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There is a well-known ‘embroidery’ envelope of lines, a typical example of which is shown in Figure 1,
left. Each point P of a circle is joined to the point Q whose angle is a fixed integer multiple m of the
angle of P . In this note we explore two generalizations of this construction. In §1 we allow m to be
a rational number; this produces envelopes such as those illustrated in Figure 1, centre and right. We
show how to count the cusps and, a harder problem, to count the self-crossings of these envelopes. In §2
we make some general remarks about envelopes of lines which make it clear that in fact the one-circle
envelope is very special—we might almost say ‘degenerate’—and in §3 we generalize the construction
in a way that removes this degeneracy. In fact we consider envelopes obtained by replacing the circle
with two concentric circles: P lies on the inner, say unit circle and Q on the outer circle, radius r > 1,
again allowing m to be rational. We count the cusps of these envelopes and examine what happens
as r changes and as r → ∞. The two-circle envelopes admit different singularities from the one-circle
envelopes, specifically the ‘butterfly’ singularity, and we discuss the ‘unfolding’ of this butterfly which
requires not just r to vary but also the centre of the second circle. Such an ‘unfolding’ is illustrated in
Figure 7.

1 An envelope from one circle

A well-known way of forming an envelope from chords of a single circle is as follows (see for example [1,
§5.7(2), §7.14(6)]). For each point (cos t, sin t), 0 ≤ t ≤ 2π, on the unit circle construct the chord from
this point to (cos(mt), sin(mt)) where m is a positive integer > 1. (For t = 0 we use the tangent at the
origin instead of a chord.) These lines have an envelope which has m − 1 cusps and no self-crossings.
See Figure 1, left, for the case m = 3. Now we let m = a

b
be any rational number, not equal to 0 or ±1

and in its lowest terms. We consider three problems, in increasing order of difficulty: (i) find the range
of values of t which allows the envelope to close; (ii) find the number of cusps on the envelope; and (iii)
find the number of self-crossings on the envelope. Two examples are given also in Figure 1.

We shall prove the following.

Theorem 1.1 For the envelope constructed as above, with m 6= −1, 0, 1 a rational number a
b
in its lowest

terms, with b > 0,
(i) the envelope, starting at t = 0, closes for t = 2bπ,
(ii) the number of cusps is |a− b|, occurring when (m− 1)t is an odd multiple of π,
(iii) the number of self-crossings is

(|a| − 1)|a − b| if |m| < 1

(b− 1)|a − b| if |m| > 1.

First, we shall need a formula for the envelope itself. The line joining (cos t, sin t) to cosmt, sinmt (m 6=
1) has equation

x(sinmt− sin t)− y(cosmt− cos t) = sin(m− 1)t. (1)
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Figure 1: Left: the embroidery envelope for m = 3, with 2 cusps and no self-crossings. Centre: m = 5

4
, which has

1 cusp and 3 self-crossings. Right: m = − 3

4
, with 7 cusps and 14 self-crossings (the lines are not shown here).

The standard way to obtain the envelope of such a family of lines—that is, a curve which is tangent to
all the lines—is to differentiate with respect to t and then to solve for x and y as functions of t from the
two equations. After a significant amount of trigonometric work this yields the result

x(t) = 1

m+1
(m cos t+ cosmt), y(t) = 1

m+1
(m sin t+ sinmt). (2)

Remark 1.2 It is important to note that in the process of deriving this parametrization there is a
cancellation from numerator and denominator of 1 − cos(m − 1)t which vanishes when (m − 1)t is an
even multiple of π. This corresponds to those values of t for which the two ends of the chord joining
(cos t, sin t) and (cosmt, sinmt) actually coincide, but because cancellation takes place in both numerator
and denominator it is a ‘removable singularity’ and the parametrization (2) remains valid at these points.
We expand on this in §2 below.

