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1 Introduction

Let M be a smooth hypersuface embedded in an affine space; consider pairs of points of
M at which the tangent hyperplanes are parallel, and in particular the envelope of the
straight lines joining these pairs of points. This set, which is intrinsically determined by
M , is the ‘Centre Symmetry Set’ (CSS) of M . For a convex M centrally symmetric about
a point p the CSS reduces to the point p itself, so that in general the CSS measures the
extent to which M possesses central symmetry. For a curve M in the affine plane the
CSS is generically a curve with cusps, and also endpoints in the inflexions of M .

The CSS was first defined in a different way in the curve case by Janeczko [7] and
in the way stated above by Giblin and Holtom in [2, 6]. Recently the authors presented
in [3, 4] a general method for analyzing the local structure of the CSS based on the theory
of Lagrange and Legendre singularities.

For a plane curve we can expect the envelope of chords always to exist; however for a
surface we obtain a 2-parameter family of lines in 3-space which may or may not have a
real envelope. In this paper we consider in detail the case of a smooth (C∞) surface M
in R3. We describe the results of [4] in a geometrical way and provide explicit algorithms
for recognizing the different types of singularities which occur. All our constructions
and results in this paper are local, so that we actually consider two surface germs M
and N and look for a surface—the CSS—tangent locally to all the straight lines joining
parallel tangent pairs. Note that the CSS construction generalises both the euclidean
focal set (envelope of common normals of two parallel surface germs) and the affine focal
set (envelope of affine normals). In a subsequent paper we shall investigate some global
properties of the CSS which generalise the result that the CSS of a generic convex plane
curve has an odd number of cusps.

Consider then two surface germs (M,a0) and (N, b0), assuming that the tangent planes
to M and N at the two base points a0 and b0 are parallel. We consider straight lines
(‘chords’) l passing through points a, b close to a0, b0, called parallel pairs, such that the
tangent planes Ta, Tb at a and b are parallel. Let l be such a chord; the points of l are
q = λa + µb where λ and µ are real numbers (barycentric coordinates of q) such that
λ + µ = 1. If we fix λ (and hence µ) and let a and b vary among parallel pairs close to
a0, b0, then the point q traces out an affine equidistant of the pair M,N . The union of
all affine equidistants, considered as a subset of R×R3, forms a set W (M,N) called the
family of affine equidistants2. Thus the points (λ, q) ∈ W (M,N) for a fixed chord l lie
on a straight line in W (M,N)—the lift of l—and W (M,N) is the union of the lifts of all
chords.

1supported by INTAS and RBRF grants.
Mathematics Subject Classification 58K05,58K40, 53A15, Keywords: singularity, central symmetry, sym-
metry set, curve or surface in affine space.

2We also used the term affine extended wavefront in [4].
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Let π be the projection from R×R3 to the second factor, π(λ, q) = q. The model we
use for the CSS is then as follows: it provides us with a (singular) surface which has the
chords for its tangent lines. (See [4, §2] for details.)

Definition 1.0.1 The centre symmetry set (CSS) of the pair M,N is the set of critical
values of the projection π : W (M,N) → R3.

The CSS is therefore defined on a neighbourhood of the base chord l0 joining a0 and b0,
and the singularities of the CSS depend on whether the base points are distinct and on
whether the chord is transversal to the tangent plane to M at a0. In the nondegenerate
case any chord l will be tangent to the CSS (or a limit of tangents to the CSS at smooth
points) in two points, one point or no points, but the chord can also be entirely contained
in the CSS.

The principal method of [4] was to represent the CSS as the bifurcation set of an
explicit generating family of functions F (u, t,q) of variables u ∈ Rk depending on the
‘time’ parameter t ∈ R and ‘space’ parameters q ∈ R3. Such a family determines an
extended wavefront WF ⊂ R × R3:

WF =

{
(t,q) | ∃u, F (u, t,q) = 0,

∂F

∂u
(u, t,q) = 0

}
.

The bifurcation set BF of WF is the set of critical values of the projection WF → R3. It
consists of two components: BF = ∆F ∪ ΣF where

∆F =

{
q | ∃(u, t), F (u, t,q) = 0,

∂F

∂u
= 0,

∂F

∂t
= 0

}
(1)

is the criminant of F and

ΣF =

{
q | ∃(u, t), F (u, t,q) = 0,

∂F

∂u
= 0, det

(
∂2F

∂u2

)
= 0

}
(2)

is the caustic of F .
In [4] the families F (u, t,q) were considered up to the following equivalence relation.

Two families Fi(u, t,q) i = 1, 2 are v-equivalent if there exist a non-zero smooth function
φ(u, t,q) and a diffeomorphism θ : Rk × R × R3 → Rk × R × R3, of the form θ :
(u, t,q) 7→ (U(u, t,q), T (t,q),Q(q)) such that φF1 = F2◦θ. The extended wavefronts and
the bifurcation sets of v-equivalent families are diffeomorphic. They remain diffeomorphic
after a stabilization, that is the addition of non-degenerate quadratic forms in extra
variables ũ to the families.

