Satellites and surge_fy invariants

H.R. Morton and P.M. Strickland

Abstract. A satellite formula relating the quantum invariants of a satellite knot and those
of its companion and pattern links will be described briefly. The SU{2), invariants of a
framed k-component link L, when the variable g is replaced by an rth root of unity yield
a natural map
Jr(L) REE 5 Ay,

where R, is a finite-dimensional truncation of the representation ring of SU(2), and
Ar = Z[em/ 2| The effect on Jy of a framing change on L is given by applying a
suitable power of an automorphism F- of R+ to each factor,

Use of the satellite formula for a simple choice of companion exhibits Reshetikhin and
Turaev’s invariant of the 3-manifold given by surgery on L as the evaluation of .J.(L) on
a fixed element M in each R, after slight normalisation. Explicit calculation of My can
be made easily because of a beautiful relation between F» and the invariants J.{H) of the
Hopf link. This relation can be viewed in terms of an action of PSL(2,Z) on R, at least
up to scalar multiples by roots of unity, and shows how the invariant of the manifold given
by Dehn surgery with coefficients a, /b; on a link L can be found by evaluating .J-(L) on
suitable elements M, /5. € Ry, An indication is also given of how these results extend to
other quantum groups.

In the final section we give an explicit formula for the invariant when any Dehn surgery
is used, confirming its correctness via the Rolfsen moves.

Introduction \
This is an account of a 3-manifold invariant for SU(2), which was conceived,
following Reshetikhin and Turaev’s original description, as a direct approach with
the emphasis on using the multilinearity and the explicit formula of the'satellite
calculations in [MS$], avoiding specialisation of link invariants to a root of unity
unttl as late as possible. Much of the paper is an expansion of a talk presented
in Oberwolfach in September 1989. Its eventual form followed the unexpected
discovery, prompted by explicit calculations, that apart from scalar factors, as
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detailed later, the invariants of the Hopf link, together with the factors associ-
ated with a change of framing, can be organised to represent the modular group
PSL{2,Z), once the variable is specialised to a root of unity. This suggests a way
to calculate the invariant for manifolds given by general Dehn surgery from a
link, in terms of the link invariants. The conformal field theory approaches out-
lined by Segal as a concrete means of handling Witten’s ideas make this very
plausible, although suitable normalisations to deal with the scalar factors have
been surprisingly elusive.

Independent work, both by Kirby and Melvin [KM], and very elegantly by
Lickorish [L], has provided for different aspects of the invariants to be explored.
Our approach is somewhere between these two. We use the quantum group SU(2)4
as in our development [MS] of Kirillov and Reshetikhin [KR], and draw on the
explicit form of multilinearity of parallels and satellites given there. We do not use
the finite-dimensional Hopf algebras, where a root of unity has been introduced.
There is then no need to take account of the more complicated representation
theory which arises in that case, as is done in [RT], and avoided by the use of
clever arguments in [KM].

"Roots of unity will appear here only in specialisations of existing invariants,
and we develop enough background to ensure that such moves are completely
legitimate where we need them.

1. Link invariants

The SU(2), invariants of a framed link L with & components are described in
[KR]. Assign irreducible SU(2), modules Wi, to the jth component of L, and
there is an invanant J(L;W; ..., W) € A= Z{g*'/#]. The definition can be
extended multilinearly to allow the use of a A-lincar combination of modules on
cach component. The invarfants for L can then be viewed as a single A-linear
map

J(L) : R — A,

where R is the representation ring of SU(2),. It can be shown, for example in
[MS], that the product in the ring R has a nice interpretation in terms of invariants
of parallel links. The result can be summarised as tollows. ‘

Let m: R ® R — R be the product in the ring, and let L be a framed knot.
Then

J(L)om = J(I®),

where 1(?) js the framed 2-parallel of L.
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This result extends naturally to multiparallels of links with more than one
component, as in [MS]. It allows for an alternative description of .J(L) to that in
terms of the irreducible module assigniments.

