Euclidean and Affine Symmetry Sets and Medial Axes

Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by

Anthony James Pollitt

September 2004

Abstract

Symmetry sets and medial axes of curves in the plane or of surfaces in threespace have been extensively investigated and used in a wide variety of applications. There are different types of symmetry set and medial axis; this thesis examines two of these. Firstly, planar affine-invariant symmetry sets and medial axes are considered, in particular in relation to a query posed by W. Thurston: do the existing affine-invariant symmetry sets preserve their 'essential structures' under projective transformations? This question is answered negatively in the case of two types of affine-invariant symmetry sets and medial axes. Secondly, we consider the Euclidean medial axis in three-space. The major part of the investigation is the derivation of conditions on the medial axis, imposed by the requirement of a smooth boundary, for the various local forms of the medial axis. Used in this derivation was Damon's work on the radial shape operator. Finally, we study transitions on a one-parameter family of symmetry sets in three-space using methods of Bruce and Giblin and using and verifying the work of Bogaevsky. We obtain conditions for realizing certain of the expected transitions on the symmetry set and on the medial axis. This is the beginning of a larger study of the conditions for realization of all the possible transitions on one-parameter families of symmetry sets and of medial axes in three-space and includes a procedure for deciding which abstract forms occur in the considered geometrical setting.

Acknowledgements

My thanks go to my supervisor Professor Peter Giblin for introducing the subject of symmetry sets and for his patience, willingness to help and good humour.

I am grateful to the Department of Mathematical Sciences at the University of Liverpool for a friendly working atmosphere, and EPSRC for funding my research. The hospitality of Brown University was much appreciated during my two visits there; in particular conversations with Professor Benjamin Kimia which greatly advanced the work on the consistency conditions. My thanks also go to Professor Ilya Bogaevsky for his work on transitions on families of symmetry sets.

Finally, I thank my parents and the rest of my family for their love and encouragement

Contents

1 Introduction 5
1.1 Euclidean Symmetry Sets 5
1.2 Overview of Thesis 7
1.3 Affine Transformations and Planar Affine Differential Geometry 9
2 Affine-Invariant Symmetry Sets and Projective Transforma- tions 12
2.1 Introduction 12
2.1.1 Digression on Linear Fractional Transformations 12
2.1.2 Example 14
2.1.3 The Affine-Invariant Symmetry Sets 18
2.2 Preliminary Definitions and Results 20
2.3 Affine Distance Symmetry Set and Affine Distance Medial Axis 24
2.3.1 Altering the Structure of the ADSS and of the ADMA by Projective Transformations 24
2.3.2 Cusps and the ADMA 33
2.4 Affine Envelope Symmetry Set 37
2.4.1 Discussion of Features of the AESS 37
2.4.2 Conditions for Cusps and for Swallowtail Points on the AESS 40
2.4.3 Conditions for Cusps and for Swallowtail Points on the MPTL 45
2.4.4 A Projective Transformation which Creates a Swallowtail Point on the AESS 47
2.4.5 Example of Creating a Swallowtail Transition on the AESS and on the MPTL 49
2.4.6 Examining the Direction in which Cusps Face on the MPTL and AESS 58
2.4.7 Conditions for the Standard Swallowtail Transition 60
2.4.8 Verification of Conditions for the Swallowtail Transitions on the AESS and on the MPTL 64
2.4.9 Altering the Structure of the AESS and of the MPTL by Projective Transformations 66
2.5 Further Research 67
3 The Euclidean Medial Axis in Three Dimensions 68
3.1 Introduction 68
3.2 A Coordinate System for the Medial Axis in Three Dimensions 73
3.3 Radial Shape Operator 76
3.3.1 Introducing the Radial Shape Operator 77
3.3.2 A Matrix Representation of $S_{\text {rad }}$ in Three Dimensions 80
3.3.3 Principal Directions on the Boundary 84
3.4 The A_{1}^{3} Case 87
3.4.1 Coordinate Systems for the A_{1}^{3} Case 88
3.4.2 Equating Normals of the Boundaries at A_{1}^{3} Points 92
3.4.3 Equating Principal Curvatures, Directions of the Bound- aries at A_{1}^{3} Points 100
3.4.4 Reducing the Number of Variables 106
3.4.5 Obtaining the Complete Set of Consistency Conditions 113
3.5 First Example of the A_{1}^{3} Case 118
3.5.1 First Order 122
3.5.2 Second Order 123
3.5.3 Three Planes 125
3.5.4 Three Circular Cylinders 126
3.6 Second Example of the A_{1}^{3} Case 127
3.6.1 Calculating the Medial Axis 127
3.6.2 Involving the A_{1}^{3} Curve 130
3.6.3 The Consistency Conditions in this Example 131
3.7 The A_{1}^{4} Case 132
3.7.1 Recovery of the Points of Tangency 132
3.7.2 Consistency Conditions in the A_{1}^{4} Case 137
3.8 The A_{3} Case 141
3.8.1 Smoothness Condition on the Boundary 142
3.8.2 Gauss Curvature on the Medial Axis at an A_{3} Point 147
3.8.3 Local Maximum or Minimum of r Along the Ridge 150
3.8.4 Principal Curvatures, Principal Directions of the Boundary 151
3.9 The $A_{1} A_{3}$ Case 154
3.9.1 Taking the Limit at Points Tending Towards the $A_{1} A_{3}$ Point 154
3.9.2 The A_{1}^{3} Consistency Conditions at an $A_{1} A_{3}$ point 160
3.9.3 Second Example of A_{1}^{3} Case (Continued) 162
4 Transitions on the Euclidean Symmetry Set and Medial Axis in Three Dimensions 164
4.1 Introduction 164
4.2 The A_{5} Transition 166
4.2.1 $\operatorname{Bad} 3$-spaces 167
4.2.2 Representations of the A_{5} Transition 169
4.2.3 A Family of Surfaces 181
4.2.4 Condition for Versal Unfolding 183
4.2.5 Conditions for Generic Sections 184
4.2.6 Interpretation of the A_{5} Condition 188
4.2.7 Example 190
4.3 The $A_{1}^{2} A_{3}$ Transitions 193
4.3.1 The Bad 3 -spaces 193
4.3.2 Representations of the $A_{1}^{2} A_{3}$ Transition 195
4.3.3 A Family of Surfaces 195
4.3.4 Condition for Versal Unfolding 201
4.3.5 Conditions for Generic Sections 201
4.3.6 Interpretation of the $A_{1}^{2} A_{3}$ Conditions 203
4.3.7 Example 205
4.4 The $A_{1} A_{4}$ Transition 208
4.5 The $A_{1} A_{3}$ Transitions 213
4.6 The A_{1}^{4} Transitions 220
4.7 Further Research 222
Bibliography 223

