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Foreword (2000)

This paper is a very lightly edited version of an article originally written in
1989 but never fully completed. We had planned a final section to make use
of the ability to change at will between the Birman-Wenzl algebra, as given by
generators and relations, and the geometric framework of the tangles, so as to look
in more detail at the representation theory. One goal of our original approach
was to make sure that specialisations of the coefficient ring could be handled
confidently, and that the translations to and from the tangle context were on a
sound footing. More recently others have made progress in this way, in works
such as [6], but we have had a number of requests for our earlier account, and so
we have put it into this more accessible form.

1 Introduction (1989)

In recent years there has been considerable interest in deformations of the classical
‘centraliser algebras’ of Schur, Weyl and Brauer. These play an important role in
several areas, including exactly solvable models in statistical mechanics, quantum
groups, von Neumann algebras and knot theory. It has long been recognized
that these links are more than tenuous and if properly exploited lead to fruitful
interchanges between the different disciplines. The first and most spectacular
instance of this was of course Vaughan Jones’ pioneering work on subfactors,
which led to his discovery of new link invariants. Subsequently these invariants
were understood in terms of solutions of the quantum Yang-Baxter equation
and vertex models. The central thread running through all these topics is the
quantum group obtained by deforming the universal enveloping algebra of the
unitary group. One has also to deform the centraliser algebras, which amounts
to replacing the group algebra of the symmetric group by the Hecke algebra (of
type A).

After these discoveries, somewhat curiously history took a reverse turn. Kauft-
man discovered new link invariants, based on a purely skein theoretic character-
isation of Jones’ original invariants. It was natural to ask whether Kauffman’s
invariants could be obtained by algebraic means. This led Birman and Wenzl to



introduce a deformation of an abstract algebra first introduced by R. Brauer. An
alternative knot-theoretic approach to deforming Brauer’s algebra was later given
in terms of tangles by Morton-Traczyk and by Kauffman himself. The original
algebra of Brauer bore the same relation to the orthogonal group as the group
algebra of the symmetric group did to the unitary group.

By exploiting the new insights provided by Vaughan Jones” work on subfactors
(in particular his ‘basic construction’), Wenzl was able to acquire a fuller under-
standing of Brauer’s algebra, and resolve some old questions on semisimplicity
raised by Brauer and Weyl. Subsequent studies have shown that the Birman-
Wenzl algebra does indeed provide the correct analogue of the Hecke algebra for
the quantum group corresponding to the orthogonal group. Most recently Wenzl
has been able to construct new examples of subfactors using these algebras as a
substitute for the Hecke algebras.

In this paper we shall provide an explicit isomorphism between the Birman-
Wenzl algebra BW,,, constructed by J. Birman and H. Wenzl in [1], and the Kauff-
man algebra MT,,, subsequently constructed by the first author and P. Traczyk
in [11]. The Birman-Wenzl algebra is defined algebraically using generators and
relations while the Kauffman algebra has a geometric formulation in terms of
tangles. We obtain this isomorphism by constructing an explicit basis in BW,,,
analogous to a basis previously constructed for MT,, using ‘Brauer connectors’.
The geometric isotopy arguments used in [11] must be replaced by algebraic ver-
sions using the Birman-Wenzl relations. This not only gives a direct way of
determining the dimension of the Birman-Wenzl algebra, but also clarifies the
role played by the ring of coefficients, A, an integral domain.

In fact, in [1] the authors prefer to consider the algebra BW,, ®, k, where k is
the field of fractions of A. This enables them to imitate V. Jones” basic construc-
tion and thus determine the structure of the algebra. At a crucial point in proof
of their main result (theorem 3.7) they need to use a specialisation of A. Since
the algebra is defined by generators and relations over A, any such specialisation
automatically extends to BW,, although not necessarily to the algebra BW,, @, k.
This difficulty can be overcome by observing that the existence of a basis implies
that BW,, is free as a module over A. The arguments presented in [2] p.55 to
prove that the Hecke algebra is generically semisimple may then be adapted to
prove the same result for BW,,, i.e. the specialisations of BW,, are semisimple for
a Zariski open subset of the parameter space Spec(A). Wenzl has carried out a
more detailed analysis, based on Jones’ basic construction, in order to determine
precisely when the algebras fail to be semisimple.

This paper is divided into six sections. In section 2 we review the definitions
of the algebras to be studied, with some historical comments. In section 3 we
use the basic solution of the Yang-Baxter equation for the orthogonal group
together with a simple skein-theoretic argument to provide a short self-contained
definition of Kauffman’s two-variable link invariant. We also briefly discuss the
duality between the quantum orthogonal group and the Birman-Wenzl algebra.



In section 4 we give an inductive definition of a basis for the Birman-Wenzl algebra
and outline the more formal aspects of the proof. The inductive procedure relies
on a natural filtration analogous to the one extensively used by Hanlon and Wales
in their studies of Brauer’s algebra [7]. Effectively the proof that the proposed
basis is a spanning set is achieved by a double induction, which from the point of
view of tangles depends both on the number of strings and then on the number of
‘through’ strings. The remaining two sections are devoted to various stages of the
inductive argument showing that the natural surjective maps from the Birman-
Wenzl algebras to the tangle algebras are isomorphisms. In section 5 we treat the
case in which there are no ‘through’ strings: a complete understanding of this
case is crucial for the subsequent reasoning since it allows us to use geometry in
place of algebra in a controlled way. Finally in section 6 we perform the main
step of the induction.

2 Three algebras

2.1 The Birman-Wenzl algebra

We start by recalling the definition of the Birman-Wenzl algebra. We have made
a slight change by the introduction of some minus signs, in accordance with
Kauffman’s ‘Dubrovnik’ version of his link invariant. As explained in [11] and
below, this makes it much easier to see the connection with Brauer’s centraliser
algebras.

Let A be the quotient ring Z[M\*! 2,8]/ < A — X — 2(§ — 1) >. Thus A
(or more accurately its complexification) is the coordinate ring of the irreducible
quasiprojective variety defined by X\ # 0, A7 — A = 2(6 — 1) in A3.

Definition. The Birman-Wenzl algebra BW,, is the quotient of the free algebra
over A with generators ¢!, ¢3!, ..., ¢, and ey, es,. .., e, 1 modulo the ideal
generated by the relations:

(1) (Kauffman skein relation) ¢; —g; ' = 2(1 —¢;).

(2) (Idempotent relation) e? = de;.

(3) (Braid relations) ¢;gi119; = 9i+19i9i+1 and ¢;g; = g;g; if |i — j| > 1.

(4) (Tangle relations) e;er1e; = €; and g;gix16; = €i116;.

(5) (Delooping relations) gie; = €;9; = Ae; and e;gir1e; = A le;.

Remark. If z is taken to be invertible then the idempotent relation follows from
the delooping and skein relations.

In Birman and Wenzl’s original version several of their relations could be
omitted without loss, given invertibility of z. They use v in place of A\ in the
coefficient ring.

The presentation given here is intended to be sufficiently symmetric to allow
for easy comparison with the tangle algebra, while maintaining the coefficient
ring A as in [11].