The ring R is spanned by the irreducible representations W;, one of each
dimension 4, or equally well by the powers (W>)7, since R &2 A[WW,] as a ring.
Since the evaluation of J{L) on the element W; for each component is essentially
the bracket polynomial version of the Jones polynomial of I it is then possible
to calculate /(L) in terms of the Jones polynomials for multiparallels of L. This
corresponds to the use of powers of W, as the A-basis for R rather than the
irreducibles. The change of basis information needed to pass from one basis to
the other is noted in [MS], and also in a nice form in [KM]. The basis of powers
has been used by Lickorish [L] in his approach to the 3-manifold invariants,
allowing him to avoid any use of the other irreducibles W;, 1 > 2, and so present
the manifold invariants without having to consider the quantum group SU(2), at
all.

Satellites. Where a link P is given which has one distinguished unknotted compo-
nent, the remaining components form a closed tangle relative to the distinguished
component as axis. The tangle can then be used as a pattern to form satellites
of given companion knots or links, based on the pattern P. The relation between
the invariants of the companion, satellite and pattern is summarised in the next
theorem, from [MS].

Theorem 1.1. Let P be a pattern link with k components, with one d.istinguished
unknotted component. There is a A-linear map G : R®* =D 5 R such thar any
satellite K formed from a companion C using P as pattern has invariant

J(K) = J(C) oG,

Proof. 'This is given in [MS] by constructing &' in terms of the basis of irreducibles
for R. If ' has more than one component then G is used on that component which
is to be embellished by the pattern. . ]

Remark. Although it is not initially clear that the ring A can be used without
extension to permit some denominators, this follows by working with the basis
of powers of W, and using the skein relations for the bracket polynomials on the
resulting tangles in the construction of G.

The pattern link P itself can be considered as a satellite of the Hopf link 7
using P as pattern, so that

J(P) = J(H) o (G & idg).

The map &' can then be recovered from the invariants J{H) and J{P).




50 H.R. Morton and P.M. Strickland

We always assume that we are considering links with a given choice of fram-
ing, and that when satellite and parallel constructions are made they respect the

framing, Tt is easy to calculate the change which takes place in the invariant when -

the same nnderlying link is used, but the framing on cne or more compenents is
altered.

Theorem 1.2, There is a linear isomorphism F : R — R which can be used
on the copy of R corresponding to one component, L, say, of L before applying
(L), and will then give the invariant J Jor the link whose framing on L; has been
increased by one.

Proof. Tt is known [KR] how the framing change on a component affects the

invariant when an irreducible is selected in R for that component. This determines

the map F* explicitly by F'(W;) = f,W; where the framing factor’ f; is given by
. .3

fi=(=1)i7lgi -1, O

Remark, We retain the sign in f; as in [KR] and [MS]. Kirby and Melvin use a
variant where the sign does not appear, but this needs a little caution in interpreting
the relation with the bracket polynomial. One source of signs can be accounted
for by considering —W¥, in place of W, as the polynomial generator for .

2. Roots of unity

We now consider the behaviour of J when the variable g in A is specialised to be
an rth root of unity. We shall suppose that ¢'/* is a primitive 4rth root of unity,
and we consider the ring A, given by factoring out the cyclotomic polynomial
ur generated by the 4r-th root a in A = Z[a%']. We then have a specialisation
homomorphism e : A — A, = A/< py(a) >.

Proposition 2.1. For any link L the evaluation er{J(Li Wy, ..., W, ) = 0 if
Wi, = W, for any j. .

Proof. For each j we can find \; € A such that J(Ly Wy, W) = Asbig,

2% _
where 6; = (_1)%1%, as in [MS]. Now e,(6,) = 0. »
-

Corollary 2.2. If V; ¢ R lies in the ideal generated by Wy, for some 5, then
er(J(L;Vi, ..., Vi) = 0.
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Proof. Without loss of generality we may consider the case where k — 1, and
V =W, V' with V' € R. Then

er{J(L; V) = e (J(L™; W, V")) = 0.0

Notation. Write W, = A, (W>) as a polynomial in W,. The polynomial A,
satisfies An(2cos) = sinrf/siné, and is closely related to the Tchebychev
polynomial T:. with T.(2cos ) = cos rf. '

Wiite R, = (R ®@ A)/<W, > =2 A [Wa]/< A (W)) >, and write
pr ¢+ R — R, for the projection. The ring R, is known as a Verlinde alge-
bra; similar algebras may be defined for representation rings of other simple Lie
groups.

