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Abstract

The 2-variable polynomial Py of a satellite K is shown not to satisfy any formula,
relating it to the polynomial of its companion and of the pattern, which is at all similar
to the formulae for Alexander polynomials. Examples are given of various pairs of
knots which can be distinguished by calculating P for 2-strand cables about them
even though the knots themselves share the same P. Properties of a given knot such
as braid index and amphicheirality, which may not be apparent from the knot’s
polynomial P, are shown in certain cases to be detectable from the polynomial of a
2-cable about the knot.

1. Introduction

With the development of the 2-variable polynomial Py of an oriented knot K (of
one or more components) [5], has come the desire to relate it directly to the geometry
of the knot exterior, as Seifert, and later Fox, were able to do with the Alexander
polynomial. One obvious place where the geometry should show up is when the knot
is a satellite. In this case the exterior is made up of the union of two link exteriors,
that of a companion and that of a pattern link, forming part of a natural decomposition
of the exterior in the context of 3-manifolds.

The multi-variable Alexander polynomial of such a union bears a simple relation
to those of the two constituent link exteriors. This takes the form of an equation
Sg = 8¢ 8k, where K is a satellite with companion C and pattern link R consisting
of an unknotted component defining a complementary solid torus ¥V which contains
the other component(s) of R. The knot K is formed from the image of these
component(s) when a solid torus neighbourhood of C is replaced by V using a faithful
(longitude-preserving) homeomorphism. In the equation § is either the multi-variable
Alexander polynomial, or, in the case of a 1-component knot, a modified version of
it; the variables, which correspond to homology classes in the appropriate link
exterior, are each replaced by the element which they represent in the exterior of K.
See [2] for a general, but not very readable, account.

Possible satellite formula

On the analogy of the Alexander polynomial, we expected some such satellite
formula for the other polynomials. For each K a conjectural function S, of several
variables might exist, specializing to Py in some way and satisfying an equation
Sk = 8¢ Sp ¢ for a satellite K of C with pattern R, where the variables in S¢ and 8,
are substituted by others in a way which depends in some suitable sense only on the
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gluing of these two exteriors, and ¢ is a possible normalizing factor, again depending -
only on the gluing homeomorphism.

Under such a framework, if two knots C, and C, with S¢, = S¢, were used with
the same pattern and method of gluing to construct satellites K, and K, we would
then have Sy = Sy .

Conceivably there may be an S which specialises to Py and satisfies such a satallite
formula (possibly specializing also to Kauffman’s recently announced polynomial ¥y,
[8]). In this paper we show however that no such function Sg can be found with the
additional property that S, = Py for a 1-component knot K, even if it differs from
P, when K has more components.

The examples given are pairs of knots C, and C, with P, = P, whose (2, 1) cables

K, and K, (satellites constructed with the same pattern R = <@> ) have

Py, # Py, These are described in a later section under the heading ‘Birman’s pairs
of 3-braids’ and the polynomials are displayed in Table 1.

2. Scope of the calculations

To compute the polynomial P for these examples we developed a program to
calculate Py from a presentation of K as a closed braid, based on the construction
of Ocneanu and Jones[13, 6]. Details of the theoretical basis for the calculations, and
their practical implementation are given in [12].

Our program can handle interactive calculations for 7-string braids of over 100
crossings and will deal with 8-string braids of up to 150 crossings on the Liverpool
University IBM 3083 computer using less than 16 megabytes storage and under
200 seconds of computer time. The time required grows relatively slowly (quadrati-
cally) with the number of crossings for braids of a given string index, so within the
constraints of presentation as a closed braid on at most 8 strings the method provides
an efficient way of handling knots with many crossings. It may be contrasted with
Thistlethwaite’s encyclopaedic work in producing tables of P for all knots up to 13
crossings based on the Conway recurrence relation [14]. His method works well, given
information about all knots with fewer crossings, and is not particularly sensitive to
braid index, but in general it would face exponential time growth with the number
of crossings if calculation of P for an individual knot beyond the range of the table
was required.

Annotated copies of the Pascal program to calculate the polynomial P and also
the Alexander and Jones polynomials of a knot presented as a closed braid on at most
eight strings are available on request.