2.2 Kauffman’s tangle algebra

Definition. An (m,n)-tangle is a piece of knot diagram in a rectangle R in
the plane, consisting of arcs and closed curves, so that the end points of the arcs
consist of m points at the top of the rectangle and n points at the bottom, in
some standard position.

An example of a (4, 2)-tangle is shown in figure 2.1.
I

Figure 2.1

Definition. Two tangles are ambient isotopic if they are related by a sequence
of Reidemeister’s moves I, IT and III, (see figure 2.2), together with isotopies of
R fixing its boundary.
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Figure 2.2

They are regularly isotopic if Reidemeister move I is not used.

Notation. Write U™ for the set of (m,n)-tangles up to regular isotopy.

The set U; admits an associative multiplication, defined by placing represen-
tative tangles one below the other.

A well-known subset B, consists of geometric braids, in this context rep-
resented by tangles (necessarily without closed components) where the height
coordinate in R increases monotonically on each component. It can be shown
that B, is the full group of units in ¢/;’ under the multiplication.

The closure, T', of an (n,n)-tangle T is defined, by analogy with the closure
of a braid, to be the link diagram (or (0, 0)-tangle) given from 7" by joining the
points on the top of R to those on the bottom by arcs lying outside R with no
further crossings.



We define a closure map e : U” — U, by £(T) =T

From U] we construct the algebra M7, which we call Kauffman’s tangle
algebra, as an algebra over a ring A, as in [11]. We shall take A to be the ring

AN=ZD 2 0)) <Xt =A=206-1)>.

Then A is isomorphic to a subring of Z[A\*!, 2%1], by taking § = 1+ (A7t — \) /2.
It admits a homomorphism e : A — Z[d] with e(z) =0, e(A\) = 1 and e(d) = 6.
The main aim of this paper is to show that the Birman-Wenzl algebra BW,, is
isomorphic to M Ty, on specialisaton of coefficients.

Certain features of MT,,, for example its dimension, and its relation to Brauer’s
algebra [3], appear here very simply, using the homomorphism e and the Dubrovnik
invariant D. These features of BW,,, not proved directly in the original ap-
proach,then follow at once.

Definition. Kauffman’s tangle algebra, MT,,, is the A-module, constructed from
AJU?] by factoring out three sets of relations:
(1) TT—T" = 2(T°—T>),

where T%, T°, T are represented by tangles differing only as in figure 2.3,
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Figure 2.3

(2) Trlght — )\_1T7 Tleft — )\T,
where 718Nt onq Tleft ope given from T' by adding a left or right hand curl

as in figure 2.4,

- right T left
Figure 2.4

(3) THO =T,
where T'I1O is the union of T" and a circle having no crossings with 7" or itself.

Proposition 2.1 Composition of tangles induces a A-bilinear multiplication on
MT,, making MT,, an algebra over A.

Proof : The relations (1)-(3) carry down under the multiplication in AlY)}]. O



Proposition 2.2 The map ¢ induces a A-linear map € : M'T,, — MTy.

We now give the homomorphism ¢ : BW,, — MT,, which provided the intu-
ition behind Birman and Wenzl’s description of BW,,.

Definition. Write G;, E; respectively for the tangles in ¢ illustrated in figure
2.5. Use the same letters for the elements represented by these tangles in MT,,
called s;, h; in [11].

i i+1 i i+1
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Figure 2.5

Then
GZ—GZ_lzz(l—EZ)

in MT,, from relation (1) applied to the only crossing in G;.
Similarly, relation (2) shows that

Gi'E; = EG;'=)\E;

and relation (3) that

E? = §E;.
Theorem 2.3 A homomorphism ¢ : BW,, — MT, may be defined by ¢(g;) =
Gi, plei) = E;.

Proof :  The relations in BW,, are respected. We have already noted that the
skein relation and delooping relations are satisfied by E;, G; in MT,. The other
relations hold even at the level of the tangle semigroup U O

Our goal is to prove that ¢ is an isomorphism for all n. In this section we
find explicit spanning sets for MT,,, and show that ¢ is surjective.

In section 4 we give the proof from [11] that the chosen spanning sets are a
free basis for MT,,, using the existence of Kauffman’s invariant.

The proof that ¢ is injective will subsequently be built up in stages, with
the recurring pattern of taking spanning sets for selected subspaces of BW,, and
proving that they map to independent sets in MT,,.

To save later effort we note here some symmetry of BW,,, which carries over
by ¢ to two natural operations in MT,.

Definition. (1) Write p,, : BW,, — BW,, for the automorphism defined by

Pnl(9i) = Gn—i, pnl€i) = €n_;.



(2) Write o : BW,, — BW, for the reversing anti automorphism defined by
a(gi) = gi, ale;) =e¢;.

Remark. The symmetry of the relations in BW,, ensures that p,, o are well-
defined.

Proposition 2.4 There is an automorphism p, of MT,, and an antiautomor-
phism o, with poa = o @ and Y o p, = pp © P.

Proof :  Write p,, a : U — U]’ for the natural symmetries given by rotating a
tangle T through 7 about one of the two axes shown in figure 2.6.

ot
T _(/:

Figure 2.6

Clearly o(G;) = Gy, pn(G;) = G,_;, and similarly for E;. The skein rela-
tions are preserved by p, and « so that they induce p,, o : MT,, — MT,. Since
Pn(ST) = pn(S)pn(T) and a(ST) = a(T)a(S) these are respectively an automor-
phism and an antiautomorphism, satisfying the stated relations on the generators

of BW,,. O

We now continue with the proof that MT, has a finite spanning set, and at the
same time we develop the notation to relate these algebras readily with Brauer’s
centraliser algebras.

2.3 Connectors and Brauer’s algebras

An (n,n)-tangle T consists of n arcs and a number, |T|, of closed curves. If each
arc joins a point at the top to a point at the bottom then the tangle determines
a permutation in S,,.

Definition. For a general tangle we extend the idea of a permutation to that
of an n-connector, defined to be a pairing of 2n points into n pairs.

The set C,, of n-connectors has (2n)!/2"n! elements, the product of the first
n odd integers.

Take the set of 2n points to be the end points of (n,n)-tangles. The arcs
of any T" € U]’ pair these end points to give a connector, which we write as
conn(T) € C,.

Remark. (Brauer’s algebra) Brauer [3] uses C,, as the basis for an algebra over
Z[0], (writing n in place of § and f in place of n ). He divides the 2n points to be
connected into two subsets tq,...,%, and by,...,b,, arranged along the top and
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bottom of a rectangle, and views a connector ¢ as a set of n intervals with these
2n points as endpoints, which join the points paired by ¢. Two connectors ¢; and
co are composed by placing one rectangle above the other, giving n arcs whose
endpoints are the new top and bottom points, together with some number r > 0
of closed curves.

Brauer sets ¢ico = §"d, where d is the connector defined by the new arcs. This
defines an associative multiplication on Z[d][C,] = A,, making it an algebra over
Z]0], called Brauer’s algebra.

Having divided the 2n points in this way there is a natural embedding S,, C
Chp.

We can modify the map conn : Y} — C,, to give a multiplicative homomor-
phism ¢ : U’ — A,,, which extends to c¢: MT,, — A, as follows.