Chapter 1

Introduction

The medial axis of a curve in the plane or surface in 3 -space has been the subject of extensive investigation since it was introduced by Blum (see [Blu02]) to describe the symmetry of a plane curve. The medial axis is contained in another set, the symmetry set of the curve or surface. Other types of symmetry set have also been studied, such as the various affine-invariant ones. These symmetry sets are used in a wide variety of applications, all coming under the umbrella term of computer vision. For example, object recognition, stochastic shape [M03], industrial design [CP89] and medical imaging [GreMil98], among many others.

Now follows an introduction to the subject of symmetry sets.

1.1 Euclidean Symmetry Sets

Definition 1.1.1 ([BGG85]) The Euclidean symmetry set (SS) of a smooth, simple, closed plane curve is the closure of the locus of centres of circles bitangent to the curve.

Bitangent circles are circles tangent to a curve in at least two distinct points. Alternatively, we have the following, which is equivalent to Definition 1.1.1.

Definition 1.1.2 The Euclidean symmetry set (SS) of a smooth, simple, closed plane curve is the closure of the locus of points on at least two Euclidean normals and equidistant from the corresponding points on the curve.

The Euclidean symmetry set can be interpreted as follows. Consider two smooth segments of curve, γ_{1}, γ_{2}. Let there be a circle tangent to these curve segments respectively at $\gamma_{1}\left(t_{1}\right), \gamma_{1}\left(t_{2}\right)$. Let m be the midpoint of the chord joining $\gamma_{1}\left(t_{1}\right), \gamma_{1}\left(t_{2}\right)$ and let p be the intersection of the tangent lines to γ_{1}, γ_{2} at $\gamma_{1}\left(t_{1}\right), \gamma_{1}\left(t_{2}\right)$. Then the line L through m and p is tangent to the Euclidean symmetry set at the corresponding point. There exists a reflexion in L taking $\gamma_{1}\left(t_{1}\right)$ and its tangent line to $\gamma_{2}\left(t_{2}\right)$ and its tangent line. Hence the Euclidean symmetry set is a measurement of the local reflexional symmetry of a plane curve. See Figure 1.1.

Figure 1.1: The line L, tangent to the SS, passes through the midpoint m of the line which passes through the two points of contact $\gamma_{1}\left(t_{1}\right), \gamma_{2}\left(t_{2}\right)$ with the circle. Hence the line L is an infinitesimal axis of symmetry for $\gamma_{1} \cup \gamma_{2}$.

The Euclidean symmetry set is invariant under the Euclidean group of transformations of \mathbb{R}^{2}, which preserve contact between curves and take centres of circles to centres of circles.

Definition 1.1.3 The Euclidean medial axis of a simple, smooth, closed plane curve is the points of the corresponding Euclidean symmetry set for which the radii of the bitangent circles are maximal. (A maximal circle is a circle whose radius is equal to the least distance from its centre to the curve.)

Now we consider the analogous definitions of the Euclidean symmetry set and Euclidean medial axis in \mathbb{R}^{3}.

Definition 1.1.4 The Euclidean symmetry set (SS) of a smooth, simple, closed surface in \mathbb{R}^{3} is the closure of the locus of centres of spheres bitangent to the surface.

As in \mathbb{R}^{2} there is an alternative definition for the Euclidean symmetry set in \mathbb{R}^{3}, which is equivalent to Definition 1.1.4.

Definition 1.1.5 The Euclidean symmetry set (SS) of a smooth, simple, closed surface in \mathbb{R}^{3} is the closure of the locus of points on at least two Euclidean normals and equidistant from the corresponding points on the surface.

Definition 1.1.6 The Euclidean medial axis of a simple, smooth, closed surface in \mathbb{R}^{3} is the points of the corresponding Euclidean symmetry set for which the radii of the bitangent spheres are maximal. (A maximal sphere is a sphere whose radius is equal to the least distance from its centre to the surface.)

Note. In Chapter 2, we respectively refer to the Euclidean symmetry set, Euclidean medial axis as SS, MA. This is because we also consider some other types of symmetry sets which have long names which require the use of abbreviations. In Chapters 3, 4 we refer to the symmetry set and medial axis.

1.2 Overview of Thesis

In Chapter 1 there is an introduction to symmetry sets (above) and then we introduce some definitions and results about planar affine differential geometry to be used in Chapter 2.

Chapter 2 is concerned with affine-invariant symmetry sets and medial axes in the plane, namely the affine distance symmetry set (ADSS), affine distance medial axis (ADMA) and affine envelope symmetry set (AESS), which are defined here. The question posed by W. Thurston is investigated: do any of the affine-invariant symmetry sets preserve their 'essential structures' under projective transformations? We answer Thurston's question negatively for the ADSS and ADMA by example and also show that the ADMA cannot have cusps. In order to answer Thurston's question for the AESS we examine how cusps and swallowtail points can occur on the AESS and the connection with another affine-invariant set, the MPTL, at some of these cusps and swallowtail points. Again the question is answered negatively, by showing that swallowtail points can be created or destroyed on the AESS and on the MPTL by a family of projective transformations.

