved the first part of the Theorem.

We now examine the cases where A has between [ 4+ 1 columns and 2/ + 1
columns in more detail to establish the second part.

By Lemma 5.2.3, the p; in equation 5.1 will have at most [ + 1 + ¢ columns
and at least [ + 1+ i — 2 columns. Note that [ +1 — (i —2) > [+ 1 —i. Recall
that p; < A for every j. Therefore, by the induction hypothesis, we can assume
that the expressions for the p; modulo Z only involve Young diagrams with at
least [ + 1 — ¢ columns as required. It remains to show that this also holds for
the product N'¢,. By the induction hypothesis \' can be expressed as a linear
combination of Young diagrams with at least [ + 1 — (i — 1). If we multiply
any of these Young diagrams by ¢, the number of columns in each summand is
bounded below by [ 4+ 1 — ¢ and above by [+ 1, by Lemma 5.2.3. Any term with
[ + 1 columns is equivalent to 0 modulo Z and this proves the second part of
the Theorem. Note that for ¢ > [ this says no more than the first part of the

Theorem. -

This result implies that the set of Young diagrams with fewer than N rows

and at most [ columns is a spanning set for the quotient space R/Z. In Corollary
5.2.20 we establish that this set is a vector space basis.
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5.2.5 Proposition.

The number of g-admissible Young diagrams V' (r, N) is the binomial coefficient

V(r,N) = (;__D .

Proof. There is a one to one correspondence between the ¢ admissible
Young diagrams and the monomials of actual degree [ in N variables. (Note

that here we are working with actual degree, not weighted degree as elsewhere
in the thesis.) Let A = (A, Ay, -+, Ax). Add [ — A\; columns with N cells to A.
The Young diagram corresponds to the monomial

CAY CAY - CyY cl]\?‘l .
The number of monomials in /N variables of degree [ is equal to
()
N -1

as required.

5.2.6 Definition.

Recall from Definition 4.9.1 that the rth Adams operator of ¢; is given by the
formula

() =] +ay + - + 2y,

where the ¢; are the elementary symmetric functions in the x;. We define the
ideal I to be
I=(0¢./0c; : 1<i<N-—1).

5.2.7 Proposition.

The partial derivative of v, (¢;) with respect to ¢ is given by
O /Oc; = (=1)* trd,_y .
The ideal I is therefore generated by {d,_;}1<i<n—1

I= <d'r717 dr9y... 7dr7N+1> :
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Proof. Recall from the proof of Proposition 4.9.2 that

In(C(z)) = 3 “¥ml)
m=1 m
now 9 dIn(C(2)) 9C(2)
0 _ 0In(C(z Z) bk
Be, In(C(2)) = 20 0) der (—1)"2"D(z).
Therefore, equating the coefficients of 2", we get
8 wr(cl) o k
(—1)8—le — = (=1

Now, since (—1)*~!r is invertible and I is generated by the partial derivatives of
¥, (c1), we have shown that

I= <dr—17 dp_gy. .. 7dr—N+1> )

as required.

5.2.8 Proposition.

Let ¢ be a primitive rth root of unity. Then for p where r — N <p <r

XN(Ql,p) =0.
Proof. By Proposition 4.7.19
PN i—1 _ =N —(i-1)
X = . .
N(Ql,P) 1:1_[1 gt — gt
N+i—1
G~ (N+1)p ﬁ ¢l
- ¢l
Now ¢V¥*+~! =1 whenever i = kr — N + 1 for some k € IN. In particular if k = 1
gNFTNHI=L g

Hence ¢" — 1 appears in the numerator for p > r — N. To ensure that this is
not a factor of the denominator, we require p to be less than r. Therefore, for
r— N < p < r, the quantum invariant evaluates to 0 for ¢ a primitive rth root

of unity. .
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5.2.9 Corollary.

Let L be a link with a component coloured by d,, where [ < p < r. Then

(L) =0.