For T € U set ¢(T) = 6lconn(T) € A,. This can be extended to c :
AU — A, by setting ¢(XNT;) = Ye(\;)c(T;), using the ring homomorphism
e: N — Z[o].

Theorem 2.5 There is an induced homomorphism ¢ : MT, — A,.

Proof : The relations (1)-(3) defining MT,, are respected. O

Remark. We show later that A, is isomorphic to the Z[0] algebra MT,, @, Z[]
given from MT, by replacing the coefficients A with Z[¢], using the homomor-
phism e.

The existence of ¢ : MT, — A, can be viewed as the consequence of spe-
cialising the coefficients so that the relations no longer distinguish under- from
over-crossings. Then tangles pass to their projections, retaining only the infor-
mation of their connectors. The crucial technical feature here is that we can
specialise A so as to retain 9, while fixing A = 1 and z = 0. Complications arise
if we try to do this while working in the ring Z[A\*!, z2*1].

Definition. Given a tangle T, choose a sequence of base-points, consisting firstly
of one end point of each arc, and then one point on each closed component. Say
that T is totally descending (with this choice of base points) if on traversing all
the strands of T', starting from the base point of each component in order, each
crossing is first met as an overcrossing.

Remark. We shall assume that for each connector ¢ € C,, a choice of ordering
of base-points for the arcs has been made, and we use this same choice for all
tangles T" with ¢ = connT'. Note that there are n! 2" potentially different choices
possible for each connector. The precise choice is not material, and we shall have
occasion to vary the choice in the course of later proofs. The result will be simply
to alter the choice of linear basis in MT,,.

An example of a totally descending (3, 3)-tangle is shown in figure 2.7, with
base-points numbered according to a choice of order.
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Theorem 2.6 M7, is spanned by totally descending tangles.

Proof : Let T be a tangle representing an element of MT,,. Choose base points
for T according to the choice for conn(7). Traverse the arcs of T in order.
At the first non-descending crossing use relation (1) with 7" = 7. Note that
conn(T’;) = conn(7-), so that T%, resulting from 7" with the crossing switched,
has fewer non-descending crossings. Then 7' is a linear combination of three
tangles, two with fewer crossings and one with fewer non-descending crossings.
The theorem follows by induction, firstly on the number of crossings, then on the
number of non-descending crossings. O

Corollary 2.7 MT, is spanned by totally descending tangles without closed com-
ponents.

Proof : If T is totally descending, with r closed components, then these compo-
nents are unknotted curves stacked below the arcs of T'. The tangle can then be
altered by regular isotopy so that the unknotted components lie well away from
the arcs. By using Reidemeister move I as well they can be changed to have no
self-crossings. Then by (2) and (3), T = A*6"T" in MT,,, where T" consists simply
of the arcs of T. O

Remark. This result holds as stated for n = 0, provided that we admit the
‘empty tangle’ as an element of UJ. In any event MTj is spanned by a single
element.

Corollary 2.8 M'Tj is cyclic.

Theorem 2.9 Let S and T be totally descending (n,n)-tangles, without closed
components, such that conn(S) = conn(T). Then S and T are ambient isotopic,
and so S = NT in MT,, for some k.

Proof : Number the arcs of S and T' according to the order of their base points.
Since conn(S) = conn(7"), the ith arc in each tangle joins the same pair of end
points. The arcs can be arranged to lie in disjoint levels 1 to n above the plane of
R, since arc ¢ lies above arc j at every crossing when ¢ < j. Each individual arc
is unknotted, because the tangle is descending, so it can be changed by ambiemt



isotopy to an arc without self-crossings in its level. The resulting tangles are then
ambient isotopic by level-preserving isotopy. O

Remark. If the arcs of S and T have no self-crossings initially then S and T'
are regularly isotopic.

Remark. Construction For each connector ¢ € C),, choose an order for the
arcs. With this order construct a totally descending tangle with connector ¢ such
that any two arcs cross at most once. (Start for example from a diagram of the
connector in which any two arcs cross at most once, and make it descending,
by choosing the sense of each crossing according to the order of the arcs.) The
element 7, € U] represented by this tangle then depends only on ¢ and the chosen
order, by Theorem

Remark. For c € S,, and a natural choice of order the resulting tangles T, have
been studied, [4, 5], under the name ‘positive permutation braids’. They can be
represented by a braid in B,, with positive crossings and permutation ¢ in which
any two strings cross at most once.

These braids have also been used in [9, 10], to give easily handled generators
for the Hecke algebra H,,.

Theorem 2.10 MT, is spanned, for every choice of order, by the finite set
{T.}, ce C,.

Proof : By theorem 2.6 and its corollary, MT,, is spanned by tangles which are
ambient isotopic to Ty, for various c¢. By use of relation (2), any tangle ambient
isotopic to T, represents A\*T, in M, for some k. O

Remark. The number of crossings in a totally descending tangle T, depends on
the connector ¢, not on the order of arcs used. It is simply the number of pairs
of arcs which cross in ¢, as dictated by whether or not their endpoints interlock
on the boundary rectangle.

Clearly any tangle with k£ crossings can always be written in MT,, as a linear
combination of totally descending tangles with at most k crossings, by induction
on k, using the procedure of theorem 2.6. It follows that if 77, T, are totally
descending tangles with the same connector ¢, arising from different choices of
the order of arcs then

T =T, + Y M,
d

where d runs over connectors with fewer crossings than c.

We finish this section by proving:

Theorem 2.11 The map ¢ : BW, — MT, is surjective.
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Proof :  'We must show that MT, is generated by E;, G;, 1 <i¢<n—1. Itis
enough to show that each totally descending tangle 7, is a monomial in {E;} and
(G},

Assuming that the connector ¢ pairs r points at the top with r at the bottom,
and connects the remaining 2k = n —r points as k pairs, leaving 2k points at the
bottom connected as k pairs.

We can then draw the tangle T, (for any order of the arcs) so that there are
r arcs running monotonically from top to bottom, k arcs running with a single
local minimum from top to top, and k arcs from bottom to bottom with a single
local maximum. We can further assume, since the arcs never cross twice, that all
the local minima on the top arcs are higher up than the local maxima, so that
there are only r arcs passing through the middle part of the rectangle.

Now pair arbitrarily the local maxima and minima, and isotop the tangle
so that each local minimum moves down to lie directly above its corresponding
maximum. We can now decompose the tangle level by level into a composite of
simple tangles in each of which there are n strings all running vertically, except
for one pair, which either cross simply, giving Gi-', or form a paired minimum
and maximum, giving £;. An example is shown in figure 2.8.

7).
AR

Figure 2.8

|

Remark. It is useful to regard the tangle T, with r through strings as a composite
of an (n,r)-tangle and an (r,n)-tangle, and it suggests that a counterpart of
(n,r)-tangles might helpfully be studied in relation to BW,,.

3 Kauffman’s link polynomial

In this section we discuss Kauffman’s Dubrovnik invariant of links, and its relation

to the solutions of the Yang-Baxter equation for the orthogonal group.
Kauffman’s polynomial, in its Dubrovnik form, is a non-zero function D :

U — A, i.e. a function on knot diagrams which is unaltered by regular isotopy.