We recall that the low codimensions singularities of generic families with respect to
this equivalence coincide with the versal deformations of singularities of projections of
hypersurfaces onto a line, classified by V.Goryunov [5]. The low codimension singularities,
which correspond to projections of a regular hypersurface are essentially the Thom-Arnold
A1, A2, A3, A4, and D4 classes. The respective normal form is the following family germ
(at the origin)

Ak : ±uk+1 + t +
k−1∑

i=1

uiqi,
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D±

4 : u3
1 + u1u

2
2 + u2

1q3 + u2q2 + u1q1 + t

The classification of v-orbits corresponding to the projections of singular surfaces starts
with Arnold’s simple boundary classes [5, 1] (u ∈ R) :

Bk : ±u2+tk +qk−2t
k−2+ · · ·+q0, Ck : uk +tu+qk−2u

k−2+ · · ·+q2u
2+q1t+q0, k = 2, 3, 4;

F4 : u3 + t2 + q2ut + q1u + q0.

In each of the cases below we shall give an appropriate F , such that the sets W (M,N)
and WF coincide (see [4, Prop.2.2]). We can then take BF as our model for the CSS
except that, in the cases considered below, BF contains redundant components which
are the two surface germs M and N themselves. We shall ignore these components and
therefore take BF , minus these components, as an alternative construction for the CSS.

In §2 we cover the case where the parallel tangent planes to M and N are not in fact
the same plane: the ‘transversal’ case where the base chord is transverse to M and N .
Only the caustic ΣF plays a role here. In particular, in §2.8 we consider the interesting
case where the chord is ‘special’, that is the chord has only one point of tangency with
the CSS. In the present situation this can occur at isolated points but also along curves
on the CSS, in contrast to the euclidean case of coincident focal points which occur only
at isolated umbilics. In §3 we turn to the case where the base chord lies in a common
tangent plane to M and N . In that case both the caustic and the criminant are part of
the CSS, and singularities of types B3, B4, C3, C4, F4 and a variant of C4 occur.

For a single surface M , and a parabolic point p of M , there are parallel pairs of tangent
planes where both contact points are close to p. This purely ‘local’ case presents features
of special interest and we shall cover it in detail elsewhere. See also [4, §5].

2 The transversal case

Assume that the base points a0, b0 are distinct, and the base chord l0 joining them is
transversal to the parallel tangent planes to M and N at these points. In this case the
criminant ∆F is always empty.

Theorems 3.3 and 3.7 of [4] state that in this case for generic surfaces the germ of
the CSS at a point of a chord close to l0 is diffeomorphic to the germ of the standard
caustics of one of the types A2, A3, A4, D

±

4 . Thus besides regular points the CSS can have
singularities of the form cuspidal edge, swallowtail, pyramid or purse.

2.1 The pencil of quadratic forms

To distinguish these cases introduce an affine coordinate system Oxyz with the origin
at the midpoint of the segment [a0, b0], the z-axis along l0 and the tangent planes at a0

and b0 being parallel to the planes z = constant. We also assume that a0 = (0, 0, 1
2
) and

b0 = (0, 0,−1
2
). Let

M : z = 1
2

+ f(x, y), N : z = −1
2

+ g(x, y), (3)
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The functions f and g are determined by M and N up to a linear transformation in
the x, y coordinates. Write f (i)(x, y) for the degree i homogeneous form of the Taylor
expansion of f at x = y = 0, and similarly for g; thus f (0) = f (1) = g(0) = g(1) = 0.

Lemma 3.1 of [4] states (in our current notation) that the family

F = −z + λ(1
2

+ f(x + µu, y + µv)) + µ(−1
2

+ g(x − λu, y − λv)) (4)

of functions in variables u = (u, v) ∈ R2 with affine time parameter t = λ (and µ = 1−λ)
and space parameters q = (x, y, z) is a generating family in the present transversal case.

Calculating WF and BF , the point q0 = (0, 0, 1
2
(λ0 − µ0)) of the base chord l0 belongs

to the CSS if and only if the quadratic form

Q2(u, v) = Q2,λ0
(u, v) = µ0f

(2)(u, v) + λ0g
(2)(u, v) (5)

is degenerate.
In fact we can use the same criterion to calculate the CSS point on nearby chords:

the conditions ∂F/∂u = ∂F/∂v = 0 in (2) state that the tangent planes at points with
parameters X = x + µu, Y = y + µv on M and X∗ = x − λu, Y ∗ = y − λv on N are
parallel and the determinant condition then states that the pencil Q2,λ of quadratic forms
is degenerate for the given λ, µ = 1 − λ. This is exploited in drawing the CSS; see §2.3.
Note also that ∂F/∂λ = 1 when u, v, x, y, z are all 0, confirming that locally the criminant
∆ in (1) is empty.

The pencil of quadratic forms Q2 thus plays a key role in the CSS, determining the
points of any chord which lie on the CSS. (It is analogous to the pencil of the second and
first fundamental forms in euclidean geometry.) Let us represent Q2 by a straight line
in the 3-space of all quadratic forms in two variables u, v. For generic surfaces we may
assume that the line does not lie in the cone of degenerate forms, since this is equivalent
to saying that the base points a0 and b0 are not both parabolic points with the same
asymptotic direction. The cone can meet the line in up to two real points:

(i) If the points are real and distinct, then Q2 intersects the region of (positive or
negative) definite forms, and using the standard normal form theorem both f (2) and
g(2) can be reduced to diagonal form by a linear transformation of u, v coordinates.
See §2.2.

(ii) If Q2 passes through the zero form, then f (2) and g(2) are proportional. In this case
they are also simultaneously diagonalizable. See §2.5.