(i) It is clear that with m = a
b
in its lowest terms, and b > 0, the functions giving x and y will begin to

repeat when t = 2bπ. (This is not the same as saying that the smallest t with x(t) = x(0) and y(t) = y(0)
is t = 2bπ: the envelope may, as in (iii), have self-crossings for smaller values of t.) For m an integer
this is of course just a period of 2π. Thus we need to consider in general the interval 0 ≤ t < 2bπ when
discussing cusps or self-crossings of the envelope. In practice we will regard parameter values t as defined
modulo 2bπ.

(ii) A cusp forms on the curve (x(t), y(t)) when its velocity vector (x′(t), y′(t)) is zero, the prime ′ here
representing differentiation with respect to t. These require both sin t+sinmt = 0 and cos t+cosm = 0,
which can be rewritten as

2 sin
(
1

2
(t+mt)

)
cos

(
1

2
(t−mt)

)
= 0, 2 cos

(
1

2
(t+mt)

)
cos

(
1

2
(t−mt)

)
= 0, (3)

using the well-known trigonometric formulas for turning sums of sines or cosines into products:

cos θ − cosφ = −2 sin
(
1

2
(θ + φ)

)
sin

(
1

2
(θ − φ)

)
,

sin θ − sinφ = 2cos
(
1

2
(θ + φ)

)
sin

(
1

2
(θ − φ)

)
.

The equations (3) can only be true simultaneously if cos(1
2
(t−mt)) = 0, that is (m−1)t is an odd integral

multiple of π. Thus |m−1|t takes values (2k−1)π for k = 1, 2, . . .. When m is an integer, we are looking
for values of 0 ≤ t < 2π and the largest value of k is then |m − 1|. In general when m = a

b
in lowest

terms we have 0 ≤ t < 2bπ and the largest value of k is |a− b|. Hence there are |a− b| cusps in general.
(It can be checked that in this situation all cusps are ‘ordinary’ in the sense that a suitable smooth local
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transformation of the plane will take each one to the normal form (t2, t3). One way to check this is to
show that the vectors (X ′′, Y ′′) and (X ′′′, Y ′′′) are independent at each point where X ′ = Y ′ = 0.)

(iii) Counting the number of self-crossings is significantly harder since we have to find different parameter
values, say t and s > t, which give the same point (x(t), y(t)) on the envelope. Writing down the conditions
x(s) = x(t) and y(s) = y(t),

m(cos s− cos t) = cosmt− cosms, m(sin s− sin t) = sinmt− sinms, (4)

using again the trigonometric formulas which convert sums into products and dividing the resulting
equations, we find the following condition on the midpoint of the parameter values t and s:

tan
(
1

2
(t+ s)

)
= tan

(
1

2
m(t+ s)

)
, that is 1

2
(t+ s) =

kπ

m− 1
for an integer k, 0 < k ≤ 2|a− b|. (5)

In the division we have cancelled sin
(
1

2
(s− t)

)
and sin

(
1

2
m(s− t)

)
, but given the equations (4) each of the

conditions sin
(
1

2
(s − t)

)
and sin

(
1

2
m(s− t)

)
implies the other, that is, 1

2
(s−t) = n1π and a

2b
(s−t) = n2π

for integers n1, n2. This implies an1/b is an integer and since a, b are coprime that n1 is a multiple of b.
But 0 ≤ 1

2
(s− t) < bπ so n1 = 0, s = t which is a contradiction. Thus the cancellation is justified.

The restriction on the values of k comes from 0 ≤ 1

2
(s+ t) < 2bπ as in (i).

Equation (5) is our first equation, and it connects t and s. Writing u = 1

2
(s− t) it shows that

The values s and t giving a crossing are (mod 2bπ)
kbπ

|a − b|
± u, 0 < k ≤ 2|a− b|. (6)

In practice we regard the integer k as being defined modulo 2|a − b| and u as being defined modulo bπ.
It remains to find an equation restricting the values of u.