Proof. The link L can be written as the closure of a (1,1)-tangle T, ob-
tained from L by cutting the link at some point along the component coloured
by d,. Hence, for some scalar v € A

An(L) = 7 An(Q1p) -

Suppose that the other components of L are coloured by Ay, ..., A,. We can write
each A; as a polynomial in the ¢; where j < N. The denominator of vz is the
product of the denominators of the scalars 1/a; ;. These scalars were calculated
in Proposition 4.7.3 and the denominator of 1/«;; is [j]!. Since j < NN, the term
¢"—11is not a factor of the denominator of . Hence, Xy (L) = 0, by Proposition

5.2.8. ]

5.2.10 Remarks.

In view of Corollary 5.2.9, it may seem peculiar to define I in terms of the partial
derivatives of the rth Adams operator. After all, we were looking for an ideal
generated by colours which make Xy vanish and we have shown that the d;,
[ <1 < r, have this property.

However, we will use the fact that I is generated by the partial derivatives of
a polynomial in Proposition 5.2.15 on the way to proving that [ = 7.

We have shown that if we think of d; ., ..., d,_; as polynomials in the c;
then when ¢ is a primitive rth root of unity (Xy(c;)),c;.y € CV ' is a solution
of

(dl+17"‘ 7d7‘—1) — (0,,0)
These are not necessarily the only solutions. However, there is no obvious way
to interpret other solutions in terms of knot invariants.

5.2.11 Proposition.

The ideal I contains Z.
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Proof. For any given Young diagram A = (A, Ay, ..., \;), there is a poly-
nomial expression in {d;};>o, given by

d>\1 d}\1+1 d>\1 +2 e d}\1+k71

d)\2,1 d)\z d>\2+1 e d}\2+k72

A= dy—2  dy dys o dygyk-3
d/\k:—k-l-l dkk—k+2 d/\k—k+3 T dkk

If A is a generator for Z, then A\; =+ 1 and the top row of the matrix will be

(dl+17 dl+27 s 7dl+k71) .

Since k£ < N, we have that [+ k -1 <[+ N —1=1r —1, so all the terms in
the top row are generators of /. Expanding the determinant by the top row,

therefore, gives us A\ € I. All the generators of Z being in I, we have shown that

TCl. ]

We now show that these two ideals are the same ideal and calculate its
codimension. A corollary of this calculation will be that the spanning set of
g-admissible diagrams is a basis of Ry /I (see Corollary 5.2.20).

5.2.12 Definition.

Let P(yi,9a,---,Yn) be a polynomial. We say that P is weighted homogeneous
of weighted degree d with weights ki, ks, ..., k, if for any scalar ¢

P(tklylatk2y27 s 7tknyn) = tdp(y17y27 s 7yn) .

From the relation C(2)D(z) = 1, we know that we can write d; as a weighted

homogeneous polynomial of weighted degree j in the ¢;, 1 <7 < N, where ¢; has
weight 7. Let F': CV ! x R — C¥ ! be defined by

F(C,t) = (dr_l(c, CN = t), Ce ,d,«_N+1(C, CnN = t)) .

5.2.13 Remarks.

Note that when ¢t = 1 the components of F(c,t) are exactly the polynomials
which generate I. However, when ¢ = 0 we can apply Lemma 5.2.14 and so
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we can easily count the number of solutions to F'(c,0) = 0 (with multiplicity).
Showing that this number is preserved under a small perturbation from ¢ = 0
will allow us to calculate the codimension of I and show that the g-admissible
Young diagrams form a basis of Ry /I. Note that since we have a spanning set
for Ry/Z and 7 C I, we know that [ is of finite codimension in Ry.

5.2.14 Lemma.]MO, §2 Theorem 1]

Let f(y1,...,yn) be a weighted homogeneous polynomial of weighted degree d
with weights w,, ..., w, with an isolated critical point at the origin. Let

(€, 0) — (C*,0)
be defined by

f,(y17y27" : 7yn) = (8f/8y17 8f/8y27 * 8f/8yn) :
Then the local degree of f’ at 0 is given by the formula

" (d— w,;
degf’zng.

i=1 w;

5.2.15 Proposition.

The equation F(c,0) = 0 has only one solution, namely ¢ = 0, and this solution
occurs with multiplicity ( ;,’_11).