(iii) Suppose Q2 is tangent to the cone at a nonsingular point. This is equivalent to the
statement that the quadratic forms f (2) and g(2) have exactly one common linear
factor, which we may take to be u by a linear transformation. (Note that both
surfaces must therefore be hyperbolic or parabolic at the base-points.) At least
one of the quadratic forms is not a multiple of u2 so that using a further linear
transformation we can reduce it to uv and the other to u(±u + αv) for a constant
α. In §2.8 we take these as g(2) and f (2) respectively.

(iv) If Q2 does not meet the cone in real points then there are no real CSS points so we
ignore this case.

.
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2.2 The diagonalizable case

We consider cases (i) and (ii) of §2.1. Until §2.7 we shall assume that neither a0 nor b0

is parabolic, that is neither f (2) nor g(2) is degenerate. Then we can choose coordinates
(principal coordinates in fact) so that f (2) = αu2 + βv2 and g(2) = ε1u

2 + ε2v
2 where ε1

and ε2 are independently ±1. It follows that the two CSS points on l0 are respectively
given by the solutions of the equations

αµ0 + ε1λ0 = 0, βµ∗ + ε2λ∗ = 0. (6)

Remark 2.2.1 Recalling that λ0 +µ0 = 1 and λ∗+µ∗ = 1 there will be no finite solution
to (6) in the respective cases α = ε1, β = ε2. This means that the CSS point has gone to
infinity, in the same way that the euclidean focal set goes to infinity near the normal to a
surface at a parabolic point. Generically f (2) and g(2) will not be identical, so both CSS
points will not go to infinity at the same time.

Assume now that αµ0 + ε1λ0 = 0, α 6= ε1, that f (2) and g(2) are not proportional, and
that α 6= 0. The latter condition guarantees λ0 6= 0; we also have µ0 6= 0 by the choice of
g above.

The proof of the following statement consists of direct calculations of normal forms of
versal families of functions. In the principal coordinates let the higher order forms of f
and g be

f (n)(u, v) =
∑

i+j=n

fi,ju
ivj, g(n)(u, v) =

∑

i+j=n

gi,ju
ivj.

Theorem 2.2.2 With the above assumptions and notation, we have the following.

(i) A2 case: Suppose that A 6= 0 where A = µ2
0f3,0 − λ2

0g3,0. Then the point q0 =
λ0a0 + µ0b0 is a regular point of the CSS, the tangent plane to the CSS at q0 being
the yz coordinate plane. The corresponding germ of the generating family is the
germ of a versal deformation of the function u3 + v2. The versality condition is
µ0λ0(α − ε1) 6= 0, which holds automatically.

(ii) A3 case: Suppose that A = 0; generically we can expect this condition to hold along
a line in the family if chords, that is for points along curves in the two surface germs
M,N . Suppose also that the two CSS points do not coincide and that B 6= 0 where

B = f4,0µ
3
0 + g4,0λ

3
0 −

(µ2
0f2,1 − λ2

0g2,1)
2

4(µ0β + ε2λ0)
.

Then the CSS at q0 has a cuspidal edge. (The denominator is nonzero provided the
two CSS points are not coincident.) The versality condition of the generating family
in this case holds provided µ0λ0(α − ε1) 6= 0, which is again automatic.

(iii) A4 case: Finally at isolated points on M,N it can happen that A = B = 0 but C 6= 0
where

C = f5,0µ
4
0 − g5,0λ

4
0 −

(µ2
0f2,1 − λ2

0g2,1)(µ
3
0f3,1 + λ3

0g3,1)

2(µ0β + ε2λ0)

+
(µ2

0f2,1 − λ2
0g2,1)

2(µ2
0f1,2 − λ2

0g1,2)

4(µ0β + ε2λ0)2
.
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In this case q0 is a swallowtail point. The versality condition is the automatically
satisfied µ0λ0(α − ε1) 6= 0 together with D 6= 0 where

D = (f3,0µ
2
0(µ0 − 3λ0) + g3,0λ

2
0(λ0 − 3µ0))

(
β − ε2

2(µ0β + λ0ε2)
+ µ0f2,1 + λ0g2,1

)

+ αµ0

[
f3,1µ

2
0 − g3,1λ

2
0 −

(µ2
0f2,1 − λ2

0g2,1)(µ0f1,2 + λ0g1,2)

2(µ0β + λ0ε2)

]

+
αµ0(β − ε2)

4(µ0β + λ0ε2)2

[
(µ2

0f2,1 − λ2
0g2,1)(µ

2
0f1,2 − λ2

0g1,2)

− 2(µ0β + λ0ε2)(µ
3
0f3,1 + λ3

0g3,1).
]

Remark 2.2.3 As stated in the theorem, the versality conditions hold automatically for
the singularities A2 and A3 whose strata in the CSS have positive dimensions. Only in
the A4 case is an extra condition D 6= 0 required. This leads to an interesting feature:
the metamorphosis of singularities in families of CSS depending on a parameter. Such
a metamorphosis can happen only for strata of codimension 3 singularities. Notice also
that the open condition depends only on the 3-jet of the family at the reference point.

Similarly to the classical Euclidean case, the versality condition for codimension 3
singularites unfortunately does not have an explicit geometrical interpretation.