To obtain this second equation, we substitute (5) into one of the original conditions, say into y(t) =
y(s) where the sums have been converted to products (and writing u = 1

2
(s− t) as before):

m

(
2 sin(−u) cos

(
kπ

m− 1

))
= 2 sinu cos

(
mkπ

m− 1

)
.

Now

cos

(
kπ

m− 1

)
= (−1)k cos

(
kπ

m− 1
+ kπ

)
= (−1)k cos

(
mkπ

m− 1

)
,

and cancelling cos kπ
m−1

gives, for the same k as in (5),

(−1)k+1m sinu = sin(mu), 0 < u ≤ bπ. (7)

(If cos kπ
m−1

= 0 then we can use x(t) = x(s) to deduce the same result, assuming sin kπ
m−1

6= 0; since sine
and cosine cannot both be zero we deduce the result without additional conditions.)

Let us concentrate first on (7), which amounts to counting the number of crossings of two sine curves.
We are looking for the number of solutions of the equation

sin(u) = ± b
a
sin

(
a
b
u
)
, 0 < u ≤ bπ, (8)

for a fixed choice of sign ±.

Lemma 1.3 (i) The number of solutions of (8) is |a− 1| if |a| < b and b− 1 if |a| > b.
(ii) Each unordered pair of parameter values {t, s} giving a crossing on the envelope arises, first, from
an integer k and value u as in (6) and, second, from the integer k + (a− b) and value bπ − u.
(iii) The number of values of k giving distinct self-crossings of the envelope is half the total, that is |a−b|.
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Figure 2: Graphs of sinu (larger amplitude, solid curve), − sinu (dashed curve) and b

a
sin

(
a

b
u
)
(smaller amplitude

curve), over the range 0 ≤ u ≤ bπ. Left: a = 11, b = 5; here the crossings are in pairs, u and bπ − u. Right:
a = 5, b = 4; here if u is a crossing of sinu and 4

5
sin

(
5

4
u
)
then bπ − u is a crossing of − sinu and 4

5
sin

(
5

4
u
)
. See

Lemma 1.3.

Proof of lemma (i) We may assume, for the purpose of counting solutions of (8), the + sign in the
equation; also a > 0 (else replace a by −a); also a > b (if a < b then write v = a

b
u and solve for v

in the range 0 < v < aπ). Figure 2 illustrates a typical case, with a
b
= 11

5
. It is clear that the larger

amplitude graph, in this case sinu, crosses the smaller amplitude graph 5

11
sin

(
11

5
u
)
exactly once between

consecutive turning points of sinu. But in the range 0 < u ≤ bπ there are exactly b turning points, which
gives the result.

(ii) This is a matter of verifying that

kπ

m− 1
± u =

(k ± (a− b))π

m− 1
∓ (bπ − u),

and noting that k + (a− b) and k − (a− b) are the same modulo 2|a− b|.
(iii) Note that the parity of k equals that of k + (a − b) if and only if a − b is even. This means that
when u is a correct solution of (7) for k then bπ−u will always be a correct solution of (7) for k+(a− b).
Thus exactly half the values of k are needed to produce all unordered pairs of parameter values giving
self-crossings on the envelope. �

The situation is illustrated schematically in Figure 3.

k p / ( m - 1 )  

( k + ( a - b ) ) p / ( m - 1 )  

s ,  t  a r e  m o d  2 b p  

 k  i s  m o d  2 | a - b |

+ ( b
p  -  u ) - ( b p  -  u )

+ u- u

s t

( x ( s ) ,  y ( s ) )

 =  ( x ( t ) ,  y ( t ) )

Figure 3: Left: the parameter space of length 2bπ for the envelope, with two parameter values t, s giving a crossing
(right) on the envelope. This pair of values is obtained once from values of k, u in (6) and once, in the reverse
order, from different values k + (a− b) (or k − (a− b) which is the same modulo 2|a− b|) and bπ − u.
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Corollary 1.4 Combining the results of (i) and (ii) of the Lemma proves (iii) of Theorem 1.1. �

Examples 1.5 Here as above k values are mod 2|a − b|, u values are mod bπ and s, t values are mod
2bπ.