This function D has the basic properties:
(1) D(K*) — D(K™) = 2(D(K°) — D(K™)) (skein relation)
where the diagrams K+, K° and K> differ only as in figure 2.3, and
(2) DK) = AD(K), DE"EMN) = A7D(K),
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where K1eft and gright ap given from K as in figure 2.4.

It also satisfies
(3) D(KIO)=0DK),

where K I O is the union of K and a circle having no crossings with K or
with itself, and 0 € A satisfies A™! — A = 2(§ — 1).

Proposition 3.1 Kauffman’s invariant exists if and only if the cyclic module
MT, is free.

Proof : 'We have shown already that M7y is cyclic, so MTj is free if and only if
there is a non-zero A-homomorphism ¢ : MTy, — A.
If MTj is free then we may define D on any diagram K by D(K) = ¢(K).
Conversely, if D satisfies (1)-(3) then it defines a non-zero A-homomorphism
D: MTy, — A. O

Remark. (Uniqueness of Kauffman’s invariant) It follows simply from section
2 that Kauffman’s invariant is unique, because MTj is cyclic. It is determined
uniquely by its value on O, the diagram of the unknot without any crossings.
D was originally normalised so that D(O) = 1. It now appears more natural to
assign the value 1 to the ‘empty knot’, so that D(O) = 4.

Kauffman’s original proof of the existence of D, [8], requires a considerable
amount of combinatorial argument to show that the elements of A reached by
different routes from a given diagram K are independent of any intermediate
choices.

We note here an alternative existence proof, using the Yang-Baxter orthogonal
invariants.

Proposition 3.2 There exists a regular isotopy invariant of knot diagrams in
Z[sT] which satisfies relations (1)-(3) with z =s—s1, A=s""1 §=1+(A—
AY/z, and takes the value 1 on the empty knot.

Proof (Turaev): The invariant is constructed from the g-analogue of the funda-
mental representation of the Lie algebra of SO(2n). O
For each n we have a ring homomorphism e, : A — Z[s*!] defined by e, (\) =

571 e, (2) = s—s~!. Turaev’s invariant then defines a map ,, : MTy — Z[sT!]

with ¢, (aK) = e,(a)p,(K) for a € A.

Proposition 3.3 MT, is a free A-module.
Proof : Suppose not. Then there exists a € A, a # 0 such that aK = 0, where

K is the empty diagram. Now ¢, (K) =1s0 0 = ¢,(aK) = e,(a) for all n. This
is impossible, since for any given a # 0 there exists n with e, (a) # 0. O
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This proves the existence of D, given Turaev’s invariants. In principle D(K)
could be calculated explicitly for a given link diagram K from knowledge of the
invariants ¢, (K) for sufficiently many n, as follows:

Proof : 'We know that any element a of A can be written as a polynomial in A**,
zand 6. Now 26 = A™' — X\ + 2, so z¥a can be rewritten as a polynomial in \*!
and z alone, for large enough k.

A simple induction, as in theorem 2.6, shows that z/KID(K) € A can always
be written as a polynomial in A*! and z; say

A8ID(K) = %X‘PT(Z)

M

= ; )\TQT<S),

where Q,(s) = P,(s — s71).
It is then enough to find Q,(s), m <r < M.
Now for each n,
M
> s VQ(s) = en(?ID(K))
= (s —s )N (K).
Write V' for the k£ x £ Vandermonde matrix with entries

sCnr 1 <n<k m<r<M, withk=M-—m+1.

Then
Qm ©®1
V Qm+1 _ (S N 3_1)‘K| SO:Q
Qum Ok

Since V' is invertible, we have Q,,, . .., @, and hence D(K) in terms of ¢4, . . ., .
O

In order to make these calculations explicitly we need bounds for m and M,
in terms of K. It is certainly sufficient to note that |m|, M < |K|+ ¢(K), where
¢(K) is the number of crossings in the diagram, although these bounds may turn
out to be quite generous.

4 A basis for the tangle algebra

In this section we set out the induction to be used in proving that the algebra
BW,, defined by generators and relations is isomorphic to the Kauffman algebra,
defined by tangles. We start by reviewing the position for MT,.
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The algebra MT, is shown in [11] to be free over A, of the same dimension,
|C|, as Brauer’s algebra A,. The proof, which we give here, is an easy conse-
quence of the existence, however established, of Kauffman’s Dubrovnik invariant
D : MT, — A. We make use of the homomorphism e : A — ZI[4].

Proposition 4.1 ¢(D(K)) = oK1,

Proof : 1t follows from condition (1) that e(D(K)) is unaltered when any cross-
ing in a diagram is switched, and from (2) that it is unaltered by Reidemeister
move [. Now any diagram can be changed to any other with the same number
of components by a sequence of crossing switches and Reidemeister moves, so
e(D(K)) = e(D(K')), where K’ is the disjoint union of | K| simple closed curves,
giving the result by (3). O

Theorem 4.2 Any set of tangles {T.}, ¢ € C,,, without closed components, hav-
ing ¢ = conn(T,) and spanning MT, forms a free A-basis for M'T,.

Proof : Define a bilinear map b : MT, x MT, — A by b(S,T) = D(e(ST)).
Write A for the |C,| x |C),| matrix with entries a.q = b(Te, Ty).

Suppose that X\, T; = 0, A; € A. We want to show that A\; = 0 for all i.
For each ¢ € C), replace the ¢ th column of A by the linear combination of the
columns of A with coefficients \;. The new matrix then has determinant \.det A
and a zero column. The required result follows by proving that det A # 0, since
A has no zero-divisors.

Now e(T.T;) € MTy, is represented by a link with r components, say. Each
component contains at least one arc from 7, and one from Ty, so r < n. When
r = n each component must have exactly one arc from each, so that the connector
d is the ‘mirror image’ of ¢, given by interchanging the roles of the top and bottom
points. Set ¢ = d in this case, so that we have r = n if and only if d = ¢.

Now apply the homomorphism e to the entries in A. Then, by proposition 4.1,
e(acq) = 6", r < n, and r = n if and only if d = €. The matrix e(A) has then one
entry 6" in each row and column, so e(det A) = det(e(A)) € Z[d] has a non-zero

coefficient for 6*°. Thus e(det A) # 0, so det A # 0. O

This shows that MT, is a deformation of Brauer’s algebra A,,, in the following
sense.

Theorem 4.3 There is an isomorphism of Z[0]-algebras induced by ¢ between
MT, ®, Z[6] and A,.

Proof :  The map ¢ : MT,, — A,, defined in section 2, factors through a Z[d]-
homomorphism MT, ®, Z[6] — A,. Since MT, ®x Z[)] is spanned over Z[0] by
{T.} which maps onto a basis of A, of the same cardinality, this set must be a
Z[6]-basis in the specialisation, and the map is hence an isomorphism. a
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Corollary 4.4 (to theorem 4.2) Any set of tangles with distinct connectors
forms an independent set in MT,.