Proof. Let ¢ = (¢, ¢9,...,¢y_1) be a solution of F(c,0) =0. At ¢t =0,
we have that cy = 0, hence,
Cz)=1-ciz+cz® — -+ (=1)" ey N1

D(z)=1+dyz+dy2” + -+ di2" +dpy g™+

l

If we work modulo 2V, we can write

D(z) = D'(z) + 2"V D"(2)
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where D' is a polynomial of degree I. Now at the point c,
1=C(2)D(z) =C(2)D'(2) mod 2V
The degree of CD' is at most [ + N — 1, and so
C(z)D'(z) =1,
but both C' and D' are polynomials and therefore must both be equal to 1. Hence

(017627"'761\771) = (0,0,,0)
Note that the weighted degree of ¥,(c;) is r. By Lemma 5.2.14 the multiplicity
of the root 0 is given by
Aﬁlr—i (=D —-2)---(r=N+1)
: i (N=1)(N—-2)---1

7 (r—1)!
(r—N)Y(N —1)!

N (zz_—11>

The following three standard results will be instrumental in showing that the
two ideals are equal and that the set of Young diagrams with fewer than N rows
and at most [+ 1 columns is actually a vector basis for the quotient space rather
than just a spanning set. The proof that the number of critical points (counted
with multiplicity) is preserved for our l-parameter family of maps F(c,t) was
explained to me by J.W. Bruce.

5.2.16 Proposition.[AGV, p. 92]

Suppose that a map, g, has no zeros on the boundary of a bounded domain
U c C" and that the degree of the map g/|g| from the boundary of U to the n
dimensional unit sphere is equal to k. Then the system g = 0 has a finite number
of roots in U and the sum of their indices is equal to k. (For our purposes, the
index of a root is equal to its multiplicity.) [
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5.2.17 Theorem.|F]

Let J be an ideal of the polynomial ring C[cy, ..., ¢,] and assume that the variety
V(J)={Py,...,P,} is a finite set of points. Let O; be the local ring associated
with the point P,. Then there is a natural isomorphism

C[Cl,...,Cn]/Jg HOZ/JOZ

=1

5.2.18 Corollary.

Using the same notation as in Theorem 5.2.17, let mp, denote the multiplicity
of the point P;. The dimension of Cley,...,c,]/J is equal to the sum of the
multiplicities of the points P;,

dimCley, ..., c,)/T =D mp, .
i=1

Proof. From Theorem 5.2.17 we have that the dimension of Ccy, ..., ¢,]|/J
is equal to the sum of the dimensions of O;/.J.0;, for each i. This dimension is

exactly the definition of the multiplicity of the point P; and we are done. -

Now we return to our specific example. Each of the primitive rth roots of
unity provide us with a point P; in the variety V(I). It is not clear all the points
in V(I) arise in this way, however, other solutions of F'(c,1) = 0 have no obvious
interpretation in terms of knot invariants.

5.2.19 Theorem.

The codimension of the ideal I is ( 17\",:11).

Proof. For any given scalar «,

C(az)D(az) =1,
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so the polynomial d;(cy,...,cy_1) is weighted homogeneous of weighted degree
J with weights (1,2,...,N).

Choose (c,t) € C¥7' x R such that F(c,t) = 0. Since d; is weighted homo-
geneous, then for a given «,

F(acy,a’cy, ..., 1NV tYy = (o', (c,t), ..., " VT d,_yiq(c, 1))

= 0.

Un and y = (acy, a?cy,...,a¥"tey_y) then F(y,1) = 0. Note

Setting o =t~
also, that given any solution y of F(y,1) = 0, then for each ¢ we can find an x

such that F(z,t) = 0.

Since 0 < t < 1, we have that a > 1 and so
ly] > |c|
If we choose R € R such that

R> lyl,

max
{y:F(y,1)=0}
then the ball By will contain all the preimages of 0 for 0 < ¢t < 1 and none of
these points will lie on 0Br = Sg. Since the only preimage of 0 for t = 0, is 0,
in fact the inequality can be extended to 0 < ¢ < 1.