2.3 The pre-CSS and drawing the CSS

Consider two surfaces M and N in R
3 whose tangent planes at a0 ∈ M and b0 ∈ N

are parallel. Suppose M is locally parametrized by u1, v1 and N by u2, v2, with a0, b0

given by zero values of the parameters. We need to find the pairs of points a of M and
b of N close to these two for which the tangent planes are parallel. The set of these
pairs, as a subset of a neighbourhood of (a0, b0) ∈ M × N or of a neighbourhood of 0 in
(u1, v1, u2, v2)-space, is called the pre-CSS. By the implicit function theorem the pre-CSS
is smooth, parametrized by u1 and v1, provided N is not parabolic at b0. Thus the pre-SS
is smooth provided not both of a0, b0 are parabolic. See §2.7.

In the transversal case we can take M,N as in (3):

M = {(x, y, z) = (u1, v1, f(u1, v1) + 1
2
)}, N = {(x, y, z) = (u2, v2, g(u2, v2) − 1

2
)},

where f, g and their first partial derivatives vanish at (0, 0), so that the tangent planes
to M at a0 = (0, 0, 1

2
) and N at b0 = (0, 0,−1

2
) are parallel to the plane z = 0. In the

tangential case, where the tangent planes to M at a0 and N at b0 coincide, but a0 6= b0,
we can take M,N as graphs tangent to the x, y-plane at two points of the x-axis. See §3.

Of course actually finding say u2 and v2 as functions of u1 and v1 may be a tall order,
but we can find examples of all the phenomena we discuss by choosing g(u, v) = ε1u

2+ε2v
2,

with no higher terms (the εi being independently ±1). This makes the pre-CSS condition
u2 = −1

2
ε1(∂f/∂u1), v2 = −1

2
ε2(∂f/∂v1).

We then calculate the zeros of detH where

H =

(
fuu + θguu fuv + θguv

fvu + θgvu fvv + θgvv

)
,
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Figure 1: One of the CSS sheets in the three transverse cases: A2 (smooth), A3 (cusp edge),
A4 (swallowtail), the last being in close-up with the surface pieces not shown. The base chord,
joining a0 = (0, 0, 1

2) and b0 = (0, 0,−1
2), is also shown.

regarded as a function of u1, v1. For each such (real) zero θ we use the values λ =
θ/(1 + θ), µ = 1/(1 + θ) (thus θ = λ/µ and λ + µ = 1) to find the point λa + µb on the
CSS. These sheets of the CSS will then be parametrized by u1 and v1. (If a0 is parabolic
then θ = 0 and the corresponding CSS point is b0; see §2.7.)

2.4 Examples

We shall take g(u, v) = ε1u
2 + ε2v

2 without higher terms, and we shall arrange things so
that the CSS point of interest is at the origin, that is to say λ0 = µ0 = 1

2
. In fact let us

choose ε1 = −1; then from (6) we require α = 1. Further let us choose ε2 = −1, and say
β = 2. The expressions occurring in Theorem 2.2.2 are then given by
4A = f3,0, and, assuming f3,0 = 0,
16B = 4f4,0 − f 2

2,1

64C = 4f5,0 − 2f2,1f3,1 + f 2
2,1f1,2

32D = −2f3,1 + f2,1f1,2

As examples, we can take
(i) Smooth CSS: f = u2 + 2v2 + u3,
(ii) Cusp edge CSS: f = u2 + 2v2 + 2u2v,
(iii) Swallowtail CSS: f = u2 +2v2 +2u2v+uv2 +u4. (An example with the upper surface
hyperbolic is f = u2 − 2v2 + 6u2v + uv2 − 3u4.)
See Figure 1 for these examples3.

We can also choose ε2 = 1, making the lower surface hyperbolic, but the expressions
for A,B,C,D are then slightly different, namely
4A = f3,0, and, assuming f3,0 = 0,
16B = 12f4,0 − f 2

2,1,

3The figures were drawn using MAPLE.
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64C = 36f5,0 − 6f2,1f3,1 + f 2
2,1f1,2,

288D = 30f3,1 − 5f2,1f1,2.

Remark 2.4.1 We are concerned here with one of the sheets of the CSS only. In example
(i) above, the other sheet is highly degenerate, in fact 1-dimensional. We can make both
sheets nonsingular by adding v3 to f .

2.5 Quadratic forms f (2) and g(2) proportional

This is case (ii) of §2.1. Generically the forms f (2) and g(2) are proportional only for
isolated basic chords. We may therefore assume that the forms are non-degenerate and
equal to

f (2)(u, v) = αg(2)(u, v), g(2)(u, v) = ε1u
2 + ε2v

2, α 6= 0, α 6= 1.

The CSS points coincide since (λ0, µ0) = (λ∗, µ∗) = (α/(α − 1), 1/(1 − α)).
The genericity conditions consist of non-degeneracy of the cubic form

r = λ0µ0Q3 where Q3(u, v) = µ2
0f

(3)(u, v) − λ2
0g

(3)(u, v)

and the versality conditions consist of (i) µ2
0a(3a − 1) 6= 0 and (ii) the quadratic forms

ε1u
2 +ε2v

2, ∂r/∂u, ∂r/∂v span the space of all quadratic forms. This is a D±

4 singularity
of the CSS.