Proof :  We have shown that ¢ : MT,, — A, carries a free A-basis to a free Z[J]-
basis. It follows, using determinantal criteria for independence as in theorem 4.2,
that k& elements of MT,, whose images are independent in A,, must themselves be
independent. O
We shall prove by induction on n that the homomorphism ¢ : BW,, — MT,
is an isomorphism. In the course of the proof we shall construct explicit bases
¢ YT.} in BW,,. As part of the induction we shall use natural filtrations BW"
and MT(") by 2-sided ideals, analogous to the filtration of A, used by Hanlon and
Wales, [7]. In the case of MT,, this filtration arises from the geometric viewpoint,
as in [11], when we consider tangles of rank < r.
Definition. A tangle 7' € U] has rank < r if it is the composite 7' = AB of an
(n,r) and an (r,n) tangle.
Remark. Then conn(7") has at most r arcs connecting top to bottom. However
this is not sufficient for 7" to have rank r. For example, the tangle T in figure 4.1
has rank 2, although conn(7") has no connecting arcs from top to bottom.

&

Figure 4.1

Write MT") for the subspace of MT,, spanned by tangles of rank < r. Clearly
MT(") is a 2-sided ideal, with

MT, = MT\" > MT"2 5 ... .

Proposition 4.5 MT\" is generated, as an ideal, by the element B\ Es. . . Eo_1,
where 2k =n —r.

Proof : For r > 0 we can write the identity tangle in U] as
I =C(E\E;s.. .Eop1)D,

where C'is an (r,n) tangle and D is an (n,r) tangle, as in figure 4.2.

r
C K—J
JANRWANEVAN

AV VERVER V) n
E1E3E5E7 A A AN
\VAR VARV n
D
r
Figure 4.2
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Then any tangle 7' = AB of rank < r can be written as T = AC(E1Es. . .Eo,_1)BD
with AC, BD e U.

The case r = 0 can be handled similarly, by first writing a tangle T" of rank 0
as T'= AFE, B where A is an (n,2) tangle and B is a (2,n) tangle. O

Definition. For r = n — 2k write BW,(") for the 2-sided ideal of BW,, generated
by ejes. . .eop_1.
Then

BW, = BW™ > BWw{"=2 5 ... .

Clearly ¢ : BW,, — MT, restricts to ¢ : BW — MT".
Our main result, that ¢ is an isomorphism, follows from

Theorem 4.6 o : BW\") — MT\") is injective for all n,r.

Proof : The detailed lemmas needed appear in later sections. The scheme of the
proof follows here.

For fixed n we prove the result for » = 0, 1 in section 5 from the injectivity of
pon BW, 1, = BWT(;SU, using induction on n.

The proof then continues by induction on 7.

For this induction we construct a linear subspace V(" ¢ BW(") complement-
ing BW/ =2 The induction step for injectivity of ¢ follows by establishing:

(1) V™ + BW=2 is a 2-sided ideal in BW,(",
(2) |V — MT, is injective,
(3) €1€3...62k_1 € Vn(r)

In the construction, given later in this section, we exhibit an explicit spanning
set for V" whose image in MT, is an independent set of totally descending
tangles. This establishes property (2).

Property (3) is immediate from the construction, and property (1) is proved
in section 6. O

To describe certain elements in BW,, we now draw on Artin’s braid group.

The braid group on n strings, defined by geometric braids, (particular types
of (n,n) tangles), is known to have the presentation with generators o;, i < n
and relations

005 = 0404, |Z —]| > 1, 004104 = 0;4107041.

There is then a homomorphism ¢ : B, — BW,, defined by o; — g¢;. Any two
monomials in BW,, in ¢! which arise from the same geometric braid 3 will then
be equal, and we shall use 3 to picture the element ¥ (3). We shall also refer to
monomials in ¢*! as braids in BW,,.

There is an antihomomorphism perm : B, — S,, defined by perm(o;) = 7; =
(¢ i+ 1). With our convention of composition of geometric braids, the strings in
a braid # then join the point ¢ at the top to the point 7 (i) at the bottom, with

m = perm([3).

16



Among the elements of B,, we shall use particularly the positive permutation
braids and, as special cases, the Lorenz braids .

Definition. A braid in B,, in which all crossings are positive and every pair of
strings crosses at most once is called a positive permutation braid .

Theorem 4.7 A positive permutation braid § is determined by the permutation
m = perm((3) induced by its strings.

Proof :  Such braids are examples of ‘totally descending tangles’, as defined in
section 2, in which the arcs of the connector all join top to bottom and are ordered
by the order of their initial points. O

We shall write 3, for the positive permutation braid with permutation 7 =
perm(/3,), whose strings join the points i at the top with (i) at the bottom. The
element b, = ¢(83;) € BW,, which we shall also call a positive permutation braid,
can be conveniently referred to by the permutation 7, rather than choosing one
of the many ways of writing it as a monomial in g;. For example, the permutation
7= (14)(23) € Sy gives by = 919293919201 = G29192939291 = - - -.

Definition. A Lorenz braid of type (¢,r) is a braid (3, where m € S,,, n ={(+7,
does not permute the first ¢ ‘left-hand’ strings, or the last r ‘right-hand’ strings
among themselves.

For fixed (¢,r) there are (') Lorenz braids, as a Lorenz permutation 7 is
determined simply by the free choice of endpoints for the right-hand strings. Note
that 7 is an (¢,r) Lorenz permutation if and only if 7(i) < 7(j) for 1 <i < j </¥

and for £+ 1 <i < j <n. An example of a (3,4) Lorenz braid is shown in figure

//
v/ \
(WVAVAN

Figure 4.3

Where 7! is a Lorenz permutation the braid 3, = a(8,-1) can be viewed as
a Lorenz braid (3,1 turned upside down. Call a(3,-1) a reverse Lorenz braid .
Note that (3,)~! is not the same braid as (3,-1 but has all the crossings switched.

Definition. For each n and r = n—2k write V,(") for the linear subspace of BIW,(")
spanned by elements brwoyb,b,, where m, p1 are (2k,r) Lorenz permutations, 7 is

a permutation of the last r strings only, and wo;, € BWQ(,S).

Proposition 4.8 Given that g0|BW2(,S) is injective for n > 2k then |V, —
MT, s injective.
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Proof :  We know that M TQ(,S) is spanned by |C'k|2 totally descending tangles,
one for each k-connector of rank 0, and that g0|BW2(,S) — M TQ(,S) is surjective. By
hypothesis we can choose a spanning set of |Cy|* elements for BWQ(,S) with this
set of tangles as image.

Then V(") is spanned by the ()2 |Cy|* r! elements bywayb b, where 7=, y1 are
drawn independently from (2k,r) Lorenz permutations, 7 from permutations in
S, and wyy from the spanning set for B WQ(,S).

The elements ¢ (brwo,b,b,) are represented by tangles in M T,Sr) each with
exactly r through strings, and all having different connectors. A typical such
tangle with £ = 2, r = 4 is illustrated in figure 4.4. It follows by the corollary to
theorem 4.2 that these tangles are independent in MT,,, and hence that |V, is
injective. O

>

Figure 4.4

This establishes property (2) of theorem 4.6 under its induction hypothesis.