We shall extend the definition in R to allow W; with ¢ < 0 by setting
W_i = ~W, for & > 0. Multiplication in R can then be described simply,
fori,7 >0 as

iti—1 Ji—l

WW; = Z Wi = Z Wi,

k=i—j+1 k=j—i+|

where the sum is in steps of 2, [MS], since the excess terms in one of these sSums
will cancel. (Under a suitable convention for sums, the same result holds for all
¢,7.) It then follows that

(Wj+1 — Wj_l)TfVT = I/VI,._H' =+ Wr_j, for all T, j.

Proposition 2.3. The invariant J(L) : R®* — A induces a A,-linear map
Je(L) : REF — A, with e, 0 J(L) = J.(L) o p®F.

Proof. The map e, o J(L) is zero on the kernel of p®*, by corollary 2.2, a

Proposition 2.4. The isomorphism F : R — R induces F : R, — R. éuch that
Frop.=prolkF.

Proof. We must show that p, o F' is zero on the ideal generated by W, This ideal
is spanned by the elements W, and

Wi =Wy )We =W + Wiy forj €N
Now

pro F(W,) = fror(W) =0
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and
pro F(Wr_y + W)
—p, ((ﬁl)r—jqa(r—j)llww n (_1)r+j—1a(r+j)2—lwr+j)
= (=10 (o (W) 4 ¥, (W) < 0
8 Pr(Wog) = —p,(Wyy5) and e, (%) = 1. | -

Notation. We abuse notation by writing W; for p.(W;) € R,.. We shall write
1€ JRkford, 5, k between 1 and » — 1 to mean that 1W; has non-zero coefficient
in the product W; ® W}, in R.,.

Then we have
Lemma 25 jeciokakci®j.
-Proof. We have W, = —W,_,, in R.. Thus

WioWe= ) W,

[i—k|+1

where m = min(s+k—1,2r—¢ — k — 1), and the sum runs in steps of two. If we
let o = (1-1)/2, 3= (j~1)/2 and v = (k—1)/2 then the condition for W; to
be a summand of W; ® Wy, is that o, A and ~ form the sides of a triangle, with
perimeter an integer less that » — 1. Since this is clearly a symmetric condition
the lemma is proved. O

Note: In the case of a deformation of a general simple Lie algebra, the staterment
would need to be altered to allow for muitiplicities, and for the fact that conjugate
representations enter in.

We may now use the reduced invariants Jr(L) of framed links L, which
can be calculated from their standard ST (2), invariant J(L), to determine the
Reshetikhin-Turaev invariant of the manifold given by surgery on L. We con-
struct U/ € R, so that the invariant in A.. is a stmple multiple of J,.(L; U, .. ., U).

Write M?(L) for the manifold constructed from a framed link L by surgery.

Theorem (Kirby, Fenn-Rourke).

1. Every closed oriented M? arises in this way.

2. There is an orientation preserving homeomorphism M?(L) = M3 (L ) if and
only if L, L' are related by a sequence of Kirby moves.

Kitby moves are of two types, shown in figure 1.

|
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_ﬁ.,

L b cp+(L)

L F— ¢ (L)
Figure 1

Remark, Fenn and Rourke [FR] showed that Kirby’s original moves could be
reduced to these.

In all diagrams we shall use the convention that the link is framed with the planar

framing, i.c. the chosen parallel is given by the edge of a ribbon following one
side of the curve in the plane of the diagram.

To a framed griented link I = I, ULy U. (UL, we can associate g quadratic
form with & x k matrix (4;;) where

‘e'ij == lk(Li:Lj)v %%j:

£;; = framing on L,.

Write sig(L) for the signature of this form. (This is not generally the sipnature
of the link L in the usual sense.)

Then sig(L) is independent of the choice of orientation of L, and

sigy (L) = sigL T 1.

Invariants of M3(I)

For each root of unity a, find c(a), T}, {a) € A,, for each L, such that
Ty =cla)Ty
To 1y ={e(a))'1y,
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Then Z(M) = c(a)S'8ETr, depends only on M{L).