3. Further consequences

‘While the failure of the satellite formula proves disappointing from the point of
view of understanding the general structure of the polynomial P, it leaves the way
open to using P in a second attempt at distinguishing two knots C, and C, with
P, = Fc, by comparing P on satellites of C; and C,. From our limits on the computing
power available, we have been restricted to considering 2-string cables where C, and
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C, can themselves be presented as closed braids on at most four strings, so that the
cables can be presented as 8-string braids. Other satellites such as doubles or higher
string cables could in principle be used.

The only examples so far observed where the satellites are still indistinguishable
using P have come when C, is a mutant of C,. In all cases tried so far, if C; and C,
are mutants then their 2-cables, although not apparently mutants themselves, have
the same P. Examples are discussed in a later section.

Burau polynomzials

The possibility of calculating Py from the ‘Burau polynomial’ of a closed braid
representative £ of K, i.e. from the characteristic polynomial det (xI— f(t)) of the
Burau matrix g(t) for f§, was raised tentatively by Jones[7]. Our examples used in
disproving the existence of a simple satellite formula can also serve to discount this
possibility.

To see why this is so, suppose that C is a knot presented as the closure £ of some
feB,. The complete closure, iU Ly, consisting of f together with the braid axis L,
is then a link whose 2-variable Alexander polynomial is the Burau polynomial of g
[11]. The (2, r) cable K about C can be presented naturally as the closure of a 2n-string
braid, by doubling all strings in f, with twists as required. The complete closure of
this braid is then a satellite constructed using the (2, r) cable pattern R on the string
C from the complete closure C'U Ly, of B. Using the satellite formula for Alexander
polynomials the Burau polynomial of this representation for K can then be calculated
from that of C'U L, and the pattern.

If this construction is applied to two braids £, and g, with the same Burau
polynomial, the resulting braid presentations for the (2, r) cables K, and K, will then
have the same Burau polynomial. The examples of Birman given in tables 1 and 2
are (2,r) cables about 3-braids with the same Burau polynomial. The resulting
6-braids have then the same Burau polynomials, but their closures K, and K, have
Py, + Py,

With the failure of the satellite formula, features of a knot K which do not show
up directly from Py may nevertheless become apparent from the polynomial of a
2-cable about K. These features include the braid index and the question of
amphicheirality of K, and examples are discussed in the course of the next section.

4. Discussion of examples

Braids in the accompanying tables are listed as elements of By, using +1 to stand
for the generator £ !. The polynomial Py (v, 2) is given as a matrix of coefficients (p,),
where Py(v,2) = Zp,;2t/, with the range of ¢ and j indicated at the side. We use the
convention that v™Py+ —vPy- = 2Py, where K*, K~ and K® differ only as shown:

XX )
N /
K* K- K®
Putting v = 1 gives V(2), the Conway polynomial. The substitutions (z = z—z7?,
v=1) and (z=2z2—2"', v = 2?) give respectively the Alexander and Jones poly-

nomials, A(x?) and V(z?). In the tables the negative powers of z in the Alexander
polynomial have been omitted, because of its invariance when z is replaced by —a™.
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The Alexander polynomial in particular serves as a useful check for the calculations,
since it can be quickly found for a cable using the satellite formula.

It is noticeable in these examples that the coefficients of the Alexander and Jones
polynomials are considerably smaller than those in the Conway polynomial. This
cannot be true in general, since all integer polynomials in 22 with constant term 1
are possible as Conway polynomials of some knot, and so some Conway polynomials
must correspond to Alexander polynomials with larger coefficients. Most probably
it is a result of using fairly positive braids on a relatively small number of strings.

To reduce the size of the coefficients in these examples it would be tempting to
rewrite P itself in terms of x rather than z, but this would only be possible for a
1-component knot because of the negative powers of z which occur otherwise.

Birman’s pairs of 3-braids

The original motivation for these calculations arose from the simple examples of
pairs of 3-braids discovered by M. T. Lozano and H. R. Morton, and simultaneously
in greater variety by J. Birman[1]. Each example consists of two 3-braids §,, #,, with
the same exponent sum and the same trace for their Burau matrix, consequently the
same Burau polynomial, while closing to inequivalent knots. Since the polynomial
P for the closure of a 3-braid is also determined by exponent sum and trace of Burau
matrix these pairs give examples of inequivalent knots with the same polynomial P.