As examples let us consider the case where g(3) = 0 and write f (3) = b0u
3 + b1u

2v +
b2uv2 + b3v

3. Then the condition (ii) above becomes

ε1(3b1b3 − b2
2) + ε2(3b0b2 − b2

1) 6= 0. (7)

If the left hand side of this is < 0 then the resulting D4 is of type D+
4 with one cuspidal

edge (‘purse’, hyperbolic umbilic) and if the left hand side is > 0 it is of type D−

4 with
three cuspidal edges (‘pyramid’, elliptic umbilic).

Note that we can make the surfaces M and N both elliptic (ε1ε2 = 1) or both hy-
perbolic (ε1ε2 = −1). The geometry of these two situations is quite different. In the
elliptic case, all points close to the base-points a0, b0 contribute chords to the CSS, but in
the hyperbolic case there are two smooth curves on M through a0 and on N through b0

which separate neighbourhoods of these base points into four regions, only two of which
contribute to the CSS. This is illustrated for the ‘pyramid’ case in Figure 2.

2.6 Equations for the strata

It is not difficult to use the generating family F in (4) to provide explicit equations for
the strata of the CSS. Let us write, as above, X = x+µu, Y = y +µv,X∗ = x−λu, Y ∗ =
y − λv, and write for instance fX to mean the derivative of f with respect to its first
variable, evaluated at (X,Y ). Then the equations of the CSS, that is the caustic, are
F = 0, fX = gX∗ , fY = gY ∗ and H = 0 where

H = (µfXX + λgX∗X∗)(µfY Y + λgY ∗Y ∗) − (µfXY + λgX∗Y ∗)2.
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Figure 2: Top row: a D−

4 (pyramid) CSS generated by two elliptic surface patches f = u2 +
v2 + u2v − v3 and g = −u2 − v2; in the middle row by two hyperbolic surface patches f =
u2 − v2 − u2v + v3 and g = −u2 + v2. The base chord and one generic chord are shown,
and the segment of the generic chord between tangency points to the CSS is shown on the
right. In the D−

4 hyperbolic case only the darker regions on each surface patch contribute to
the CSS; the three cusp edges correspond to the boundaries of these regions and to another
curve on each patch, drawn as a dark line. Bottom row: the D+

4 ‘purse’ case generated by
f = u2 + v2 + u2v + v3, g = −u2 − v2. On the surface patches there is just one curve, shown as
a dark line, corresponding to the unique cusp edge on the CSS. The figure shows the two sheets
separately as well as the CSS which is the union of the sheets.
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These four equations in x, y, z, λ, u, v define a map F̃ : R6 → R4, with the CSS obtained
by projecting F̃−1(0) to the q = (x, y, z) coordinates. Using the implicit function theorem
it follows that the singular set of the CSS (the closure of the cuspidal edges) is given by
imposing a further condition to make the matrix

A =

(
µfXX + λgX∗X∗ µfXY + λgX∗Y ∗ µHX − λHX∗

µfXY + λgX∗Y ∗ µfY Y + λgY ∗Y ∗ µHY − λHY ∗

)

of rank 1. The leftmost 2×2 minor is already zero since H = 0, and the other two minors
will therefore differ only by a (generically nonzero) multiplicative constant. Let us choose
one of these minors, H1 say. Then the 0-dimensional strata (A4 and D4 singularities) are
given by adding an extra column to the matrix A and still requiring rank 1. This extra
column is obtained from H1, differentiating with respect to u and v:

(µH1X − λH1X∗ µH1Y − λH1Y ∗)>.

Note that at D4 points F has no quadratic terms so that the first two columns of A are
zero. This distinguishes the D4 points from the A4 points.

2.7 Parabolic base point

If both base points a0, b0 are parabolic then (compare §2.3) we cannot use a neighbourhood
of either of them to parametrize the parallel tangencies of M,N . Generically both base
points are parabolic only for isolated chords. The corresponding CSS points are at a0 and
b0 themselves and we need to ignore the redundant components of ΣF which are equal to
the two surface germs M and N through these points. By an affine transformation we
can assume f (2) = ε1u

2 and g(2) = ε2v
2, where the εi are independently ±1. Then, in the

notation of §2.3, v1 and u2 can be used as local parameters for the pairs of points where
the tangent planes are parallel and for the CSS. If f3,0 and g0,3 are nonzero (these hold
generically) then the two sheets of the CSS are smooth near a0 and b0 and intersect M
and N transversally there.

If a0 is parabolic but b0 is not then we can use a neighbourhood of a0 to parametrize
the parallel tangencies, as in §2.3. Assuming that the pencil Q2 (5) of quadratic forms is
not tangent to the cone of degenerate forms, f (2) and g(2) will not have a common factor
and we can reduce to f (2) = ε1v

2, g(2) = ε2u
2 + ε3v

2. Then using [4, Prop.3.9] we find:
• If f3,0 6= 0 the CSS at b0 (λ0 = 0, µ0 = 1) is smooth, transversally intersecting N ,
• If f3,0 = 0 but f2,1 6= 0 and 4f4,0 − f 2

2,1 6= 0 then the CSS has a cusp edge at b0, which
is transverse to N .