To demonstrate independence of the invariant on the choice of framed link it is
sufficient to ensure that it is unaltered by the Kirby moves. We must then compare
the invarants of the two links L and ¢, (I).

The pattern determined by the tangle T’ defines G : R®E=1 5 R. For
a fixed assignment of elements Vi,..., Vg of R to the strings of 71" write
X = GW,...,Vi_1). The satellite formula then shows that, for a choice of
element ¥ € R on the unknotied component of the first link, this link has invari-
ant J(H; F'(X), F(Y)). This must be compared with the invariant of the second
link, which is J(O; X) = J(H; X, W), where O is the unknot, as indicated in
figure 2.

X Y X

a4

Figure 2

The reduced invariants of the two links will then be J,.(H; Fi.(X), F.(Y)) and
Jnr (H, X, Wl}

Notation. Write < , >, for the bilinear form on R, determined by J.(H) as
<V, W >, = J.(H;V,W).

Theorem 2.6. The element U = 2;;{ 8; W, € Ry satisfies

< Fu(X), Fo(U) >p = ey < X, W1 >0
< FUX), FFHU) >r=c < X, Wi >

for every X € Ry, where ¢ = b fjcSJ,Z-, and c_ =&y € A,
Notation. Write ¢, = p(a)c(a) with p(a) > 0 and |c(e])| = 1.
Remark. The element c{a)” turns out to be the power @' ="8 of a.

Corollary 2.7. The element p(a)~*c(a) SIg) J (LU, .., U) depends only on the
manifold given from the k component framed link L by surgery, where sig(L) is the
signature of the quadratic form determined by the linking numbers and framings
of L.

Proof. Take Ty, = Jp(L; p(a) U, - .. ,p(a)~'U) and use theorem 2.6 to compare
the invariants arising from L and @4 (L). O
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Remark. Apart from a factor of ¢(a) this gives the invariant of Reshetikhin
and Turaev. Kirby and Melvin use exactly this normalisation, which ensures that
oppositely oriented manifolds have conjugate invariants.

We shall give the proof of theorem 2.6 shortly, in the context of further properties
of Fi. and < |, >, leading to a means for finding the invariant for the manifold
given by general Dehn surgery on a link in terms of the invariant of the link.

It is helpful to view each copy of R, associated to a link component as depend--
ing on a choice of parallel and meridian for the peripheral torus. The automorphism
Fy corresponds. to altering the choice of parallel, by Dehn twists about the merid-
ian, to allow for integer framing change when calculating the invariant of the link
exterior. We use the bilinear form < , >, to construct another automorphism
which will correspond to a Dehn twist about the parallel.

We shall prove

Theorem 2.8. For any X € R, we have
< X, U >, = < F.(X),U >,.
Theorem 2.9. The symmetric bilinear form <, >, is non-degenerate. Its matrix
H, relative to the basis of irreducibles W1, ..., Wy_; satisfies
H; = pla)’Tl.

Definition. We may then define &, : R, — R, to be the adjoint of F,., that is
< F.(X),Y > =< X,9,.(Y) >, forall X,Y.

The matrices of F,. and @, in the basis of irreducibles are then related by
&, =H" 1 F. H,. This necessitates extending the coefficient ring A, to include an
inverse for det(H ); making 2r invertible will be sufficient, as we shall see in the
proof of theorem 2.9. In order to include p(a) and c(a) we also need the square
root of two, or equivalently of 2; one possibility would be to take A, to be the
cyclotomic field generated by the 8rth roots of unity.

Corollary 2.10. The element U is an eigenvector of €, with eigenvalue 1.

Proof. We have < X, U >, = < F,(X),U > = < X,®,.(U) >_ for all X, so
U=2e.(U). O
Remark. From theorem 2.6 we have

ey < X, W > =< F.(X),F(U) >, =< X, 8. F.(U) >
so that @, F,.(I') = c.W). This could be used as a definition of U.