By the choice of R, the map
7):SR>< [0,1] — S,

is well defined and is a homotopy from ¢t = 0 to ¢ = 1, so it has fixed degree
for any value of ¢. By Proposition 5.2.16 the degree, for a given t, is equal to
the sum of the multiplicities of the roots of F'(c,t) in the interior of Bg. For
t = 0, we have that the only root of F(c,0) is 0 and the multiplicity of this root
is V(r,N), by Proposition 5.2.15. At ¢ = 1 we therefore have that the sum of
the multiplicities of the roots of F(c,1) in the interior of Bz must also be equal
to this number, but by the choice of R, all the roots are inside Sg, so this is
the sum of the multiplicities of all the roots. Therefore by Theorem 5.2.17 the

codimension of the ideal I is V(r, N). =
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5.2.20 Corollary.

The two ideals I and 7 are equal :
I1=1T.

The set of Young diagrams with at most [ columns and fewer than N rows is a
vector space basis for the quotient space Clcy, ..., cn_1]/I .

Proof. By combining Theorems 5.2.19, 5.2.4 and Proposition 5.2.11 we
have the following set of inequalities from the codimension calculations:

r—1 . : r=1
<N— 1) = dimClcy, ..., en]/T < dimCley, ..., en]/T < <N— 1) '

Hence 7 = I and by Theorem 5.2.4 we have a spanning set which has exactly
the correct number of elements by Theorem 5.2.19, namely the Young diagrams

with at most [ columns and fewer than N rows. -

5.3 The ring Ry/I.

In this section we consider a property of the structure constants for Ry /I which
is inherited from R y.

5.3.1 Notation.

We will denote the coefficient of v in the product Ap € Ry /I by b5, and the
coefficient of v* in the product Ay by by,,. Therefore,

A=Y, v=> byuv'

and consequently

b = 03, -
This is consistent with the notation for the Littlewood-Richardson coefficients
as defined in Definition 2.5.1.
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5.3.2 Proposition.

Let A\, € Ry, then the empty Young diagram ) C Ay if and only if p = \*.
The coefficient of ) in A x \* is 1. |

5.3.3 Theorem.

Let ay,, denote the coefficient of v* in Ay € Ry, then

Appy = Qupx = Q) -

Proof. Let the decomposition of A\ € Ry be
AL = Z M’ -
n
Consider the decomposition of the tensor product Auv.
A =" arn*v
n

By Proposition 5.3.2, the empty Young diagram will occur in only one term,
namely when 7 = v, with coefficient a,,,. Similarly, we have that a,,, is the
coefficient of () in the decomposition of prA and a,y, is the coefficient of () in
vAu. Noting that

AUV = VN = VAl

we are done.

5.3.4 Theorem.

The relation in Theorem 5.3.3 holds for the structure constants of Ry /Z. Recall
that by,, denotes the coefficient of v* € Diagy, in the expression for Ay, as an
element of Ry /I. Then

bkul/ = b/wk = buku .

Proof. Let A\,iu,v € Ry /T be Young diagrams in Diagy,,. The decompo-
sition of Ay, in Ry /Z, is given by

)‘/L - Z b,\mﬂ?*

neDiagn,
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Note that as 1 has at most [ columns, then so has n*. Therefore n* € Diagy,,.
Hence, nn* can be written as a linear combination of Young diagrams with at
most 2/ columns, as an element of Ry. The trivial representation will occur with
coefficient 1 from Proposition 5.3.2. Those terms with at least [ + 2 columns can
be expressed as linear combinations of Young diagrams with at least 1 row, by the
Theorem 5.2.4. Since Diagy , is a basis and the trivial module doesn’t appear in
the expressions for diagrams with more than [+ 1 columns, the only contribution
to the scalar term is 1. We can then use the same method as for Theorem 5.3.3
to show that
b = buwn = by VA, p, v € Diagy, .

5.4 Surgery on a link.

5.4.1 Definition.

Let L = L, ULy ---UL, bea framed link in S3. Surgery is a method of
producing a 3-manifold by cutting up S* using the link as a pattern.