2.8 Special chords

Let us consider the case (iii) of §2.1 where the quadratic forms f (2) and g(2) can be reduced
to u(±u + αv) and uv for a constant α. The pencil of quadratic forms is tangent to the
cone of singular forms and this implies that, for a curve of points on M and N , there is
exactly one CSS point: the equation giving the CSS points on the chord joining a and
b along these curves has equal roots. Generically we obtain a smooth curve on M and
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S
C

s m o o t h  c u r v e
S ,  c o m m o n  
b o u n d a r y  o f  
t h e  s h e e t s

c u s p  e d g e  C

Figure 3: Special chords; see §2.8. Left: The upper and lower surfaces are M and N and their
CSS is between them. (In this situation, both M and N must be hyperbolic.) The CSS consists
of two smooth sheets, meeting along a smooth curve to form a single smooth surface which is
the total CSS. The dark lines on M and N correspond to the common boundary of the two
sheets. Thus points of M on one side only of this dark line contribute at all to the CSS, and
similarly for N . The figure shows one special chord which has 4-point contact at the common
boundary of the two sheets of the CSS; this has its endpoints on the dark lines on M and N .
A generic second chord is shown whose endpoints are away from the dark lines; this is tangent
once (with ordinary 2-point contact) to each sheet of the CSS. Centre and right: The cuspidal
edge case of special chords. Centre: a schematic picture of the CSS which is a cuspidal edge
surface, made up of two sheets which join along the special curve S. In a generic situation, S
meets the cuspidal edge curve C in just one point and S and C are smooth as space curves.
Right: an example, f(u, v) = u(u − v) + u3 − u2v + uv2 + v4 and g = uv.

another smooth curve on N ([4, Theorem 3.11]); points of M on one side only of the curve
in M contribute to the CSS, and likewise for N . For the base chord l0 there is just one
CSS point, namely the one with (λ0, µ0) = (α/(α − 1), 1/(1 − α)).

Suppose that α 6= 0. Provided λ0µ0(µ
2
0f0,3 −λ2

0g0,3) 6= 0 this is a smooth point (A2) of
the CSS. Otherwise it belongs to a cuspidal edge (A3) on the CSS provided

4µ0

(
µ3

0f0,4 + λ3
0g0,4

)
6=

(
µ2

0f1,2 − λ2
0g1,2

)2
. (8)

If α = 0 then M is parabolic at a0 = (0, 0, 1
2
). Generically f0,3 6= 0 and the CSS

is smooth and intersects N transversely at b0 = (0, 0,−1
2
). In this case the ends of the

special chords trace a curve in the closure of the hyperbolic region of M , this curve being
smooth and tangent to the (smooth) parabolic curve in M .

Figure 3 shows the surface pieces z = f(u, v) + 1
2

= u(u − v) + v3 + 1
2

(top) and
z = g(u, v) − 1

2
= uv − 1

2
(bottom). We can solve for parallel tangent planes in the same

way as §2.3; in fact parallel tangent planes are at points given by (u1, v1) on the first
surface and (u2, v2) = (−u1 + 3v2

1, 2u1 − v1) on the second. The two values of θ giving
CSS points (again as in §2.3) are 1 ±

√
12v1 so that v1 > 0 for distinct solutions and the

special chords are given by v1 = 0. Of course we can smoothly parametrize the whole CSS

11



(locally) using (u1, ṽ) where v1 = ṽ2, so that the values of θ are both given by 1 + ṽ
√

12,
allowing ṽ to take both signs.

We can also realise the special cuspidal edge case of the CSS. However note that the
realization of an A3, versally unfolded by the family F , does not guarantee that the cusp
edge is in general position with respect to the special curve on the CSS. This actually
imposes new conditions, not arising directly4 from the family F . To avoid confusion let
us call the CSS itself a ‘cuspidal edge surface’ and the singular set on this (the A3 set) the
‘cuspidal edge curve’. Then the example f(u, v) = uv, g(u, v) = u(u − v) + uv2 satisfies
the above genericity condition (8) but the cuspidal edge curve coincides with the special
curve. To make the special curve on the CSS meet the cuspidal edge curve generically
we need an additional condition, which in fact reduces to f04(8f04 − 3αf 2

12) 6= 0 when
f = u(u+αv)+ h.o.t., g = uv+ h.o.t. In particular we need a v4 term in f . See Figure 3,
centre and right.

3 The tangential case

We suppose now that the basic chord lies in a bitangent plane, that is a plane tangent to
both M and N . We may suppose this plane is z = 0 and that a0 = (x0, 0, 0), b0 = (x∗, 0, 0),
so that the surfaces locally have the form M : z = f(x− x0, y), N : z = g(x− x∗, y). We
can also suppose that q0 = λ0a0 + µ0b0 is the origin, that is λ0 = x∗/(x∗ − x0).

From [4, Prop.4.1] the following family of functions in variables u, v with real parame-
ters ε, x, y, z is a generating family for the germ of the CSS at the origin.

F = −z + λf(x + ε + µu, y + µv) + µg(x + ε − λu, y − λv),

where µ = µ0 − ε, λ = λ0 + ε and all parameters and variables are close to 0.
In a similar way to the transverse case (see (5)), the point q0 belongs to the caustic

ΣF if and only if the quadratic form Q2(u, v) = µ0f
(2)(u, v) + λ0g

(2)(u, v) is degenerate.
However the criminant ∆F now contains the whole line through a0 and b0: in fact ∆F

coincides with the ruled surface of all bitangent chords, so that according to our definition
the CSS contains this ruled surface. The generic singularities of the CSS are related to
boundary singularities of functions; see [4, Th.4.3,4.4]. The part ∆F of the CSS can have
cuspidal edge and isolated swallowtail singularities.