”
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Proof of theorem 2.6. To give a self-contained argument we shall work in coor-
dinates relative to the basis of irreducibles in ... Let X have coordinate vector
X = (21,...,2y—1). Now U has coordinate vector § = {é(,...,8,_1) which is
also the first column of the matrix H, so we must show that

x P H Ff = c X8,

for all x.
It is then enough to show that the vector & = (6y,6, . .. 6r_1) is an eigenvector
of the matrix F,. H, F,. with eigenvalue ¢, = 11""1 fr8%.
The jth entry of H, is given by Z fkfflf{lﬁk.
kei@j
r—1
So the ith entry of F,.H,.F.4 is Z Z fubré;. By lemma 2.5, we can re-
q=1 k&i®j

arrange this sum as

r—1 r—1
DT Fube Y 8= febkbubi =c.6;,
k=1 k=1

JEIRE

and the result is proved. . B
_ Conjugation gives the other half of the result, since 6 = § and H, = H, while
F,=Flande, =c . a

We can represent theorem 2.6 diagrammatically by figure 3.

OO O

As noted before theorem 2.6, it then follows from the satellite formula that the
invariants of the two links L and ¢, (L) are the same, up to the factor c,, when
U is used on the unknotted string, with the sarne assignments made to the strings
of the tangle 7" in each case.




Satellites and surgery invariants 57

Figure 4

Proof of theorem 2.8. Applying this result to the link shown in figure 4 in which
each component labelled with the element {/ plays the role of the unknotted curve
in turn, for a suitable choice of T, gives two links with the same invariant, one
being < X, >, and the other < Fi.(X), U > m|

The original proof of theorem 2.9, which we give here, relies on explicit knowledge
of the entries in H,., and follows the details in [S]. A similar technique has also
been used to show that (H,F,)? is a scalar matrix. In the next section we give
a more diagrammatic argument for these results, using connected sums of links,
and the other results of this section.

Proof of theorem 2.9. As shown in [MS], the invariant J{H; W;, W,) of a Hopf
link labelled by irreducibles W, and W; is
. . LV Sfl'ij
Hy;;=(-1 %+J'57
') ( ) g — g1 )
where s = a®. Let ¢z be the general entry in HZ, then

r—1

(—I)H_k(s N 8—1)26“0 — Z(Sij _ S—f’j)(sjk . s*jk)

i=l1

- r—1
— Z(S:Hk)j + (S—(i—i-k))j _ Z(Si—k)j 4 (Sf(ifk))j_
i=1 j=1 '

Writing z; = "%, 2, = "% we have

r—1 ] ) r—1 ] ) 7—1 ] )
oo ) =D ) =D ) A — 2 ) 2
g=—{(r—1) j=1 =1
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Now the sum of any 2r consecutive powers of a 2rth root of unity, other than 1,
is zero; and z; = 1 exactly when ¢ = j, whereas z; # 1. Then

= ey = {0, 17

—2r, i=j.
. 3 —2r '
This shows that HZ = mf . We can now use the proof of theorem 2.6 to
identify the scalar with p(a)*. For we have F.H,FW§ = ¢.6 and

F1H.F7'6 = c_6. It follows that

FIIFT'6=cye 6= pla)s.

—2r
mf, and so p(a)? =

On the other hand, 7. H2F™! = )
pleting the proof. O

3. Modular group
In this section we shall show that £} and &, as automorphisms of R.., obey

the same relations as the generators (é i) and (i (])) of SL(2,7Z), up to

multiplication by powers of the scalar c(a)?, giving us a ‘projective’ representation
for the modular group PSL(2,Z) on R... As John Humphreys has pointed out, one
could easily make this a genuine representation of a central extension of PSL(2,Z)
by an element whose 4rth power was the identity.