Chapter 3 deals with the Euclidean medial axis in three-space and lists the local forms it can take. We introduce some quantities defined on the medial axis involving the associated radius function and also introduce Damon's radial shape operator [D03, D04, D05] and some results which connect the differential geometry of a boundary surface and its medial axis. These results are then used to obtain consistency conditions on the medial axis, imposed by the requirement of a smooth boundary, in the major case of the local form of the medial axis as three sheets meeting along a curve, called a triple junction. The limiting forms of these conditions are then obtained in the two degenerate cases of a triple junction. Also studied is the remaining local form, where two points of tangency between a sphere and a surface coincide; we obtain conditions for smoothness and connections between the geometry of the surface and of its medial axis.

In Chapter 4 we examine transitions on a one-parameter family of symmetry sets in three-space. Using the methods of [BG86] and using and verifying some of the work by Bogaevsky [Bog02b] about the possible singularities on the symmetry set, we obtain conditions for realizing certain of the expected transitions on the symmetry set and on the medial axis. This is a beginning of
a larger study of the conditions for realization of all the possible transitions on one-parameter families of symmetry sets and of medial axes in three-space and includes a procedure for deciding which abstract forms occur in our geometrical setting.

1.3 Affine Transformations and Planar Affine Differential Geometry

For the following, see Chapter 1 of [Su83]. For $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\top}$ a point in a two-dimensional affine space, a non-singular affine transformation is

$$
\mathbf{x} \mapsto A \mathbf{x}+\mathbf{b},
$$

where A is a non-singular (2×2) matrix and \mathbf{b} is a (2×1) matrix. Nonsingular affine transformations with $\operatorname{det}(A)=1$ are area-preserving, and so are called equi-affine transformations, and those with $\operatorname{det}(A)=d$ multiply areas by d. Non-singular affine transformations preserve the degree of a curve, parallelness, contact between curves and ratios of Euclidean distance. In general these transformations do not preserve Euclidean lengths, distances or angles and do not map circles to circles. For example, an ellipse is the same as a circle under an affine transformation. Contrast this with Euclidean transformations - these are given by letting $\mathbf{x} \in \mathbb{R}^{2}$ and only allowing A to be an orthogonal (2×2) matrix. These transformations preserve all of the properties that an affine transformation does, but also preserve Euclidean lengths, distances and angles and also map circles to circles. Considering these differences and similarities, the analogue of Euclidean distance in an affine space will be based on area, since Euclidean transformations preserve Euclidean distance, whereas equi-affine transformations preserve areas (or multiply areas by a constant for non-equi-affine transformations). Hence we introduce the ideas of affine arclength and the affine distance from a fixed point to a point of a curve, which are both based on area.

Now we introduce some definitions and results from Chapter 1 of [Su83]
and [GS98, pp.241-244] about affine differential geometry in \mathbb{R}^{2}, to be used in Chapter 2 of this thesis. For $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ a smooth planar curve parametrized by t, and considering equi-affine transformations only, a simple affine-invariant parametrization s is given by requiring that

$$
\begin{equation*}
\left[\gamma^{\prime}(s), \gamma^{\prime \prime}(s)\right]=1 \tag{1.1}
\end{equation*}
$$

holds for every point $\gamma(s)$, where $[\mathbf{a}, \mathbf{b}]$ is the determinant of the 2×2 matrix with \mathbf{a}, \mathbf{b} as its columns.

Convention. When considering the affine-invariant parametrization in this section ($\S 1.3$) and in Chapter 2, we will denote differentiation with respect to the affine-invariant parameter s by ' (prime), and '(dot) will denote differentiation with respect to t.

Since (1.1) cannot hold at points of inflexion of γ, affine differential geometry is not defined at inflexions. One can get round this problem by dividing γ into segments, each of which has no inflexions (which are affinely invariant). However, Chapter 2 will only deal with curves without inflexions, so we do not need to carry out this segmentation of curves. From (1.1), it follows that for an arbitrary parametrization t,

$$
\begin{equation*}
d s=[\dot{\gamma}, \ddot{\gamma}]^{1 / 3} d t \tag{1.2}
\end{equation*}
$$

Differentiating (1.1) with respect to s gives $\left[\gamma^{\prime}, \gamma^{\prime \prime \prime}\right]=0$ for all s. Hence

$$
\begin{equation*}
\gamma^{\prime \prime \prime}+\mu \gamma^{\prime}=0 \tag{1.3}
\end{equation*}
$$

for some $\mu(s) \in \mathbb{R}$. This function μ is the affine curvature, and it is easy to see that

$$
\begin{equation*}
\mu=\left[\gamma^{\prime \prime}, \gamma^{\prime \prime \prime}\right] . \tag{1.4}
\end{equation*}
$$

Definition 1.3.1 The vector $\gamma^{\prime}(s)$ is called the affine tangent to γ at $\gamma(s)$ and the vector $\gamma^{\prime \prime}(s)$ is called the affine normal to γ at $\gamma(s)$. It can be shown that

$$
\begin{aligned}
\gamma^{\prime} & =k^{-1 / 3} \dot{\gamma} \\
\text { and } \gamma^{\prime \prime} & =k^{-2 / 3} \ddot{\gamma}-\frac{1}{3} \dot{k} k^{-5 / 3} \dot{\gamma}
\end{aligned}
$$

where $k \equiv[\dot{\gamma}, \ddot{\gamma}]$.

Now we consider the idea of affine distance, from [IS98] and [GS98].
Definition 1.3.2 The affine distance function $d(\mathbf{x}, s)$ is

$$
\begin{equation*}
d(\mathbf{x}, s) \equiv\left[\mathbf{x}-\gamma(s), \gamma^{\prime}(s)\right], \tag{1.5}
\end{equation*}
$$

which is the affine distance between a point $\mathbf{x} \in \mathbb{R}^{2}$ and a non-inflexional point $\gamma(s)$ of the strictly convex curve γ.