One of the simplest such pairs is g, =oy'o}, B, =Al}c,0;7, conjugate to
oloioioio,or?, where A, is the half twist on n strings, so that A, = o, 0, 7,. Their
closures give inequivalent knots C, (the (2,7) torus knot) and C,. A 2-cable about
each can be presented as a 6-braid, by replacing ¢, with ¢,0,0,0, and o, with
0,05 05 0,. The linking number of the two strands in the resulting cable is then the
exponent sum of the original 3-braid, so that the cables produced in this way will
in this example be the (2, 12) cables about C, and C, respectively. Addition of one
extra o, to each 6-braid will give 1-component knots K, K,, the (2, 13) cables about
C,, C;. In table 1 the polynomials Py and Py, are exhibited; they can be seen to differ
considerably, as do the Jones polynomials of K, and K,, while their Alexander
polynomials, which satisfy a satellite formula, do not.

One further pair is given in table 2 of Birman’s more general type. These pairs are
given by 8, = 6,46,90,, B, = 6,0,0,, where

= gP1 g% g P2 o1 = q — gP1— Py g0:—1
6, =0Pichal0?:, §,=0Pich, &, =0l Prgl™,

All other Birman pairs which we have tried can be distinguished by their 2-cable
polynomials. This may be compared with Birman’s difficulties in distinguishing the
closed 3-braids using other methods.

Any of these examples will show also that the Burau polynomial is insufficient for
calculating P, as noted earlier.

Symmetry and amphicheirality

The polynomial Py of an amphicheiral knot K is unchanged when v is replaced by
—v~ 1. The knot 9,, has

P(v,z) = (2+22) vt — (3+422+2%) + (2 +2%) 02,
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Table 3

Braid representing the knot 9,
**%_21332-1-32-12-34567 ***

-2 0 2
I 1
! 9 -3 2 | 0
| 1 —4 O
| -1 I 4
| s

Braid representing the (2, 0)-cable about 9,,
*++ (4354)712132(6576)24354(2132) 1 (6576)14354(2132)14354(6576) 112 ***

Jones
The polynomial P for this cable polynomial
-5 -3 -1 1 3 5 7
f 1
4 —16 29 —29 16 —4 I —q —~1(—21)
' 30 —109 159 —124 46 5 -7 1 1 1(—19)
| 76 —274 341 —201 43 29 —14 | 3 —1(-5)
| 85 —338 376 —159 16 27 -7 1 5 1(—3)
| 45 —221 231 —65 2 9 -1 7 —-1(-1)
! —178 79 —-13 1 b9 —1(1)
P —14 14 -1 111 1(3)
! -1 1 I 13 —1(5)
. J 1(19)
—1(21)

Alexander Polynomial = Conway polynomial = 0

which has this symmetry although 9,, is not amphicheiral. The (2, 0) cable about an
amphicheiral knot will again be amphicheiral, so its polynomial will be symmetric.
Calculation of the polynomial for the (2,0) cable about 9,, is displayed in Table 3.
This polynomial is not symmetric, so giving a proof that 9,, is not amphicheiral. Notice
that the Jones polynomial in table 3 still exhibits symmetry, so that it does not detect
the lack of amphicheirality, in this case, nor apparently does Kauffman’s new
polynomial F.

Braid index

It was shown in [10], and also in [3], that a lower bound for the braid index of
K can be found from the polynomial P.

Explicitly, n 2 epnax — €min) + 1, Where % is the braid index of K, i.e. the smallest
number of strings needed to present K as a closed braid, e, and e, are the largest
and smallest degree respectively of the non-Alexander variable v in Px(v,z). This same
inequality is shown in {10] to apply also where n is the number of Seifert circles arising
from any diagram of K.