Theorem 3.1. The automorphisms F,. and ®, of R, satisfy

F.Q.F.=0,F.®,.
Theorem 3.2. The automorphism {F,®,. F,.)? is scalar multiplication by cla)’
These two results will follow by establishing

Proposition 3.3. The matrices H,. and F,. satisfy

(HFLY = erp(a)’T = pla)e(a)l.
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Proof of theorem 3.1. Using the matrices in the basis of irreducibles, we have
F.®,F, = F. I 'F.I,F,
= pla) *F.H,.F,H.F, by theorem 2.9
= ¢y H, ! by theorem 3.3
and
@ ¢, =H'F.H.F.H\F.H,
= p(a) *H,\F.H,F.H,F,H,
= C+H.r.71. |
Proof of theorem 3.2. Again using the matrices we have
(F.0.F)? = F,.®,.F. &, F.&,
= p(a)ﬁﬁ (FT'HT)G
= p(a)"*(p(a)’c(a))*T :
= c(a)*1. W)
In order to prove proposition 3.3, we will use the work of the previous section,

together with the following result on the invariant of a connected sum of two
links;

Lemma 3.4. let K = K1 U... UK, and let L = L1 U... UL, be two framed
links. Let W be any irreducible representation of SU(2),, and let L#K denote the
connected sum of L and K along the first components of L and K. Then

JLW, X, X ) J(K W, Ya,. .., Y
=6WLT(L#K,WX2, ,X.m,ya,...,Y;L)
Jorany X; and Y; in R.

Proof. Present K and L as the closures of 1-1 tangles S and 7" on the first strings;
then the connected sum will be the closure of the tangle ST'. By Schur’s lemma,
the Invariants of § and 7" are scalars ¢ and 7 say times the identity map on W.
The invariants of K, I and K#L are then oéy , 78 and 076w respectively,
proving the lemma. - a

Wi Wi
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Proof of proposition 3.3. The ijth entry, by say, of the matrix H.F, is
J (H:W,, F.(W;)). This is the SU(2), invariant of a Hopf link with a posi-
tive twist on the second component, and labelled by representations W; and W;,
as shown in figure 5. Let Tj;; be the invariant of the link shown in figure 6, with
elements W;, W; and W}, assigned to the components as shown. Regarding the
link as the connected sum of two links shows, by lemma 3.4, that §;T;;x — b;;bk.

The ikth entry, ey say, of (Hy.Fy)? is then 7~} 6; Tk

(A=

Figure 6

We may rewrite this sum as the invariant of the same 3-component link, in
which the central component has the element S =1 6 W, = U attached, while
the other two strings have W; and W}, respectively. Make a positive Kirby move
on this central string, to get a new framed link I, as in figure 7, and then ¢;x =
ey Je(L; Wy, W), by theorem 2.6. Now L is a Hopf link, with altered framing, and
its invariant J,.(L; Wz,Wk) J(H; F-Y(W;), Wy,) is the ikth entry of Fm ' H,.

Then {H,F})? = ¢, F, ' Hy, giving {H F.)? = copla)il. O
w Q. ) N .
Wi (\ m
—_—— C+
Figure 7

We now give an alternative proof of theorem 2.9, using the same methods. This
proof does not use explicit knowledge of the Hopf link invariants, and can be
modified to give a similar result for other quantum groups, w1th a permutation
matrix (of order 2} in place of the identity.

Alternative proof of theorem 2.9. As in the proof of 3.3, we can write the ikth
element, 5, of H,% as the invariant J.(L; W;, U, W) of a 3-component link,
which is the connected sum of two Hopf links, this time with zero framing on all
components, as shown in figure 8.
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(0 -

Figure 8

Now this 3-component link is the 2-parallel of a Hopf link, in which one of the
components is replaced by two, carrying the elements W; and W, By the result
for invariants of paraliels, we can then write

ek = Jo (L Wi, U, W) = J(HLWiW3, U) = > T (H: W, U).
j€i®k

Since 1 € i® k if and only if 2 = &k, for 1 < ¢,k < r — 1, it is enough
to show that J.(H;W; U)=0 when 1 < § < r — 1, giving ¢ = 0 for
i# k and H: = J,(H;W,U)I. Now J(H;W,,U) = J.(H; F.(W;),U)
= e.(f;)J-(H;W;,U), using theorem 2.8, and er(fi) = o= — 1in A, for
j < r—1if and only if 7 = 1, at least for r prime. An explicit proof that
J.(H;W;,U) =0 for j # 1 is needed to complete the proof in general by this
method.