Note. In [GS98] it is noted that in order to be consistent with the Euclidean case and the geometric interpretation of affine arclength, $d(\mathbf{x}, s)$ should be defined as the $1 / 3$ power of $\left[\mathbf{x}-\gamma(s), \gamma^{\prime}(s)\right]$. This is resisted in order to avoid introducing further notation. In [IS98] the function $d(\mathbf{x}, s)$ is called the affine distance-cubed function.

Lemma 1.3.3 ([GS98, from Proposition 1])

The curve γ is a conic and \mathbf{x} its centre if and only if $d(\mathbf{x}, s)$ is constant.

Consider the case of γ as an ellipse:

$$
\gamma(t)=(a \cos t, b \sin t),
$$

where a, b are constants and so the centre \mathbf{x} is the origin. Then using Definition 1.3.1 and (1.5) it is easy to show that $d(\mathbf{0}, s)=-(a b)^{2 / 3}$, which is a constant.

Chapter 2

Affine-Invariant Symmetry Sets and Projective Transformations

2.1 Introduction

As mentioned at the start of Chapter 1, one of the applications of symmetry sets is in computer vision and there has been interest in symmetry sets or medial axes which give affine-invariant information, for example the detection of affine symmetry. However, the transformations actually occurring in computer vision are projective, but a projective-invariant symmetry set would depend on very high derivatives and so would be too sensitive for curves given by data sets. Thus it would be useful to have an affine-invariant symmetry set, or better an affine-invariant medial axis, which under projective transformations preserved its 'essential structure'. W. Thurston posed the question: do the existing affineinvariant symmetry sets have this property?

2.1.1 Digression on Linear Fractional Transformations

An analogy with the question of whether the affine-invariant symmetry sets preserve their structures under projective transformations is the Euclidean symmetry set (SS) and the Euclidean medial axis (MA) under linear fractional transformations. The SS and MA were introduced in §1.1. The MA of a generic
curve has two features: its endpoints and 'Y-junctions', or triple points.
Definition 2.1.1.1 A linear fractional transformation is given by

$$
\begin{equation*}
z \mapsto \frac{n z+p}{q z+r}, \text { where } n r-p q \neq 0, \text { for } z, n, p, q, r \in \mathbb{C} . \tag{2.1}
\end{equation*}
$$

Its inverse is given by

$$
\begin{equation*}
w \mapsto \frac{r w-p}{-q w+n}, \quad \text { where } n r-p q \neq 0, \text { for } w, n, p, q, r \in \mathbb{C} . \tag{2.2}
\end{equation*}
$$

So, for a point on a curve given by $(\Re(x+i y), \Im(x+i y))$, the transformed point of the curve is given by

$$
\begin{align*}
M & : \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto\left(\Re\left(\frac{n(x+i y)+p}{q(x+i y)+r}\right), \Im\left(\frac{n(x+i y)+p}{q(x+i y)+r}\right)\right) . \tag{2.3}
\end{align*}
$$

The map M takes circles and lines to circles or lines and preserves contact between curves. However, the centres of circles are not preserved by linear fractional transformations.

Consider the part of the MA corresponding to maximal bitangent circles which are completely inside the curve. Suppose this 'interior' MA is finite. Can we guarantee that the interior MA of the image of the curve under a linear fractional transformation is also finite? In other words, can any of the points on the inner bitangent circles to the original curve be taken to infinity by a linear fractional transformation? Consider the point $z=\alpha+\beta e^{i \theta}$ lying on the circle centre α, radius β. This point is taken to infinity if and only if

$$
\begin{aligned}
q\left(\alpha+\beta e^{i \theta}\right)+r & =0 \\
\Longleftrightarrow \frac{1}{\beta}\left(\frac{-r}{q}-\alpha\right) & =e^{i \theta} \\
\Longleftrightarrow\left|\frac{-r-\alpha q}{\beta q}\right| & =1 \\
\Longleftrightarrow\left|\frac{-r}{q}-\alpha\right| & =\beta,
\end{aligned}
$$

that is if and only if $z=-r / q$ lies on the circle centre α, radius β. A bitangent circle might pass through $z=-r / q$ if $z=-r / q$ were inside the curve. Then this
circle would pass through the point at infinity and so there would be a crossing on the MA at infinity. If we ensure $z=-r / q$ is outside the curve then $z=-r / q$ will not lie on any of the interior bitangent circles contributing to the MA. Therefore the MA will not gain a self-crossing at infinity. Another possibility is a point of the MA at infinity becoming finite. However, we assumed that the MA of the original curve is finite so this cannot happen. Hence we have the following.

Lemma 2.1.1.2 For a simple, smooth, closed curve γ with a finite $M A$, the structure of the interior MA of the curve given by a linear fractional transformation of γ is unchanged if $z=-r / q$ is outside the original curve.

Now follows the SS condition.
Lemma 2.1.1.3 For $\gamma(t):[0,1] \rightarrow \mathbb{R}^{2}$ a smooth planar curve parametrized by t, the necessary and sufficient condition for there to be a circle tangent to γ at $\gamma\left(t_{1}\right)$ and at $\gamma\left(t_{2}\right)$ (for t_{1}, t_{2} distinct) is

$$
\begin{equation*}
\left(\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right)\right) \cdot\left(T\left(t_{1}\right)-T\left(t_{2}\right)\right)=0, \tag{2.4}
\end{equation*}
$$

where $T\left(t_{1}\right), T\left(t_{2}\right)$ are respectively the unit tangents to γ at $\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)$.
(See [GB85, p.693].) So two distinct parameter values correspond to one point of the SS.

Definition 2.1.1.4 The pre-SS is the set of parameter pairs $\left(t_{1}, t_{2}\right)\left(t_{1}, t_{2}\right.$ distinct) which satisfy the $S S$ condition (2.4) and the limit of such points. The pre-MA is the set of parameter pairs $\left(t_{1}, t_{2}\right)$ in the pre-SS which correspond to maximal circles.