From theorem 4.6 we eventually build a basis for BW,, as a union of spanning
sets for each V(). The image of this basis in MT,, can be represented by a set
of tangles each with a different connector, and each totally descending, for some
ordering of the arcs.

We note that this gives a complicated check that the dimension of BW,, is

n/2 ;
[Cal = > () ICxl™ 7,

k=0

where we write r = n — 2k.

5 Generators and relations for the tangle alge-
bra: the base for induction

In this section we prove injectivity of ¢ on BW/.? or BW depending on the
parity of n, given injectivity of ¢|BW,,_;. The corresponding sets of tangles in
M, are those with at most one through string.

We start with some results in BW,, which use only the regular isotopy rela-
tions.
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Definition. The shift map S : MT,, — MT,,, is a homomorphism defined on
an n-tangle T as shown in figure 5.1.

(M) = T
-
Figure 5.1

Thus S(Gz) = Gi+17 S(EZ) = Ei—i—l-
It is clear, from the behaviour on tangles, as shown in figure 5.2, that W A,,, =

A S(W) for W € MT,,, where A,, = G,Gpo1 ... Gy

L[ T L N

L‘L\Nk _ L\ ”
9 [

Figure 5.2

We can define a shift map with similar properties in BW as follows.
Definition. The shift map S : BW,, — BW,,; is defined as a homomorphism
by

S(gi) = giv1, S(ei) = eiy1,
extended linearly.

It is simply necessary to check that the relations are respected by S.

Proposition 5.1 The homomorphism S satisfies
Wy, = Ay S(w),  wby, = byS(w)

for any w € BW,,, where

Qm = 9m9m-1 - - - 91, bm = 9@191;171 s gfl

Proof : When w = ¢! or w = ¢; the result is an immediate consequence of the
relations, and it follows for monomials w by induction on their length. O

We now define Fy, € MT,, 2k < n, to be the element represented by the
tangle shown in figure 5.3.

< %k P
Y
< LA

Figure 5.3
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The following equations in MT,, are clear from inspection of representative
tangles.

Proposition 5.2 Foralli < k
(1)  GFy = Gop_iFy,
(2)  EiF, = Ey_Fy,
(3) FuG; = F.Gop—s,
(4) FnE; = FpEoy_;.

An example of equation (1) is illustrated in figure 5.4, with ¢ = 1 and k = 3.

J|| |-

(A (AN

Figure 5.4

Again it is clear from inspection of the tangles, as shown in figure 5.5, that
Py, = a(Ag—2) Fip1Fop 1 Agk 2.
By analogy we define f, € BW,, inductively, setting f, = identity, and
fr = alaog—2) fr1€2k-100k .

We then have Fj, = ¢(fi), and a(fr) = fx, since fr_1 and egr_; commute.
U
A [

|
Figure 5.5

Remark. While it is clear that pey(Fy) = F) in MT,, it is difficult to prove
directly from the definition and relations in BW,, that po(fix) = fx-

Proposition 5.3 BW/"~2) ¢ BW,, is the 2-sided ideal generated by fy.

Proof : By definition BW"~2%) is the 2-sided ideal generated by ejes ... egp_1.
By induction on k we can write fr = «a(bg)ejes...ea,_1by for some invertible
element b, € BWs,, in fact b, can be chosen to be a braid. O

We now make use of the relations in BW,, to prove the analogous results to
proposition 5.2.

20



Proposition 5.4 For all i < k

(1) gifx = gor—ifr,

(2)  eifiy = eaw—ifn

(3) Jxgi = frgor—i,

(4) Jrei = [rean—i-

The same results hold with por(fi) in place of f.

Proof : Cases (3) and (4) follow from (1) and (2) by applying a. Applying pox
gives the results for por(fi). The result is immediate for k = 1. For i > 1 the
result follows from proposition 5.1 by induction on k.

For example, in case (1),

gifi = gia(aok—2)fr_1€08—102k—2
= o(agk—2)9i—1fr—1€26-102K—2, by applying o to 5.1
= o(agk—2)92k—i—1[k—1€2%—102K—2, by induction
= Gon—i(a2r—2) fr—1€2k—1G2K—2, (i > 2)

= Gok—ifn-

To prove 5.4 when i=1 we set h; = a(a;)a(aj_2)e;r1€j_1.

Since fr = hog_o2 fr_2a2k_4a9_2, the result for cases (1) and (2) will follow by
showing that
(1) g1h; = gjahy
(2) erh; = ejahy,
for all j.

We prove (1') and (2’) by induction on j, starting with j = 2. For j = 2 we
have

ho = gi1gae163 = ege1€3 = e2e3e1 = g3gac3er.

Then gshy = gzgi1g2€1€3 = gi1ho and ejhy = ejeseie3 = e1e3 = ezhy.
For the induction step, use the braid relations to write

alaj)ala;—o) = g2g15(ala;—1)a(a;-3)).

(Compare the two braids illustrated in figure 5.6.)

(I
= \H\\/
Ind

Figure 5.6
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Then hj = ggng(hj_l). So

glhj = 919291S(hj_1) = 9291925(hj_1) - 9291S(glhj_1)
= ¢215(gjhj_1), by induction on j,
= ¢02619j+15(hj_1) = gj+1h;, for j > 2.

Similarly e;h; = e;j11h;, using the relation in BW,, that e;g291 = g2g1€2. O

Lemma 5.5 Suppose that ¢ : BW,, 11 — MT,,11 s injective. Then BW,, 1€, =
BW,.em.

Proof : By hypothesis it is enough to prove the corresponding result
MT,1Eyn = MT, E,,.

For an (m + 1, m + 1) tangle T define ¢,,(T") to be the (m,m) tangle shown
in figure 5.7.

< mPp

[ ]
sm(T): T r}

[ [V

Figure 5.7

Using the standard interpretation of €,,(T") as an (m + 1,m + 1) tangle it
is clear that ,,(T)E,, = TE,,. Extend the definition of &,, to linear combi-
nations of tangles to define a linear map ¢, : MT,,.1 — MT,,, (the relations
are respected). Then any element X FE,, with X € MT,,,; can be rewritten as
XE, =en(X)E,, € MT,E,,. O

Corollary 5.6 Under the same conditions, BW,,,1e;1 = S(BW,,)e;.

Proof :  Apply the automorphism p,, 1. O
Proposition 5.7 Suppose that o|BW,_1 — MT, _ is injective. Then

(1) BWoay fr = BWy fx, for all k with 2k < n,

(2) BW2k+1S(fk) = BWkJrlS(fk), fOT’ all k with 2k +1 S n.

Proof :
(1) The case k = 1 is immediate, since gfﬂel and e;e; are multiples of e;.
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For k£ > 2 we have k +1 < n — 1 so that BWj,1ex = BWjer by lemma 5.5.
It is enough to show that

9iBWife C BWifi
e;BWifr C BWyf, for all i < 2k.

This is immediate for i < k. For ¢ > k it follows from 5.4, and the fact that BW}
then commutes with e; and g;.