As for the earlier proof of theorem 2.9, it now follows, knowing that H? is

a scalar matrix, that the scalar is p(a)”. This gives another calculation for p(a)?
since J.(H; W, U) = ZT_I 62, which is clearly the product of the first row and :

j=1"j?
column of H,. O

For general simple Lie algebras, and hence for their quantum groups by {Rol, it
can be shown that if U, V and W are three irreducible representations, then U
is a summand of V' ® W if and only if vl is a summand of W ® UT, where
+ denotes the conjugate representation. Thus the one dimensional representation
will be contained as a summand of V' @ W exactly when V' and W are conjugate.
In the case of quantum groups having representations which are not self conjugate
(so that the invariants are orientation dependent), this has the consequence that
the matrices H, do not square to a scalar, but to a multiple of the permutation
matrix P, which interchanges conjugate medules. On the other hand, it is still
true that the universal module is a scalar times the sum of &y W as W runs over
the relevant irreducibles; this follows because the & for W is identical to that for
WT, as changing the orientation of an unknotted component does not alter a link.
In particular, following the proof of theorem 3.3 will show that (H,F.)? is now a
multiple of P, It can be seen that the theorems 3.1 and 3.2 will alse go through
for other quantum groups, as F, commutes with H, and F., and hence does not
affect the proof in any essential way.
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4. General Dehn surgery

In the final section we indicate how the modular group action allows us to handle
the manifold invariant for a manifold given from a framed link I by general
Dehn surgery. The principle adopted is to regard the invariant J,.(L) of a link
as an invariant of a 3-manifold with boundary components which carry a choice
of parallel and meridian. In the spirit of Segal’s views of Witten’s work it is
appropriate to think of the map J,.(L) : R®* — A, as determined by the link
exterior; each boundary component, with chosen parallel and meridian coordinates,
having associated with it a copy of R,. Evaluation of .J.(L) at W; ¢ R.. for a
given boundary component gives the invariant of the link with that boundary
component removed, and can be thought of as the manifold given by attaching a
solid torus whose meridian disc spans the meridian of the boundary torus.

To perform any other surgery, say on a {p,q) curve (relative to the meridian
and parallel coordinates on L), we apply an automorphism of the modular group,
as represented by . and ®, on R,, to the appropriate copy of R, which will
carry the meridian {1,0) to the (p,q) curve before evaluating J,.(L) at W;. Thus
-the invariant of the new manifold, with one fewer boundary component, might be
expected to be given by evaluating J,(L) on an element M,,, = 8,,,(W7). In
this notation we should write W) = M.

While there is some choice of automorphism to carry the meridian to the (p, ¢)
curve there will be no ambiguity, apart from powers of c(a), in the choice of
My /4 because the automorphisms will differ on Wy by an automorphism which
carries the meridian to itself. These automorphisms are represented by powers
of F,, and F,.(W;) = W,. The precise choice will be governed by the fact that
the signatare of the generalised linking matrix of L, whose diagonal entries are
now possibly fractional framings, may be changed under the third Rolfsen move
described below; and this will affect the calculation of corollary 2.7.

We take the following to constitute the exact definition of A, for each a.
First, define M., = W1, and then let

(MQ a+11

o, (M,

& (M,

To show that this leads to a well-defined choice, we must prove that

)=
if o<1 , e
O (My) = { 2Mu’ na with a’:l
)
co)

c(a) M.
c(a) M.

®,.F®,.(M,) = 1.9, F.(M,)  and
(Fo®, F. )2 (M) = c(a)* M,
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for all &. To do this we shall temporarily allow F' and @ to stand for their
counterparts in PSL(2, Z) acting on QP?, so that we can represent the two products
above by

[ o g 1 o 1

a — — — — —
11—« l—w o

1 1

lo' N o+ 1 +—>(I) o+ )—F‘—) -
— o

The second route will give rise to a factor of ¢(a)? exactly when o > 0 (oo is
neither positive nor negative).The first route will do the same if & > 1 {on the
first application of @) or 1 > « > 0 (on the second); if o = 1, the factor will also
arise in two halves. For o = oo or 0, either route introduces a factor of c(a).

For the second identity above, we follow the second route throughout. If « is
finite and non-zero, then exactly one of & and — L is positive, so the factor c(a)?
comes in; for & = 0 or co we get two separate factors of ¢(a).