(1) a = 11, b = 5. Then a− b = 6, therefore k and k+(a− b) have the same parity and (7) has the same
sign for k and for k + (a− b). Write u+

1
, u+

2
, u+

3
, u+

4
for the b− 1 = 4 solutions in increasing order of (8)

with the + sign and similarly u−i , i = 1, 2, 3, 4 with the − sign. Thus u+
1
+ u+

4
= bπ = 5π, u+

2
+ u+

3
= 5π

and similarly with −.
The values k = 1, u+

1
and k = 7, u+

4
substituted into (6) give parameter values of the form t, s and

s, t respectively, and the envelope points for these two parameter values are the same.
The values k = 2, u−

1
and k = 8, u−

4
likewise give the same unordered pair of parameter values and

the same envelope point; and so on for other values of k.

(2) a = 11, b = 4. Then a− b = 7, therefore k and k+(a− b) have opposite parity. Write u+
1
, u+

2
, u+

3
for

the b− 1 = 3 solutions in increasing order of (8) with the + sign and similarly u−i , i = 1, 2, 3 with the −
sign. Thus u+

1
+ u−

3
= u+

2
+ u−

2
= u−

3
+ u+

1
= bπ = 4π.

The values k = 1, u+
1

and k = 8, u−
3

substituted into (6) give the same unordered pair of parameter
values {t, s} and the the envelope points for these two values are the same.

The values k = 2, u−
1

and k = 9, u+
3

substituted into (6) give the same {t, s} and the same envelope
point; and so on.

2 Some general remarks about envelopes of lines

Let
F (t, x, y) = A(t)x+B(t)y + C(t), (9)

so that F = 0 is a family of straight lines, parametrized by t, with envelope given by F = 0, Ft =
A′x+ B′y + C ′ = 0, using here and in what follows subscripts to denote partial derivatives. Solving for
x = X(t), y = Y (t) gives (omitting the variable t)

X =
BC ′ −B′C

AB′ −A′B
, Y =

A′C −AC ′

AB′ −A′B
,

provided of course that AB′ −A′B 6= 0.
For the envelope considered above in §1 (see (1)), A = sinmt − sin t, B = − cosmt + cos t, C =

− sin(m − 1)t. Calculation then shows that AB′ − A′B = (m + 1)(1 − cos(m − 1)t) which is zero when
(m − 1)t is an even multiple of π. These are exactly the points for which the two ‘ends’ of the chord
joining (cos t, sin t) to (cosmt, sinmt) coincide. Fortunately this does not invalidate the parametrization
(2) and indeed the envelope is actually smooth at these points, the cusps occurring at intermediate values
of t where (m− 1)t is an odd multiple of π. It is worth recording the following well-known lemma.

Lemma 2.1 In the above notation, suppose that AB′ − A′B 6= 0 and let (X(t), Y (t)) be the resulting
parametrization of the envelope, At an envelope point (x, y) with corresponding parameter t, given by
F (t, x, y) = Ft(t, x, y) = 0 the second derivative Ftt(t, x, y) vanishes if and only if X ′(t) = Y ′(t) = 0.

Proof. We have F (t,X(t), Y (t)) = 0 and Ft(t,X(t), Y (t)) = 0 identically as functions of t. Differen-
tiating these with respect to t we get Ft + FxX

′ + FyY
′ = 0 = Ftt + FtxX

′ + FtyY
′ = 0. It is clear

that if X ′ = Y ′ = 0 then Ftt = 0. For the converse, assume Ftt = 0 at an envelope point, so that
Ft = 0 too. We have Fx = A,Fy = B,Ftx = A′, Fty = B′ so that the two equations for X ′, Y ′ are
AX ′ +BY ′ = 0, A′X ′ +B′Y ′ = 0 and these imply X ′ = Y ′ = 0 since AB′ −A′B 6= 0. �

Thus away from points where AB′ − A′B = 0 we can detect singular points of the envelope by the
equation Ftt = 0. When AB′ −A′B = 0 then in general we might expect the envelope to ‘go to infinity’
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since the denominator of X and Y vanishes. For the envelope studied in §1 numerator and denominator
always vanish together and these ‘singularities’ are removable. The envelope never goes to infinity and
its genuine singular points are cusps as determined in Theorem 1.1. In the next section we shall meet
an example where the denominator of X or Y can vanish with neither numerator or one numerator
vanishing, but never both at once. When one numerator vanishes this means that the envelope ‘goes to
infinity’ in the direction of the x- or the y-axis, and when neither vanishes it means that the envelope
goes to infinity in some other direction.

Naturally singularities of envelopes (X(t), Y (t)), detected by the conditions X ′ = Y ′ = 0, are not
always cusps. In the case of the singularities present in one-circle envelopes they are in fact cusps, in the
sense that a suitable smooth change of coordinates in the plane will transform them into the standard
form (t2, t3). But in the next section we shall meet ‘higher’ singularities, and in those circumstances more
derivatives than Ft and Ftt will vanish. We expand on this in Remarks 3.5 below.

3 An envelope from two circles

There is an interesting extension of the above construction to produce a family of envelopes in which
transitions occur increasing or decreasing the number of cusps and self-intersections. We take two circles
centred at the origin, of radii 1 and r > 0, and join the point (cos t, sin t) of the first circle to the point
(r cosmt, r sinmt) of the second. The line joining these two points has equation F (x, y) = 0, for a given
t and r, where

F (x, y) = x(r sinmt− sin t)− y(r cosmt− cos t)− r sin(m− 1)t, (10)

and the envelope of these lines, obtained from F = ∂F/∂t = 0 is, for fixed r,

xr(t) =
r [cosmt(r cos(m− 1)t− 1) +m cos t(cos(m− 1)t− r)]

r(m+ 1) cos(m− 1)t− (mr2 + 1)
,

(11)

yr(t) =
r [sinmt(r cos(m− 1)t− 1) +m sin t(cos(m− 1)t− r)]

r(m+ 1) cos(m− 1)t− (mr2 + 1)
.

Note that in this case the factor cos((m−1)t)−1, which was cancelled from numerator and denominator
when deducing the parametrization (2) in the one-circle case, appears here explicitly: when r = 1 the
denominator in (11) becomes exactly (m+ 1)(cos(m− 1)t− 1).

We are interested, as before, in the case where m = a
b
, a rational number in its lowest terms, with

b > 0.

Remark 3.1 The two-circle envelope above can also be constructed from the family of straight lines
joining the point (cos bT, sin bT ) on the unit circle to the point (r cos aT, r sin aT ) on the concentric
circle of radius r: just write t = bT so that mt = (a/b)bT = aT . The range of values of T is 0 ≤ T < 2π.
The formula corresponding to (10) is

F̃ (x, y) = x(r sin aT − sin bT )− y(r cos aT − cos bT )− r sin(a− b)T.

When studying the two-circle envelope we may assume r > 1. To see this note that replacing r by 1/r,
x by x/r, y by y/r and interchanging a and b the formula for F̃ is merely multiplied by 1/r2. Thus the
family of lines for given values of r, a, b is obtained from that for 1/r, b, a by scaling with centre at the
origin. The envelopes are therefore the same up to a magnification or contraction and in particular all
geometrical features such as cusps and crossings will be the same. �
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When discussing the general two-circle envelope we shall therefore assume r > 1 since the case r = 1
in this context is special and is already covered in §1.