Write f, = e,ry for some rp, € BWsy, by induction on k. The remaining cases
with ¢ = k follow by noting that

geBWyier, C BWiiiep = BWyey
and e, BWye, C BWy.1e, = BWyey.

(2) The case k = 1 will be proved directly.
For k£ > 2 we have k +2 < n — 1 so that BWy,sex11 = BWjy e, from
lemma 5.5. We must show that

9iBWi1S(fr) C BWi1S(fr),
elBWk+1S<fk) C BWk+IS<fk), for i < 2k.

This is immediate for ¢ < k+ 1. For ¢« > k + 1 it follows from proposition 5.4,
since BWj,,; commutes with g; and e;. The remaining cases follow as in (1), since
S(fr) = exs15(r).

We finish the proof of (2) by showing that BW3es = BWsey. Now BWaes is
spanned by es, e1es and gies, so we must show that products of these elements
with go or e on the left still lie in BWses. It is a matter of a quick check from the
relations in BWs, to see that €2 = des, exe1es = €9, €2g162 = A" ley, goes = Aeo,
gae162 = gi ‘ez and gagies = €6 O

Corollary 5.8 Suppose that ¢| BW,,_; is injective. Then the ideals generated by
fx in BW,,, with k = [n/2], can be written as:

(1) BWLY = BW, fi, BW, when n =2k, and

(2) BWsh, = BWi1S(fi) BWiyy when n = 2k + 1.

Proof (1):
BWy) = BWafiBWa
= BW, fi BW} applying a to 5.7.
O
Proof (2):  The ideal BWQ(;L generated by fx is equally generated by S(fx) =
Aoy fraoy so the result follows using 5.7 (2) exactly as in (1). O

We complete this section by showing the injectivity of ¢ on the 2-sided ideals
generated by f in BW,,, k = [n/2], given injectivity on BW,,_;.
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Theorem 5.9 Suppose that o|BW,,_1 — MT, _; is injective. Then g0|BW2(,S) —
MTQ(,S) 15 injective, when n = 2k, and g0|BI/V2(,Brl — MTZ(/IBrl 15 injective, when
n=2%k+1.

Proof : In the case n = 2k we know that ¢|BW)} is an isomorphism to MTj.
We may then choose elements t. € BWj,c € Cy, spanning BWj, with o(t.)
represented by a totally descendin% tangle T, say, having connector c.

By corollary 5.8 we have BWzg) — BW,f,BW,. This is spanned by |Cy|*
elements t.frtq, ¢, d € Cy. It is enough to prove that the images of these elements
are independent in MTy.

Now these images are represented by the tangles T.F,T,;. Different pairs
of connectors (c,d) give tangles T,.F} Ty with different connectors in Coyy, since
the tangles consist of a top and a bottom half, each with k arcs, affected inde-
pendently by the connectors ¢ and d. The tangles then represent independent
elements in MT5;, by corollary 4.4.

Similarly when n = 2k 4+ 1 we know that ¢|BW},; is an isomorphism to
MTy.11. We may then choose spanning elements t, € BWj.1,c € Cy, with ¢(t.)
represented by a totally descending tangle T, say, having connector c. Again,
by corollary 5.8, we have a spanning set {t.S(fi)ta}, ¢;d € Chpq with |Crpq]?
elements, for the ideal BWQ(;ZA.

The images of these elements are represented by tangles T.S(Fy)T;. Once
more we can see that different pairs of connectors (¢, d) give tangles with different
connectors in Uy, 1 because all but one of the arcs stays either in the top or in
the bottom of the tangle. This guarantees independence in MT5y; 1, as before.O

Remark. We could in fact show that the composite tangles used in this proof
are themselves totally descending, for some suitable ordering of their arcs.

We continue in the next section to examine BW/") for larger r having estab-
lished here the start of our induction on r. Note that we could prove similarly
that BWQ(,:ZFT = BWiyrS™(fi) BWyy, and find a spanning set of |Cy,|* elements.
However, a similar attempt to prove the (false) result for » > 1 that these are
independent would fail, because some different pairs of connectors in Cj, can
yield the same connector in Coyy,.

6 Isomorphism between Kauffman’s tangle al-
gebras and the Birman-Wenzl algebras

We finish the proof of injectivity of ¢ : BW,, — MT,, by proving the remaining
induction step, namely that if ¢|BW,,_; is injective, and ¢|BW("=?) is injective
then | BW,") is injective. We do this by finding a complementary subspace V(")
to BW™=2 in BW") on which ¢ is injective.
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We recall the definition of V(") given in section 4 as the subspace spanned
by {bﬂBWQ(,S)bTbu}, where n = 2k +r, a(b,), b, are (2k,r) Lorenz braids in B,
and b, is a positive permutation braid on the last 7 strings in S?*(B,). Following
the scheme of proof in theorem 4.6 we already know, by induction on n, that
¢V is injective. It remains to show that V. 4+ BW(=2 = BW().  Since
BW/(") is the 2-sided ideal generated by fi, and f, € V") we need only show that
V) 4 BW(=2) is a 2-sided ideal. Now a(V,(V) = V") since the elements b, in
S?*(BW,.) commute with BW;. Hence it is enough to show that V(") + BW (=2
is a left ideal.

Proposition 6.1 Let n = r + 2k and let X" be the subspace spanned by the
set {byb, BWor fr}, where a(by) is a (2k,r) Lorenz braid and b, is a positive
permutation braid in S**(B,). Suppose also that o|BW,_1 is injective and that
r > 2. Then

Lg") _ X7(Lr) + Bwér—Q)

1s a left ideal.

Corollary 6.2 V") + BW\"=2) is q left ideal, under the hypotheses of proposition
6.1, and hence theorem 4.6 is established.

Proof : Since L") is a left ideal, by 6.1, it follows that V(") + BW("=? is a left
ideal, by noting that BWQ(,S) = BWoy fr BWa. O
The proof of proposition 6.1 occupies the rest of this section. The principal
ingredient is an analysis of the elements ¢;b, and e;b, for positive permutation
braids b,. The following two lemmas are a consequence primarily of the braid
relations.

Lemma 6.3 Let p be any permutation, and let p; be the permutation po(ii+1).
Then the positive permutation braid b,, satisfies the equation

b = gibyif pli) < pli+ 1),

by = giby, if p(i) > p(i+1).
Proof : 1f p(i) < p(i+1) then each pair of strings in the braid g;b, crosses at most
once, so it is a positive permutation braid. Its permutation is pi, so g;b, = b,,,.

If p(i) > p(i+1) then pi(i) < pi(i + 1) and the same argument holds with p;
in place of p. O

Corollary 6.4 Any positive permutation braid b, can be written as the product
of a word in {g;}, i # ¥, and an (¢,r) Lorenz braid.

Proof : By induction on the length of b,, using 6.3 to write b, = g;b,, for some
i # Cif b, is not already an (¢,r) Lorenz braid. O
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Lemma 6.5 Let p be any permutation with p(i+1) = p(i)+1. Then g;b, = b,g,0)
and e;b, = bpe,) .