Remove a solid torus neighbourhood V; of each component L; from S®. This
gives us a compact 3-manifold with boundary called the exterior of the link which
we denote by extL. The manifold M (L) is obtained by gluing a solid torus to
each of the boundary components of ext.. The gluing specifies which curves on
the boundary of extL are to be glued to the meridian of the solid torus. This is
determined by the framing of the link. The framing of a link component identifies
a choice of parallel curves. It is these curves which are glued to the meridians of
the solid tori.

More formally, let U be a regular closed neighbourhood of L in S3, consisting
of solid tori Uy, ...,U,,. Fori = 1...m identify U; with S* x B? so that L; is
identified with S x 0 where 0 is the centre of B?. The framing of L; is identified
with a constant normal vector field on S* x 0 C S' x B2

Let B* be a closed 4-ball bounded by S3®. Glue m copies of the 2-handle
B? x B? to B! along the identities U; = S' x B%? = 0B? x B? for each i.
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5.4.2 Comments.

Lickorish [Lil] proved that every 3-manifold can be obtained in this way. Of
course, it is possible that the same manifold can be obtained by surgery on
two different links. The next result, determines exactly when this can happen.
Details of these results can be found in Rolfsen’s book [Ro].

5.4.3 Theorem.[FR, Ki, Lil]

Every closed oriented 3-manifold, M, can be obtained by surgery on a framed
link, i.e. given any 3-manifold M there is some link L for which M = M (L).

There is an orientation preserving homeomorphism between M (L) and M (L')
if and only if L and L' are related by a finite sequence of Kirby moves. The
positive and negative Kirby moves are shown in Figures 5.2 and 5.3.

Figure 5.2: The positive Kirby move.

Figure 5.3: The negative Kirby move.
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5.4.4 Remarks.

Ideally we wish to find an element of the representation ring Ry, €2 say, for which
the quantum invariant

J(L;Q,...,Q)=J(L;Q,...,Q)
where L' and L are related by a Kirby move, then we have a 3-manifold invariant.

In fact, we describe an element 2, € Ry /I for which
J(L; . ..,Q,)=cJ(L;Q,,...,9,)

for some scalar ¢ when we evaluate at ¢ a primitive root of unity. We need
to introduce a correction term to obtain a 3-manifold invariant. Working in
Rn/I, which is a finite dimensional space, we know that €2, will be a finite
linear combination of A € Diagy .

5.5 A 3-manifold invariant.

In this section, we use the techniques of Morton and Strickland [MS] to obtain
a 3-manifold invariant by evaluating X’y at a primitive root of unity.

Throughout this section we will assume that ¢ is a fixed primitive rth root
of unity. All evaluations of X'y will be at this root of unity.

5.5.1 Notation.

Let €2, denote the following linear combination of elements in Ry /1.

QT: Z 6»« )\

AEDiagn ,»

where
Ox- = Xn(Qx) -
Note that Corollary 4.8.10 implies that
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5.5.2 Proposition.

Let L; be an oriented link with &£ components and let L, be the link obtained
from L; by reversing the orientation of the first component. Then

XN(LI;Q'H)\% s 7)\k) = XN(LZ;Q'H)\% s 7)\/6) .

Proof.
XN(LI;Qra)\Za-'-;)\k) = Z 6u*XN(L1;/L7)‘27"'7)‘k)
/’LeDiagN,r
= Z 6M*XN(L2;/L*7)‘27"'7)\I€)
peEDiagN »

This follows from the properties of the quantum invariants. Now, p* has at most
the same number of columns as y, hence, 1 € Diagy, if and only if u* € Diagy,.
Therefore, since 6, = 0,

Z 5M*XN(L2;M*7)‘27"'7>‘]€) = Z 6M*XN(L2;M7>‘27"'7)‘/€)

ueEDiagN » ueEDiagN »

= XN(LQ;QM)‘Q? SR Ak)

5.5.3 Definition.

Given a framed link L with k£ components we can define the & x k& matrix (; ;)
by

%7 ] framing on L; fori=j

z _{ 1k(L;, L;) for i # j

The matrix is symmetric and hence can be thought of as a quadratic form.
We define sig(L) to be the signature of this quadratic form. (Note this is not
necessarily equal to the standard definition of the signature of a link.)