2.1.2 Example

Consider the curve given by

$$
\left.\begin{array}{r}
(x(t), y(t))=((e+a \sin t+b \cos 2 t) \cos t,(f+c \sin t+d \cos t) \sin t) \tag{2.5}\\
\text { where } a=-0.34, b=-0.15, c=-0.17, d=0.2, e=1.7, f=1
\end{array}\right\}
$$

Figure 2.1 has pictures of this curve and its SS and MA. The picture at the top of the figure contains the pre-SS, the pre-MA, and the original curve and its SS and MA. The pre-SS is the box on the far left of the picture at the top and the pre-MA is the box to the right of the pre-SS box. The pre-SS is represented as a curve on the torus, which means that the left and right edges of the pre-SS box are identified, as are the edges at the top and the bottom.

Figure 2.2 is of the curve after a linear fractional transformation as in (2.1) where $n=1, p=1, q=0.3, r=1$ (so $n r-p q \neq 0$). The criterion for the MA of the transformed curve to be finite given that the original MA is finite was for $z=-r / q$ to be outside the original curve (see Lemma 2.1.1.2). For the transformation in this example $-r / q=-1 \div 0.3=-3 \frac{1}{3}$, so the requirement is that the point $\left(-3 \frac{1}{3}, 0\right)$ is outside the curve. It is easy to check that the x-values of the curve are between -1.55 and 1.55 , so the condition is satisfied. By (2.3) a point $(x(t), y(t))$ on the curve is sent to $(X(t), Y(t))$, where

$$
\begin{aligned}
X(t) & =\frac{(x(t))^{2}+(y(t))^{2}+1.3 x(t)+1}{0.9\left((x(t))^{2}+(y(t))^{2}\right)+0.6 x(t)+1} \\
Y(t) & =\frac{0.7 y(t)}{0.9\left((x(t))^{2}+(y(t))^{2}\right)+0.6 x(t)+1}
\end{aligned}
$$

As before, the picture at the top has the pre-SS and pre-MA of the transformed curve and its SS and MA. The figures were drawn using the graphics package LSMP (see [LSMP]).

As can be seen from Figures 2.1 and 2.2, the structure of the SS and of the MA has remained the same. The pre-SS is the same in both figures, which means the number of endpoints and branches of the SS is the same for both curves. Also, the number of cusps of the SS is the same in both cases. The pre-MA also is unaltered, so the number of endpoints and branches of the MA is the same for both curves. There is only one triple point in the MA of each figure. Triple points can be recognized on the pre-SS by there being four points on the pre-SS which are corners of a rectangle, one of the points being on the diagonal and the other three points being on the same side of the diagonal (see Figure 2.3). Since the pre-SS and the pre-MA are unchanged by linear fractional transformations, the rectangle of points on the original pre-SS will

Figure 2.1: This figure and the following are concerned with linear fractional transformations of plane curves and how this type of transformation preserves the SS and the MA of the curve. This figure is of the curve given by (2.5) and its SS and MA. Top: the curve, its pre-SS, its pre-MA, its SS and its MA are shown (see Definition 2.1.1.4) Bottom left: zoom on the picture at the top. Bottom right: zoomed further and the MA has been shifted up so that the structure of the SS can be seen.

Figure 2.2: This figure is of the curve resulting from a linear fractional transformation acting on (2.5) and the SS and MA of the new curve. Top: the new curve, its pre-SS, its pre-MA, its SS and its MA are shown. Note the pre-SS and pre-MA are unaltered by the transformation. Bottom left: zoom on the picture at the top. Bottom right: zoomed further and the MA has been shifted up so that the structure of the SS can be seen.

Figure 2.3: The pre-SS in the case of a triple point on the SS, where three branches of the SS intersect. (The pre-SS is represented as a curve on the torus, which means that the left and right edges of the pre-SS box are identified, as are the edges at the top and the bottom.) Hence there is a branch of the SS corresponding to parameter values t_{1} and t_{2}, and similarly for t_{1} and t_{3}, and for t_{2} and t_{3}. So we get two rectangles of points on the pre-SS. The corners of the rectangles which lie on the diagonal correspond to an endpoint of the SS. Given a rectangle of points on the pre-SS it is not certain that it corresponds to a triple point on the SS, but searching for such rectangles yields all of the triple points.
also be there on the pre-SS of the transformed curve.

2.1.3 The Affine-Invariant Symmetry Sets

The affine-invariant symmetry sets which we consider in this chapter are the affine distance symmetry set (ADSS), affine distance medial axis (ADMA) and affine envelope symmetry set (AESS). These will be defined in $\S 2.2$. In order to answer Thurston's question at the start of $\S 2.1$ for these affine-invariant symmetry sets, we need to state what we mean by 'essential structure' in each case. The essential structure for the ADSS is the number of cusps, smooth branches, endpoints of branches, triple crossings and the pre-ADSS. For the ADMA it refers to the number of smooth branches, endpoints of branches, triple crossings and the pre-ADMA. For the AESS it means the number of cusps, branches, endpoints of branches and the pre-AESS. Also, for each of
these, the essential structure includes the graph defined by cusps, endpoints, triple crossings as its vertices and smooth branches as its edges. The preADSS, pre-ADMA, pre-AESS contain respectively the parameter pairs which contribute to the ADSS, ADMA, AESS - compare with Definition 2.1.1.4, the definition of the pre-SS.

The aim of this chapter is to decide whether or not these affine-invariant symmetry sets do have the property of preserving their structures under projective transformations. In order to decide whether or not the structure of an affine-invariant symmetry set of a curve has changed, it has to be compared with the corresponding affine-invariant symmetry set of the curve given after a projective transformation has acted on the original curve.