In a number of instances the braid index inequality can be shown to be strict, and
the braid index calculated exactly, by applying the inequality to a cable about X.
For example the (2,7) cable K about a trefoil can be presented as the closure of the
4-braid o,(0,0,0,0,)3, but it has (e . —€min) +1 = 3. This was noted by Franks
and Williams[4], who asked whether its braid index was actually 3. Our calculations
presented in Table 4 exclude this possibility. For if K has a presentation as a 3-braid,
then every 2-cable about K has a presentation as a 6-braid, and so the polynomial
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Table 4
Braid representing the (2, 27)-cable about the (2, 7)-cable about the trefoil
**%2132(4354657621324354)31 ***
The polynomial P for this knot
46 48 50 52 54 56 58
] 1
: 893 —2935 3740 —2295 675 —-79 2 :
,' 24030 —66203 68350 —32340 6775 —485 4
I 310359 —713763 591303 —211414 30170 —1161 1 :
I 2503447 —4798408 3170667 —844 269 79190 — 1461 |
I 13881384 —22194447 11658704 —2284522 136147 —1068 |
| 55537145 —74293024 30971785 —4416455 161397 —468 :
| 165324695 — 185800514 61398463 — 6296288 135570 —121 |
: 374554353 —355168252 92877922 — 6755584 81723 —17 I
| 657426753 — 527978406 108944297 — 5525984 35398 —1 I
| 906832669 — 618538005 100234894 —3470613 10901 I
I 994140130 — 576814659 72894389 —1676680 2325 |
: 873633502 —431235362 42078814 —620805 326 :
| 619135093 —259594 689 19295646 —174377 27 |
1 355091052 —126031335 70071766 —36455 1 |
I 164964919 —49280982 2000681 —5489 [
: 61960207 —15447015 443071 -562 :
| 18717410 —3846817 74482 —-35 |
| 4505528 —750139 9177 —1 I
| 851448 —111970 781 |
! 123451 —12342 41 :
I 13245 —946 1 |
I 990 —45 I
| 46 ~1 !
| 1 '
! |
Table 5
Braid representing a 2-cable about Conway’s 11-crossing knot
*5% (4354)32132(6576)1(4354)722132(4354)"12132(6576) 11 ***
Braid representing a similar 2-cable about the Kinoshita-Teresaka knot
**%(2132)3(6576)24354(6576)71(2132)724354(6576)71(2132)71(4354 )11 ***
The polynomial P for both these knots
-2 0 2 4 6 8 10 12
T 1
| 15 —97 233 —252 101 33 —43 1m0
: 146 —861 1917 —1926 646 341 —344 82 : 2
] 688 —3533 7068 —6430 1815 1251 —1115 256 | 4
: 1831 —8531 15171 —12175 2879 2352 —1982 455 1 6
) 2921 —13081 20828 —14371 2800 2547 2115 471 : 8
: 2870 —13145 19014 —10997 1714 1656 —1389 277 1 10
1 1757 —8781 11703 —-5514 656 651 —562 90 : 12
I 667 —3908 4850 —1790 151 151 —136 15 | 14
: 152 —1142 1330 —361 19 19 —18 1 : 16
I 19 —210 231 —41 1 1 —1 | 18
| 1 —22 23 -2 I 20
{ -1 1 ! 22
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for each cable would satisfy (e, —€min) < 6, as would also be the case if any
diagram for K had just 3 Seifert circles.

The 8-braid used in Table 4 represents the (2,27) cable about K. The seven non-zero
columns of coefficients show that }(e, .« —€min) +1 = 7, so that at least seven strings
are needed to present this cable. The knot K is then an example of the closure of a
positive braid with braid index strictly larger than (e, —emnin) + 1.

Mutants

A knot K whose diagram is made up of tangles R and 8§ as in figure 1 is converted
into a mutant of K by replacing B with 7(R), where 7 is the operation of rotation

through 7 about one of three axes.
7(R) = or e— or

Fig. 1

Mutants have long been known to have the same Alexander polynomial, and more
recently to have the same polynomial P [9]. Possibly the best known mutant pair
are the inequivalent knots of Conway and Kinoshita-Terasaka which both have
trivial Alexander polynomial. Although their 2-cables are not obviously mutants they
do still share the same polynomial P shown in Table 5. This coincidence of
polynomials has given us a measure of confidence in the accuracy of the computer
calculations, as it would appear highly unlikely that the coefficients would all agree
if there was an error in the algorithm or its implementation.

Other pairs of mutants within the range of our computations have been tried
with similar results. A variety of mutants can be tackled using the fact that the
4-braids w(o,, 0,)v(0,, 0;), w(o,,0,)0; v(0,, 0,) 0, w(o,,0,)reve(o, ;) and
w(o,, 0,) 05 revu(a,, 0,;) o, close to mutants, where rev v is the braid v in reverse.

The result suggested by these calculations, that 2-cables of any pair of mutant
knots have the same polynomial, has been subsequently proved by Lickorish and
Lipson [15], and also by Przytycki and Traczyk.

The second author was supported as a Senior Research Assistant by SERC grant
no: GR/C/48974.
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