5.5.4 Lemma.

If L is the link obtained from L by reversing the orientation of every component
then

sig( L) = sig(L) .
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Under a Kirby move the signature is altered as follows :

sig(L) = sig(pL (L)) £ 1.

5.5.5 Notation.

Let ¢, denote the scalar

Cy = Z fu(sz%

vEDiagn,,

and c_ the scalar

c_ = Z fle2.

veDiagn
The scalar ¢ (respectively c_) is the values of X'y on the unknot with framing
+1 (respectively framing —1) coloured by €2,.

c+:XN<QTCX)>.
c:XN<QTCX>>.

Since ¢, € C, we can write ¢, as the product of a positive real number p(r) and
a complex number of unit length ¢(r)

e = p(r)e(r) .

5.5.6 Theorem.

The element .
T(L) = p(r) *el(r) 8Dy (L0, ., 2,)
depends only on the manifold given from the k component link L by surgery

where sig(L) is the signature of the quadratic form described in Definition 5.5.3.
u

The proof relies, almost entirely, on the symmetry of the coefficients by,
demonstrated in Theorem 5.3.4. First we establish some properties of €2, as an
element of the ring Ry/I and look at the behaviour of Ay under the Kirby
moves. The proof of Theorem 5.5.6 can be found on page 169.
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5.5.7 Lemma.

The element (2, is an eigenvector for multiplication by A, for any A € Diagy,,.

Proof.
A, = Y b M
l’LeDiagN,r
— Z Z 6M*b>\ﬂyy*
n€Diagn,, vEDiagN
= > > bubyur® by Theorem 5.3.4.
veDiagn,» p€EDiagn »
Now,
AV = Z b)\l,u,u* .
MeDiagN,r
Therefore,
6)\1, — 6)\6V - Z b)wu(su* .
l’LeDiagN,r
Hence,
A = Y 6
veDiagn,,
— 6,0,.

5.5.8 Proposition.

Let A be a basis element of Ry /I. Then

- AC@ o |—ew (O)

Xy )\@/\/)Qr —c XN<G)\>

where c_ is the complex conjugate of c,.

Similarly
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Proof. By Proposition 5.5.2, a component coloured by €2, can be oriented
in either direction, without changing the value of X’y. Therefore, we can choose
the orientation so that the linking number of the two components is 1 rather
than —1. Therefore, omitting to write X'y,

= 0Oy Q,% by Lemma 5.5.7.

— C+ 6)\ .

To show the result for the negative Kirby move change all the framings in the
above proof from +1 to —1.

To see that ¢ =¢,, note that

|f/\| =1

and therefore f; ' is the complex conjugate of f. We can calculate ¢, by writing
A as a polynomial in the ¢;. Therefore, 0, is an integer linear combination of

rationals of quantum integers. Now for any given n € Z
s —s"

n|=———.

] §—s1

Since s has unit length s™" is the conjugate of s" and so [n] € R. Hence 63 is a

real number and therefore self conjugate. -

5.5.9 Corollary.

Let L be a link which is the closure X of some (n, n)-tangle X. Then

I

X

([

Xy @ = cy Ay (L)
~

U@
Wy
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Although the diagram on the lefthand side is drawn as an open tangle, we will
evaluate Xy on its closure.

Proof. The tangle X determines an endomorphism of ¢f. As an element
of Ry /I, we can write ¢ as a linear combination of g-admissible diagrams

d= > B

MeDiagN,r

By Schur’s Lemma, as an R y-module endomorphism the tangle X is a scalar
multiple, v, say, of the identity map when restricted to each irreducible piece.

Hence we can replace X by > YuByutt- The result then follows from

wEDiagn »
Proposition 5.5.8.

|

X
N l
" @ - Z VulpuXn C@Q QT
Wy

= > bty (jﬂ)
neEDiagN »

= c Ay (L) .

5.5.10 Lemma.

Let L and K be two links and let A denote an element of the basis of Ry/I.
Then

J(L’)HMZ:?/'I’m)J(Ka)‘anZa77777,) :6)\J(L#K;)‘7M27"'7/Lm77727'"77777,)

where L# K denotes the connected sum of the links L and K.