For generic surfaces M and N and any bitangent chord at least one of the forms
f (2), g(2) is nondegenerate and does not vanish on the bitangent chord direction. Let this
be f (2); then we can make an affine change of coordinates so that

f (2) = u2 ± v2, g(2) = αu2 + 2βuv + γv2. (9)

If the quadratic form Q2 is nondegenerate then the caustic ΣF near the origin is empty.
The condition for Q2 to be degenerate is

λ2
0(β

2 − αγ) − λ0µ0(γ ± α) ∓ µ2
0 = 0. (10)

4However these conditions can be derived by direct calculation or by the methods of [4, p.147].
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There is another key quadratic form which governs these singularities:

Q∗(ε, u, v) = λ0

(
(ε + µ0u)2 ± µ2

0v
2
)

+ µ0

(
α(ε − λ0u)2 − 2β(ε − λ0u)λ0v + γλ2

0v
2
)
,

which is the second order Taylor polynomial at the origin of the function F |x=y=z=0(ε, u, v).
The condition for Q∗ to be degenerate is

±αµ0 + (αγ − β2)λ0 = 0. (11)

Until Case 3 below we take λ0 6= 0, 1. We can then choose x0 = −1
2
, x∗ = 1

2
so that

λ0 = µ0 = 1
2
, and (10) and (11) then become

Q2 : β2 = (α + 1)(γ ± 1) (solutions for λ0 are then 1
2

and 1/(γ − α)) (12)

Q∗ : β2 = αγ ± α. (13)

Case 1: Q2 degenerate, Q∗ nondegenerate. In this case the origin belongs to ΣF

and automatically to ∆F which is the ruled surface of bitangent lines.
Let

w = (−λ0β, µ0 + λ0α) =
1

2
(−β, 1 + α) (14)

be the kernel direction of the form Q2.
As above we take λ0 = 1

2
. Similarly let w = (µ0 + λ0α, λ0β)) = 1

2
(1 + α, β). Let

Q3(u, v) = µ2
0f

(3)(u, v) − λ2
0g

(3)(u, v) = 1
4
(f (3)(u, v) − g(3)(u, v)),

Q4(u, v) = µ3
0f

(4)(u, v) + λ3
0g

(4)(u, v) = 1
8
(f (4)(u, v) + g(4)(u, v)).

We find

Case 1(a): If Q3(w) is nonzero then ΣF and ∆F are both nonsingular at the origin
and have second-order tangency (inflexional contact) along a curve which is in general
transverse to the base chord joining a0 and b0. This is type C3 and is illustrated in
Figure 4.

Case 1(b): If Q3(w) = 0 then generically the caustic ΣF has a folded Whitney unbrella
(also known as a folded crosscap5) while the criminant ∆F is smooth. The singularity of
the CSS is then of type C4. The generic additional conditions which need to be satisfied
for exactly a C4 are as follows. We require that Q4(w) 6= 1

4
(µ0 + λ0α)S2 where

S =

(
∂Q3

∂u
(w),

∂Q3

∂v
(w)

)
· w.

There is an additional condition for the C4 singularity to be versally unfolded. This is most
simply stated in terms of the cubic form Q3 = µ0f

(3) + λ0g
(3): we require β(∂Q3/∂u) +

(1 − α)∂Q3/∂v 6= 0 when evaluated on the vector w.
To find examples, as in Figure 5, we take f(u, v) = u2 ± v2, without higher terms, so

that f (3) = 0, use (12) to find γ from α, β and then use Q3(w) = 0 to find the coefficient
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i n f l e x i o n a l  c o n t a c t
b e t w e e n   D   a n d  S
a l o n g  t h i s  d a r k  
c u r v e

D
S

c u r v e  a l o n g  w h i c h
c a u s t i c  a n d  c r i m i n a n t
h a v e  i n f l e x i o n a l
c o n t a c t

b a s e
c h o r d

Figure 4: The C3 case (Case 1(a) in the text), illustrated by f(u, v) = u2 − v2, g(u, v) =
−2u2 +4uv−3v2−u3 +v3. Left: the two surface pieces, left (g) and right (f), together with the
ruled surface ∆ of bitangent chords on which the base chord is drawn with the origin marked,
and also Σ which is tangent to ∆ and crosses it. The vertical scale is greatly exaggerated in
this figure. Right: just the two components ∆ and Σ are shown, with their tangency of order 2
along a curve of C3 points, again with the vertical scale exaggerated.

s e c t i o n  h e r e
i s  l i k e  t h i s

s e l f  i n t e r -
s e c t i o n  o f
c a u s t i c  S

c r i m i n a n t  D ,  
h e r e  a  
r u l e d  
s u r f a c e

C

C

4

3

s e l f  i n t e r -
s e c t i o n  o f  SD

S
t r a n s v e r s e
c r o s s i n g  

i n f l e x i o n a l
c r o s s i n g  o f
D  a n d  S

c u s p  e d g e
o f  S  

D

D

Figure 5: The CSS in the C4 case (Case 1(b) in the text). Left: a computer rendering of the
case f(u, v) = u2 − v2, g(u, v) = −2u2 + 4uv − 3v2 − u3 + 2u2v + uv2 − 2v3 + 2u4, with the
shape of the caustic indicated by contour lines. Right: a standard model of the caustic Σ and
criminant ∆ of a C4, showing the two curves of intersection between them, one crossing being
transverse except at the C4 point and the other being inflexional at C3 points. This model is
based on the normal form for C4 given in §1, distorted by a global diffeomorphism to make ∆
more closely resemble that for the CSS on the left.
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of v3 in g from the other cubic coefficients. In the example of Figure 5 we have also added
a quartic term to g to obtain a better picture.