Note: in this chapter the abbreviations SS and MA are used respectively for the Euclidean symmetry set and medial axis. We do this because the affineinvariant symmetry sets have very long names and so we refer to the ADSS, ADMA and AESS. In Chapters 3 and 4, the abbreviations SS and MA are not used respectively for the Euclidean symmetry set and medial axis; they are written in full as 'symmetry set' and 'medial axis'.

Here is a summary of what follows in this chapter.
§2.2: Preliminary Definitions and Results. This includes definitions of the ADSS, ADMA, AESS; conditions for points to be in the ADSS, ADMA, AESS; and a definition of a projective transformation.
§2.3: Affine Distance Symmetry Set and Affine Distance Medial Axis. We show by an example that the structure of the ADSS and of the ADMA can be altered by projective transformations. Also it is shown that cusps of the ADSS cannot lie on the ADMA.
§2.4: Affine Envelope Symmetry Set. Proceeding by arbitrary example as in $\S 2.3$ does not work in this case. Hence, using results about how cusps arise in the AESS, we obtain a family of projective transformations which can make cusps arising in certain situations appear or disappear. This approach involves another affine-invariant set, the MPTL
(the mid-parallel-tangents locus, also called the anti-symmetry set), and the conditions for cusps to appear in the MPTL. The obtained family of projective transformations is illustrated by an example in which cusps are destroyed in pairs in the AESS - a so-called swallowtail transition. The method used is checked to ensure it yields the standard pictures of the swallowtail transition.
§2.5: Further Research. This section considers the possibility of an affine envelope medial axis.

2.2 Preliminary Definitions and Results

In this section we use the definitions about affine geometry from $\S 1.3$ to introduce some affine-invariant symmetry sets (see [GS98, pp.241-244]). Note that a natural definition of an affine-invariant symmetry set has not yet been proposed, but rather there are a number of different ones. This is an area for further research (see §2.5).

Definition 2.2.1 The affine distance symmetry set (ADSS) of a simple, smooth plane curve is the closure of the locus of points $\mathbf{x} \in \mathbb{R}^{2}$ on two affine normals and affine-equidistant from the corresponding points on the curve.

As mentioned in $\S 1.3$, in this chapter we only consider curves without inflexions in the above definition. Compare this definition of the ADSS with the definition of the SS in Definition 1.1.2.

Lemma 2.2.2 Given a simple, smooth curve $\gamma(s)$, the necessary and sufficient condition for distinct s_{1}, s_{2} to give a point of the $A D S S$ is

$$
\begin{equation*}
\left[\gamma\left(s_{1}\right)-\gamma\left(s_{2}\right), \gamma^{\prime \prime}\left(s_{1}\right)-\gamma^{\prime \prime}\left(s_{2}\right)\right]=0 . \tag{2.6}
\end{equation*}
$$

Therefore, the pre-ADSS is the parameter pairs $\left(s_{1}, s_{2}\right)$ which are solutions of (2.6) and the limit of such points. (Note : affine arclength parametrization is assumed, so condition (1.1) holds).

An alternative form of the ADSS condition involves the affine distance function, which was defined in Definition 1.3.2:

Lemma 2.2.3 A point $\mathrm{x} \in \mathbb{R}^{2}$ is on the $A D S S$ if and only if there are two distinct points $\gamma\left(s_{1}\right), \gamma\left(s_{2}\right)$ such that

$$
d\left(\mathbf{x}, s_{1}\right)=d\left(\mathbf{x}, s_{2}\right) \quad \text { and } \quad d^{\prime}\left(\mathbf{x}, s_{1}\right)=d^{\prime}\left(\mathbf{x}, s_{2}\right)=0
$$

or if \mathbf{x} is the limit of such points.
Then, given a pair of points $\gamma\left(s_{1}\right), \gamma\left(s_{2}\right)$ which satisfy the ADSS condition (2.6) (so s_{1}, s_{2} are in the pre-ADSS), the corresponding ADSS point is given by

$$
\begin{equation*}
\gamma\left(s_{1}\right)+\frac{\left[\gamma\left(s_{1}\right)-\gamma\left(s_{2}\right), \gamma^{\prime \prime}\left(s_{1}\right)\right]}{\left[\gamma^{\prime \prime}\left(s_{2}\right), \gamma^{\prime \prime}\left(s_{1}\right)\right]} \gamma^{\prime \prime}\left(s_{1}\right) . \tag{2.7}
\end{equation*}
$$

Geometrically, \mathbf{x} being on the ADSS is equivalent to \mathbf{x} being at the common centre of two distinct conics having 4-point contact with the curve and sharing the same affine radius (defined to be $1 / \mu$, where μ is given by (1.4)). Contrast this with the Euclidean SS: a point of the SS is the centre of a single circle which is tangent to the curve in two places. Then

Lemma 2.2.4 A point \mathbf{x} on the $A D S S$ is an ordinary cusp when one of the conics has 5-point contact with γ. This is equivalent to there being a horizontal or vertical tangent to the pre-ADSS at some s_{1}, s_{2} pair.

Definition 2.2.5 The affine distance medial axis (ADMA) of a simple, smooth plane curve is

$$
\begin{aligned}
& \left\{\mathbf{x} \in \mathbb{R}^{2}: \exists \text { distinct } s_{1}, s_{2}:\right. \\
& \quad d\left(\mathbf{x}, s_{1}\right)=d\left(\mathbf{x}, s_{2}\right) \text { and } d^{\prime}\left(\mathbf{x}, s_{1}\right)=d^{\prime}\left(\mathbf{x}, s_{2}\right)=0
\end{aligned}
$$

$$
\text { where } \left.d(\mathbf{x}, s) \text { has an absolute minimum at } s_{1}\left(\text { or } s_{2}\right)\right\} .
$$

In Definition 2.2.5, minimum could be replaced by maximum, since there is no convincing argument yet for having minimum rather than maximum. The ADMA is part of the ADSS, which is analogous to the MA being part of the SS.