Proof. Consider the link L as the closure of a (1,1)-tangle T on the first
component and K as the closure of S.
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The tangle T' determines a module endomorphism of A which by Schur’s
Lemma is a scalar multiple of the identity map. Let p; denote the scalar. Let
ps denote the scalar associated to S. Then

J(Ls A pos ooy o)) J(EG N 0, 1) = OaprOaps
= 0\Oxprps
= 6>\J(L#K;)‘7u27"'7Mm7n27"'777n)

5.5.11 Notation.

Let H (respectively H*) denote the matrix (over the basis Diagy ) for the Hopf
link where the linking number of the two components is +1 (respectively —1)
and each component has zero framing. Therefore, H is the matrix defined in
Lemma 4.8.7 and

Hy, = Xn(H;5 A ).
Note that, by reversing the orientation of one component we obtain the Hopf
link with linking number —1 (respectively 1), therefore,

*
Hy, = H),-

By Lemma 4.8.7 the matrix H is invertible. This is essential to prove that 7T'(L)
is a 3-manifold invariant as stated in Theorem 5.5.6.

We define the matrix F' to be the matrix whose entries are the framing
coefficients fy (see Comment 3.6.6) on the diagonal and 0 off the diagonal.

The next Proposition demonstrates how we can use the Kirby moves and the
connected sum of links to calculate X’y is two ways and so derive relationships
between H and H*. The next Proposition does the spade work required to show
that H* is the inverse of H up to a scalar,

H*H = p(r)*I.
5.5.12 Proposition.
The following hold
HFHF =c,F~'H*. (5.2)
H*F 'H*F '=¢_FH. (5.3)
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Proof. Consider the matrix HF', where H and F' are as defined in Nota-
tion 5.5.11. The (A, p)th entry of HF is f,H, , which corresponds to calculating

the X'y of the link below.
e
A %

Let T) ,, denote the value of Xy for the link below
AN
A \/ v
1

Dhpw = 5,Ilqu>\,uquu,,, by Lemma 5.5.10
= 5,;1(HF)>\#(HF)#’V.

Therefore,

((HF)Q)X,V = Z 6/LT/\,/L,V .

l’LeDiagN,r

Alternatively we can think of this as the value of X’y on the link below.
AN
A \/ v
Q,

Now

Q,

Therefore,
HFHF =c,F~'H*.

The proof of the second relation is similar. We use Hopf links with negative
linking number and negative framing and apply Lemma 5.5.10, providing us with
two ways to calculate the same invariant.
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Let T7%,, denote the value of Xy for the link below
X0
L

Ty,, = 6, f, Hy ,f, "H;;, by Lemma 5.5.10
= 5 (H'F ")\ (HF"),,.

Therefore,

((H*F_I)Q)/\,V = Z 6MT)\,M,V .

MeDiagN,r

Alternatively we can think of this as the value of X’y on the link below.

GO0,

Now

{(O@0) -+
s (O

— FH)\V

Therefore,
HF'H*F'=¢ FH.

5.5.13 Corollary.

The scalar ¢, (and therefore ¢_) is non-zero and the two Hopf matrices H and
H* are almost inverses of each other
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and

p(r)?=cic.= > 6.

/’LeDiagN,r
This equation can be found in [Y, Propsition 4.3].
Proof.

H*HFH = H*HFHFF!
c,H*F 'H*F! by equation 5.2
= c,c FH by equation 5.3.

Therefore, since F' and H are invertible,
H'H=cyc_I.

Calculating the first entry of H*H we see that

Z H@’)\*H)\ﬂ - Z 6)\6)\*
AeDiagN,T )\EDiagN,r
= > & by Corollary 4.8.10.
AEDiagn,,

Since 63 is a positive real number, ¢, and c¢_ can’t be zero. -

We can now prove that 7'(L) is a 3-manifold invariant as stated in Theorem
5.5.6

5.5.14 Proof of Theorem 5.5.6

If L has k 4+ 1 components, ¢, (L) will have k. By Lemma 5.5.4 we know that

sig(L) = sig(p4 (L)) + 1.