Definition. A 3-manifold is said to be given Dehn surgery on a framed k-
component link L, with surgery coefficients (v, ..., ax),@; € Q U{oo}, when
it is constructed by gluing a solid torus to each boundary component of the link
exterior along a curve of slope a; relative to the meridian and chosen parallel for
the +th component.

Thus slope oc will always refer to the meridian, while slope 0 will give the parallel
chosen by the traming.

Rolfsen [R] shows that if two oriented manifolds given by Dehn surgeries on
links L, L' are homeomorphic then L and L’ are related by a sequence of moves
of three types. (Rolfsen only used framing zero, but the modifications for arbitrary
framing are straightforward.)

1. Change the framing, and the surgery coefficients so that the underlying link
and surgery curves are unchanged. This has the effect of adding or subtracting an
integer to the surgery coefficient when the framing is changed on a component.
II. Add or remove a component with surgery coefficient co.
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< dlb :

Figure 9

III.  Replace a link L which has one distinguished unknotted component of fram-

ing 0 by L' as shown in figure 9. The framing in each diagram is planar (so that

the framing on components has been changed depending on their linking number

with the unknotted curve} and the surgery coefficients are unchanged on atl except
a.’

1+

the unknotted component, where the coefficient o' becomes o =

Theorem 4.1. Let a closed 3-manifold be given by Dehn surgery on a framed
k-component link L with surgery coefficients o, ..., «y relative to the framing
coordinates on L. Then the invariant of the manifold can be calculated as

c(a)Sig(L)JT(L;Mal, Mg,

where sig(L) is calculated as the signature of the linking mairix with the absolute
surgery coefficients (i.e. relative to the topological framings) down the diagonal,
omitting any components with infinite surgery coefficients.

In order to prove this result, we will need the following lemma

Lemma 4.2. Let A and A’ be the k x k matrices
a F nd a &
¢ B a ¢ B-u”
where o = %2, o & | and L and B are (k — 1) x 1 and (k — 1) x (k — 1)
matrices respectively. Then the signatures of these matrices are related by
sig(A) = sig(A’} + sign(a) — sign(a’).

Proof. Let P be the matrix ( ) ; then, for o # 0,

1 0
—a~ T

T _ (o 0
PAP —(0 BaIEET)'
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So sig(A) = sign(a) 4 sig(B — o 1207, Similarly, _
sig(A") = sign(a’) + sig(B — efT — o' ~1ed™).
But 1+ o/~ ! = a~!, so the last term in each of these expressions is the same,

proving the lemma for o # 0.

When o = 0, we take P = (_ﬁ ¢ ?) so that PAPY = A’, completing the
2

proof. o
Proof of theorem 4.1. We use Rolfsen’s moves on framed links to pass between
surgery descriptions of a manifold.

It is readily seen that the first two moves leave the invariant unaltered, since
with the definitions chosen M., = W) has the effect of ignoring a component,
while the reframing works because Fi.(M,) = M1 Neither of these affect the
generalised linking matrix.

When move III is applied the two links L and L' will yield invariants
< X, My >, and < F(X), My >, for some X, by the satellite theorem. Now

< Fo(X), My >, = < X,0,(Ma) >,

by the adjoint property of F,. and &, and we have ®,.(M,) = My (up to
powers of c(a)). Any discrepancy in the power of ¢(n) is compensated for by
a change in the signature of the generalised linking matrix, as follows. Let A
and A’ be the matrices for the two links in figure 9; then these are related as
in lemma 4.2. For & < 1 we have sign(a) = sign(o/) and @,.(M,) = Mo
For & > 1 we have sign(a) = sign(e’) + 2, compensating for the fact that
3, (My) = c(a)*Mee. Finally, for & = 1,0/ = oo the method of the lemma
shows that sig{A) = 1+ sig(B — £07); and for o = 00,0’ = —1 we have
sig(A') = —1 + sig(B), which deals with the special cases. O

We have been able to make some calculations for lens spaces given both by framed
surgery on torus knots, and also by Dehn surgery on the unknot, which confirm

the above result. ‘
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