For the following definitions and results about the AESS see [GS00, pp.174, 180].

Figure 2.4: The line L, tangent to the AESS, passes through the midpoint m of the line which passes through the two points of contact $\gamma_{1}\left(s_{1}\right), \gamma_{2}\left(s_{2}\right)$ with the conic C. Hence an alternative to Definition 2.2.6 is that the AESS is the envelope of lines halfway between points of a curve with at least 3-point contact with a conic. See [GS00]. Compare this with Figure 1.1.

Definition 2.2.6 The affine envelope symmetry set (AESS) of a simple, closed, smooth plane curve is the closure of the locus of centres of conics with (at least) 3-point contact with the curve in at least two distinct points.

Alternatively, the AESS can be interpreted as the envelope of infinitesimal axes of affine reflexional symmetry of a curve. This is what will be used later when finding examining swallowtail transitions on the AESS (see §2.4.7). The AESS will be calculated as an envelope of 'midlines' since an infinitesimal axis of affine reflexional symmetry of a curve is a line tangent to the AESS and which passes through the midpoint of the chord which passes through the points of contact between the curve and the corresponding conic (see Figure 2.4 and compare with Figure 1.1).

Lemma 2.2.7 There is a non-degenerate conic with (at least) 3-point contact with γ at two distinct points $\gamma\left(s_{1}\right), \gamma\left(s_{2}\right)$, neither of which is an inflexion, if and only if

$$
\begin{equation*}
\left[\gamma\left(s_{1}\right)-\gamma\left(s_{2}\right), \gamma^{\prime}\left(s_{1}\right)+\gamma^{\prime}\left(s_{2}\right)\right]=0 . \tag{2.8}
\end{equation*}
$$

There is an alternative condition for when γ is not an oval, but since this chapter does not deal with such curves, it has been omitted. Then, given a pair of points $\gamma\left(s_{1}\right), \gamma\left(s_{2}\right)$ which satisfy the AESS condition (2.8) (so s_{1}, s_{2} are in the pre-AESS), the corresponding AESS point is given by

$$
\begin{equation*}
\frac{1}{2}\left(\gamma_{1}+\gamma_{2}+\frac{\left[\gamma_{1}-\gamma_{2}, \gamma_{1}^{\prime}\right]\left[\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right]}{2\left[\gamma_{1}-\gamma_{2}, \gamma_{1}^{\prime}\right]-\left[\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right]^{2}}\left(\gamma_{2}^{\prime}-\gamma_{1}^{\prime}\right)\right) \tag{2.9}
\end{equation*}
$$

writing $\gamma_{1}, \gamma_{2}, \gamma_{1}^{\prime}, \gamma_{2}^{\prime}$ for $\gamma\left(s_{1}\right), \gamma\left(s_{2}\right), \gamma^{\prime}\left(s_{1}\right), \gamma^{\prime}\left(s_{2}\right)$.

Definition 2.2.8 A non-singular projective transformation is a map ϕ from the projective plane to the projective plane, such that

$$
\begin{aligned}
(x: y: z) \quad & \mapsto(x: y: z) \\
= & (A x+B y+C z: D x+E y+F z: G x+H y+K z), \\
& \text { where }\left|\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & K
\end{array}\right| \neq 0 .
\end{aligned}
$$

(See [Gibs98].) In our case we are dealing with the affine plane, so after taking a projective transformation we specialize to the affine plane by letting $X=x / z, Y=y / z$ and then setting $z=1$, so in the affine plane

$$
\begin{equation*}
(X, Y) \mapsto\left(\frac{A X+B Y+C}{G X+H Y+K}, \frac{D X+E Y+F}{G X+H Y+K}\right) \tag{2.10}
\end{equation*}
$$

and $G X+H Y+K=0$ is taken to the line at infinity.

2.3 Affine Distance Symmetry Set and Affine Distance Medial Axis

2.3.1 Altering the Structure of the ADSS and of the ADMA by Projective Transformations

The ADSS differs from the SS in that a point \mathbf{x} being on the ADSS is equivalent to \mathbf{x} being at the common centre of two distinct conics having 4-point contact with the curve and sharing the same affine radius (see immediately after Lemma 2.2.3), whereas a point of the SS is the centre of a single circle which is tangent to the curve in two places.

An experimental approach was enough to decide whether the structure of the ADSS and of the ADMA remained the same after a projective transformation. In the following example the graphics package LSMP was used to draw the curve given by

$$
\left.\begin{array}{r}
(X, Y)=((e+a \sin t+b \cos 2 t) \cos t,(f+c \sin t+d \cos t) \sin t) \tag{2.11}\\
\text { for } a=-0.34, b=-0.15, c=-0.17, d=0.2, e=1.7, f=1,
\end{array}\right\}
$$

and also its pre-ADSS, pre-ADMA, its ADSS and its ADMA. Then LSMP was used to draw the curve given by (2.10), that is after a projective transformation, for chosen values of constants A, \ldots, K with its pre-ADSS, its pre-ADMA, ADSS and ADMA. Then the method was to compare the original ADSS with the new ADSS to see whether or not the structure had changed. Taking $A=1$, $B=0, C=0, D=0, E=1, F=0, G=0, K=1, H$ close to 0 and then increasing H in each example was enough to decide this. These values give a non-singular projective transformation. Hence a point of the transformed curve for a chosen value of H is

$$
\begin{equation*}
\left(\frac{X}{H Y+1}, \frac{Y}{H Y+1}\right), \text { where }(X, Y) \text { is given by (2.11). } \tag{2.12}
\end{equation*}
$$

Figures 2.5 to 2.11 show how the ADSS and the ADMA of the transformed curve change as we take various values for H, corresponding to taking a family of projective transformations. As in the case of the pre-SS, the pre-ADSS is

Figure 2.5: Figures 2.5 to 2.11 show the altering of the combinatorial structure of the ADSS and of the ADMA by a family of projective transformations. In each of these figures, the curve is drawn with its ADSS and ADMA. The pre-ADSS and pre-ADMA are in boxes below the curve. Top: the curve given by (2.11), its ADSS and ADMA are shown. Bottom: a closer look at its ADSS and ADMA.

