Ancient approximation to the sine function

Peter Giblin

There is a remarkable approximation to the sine function over the interval $[0, \pi]$ which is credited to Aryabhata I (about 500 CE) and which is mentioned in [1], namely (in modern notation)

$$
\sin x \approx \frac{16 x(\pi-x)}{5 \pi^{2}-4 x(\pi-x)}
$$

A casual glance at Figure 1 tells you that the approximation is a good one, in fact it is nowhere out by more than about 0.00163 .

Figure 1: The difference between Aryabhata's approximation and the sine function over the interval $[0, \pi]$.
To discuss this approximation it is better to convert it to an approximation for $\cos x$ by replacing x by $\frac{1}{2} \pi-x$, yielding

$$
\cos x \approx \frac{\pi^{2}-4 x^{2}}{\pi^{2}+x^{2}}, \quad-\frac{1}{2} \pi \leq x \leq \frac{1}{2} \pi
$$

This is an even function of x, taking the correct values 1,0 at $x=0, \frac{1}{2} \pi$ and indeed the original approximation for $\sin x$ is symmetric about $\frac{1}{2} \pi$ and takes the correct values 0,1 at $x=0, \frac{1}{2} \pi$. Is this the best approximation to $\cos x$ by a rational function with numerator and denominator both of degree 2? Keeping to even functions, they will be functions of x^{2} and hence we can assume the form $f(x)=\left(a+b x^{2}\right) /\left(c+d x^{2}\right)$, say. However imposing $f(0)=1$ gives $a=c$ and scaling we may assume $a=c=\pi^{2}$. Imposing $f\left(\frac{1}{2} \pi\right)=0$ we can restrict attention (changing notation) to

$$
f(x)=\frac{\pi^{2}-4 x^{2}}{\pi^{2}+k x^{2}} .
$$

What is the best value of k ? For a start, what is "best"? The value $k=1$ seems pretty good, from Figure 1 where you shift the vertical axis to the middle of the graph to get the explicit graph of $f(x)-\cos x$. A measure of goodness might be the (absolute, unsigned) area between the two curves $y=\cos x$ and $y=f(x)$ over the interval $\left[0, \frac{1}{2} \pi\right]$ (since the fuctions are even), that is the integral of $|f(x)-\cos x|$ over this interval. In a more general context we would probably use the integral of
$(f(x)-\cos x)^{2}$ but in the present case $f(x)-\cos x$ can be integrated explicitly and it does not change sign very often over the given interval. A fairly standard integration exercise is to show

$$
\int(f(x)-\cos x) d x=\frac{1}{k^{3}}\left(4 \pi \arctan (k x / \pi)-4 k x+\pi k^{2} \arctan (k x / \pi)-k^{3} \sin x\right) .
$$

Remarkably, there is only a tiny range of values of $k>0$ over which the sign of $f(x)-\cos x$ changes at all. It is quite easy to check that this function

- has a "degenerate minimum" (a minimum where the second derivative vanishes) at $x=0$ for $k=\frac{1}{2} \sqrt{2 \pi^{2}-16} \approx 0.96685$, giving an area under the graph between 0 and $\frac{1}{2} \pi$ of about 0.0025988 ,
- has a maximum at $x=\frac{1}{2} \pi$ for $k=\frac{2}{\pi} \sqrt{\pi(4-\pi)} \approx 1.04545$, giving an (absolute) area of about 0.0041965 .

These extremes are shown for $0 \leq x \leq \frac{1}{2} \pi$ in Figure 2. Between these extreme values of k, the corresponding graph looks like that of the right-hand half of Figure 1, and outside this range of k the sign of $f(x)-\cos x$ does not change. For the value $k=1$ in Aryabhata's formula the absolute area, measured by the integral of $|f(x)-\cos x|$, is about 0.0013137 , which is certainly better (smaller) than either of the extremes.

Figure 2: The graphs of $f(x)-\cos x$ for two values of k; only for k between these values does this function change sign over the interval $\left[0, \frac{1}{2} \pi\right]$.

So the optimum value of k, minimizing the absolute area, is very close to 1 . The best estimate I have been able to obtain is 0.99522 , with the aboslute area being 0.0012780 . Maybe someone else can do better, or calculate the optimum value explicitly, but at any rate it shows that Aryabhata's formula is extremely well chosen!

References

[1] G.G.Joseph, The Crest of the Peacock: Non-European Roots of Mathematics, Princeton University Press, Third edition 2010 (Second edition Penguin Books 2000).

Peter Giblin, Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL.