Note that the denominator in (11) can be zero, indicating that the envelope has “gone to infinity”.
This occurs when

cos(m− 1)t =
r2m+ 1

r(m+ 1)
. (12)

The denominator in this expression is not zero! Values of t exist satisfying (12) if and only if the right-
hand side lies in the closed interval [−1, 1]. (As above we exclude the special case r = 1: the r = 1
envelope has a simpler parametrization (2) and never goes to infinity.) Some work with inequalities,
using r > 1 and m 6= −1, 0, 1, shows that this is equivalent to 1 < r ≤ 1

|m| and in particular is only

possible if |m| < 1. Summing this up:

Proposition 3.2 The 2-circle envelope parametrized by (11), where r > 1, m = a
b
, b > 0 is in lowest

terms, goes to infinity if and only if |m| < 1 and 1 < r ≤ 1

|m| . The values of t for which this happens are

given by (12) which has 2|b− a| solutions for 0 ≤ t < 2bπ, except for r = 1

|m| when the number is |b− a|.
�

There is an illustration of this in Figure 4.

a = -    b r2,    = 3, = 1.25
a = -    b r2,    = 3, = 2.25

Figure 4: Left: r > 1

|m| = 1.5 and the envelope is finite. The central part is enlarged. Right: the envelope goes

to infinity 10 (= 2(b− a)) times, because r < 1

|m| (see Proposition 3.2). The central part of the envelope is again

enlarged for clarity.

a = −2, b = 3, r = 1.036 a = −2, b = 3, r = 1 a = 7, b = 4, r = 1.09 a = 7, b = 4, r = 1

Figure 5: Left pair, a = −2, b = 3, |m| = 2

3
< 1: continuing from Figure 4. Left: here r <

∣∣∣ m−2

2m−1

∣∣∣ = 8

7
which results

in 10 additional cusps, as in Proposition 3.4. Right: the limiting envelope when r = 1, a highly discontinuous
change. Right pair, a = 7, b = 4,m = 7

4
> 1: the less drastic change as r → 1, when half the cusps mutate into

smooth points of the envelope.
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3.1 Cusps on the 2-circles envelope

When counting the cusps on the 2-circles envelope it is helpful to use Lemma 2.1. At points given by
(11), we have

Ftt = rm sin(m− 1)t
(
m− 2 + r(m+ 1) cos(m− 1)t+ r2(1− 2m)

)
(13)

and cusps (or possibly ‘higher singularities’: see Remarks 3.5) occur when this is zero.
The factor sin(m − 1)t is equal to zero if |m − 1|t takes values kπ for k = 0, 1, . . .. Thus, taking

m = a
b
, b > 0 in lowest terms and looking at the range 0 ≤ t < 2bπ, there are 2|a − b| solutions for this

term, corresponding to 2|a− b| ‘general cusps’ for any r > 1.
The additional factor of (13) equals zero when

cos(m− 1)t =
(2m− 1)r2 + (2−m))

r(m+ 1)
. (14)

Values of t satisfying this expression exist if and only if the right-hand side lies within the interval [−1, 1].
Evaluating the resulting inequalities gives the result that extra cusps occur in the range 1 < r ≤ | m−2

2m−1
|

if |m| < 1. Conversely, for |m| > 1, there are no extra cusps besides the 2|a − b| general cusps for all
r > 1. When r takes the extreme value | m−2

2m−1
| then it is easy to check that cos(m − 1)t = ±1, so that

sin(m− 1)t = 0 and the values of t have coincided with those for the ‘general cusps’ above.

Remarks 3.3 (1) The values of t in (14) cannot coincide with those in (12) (given as usualm 6= 1, r > 1),
but the cusps given by sin(m − 1)t = 0 can be at infinity, in fact when m = |1/r|. An example occurs
at the intermediate value r = 1.5, between the illustrations in Figure 4, when all the cusps have ‘gone to
infinity’.