Case 2: Q2 nondegenerate, Q∗ degenerate. The caustic ΣF is empty close to the
origin and the whole CSS is the ruled surface of bitangents. Since the rank of Q2 is
maximal the variables u, v can be eliminated by a stabilization, as in [4], and the generating
family can be written in the form

F (ε, x, y, z) = −z + c3ε
3 + c4ε

4 + c2,1xε2 + y(c1,2ε + c2,2ε
2) + φ(ε, x, y),

where φ contains terms divisible by one of ε5, x2, xy, y2, xε3, yε3 and

bc1,2 = 2(±α − αγ + β2) 6= 0,

c2,1 = ∓ 2α2

β2λ2
0µ0

+
3α2

β3λ2
0

f3,0 +
3

β3µ2
0

g(3)(β,−α),

c3 = ∓ α2

β2λ2
0µ0

+
α3

β3λ2
0

f3,0 +
1

β3µ2
0

g(3)(β,−α).

The condition for the CSS (that is ∆F ) to have a B3 singularity is c3 6= 0. In that case
the ruled surface of bitangent lines has a cuspidal edge. If c3 = 0 then generically c4 can
also be expressed in terms of the coefficients in f and g, and when c4 6= 0 there is a B4

singularity so that the ruled surface has a swallowtail singularity.

Case 3: Q2, Q∗ both degenerate. Then we have (10) and (11) both holding. Here we
have to admit the possibility that λ0 or µ0 is zero so that one surface point is parabolic.
But note that from (10) we cannot have λ0 = 0 (since λ0 + µ0 = 1) so that, from (11),
α = 0 implies β = 0. But the base points we are considering are points of contact of
bitangent lines and these occur along curves on our surface which meet the parabolic set
only at isolated points. Generically then the asymptotic direction at such a parabolic
base point will not be along the bitangent line, that is α = β = 0 can be ruled out on
genericity grounds. We can therefore take α 6= 0 and λ0 6= 0. Manipulating (10) and (11)
we now find the following cases:

Case 3(a) β = 0, β2 6= αγ. The chord is then a principal direction for both surface pieces.
We require in this case Q3(w) 6= 0, as for C3 (Case 1(a) above). This generically gives
an F4 singularity, where the criminant (ruled surface of bitangent lines) has a cuspidal
edge and the caustic has a Whitney umbrella singularity. There is of course an additional
condition to guarantee that the F4 is versally unfolded; this is complicated but in the
special case β = 0 (see (9)) it reduces to (f2,1 − g2,1)(α + 1)(γ ∓ 1) 6= 0. See Figure 6 for
an example of this case.

Case 3(b) β2 = αγ, µ0 = 0. Thus the CSS point is a0. The generating family in this
case can be reduced to F = −z + ε(ε + uy + x + u3 + v2). The caustic is smooth and the
criminant is a folded Whitney umbrella: the other way round from C4 (Case 1(b) above).
The genericity conditions in this case come to g(3)(w) 6= 0 and β 6= 0; see (14), (9) above.
In the present case w = (−β, α). See Figure 7 for an example.

5This can be obtained from the standard versal unfolding of a C4 singularity, f = w4 + εw + q2w
2 +

q1ε + q0, and is given in (q0, q1, q2)-space by f = ∂f/∂w = ∂2f/∂w2 = 0.
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Figure 6: The F4 case (Case 3(a) in the text) in which the caustic Σ is a Whitney umbrella
and the criminant ∆ has a cuspidal edge. This illustrates the case f = u2 − v2, g = −2u2 +
v2 − u3 + 2u2v + uv2 + v3. Left: the caustic; centre: the criminant, with part of the base chord
joining the base points a0 and b0. This chord is tangent to the cusp edge. Right: the caustic and
criminant: the detailed structure is as indicated, with the inflexional crossings being C3 points,
as in Figure 4.
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s e c t i o n  h e r e
l o o k s  l i k e  t h i s M
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D
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D
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Figure 7: The C̃4 case (Case 3(b)), using the example f = u2 − v2, g = 4u2 + 4uv + v2 − u3 +
2u2v + uv2 + v3. Left and middle: two views of the criminant ∆ (ruled surface of bitangent
lines) and one of the surface pieces M , corresponding to f . The criminant is a folded Whitney
umbrella (cuspidal crosscap). The cusped space curve along which the surfaces M and ∆ are
tangential is marked heavily in the left-hand figure, and the cuspidal edge and self-intersection of
∆ are marked heavily in the right-hand figure. The cuspidal edge on the criminant has ordinary
(2-point) contact with M . Right: M together with the smooth caustic surface Σ, which has
roughly the shape of a parabolic cylinder here. The intersection between caustic and criminant
is as depicted in Figure 5 but with the roles of caustic and criminant reversed.
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