Therefore,
T(L) = p(r) " le(r) SO XL, ..., Q)
p(r) ™" p(r) Fe(r)"G1BE DT, Xy (0 (L); 2, .., Q)
p(r)~te(r) ey T (e (L))
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For the negative Kirby move, note that c_ = p(r)c(r) and since ¢(r) has unit

length, ¢(r) = ¢(r)*. Therefore,

(L) = p

This completes the proof. [

5.5.15 Comments.

In [RT2|, Turaev and Reshetikhin gave a method for constructing 3-manifold
invariants from modular Hopf algebras. Turaev and Wenzl [TW] and Andersen
[An| proved that the representation theory of U,(sl(N)) at ¢ a root of unity
gives rise to a modular Hopf algebra. (The case where N = 2 had been treated
earlier in [RT2].) Hence we can define a 3-manifold invariant from quantum
group invariants at ¢ a root of unity. A detailed account of the theory can be
found in Turaev’s book [T3].

5.5.16 Theorem.

For a fixed N and r the 3-manifold invariant 7'(L) defined in Theorem 5.5.6 is
equal to the Turaev-Reshetikhin invariant for U,(sl(/N)) up to normalisation. m

Discussion.

Theorem 5.5.16 follows directly from the work of Turaev and Wenzl [TW]. Mor-
ton and Strickland [MS] proved the result directly for N = 2.

We can’t identify the ring Ry /I with a ring generated by the irreducible
representations of U,(sl(/N)) at a root of unity. Wenzl [Wz2] proved that the g¢-
admissible diagrams index the irreducible representations of the Hecke algebras of
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type A when ¢ is a root of unity. We can show that the Littlewood-Richardson co-
efficients for Hecke algebras at a root of unity calculated by Goodman and Wenzl
[GW] are equal to our coefficients b5 ,. In fact Goodman and Wenzl demonstrated
that they can be calculated by considering any Young diagram to represent an
element, of the ring of symmetric polynomials and reducing modulo the ideal
of g-admissible diagrams. (Recall that in Chapter 4 that we described the ¢;
as the elementary symmetric polynomials in N — 1 variables.) They comment
that these coefficients should be related to the decomposition of the irreducible
representations of U,(sl(/N)) when ¢ is a root of unity.

The representation theory of U,(sl(N)) at a root of unity has been investi-
gated by many people. Andersen [An| demonstrated the existence of a simple
U,(sl(N))-module for each g-admissible diagram. He defines a reduced tensor
product which gives rise to a ring structure for the set of semi-simple U, (sl(N))-
modules. Various properties of this ring were established by Turaev and Wenzl
[TW] in their study of 3-manifold invariants. The question of whether it is possi-
ble to realise the abstract ring Ry /I by these modules of U, (sl(IV)) is discussed
in [Wz3]. It is not clear that the structure coefficients for the decomposition of
tensor products tally with the Littlewood-Richardson coefficients of Goodman
and Wenzl.
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Concluding remarks.

Theorem 4.8.8 states the equivalence of two elements of the Homfly skein of the
annulus. However, we had to appeal to the relationship with quantum group
representations to prove it. It would be pleasing to have a completely skein
theoretic proof of this result.

To this end, it is worth pursuing the possibility of reasonably simple skein
relations between the elements (). This would also facilitate calculation of the
scalars «, and calculation of invariants for knots by using the skein relations
to simplify the colouring. Such a skein relation should be enough to show that
the scalar a; is a Laurent polynomial in s only. Yokota achieves a form of
relationship between the idempotents as elements of the Hecke algebra in [Y,
Lemma 1.3]. However, it requires use of the product in the Hecke algebra which
is not possible upon taking closure.

What information do the 3-manifold invariants carry for specific values of N
and ¢? Do well known 3-manifold invariants appear when we evaluate at specific
roots of unity?

Many of the results in Chapters 4 and 5 rely upon the invertibility of the
Hopf matrix. Although this result is proved in [TW], it would be more satisfying
to prove it directly from the theory of Chapter 5 and so take a step nearer to
divorcing the theory from the representation theory of quantum groups.
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