(2) The situation as r → 1 is rather strange, and highly discontinuous, especially when |m| < 1, as

illustrated in Figure 5. As r decreases to 1 it necessarily passes through the values 1

|m| and
∣∣∣ m−2

2m−1

∣∣∣ which
cause the envelope to go to infinity and acquire additional cusps. All these disappear at r = 1 and the
envelope becomes a finite curve. The situation is slightly less drastic for |m| > 1 when half of the 2|a− b|
cusps mutate into smooth points. See Figure 5 again.

We should expect that the case r = 1, regarded as a special case of general r, is very special, as it
arises from the coincidence of the two circles generating the envelope.

From the above discussion we have the following.

Proposition 3.4 The two-circle envelope parametrized by (11), where as usual m = a
b
is in its lowest

terms, r > 1 and the range of t is [0, 2bπ), has cusps as follows.

(i) 2|a− b| cusps always (we call these the ‘general cusps’;

(iia) when |m| < 1 and 1 < r <
∣∣∣ 2−m
2m−1

∣∣∣, an additional 2|a− b| cusps;

(iib) when |m| < 1 and r =
∣∣∣ 2−m
2m−1

∣∣∣, an additional |a− b| cusps (but see Remark 3.5(1) below). �

Two further examples are given in Figure 6.

Remarks 3.5 (1) At the transitional value r =
∣∣∣ 2−m
2m−1

∣∣∣ in Proposition 3.4(iib) above the singularities of

the envelope are strictly not cusps of the kind which ‘look like’ (t2, t3). In fact further partial derivatives
of F beyond Ftt vanish and the singularities when this happens are called ‘swallowtail’ when just Fttt = 0
and ‘butterfly’ when also Ftttt = 0. Some routine calculation shows that, when F = Ft = Ftt = 0 then

(i) Fttt = 0 if and only if r =
∣∣∣ m−2

2m−1

∣∣∣.
(ii) Ftttt = 0 too if and only if in addition sin(m − 1)t = 0 so that the values of t coincide with those
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Figure 6: Left and centre: the case a = −4, b = 3, r = 3.5, with 2|a− b| = 14 cusps. On the left the lines forming
the envelope are drawn and also the circle radius r is drawn dashed. In the centre the envelope is the solid curve
and the circles of radii 1 and r are drawn dashed. Right: the case a = 3, b = 4, r = 2 with 4 cusps, which is more
than 2|a−b|. The collection of three nearby cusps at the left of this envelope is called a ‘butterfly’ configuration. As
r → 2.5 this configuration collapses to a single cusp. In order to realize the full ‘unfolding’ of a butterfly singularity
we need to introduce a second continuous parameter besides r. In fact it is enough to move the centre of the second
circle away from the origin to the point (0, d). See Remark 3.5 for some notes on this. See also Figure 7.

r

d

= 2.5

=   0

r

d

= 3

= 0

r

d

= 3

= -0.5

r

d

= 3

= 0.5

r

d

= 2.5

= 0.5
r

d

= 2

= 0.5

r

d

= 2

= 0

r

d

= 2

= -0.5

r

d

= 2.5

= -0.5

Figure 7: a = 3, b = 4 and the pair (r, d) moving around the central value (2.5, 0) where the second circle has radius
r and centre (0, d). This shows the “butterfly” singularity for (r, d) = (2.5, 0) being unfolded by the parameters
(r, d). The inner cusp on the envelope is unaffected by these changes.

giving the ‘general cusps’ of Proposition 3.4 and the cusps have merged into a ‘butterfly’ singularity.
(iii) The fifth patial derivative of F with respect to t never vanishes for the values of m considered here
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(m 6= −1, 0, 1).

(2) We can treat the equation (10) as F (t, x, y, r), a 3-parameter family of functions of t. For fixed r
the discriminant set is the envelope in the (x, y) plane as above, and when r varies the discriminant set
{(x, y, r) : F = ∂F/∂t = 0} is a surface in 3-space whose slices r = constant are the envelopes discussed
above. Moving the slice we observe the transitions on the envelope, and these can be investigated by the
methods of [1] as unfoldings. However in order to realize the full ‘unfolding’ of the ‘butterfly’ singularities
on the envelope it is necessary to introduce a second parameter; we shall move the centre of the second
circle to the point (0, d). Naturally we could move it to (c, d) instead but the single additional parameter
d turns out to be sufficient.