Proof : This can be viewed as allowing us to pass a simple crossing along two
parallel strings from top to bottom of a braid. By the hypothesis on p, both g;0,
and b,g,(;) are positive permutation braids, and both have the same permutation.
Hence they are equal, using only the braid relations, by the fundamental theorem
on positive permutation braids. It follows that g, 1bp = bpgp_(ll.) and hence, by the
skein relation, that ze;b, = zb,e, ).

The lemma follows, if we assume that z is invertible in A. Without inverting
2 the result follows by induction on the length of b,, together with the relation

€igi+19i = Gi+19:i€i+1 and its reverse in BW,,. For we can write b, = ¢;b,, for some
j. Then j # 1, since the strings ¢ and ¢ + 1 do not cross under p.

If j =i+ 1then p(i +2) < p(i+1) = p(i) + 1, s0 p(i +2) < p(i). We can
then, by lemma 6.3, write b, = gi+19:b,,, and then e;b, = gi119:€i410,,. Now
p2(i+2) = p(i+1) = po(i + 1) + 1 and b,, is shorter than b,, so that we can use
induction.

A similar argument can be used when j =i — 1, while otherwise |i — j| > 2,
and e;g; = g;e;, giving an immediate inductive proof. O

Lemma 6.6 X S%*(BW,) c L{".

Proof : X(Me; ¢ BW( =2 < LI for j > 2k, since fre; € BW=2 for j > 2k.
Let b, be any positive permutation braid in S*B, and let j > 2k. Then by
6.3, either

ngj = bT/
orbrg; = bogy =bo + zbr — 2bre;.

Hence zg; € L") for any spanning element x = bywoy, frb, € X,

ThusX(”g c L for j > 2k. O

We now continue the proof of 6. 1 to show that L(" is a left ideal. Lemma 6.6
shows in partlcular that L{b, ¢ LU for b, € S?*(B ) It is enough to show that
eir, iz € LU for each 7 = b wgkfk € X" and each i, where a(b,) is a (2k,r)
Lorenz brald and wy, € BWy.

Suppose then that x and i are given. We may further suppose that 7(i+1) >
(i), otherwise by = glb,r1 with m(i + 1) > m(i). We then need only prove
that e;2’ € L") where 2/ = bmwgkfk, since g;x = g2x’ = o' + z2g;7’ — zg;e;7’ =
'+ zx — Aze;x' and e;x = e;g;2' = Aega’ from the skein and delooping relations.

Since 7 is a reverse (2k,r) Lorenz permutation then 7(i + 1) = m(i) + 1 if
either 7T(i —|— 1) <2k or (i) > 2k. By 6.5 €;x = brer()war fi in either case. This
lies in X\ if 7(7) < 2k and in BW,("=% if 7(i) > 2k, and similarly gz € L. Tt
remains to deal with e;z and g;x when 7(i + 1) > 2k and 7(i) < 2k. In this case
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gibx is a reverse (2k,r) Lorenz braid, by 6.3, so that g;z € X" and we are left
to consider e;x.
Given 7 and i, let p be the permutation given by

2k Jj = (i),

j_lv 7T<Z)<.7§2k7
p(1)=17+1, 2k+1<j<m(i+1),
2k+1, j=wn(i+1),

7, otherwise.

Now p only makes pairs of strings cross which have not already been made to
cross by the reverse Lorenz braid b, so that b.b, is also a positive permutation
braid. Then b;b, = b,,, where m = po 7. Now p permutes the first 2k strings
and the last r strings among themselves, moving (i) to 2k and 7w(i+1) to 2k +1,
80 T = by, (b,) " Lway fr with b, € BWyS*(B,). Note that m;'(i) < m7'(j) for
1<j<2k-—1.

It is enough, by lemma 6.6, to show that e;a’ € L"), for 2’ = by, wh, fr. Now
m(i+1)=2k+1=m i)+ 1 so, by 6.3, e;x' = by, eawh, fr.. This does not finish
the proof, since the element ey, is stuck between BWy, and S?*(BW,) and we
have to use our inductive knowledge of wy, fi € BWQ(,S) to free it.

Lemma 6.7 Suppose that g0|BW2(,S) is injective. Then every element in BWay fi
1s a linear combination of elements in the sets ¢mGm1 - - - Gor—2€2k_1 BWor fr., m =
1, ey 2k — 2, and 62k_1BW2kfk;.

Lemma 6.8 For each m = 1,...,2k — 2 and each positive permutation braid b,
with p~1 (i) < p7'(j) fori <j <2k —1 and p*(2k + 1) = p~'(2k) + 1 we have

bp62kgmgm+1 <o g2k—2€2k—1 = bp’62k‘—1

for some positive permutation braid b, .

Proposition 6.1 then follows from 6.7 and 6.8, since we can write the element
e;x’ as a linear combination of elements of the form b, BW5 fi,. All of these lie in
L since any positive permutation braid by can be written as the product b.b,»
of a reverse (2k,r) Lorenz braid b, with a positive braid which does not involve
the generator gox, by the corollary to lemma 6.3, applied to the reverse braids.

Pmo{ of lemma 6.7: By hypothesis, ¢ gives an isomorphism from BWs, fi C
BWQ,S) to MTy. Fy,. Now every element of MT5,Fy can be written as a linear
combination of totally descending tangles T, where the connectors ¢ join points
of the top to the top in some way, and join the bottom points as for Fj. We
may choose the order of strings for each connector ¢ as we wish, so let us assume
that in each tangle T, the string whose end point is at position 2k on the top lies
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above all the others. By isotopy of the strings we may then write each of these
tangles T, as
GGy -+ Gop—o Eop 1 T'Fy,

for some m =1,...,2k — 2 and some T' € MT5; as illustrated in figure 6.1. The

isomorphism ¢ then gives a spanning set for BWs, f;. as stated. O
N
[I'n
T
T =

Y
/N

Figure 6.1

Proof of lemma 6.8: We have

bp62kgmgm+1 co o G2k—2€2k—1 = bpgmgm+1 < g2k—2€2k€2k—1-

Now the reverse braid gog—s ... gm+19me(b,) is a positive permutation braid, b,,
say, since gop_s ... g, is a positive permutation braid on the first 2k — 1 strings
only, while a(b,) = b,-1 does not make these strings cross. Now p;(2k + 1) =
p1(2k) + 1, so either gorgor_1b,, OF goi o 1b,, is a positive permutation braid,
b,,, say, depending on whether pi(2k — 1) < pi(2k) or p1(2k — 1) > p1(2k), by
6.3.

We can write egp 169k = €9k 100kGok_1 = 62k_192_k192_k1_1 by the relations in
BW,,. Then eg;_ieab,, = ear_1b,,. Apply the reversing map to give

bp€2kgmgm+1 e gog—2€2k—1 = a<e2k71€2kbp1)
a(egk-1bp,)

= byregg1,

where p" = py ' O

This concludes the proof of proposition 6.1, and the inductive proof of theorem
4.6. We have now established that ¢ is an isomorphism from BW,, to MT, for
all n, so that we are able to use tangle based arguments in dealing with the
algebra BW,,. We have established its dimension over A and also the geometric
description of the natural chain of ideals generated by the elements f;, so we can
also study the composition series of this chain by using the corresponding ideals
in MT,, generated by Fj.
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