3.2 The 2-circles envelope for r → ∞

As r → ∞ only the r2 terms in the expressions for xr(t) and yr(t) above are significant; the limiting
envelope is as follows.

x∞(t) = 1

m
[m cos t− cosmt cos(m− 1)t] = 1

2m
[(2m− 1) cos t− cos(2m− 1)t] ,

(15)

y∞(t) = 1

m
[m sin t− sinmt cos(m− 1)t] = 1

2m
[(2m− 1) sin t− sin(2m− 1)t] ,

where the second expression is in each case obtained from the well-known formulae for turning products
of sines and cosines into sums.

Clearly the expressions (15) are almost the same as (2): replace m in (2) by 2m− 1. But there is an
important change of sign. This sign change can be accomplished by means of a rotation and a possible
change of parameter. In fact by direct calculation we have the following.

Proposition 3.6 The “r = ∞” envelope (15) for a given m can be rotated by an angle α and reparametrized
by replacing t by t + δ, to coincide (as a set of points in the plane) with the one-circle envelope (2) in
which m is replaced by 2m− 1, whenever there are integers n1, n2 such that

α =
4mn1 − 2(n1 + n2)− 1

2(m− 1)
π =

(4a− 2b)n1 − 2bn2 − b

2(a− b)
π, δ =

2(n2 − n1) + 1

2(m− 1)
π,

where m = a
b
. �

Corollary 3.7 Write m = a
b
in (15), where as usual a, b are coprime.

(i) We may take α = 0 in the proposition if and only if b is a multiple of 4. In that case no rotation is
required.
(ii) If b is even but not a multiple of 4 then α = 0 is not possible but α = π is a possible value.
(iii) The smallest rotation α0 in absolute value satisfying the formula of the proposition is the absolute
value of

−b mod 2(2a, b)

2(a− b)
π,

where the round brackets (2a, b) stand for the greatest common divisor of 2a and b. Since (a, b) = 1 this
is 1 (b odd) or 2 (b even).

Proof of the corollary: in (i) with b a multiple of 4, take n1 = 1

4
b and since a − 1

2
b is odd, write it as

2n2 + 1, giving α = 0. The converse is clear: if α = 0 then clearly b is even and writing b = 2b1 we
quickly deduce b1 is even.
For (ii) with b even but not a multiple of 4, write 1

2
b = 2n1 − 1 and since a− 1

2
b is even write it as 2n2,

making α = π. Conversely if α = π is a possible value then we find 2(2n1 − 1)a = b(2n1 + 2n2 − 1) so
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that b is even, but b cannot be a multiple of 4 by (i).
For (iii) note that the values of (4a−2b)n1−2bn2 are exactly the multiples of (4a−2b, 2b) = 2(2a−b, b) =
2(2a, b). Thus the numerator of the formula for α can be reduced to the remainder on dividing −b by
this GCD and not to any smaller value in modulus. The denominator of the formula for α is constant. �

For example, Figure 8, the left pair, shows m = 7

6
in (15) and m = 2× 7

6
− 1 = 2

3
in (2), illustrating

(ii) of the Corollary. Both examples in the figure illustrate (iii).

Figure 8: Left pair: An “r = ∞” envelope (left) for m = 7

6
in which the denominator is even but not

a multiple of 4, and a 1-circle envelope (right) for m = 4

3
, identical by a half-turn as in Corollary 3.7.

Right pair: taking n1 = 1, n2 = 0 in the formula for α in Proposition 3.6 gives a rotation of 1

3
π for the

r = ∞ envelope with m = 7

10
(left) and the 1-circle envelope with m = 2

5
(right).
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