Figure 2.6: The curve given by (2.11) has now undergone a projective transformation to give (2.12). This figure, and Figures 2.7 to 2.11, are of the transformed curve for various values of H. This one is for $H=0.11$. In this picture the structure of the pre-ADSS is about to change in the top left corner of the pre-ADSS box; there is going to be a crossing as H increases.

Figure 2.7: Here $H=0.12$. The crossing has now occurred in the pre-ADSS, so a 'nib' transition has happened on the ADSS (see Figure 2.12 for an explanation of a nib transition). In this picture it is clear that one of the branches of the ADMA is shorter than before.

Figure 2.8: Now $H=0.2$. There has been another crossing in the pre-ADSS, so there has been another nib transition in the ADSS. The same branch of the ADMA is shrinking and near to this branch there is a swallowtail of the ADSS which is also shrinking. On the pre-ADMA this corresponds to the gap between two pieces becoming smaller - see the second piece from the left which intersects with the diagonal. (The diagonal is not drawn in the pre-ADMA.)

Figure 2.9: This figure is for $H=0.54$. The structure of the ADMA is about to change, as the branch that is shrinking will disappear, as will the swallowtail of the ADSS. Also, the third piece along the bottom side of the pre-ADSS box starting from the right is about to have a vertical inflexion - this corresponds to the swallowtail collapsing to a swallowtail point. Also it corresponds to two branches of the preADMA being joined up (the picture shows the two branches joined up, but this is just a numerical error; there should be a tiny gap).

Figure 2.10: Here $H=0.56$. This is the moment of transition; the branch of the ADMA is disappearing. The ADMA is changing from five branches, two triple crossings to three branches, one triple crossing. Also the ADSS has a swallowtail point and the pre-ADSS has a vertical inflexion at the corresponding $\left(t_{1}, t_{2}\right)$ pair.

Figure 2.11: Now $H=0.61$: there is no longer an inflexion on the pre-ADSS. Now there is a gap between an endpoint of the ADSS and a branch of the ADMA, and two cusps of the ADSS in the swallowtail have disappeared. In the first figure there were 16 cusps, now there are 14 cusps (one is off the bottom of the picture - see previous figures to follow its progress),

Figure 2.12: A nib transition: the cusps come into coincidence and then the branches pair off differently from before.
represented as a curve in the torus, so the left and right edges of the pre-ADSS boxes in the figures are identified, as are the top and bottom edges. The figures do not show all of the ADSS; it is truncated to show the interesting features, so not all of the endpoints of the ADSS are displayed in the pictures.

In this example it was possible to alter the pre-ADSS and the pre-ADMA and so make nib transitions occur on the ADSS. This also meant that the structure of the ADMA changed, as the ADMA of the original curve had five smooth branches and two triple points (a triple point is a point at which three smooth branches meet) and the final curve's ADMA (when $H=0.61$) had three smooth branches and one triple point. Thus one branch of the ADMA was destroyed and two branches joined to become one smooth branch.

When this transition occurred on the ADMA, a swallowtail transition happened on the ADSS - a swallowtail collapsed to a swallowtail point and after this the ADSS became a smooth curve at this point. See Figure 2.13. When there is a swallowtail point on the ADSS, there is an inflexion at the corresponding point $\left(t_{1}, t_{2}\right)$ on the pre-ADSS. Figures 2.9 to 2.11 show this transition: in Figure 2.9 there are two vertical tangents to the pre-ADSS nearby, in Figure 2.10 at the inflexion there is one vertical tangent to the pre-ADSS, and in Figure 2.11 there are no vertical tangents to the pre-ADSS. As this happened, two branches of the pre-ADMA joined up at the exact moment of the inflexion on the pre-ADSS. The affect on the ADMA was that two branches became smoothly joined after another branch of the ADMA had disappeared.

The result of all of this is that two cusps were destroyed, as there were sixteen cusps in the ADSS of the original curve, but there were only fourteen cusps in the ADSS of the final curve. Hence we have the following.

Proposition 2.3.1.1 A projective transformation can make self-crossings occur on the pre-ADSS. Also, the number of cusps of the ADSS and the number of branches and triple points of the ADMA can be altered by a projective transformation.

Remark 2.3.1.2 Projective transformations preserve contact between curves, but they do not send centres of conics to centres. Since a point \mathbf{x} being on the ADSS is equivalent to \mathbf{x} being at the common centre of two distinct conics having 4-point contact with the curve and sharing the same affine radius (see just after Lemma 2.2.3), it was not likely that the structure of the ADSS and ADMA would remain the same after projective transformations. Triple points of the MA can be detected on the pre-MA (see Figure 2.3), but a similar way of detecting triple points of the pre-ADMA is not known.

The moment of transition of the ADMA when one branch disappears and two others become one smooth branch corresponds to an $A_{1} A_{3}$ transition. The A_{3} singularity means that the corresponding point of the curve is a sextactic point, so the centre of affine curvature at a sextactic point in this case is also the centre of an A_{1} conic with the same affine radius. It is interesting that this can happen under a projective transformation.

2.3.2 Cusps and the ADMA

From Lemma 2.2.4 it is known how cusps arise on the ADSS, but can there be cusps on the ADMA? For a cusp of the ADSS to be a cusp of the ADMA, it would need to satisfy the conditions for it to be in the ADMA. In other words, from Definition 2.2.5, the affine distance function from the ADSS point to one of the corresponding points of the curve would need to have an absolute minimum. In order to prove that this cannot happen, it will be necessary to prove another result from which this automatically follows.

Consider two curves γ and δ given by $\gamma(t)=(t, f(t))$ and $\delta(t)=(t, g(t)))$ which are tangent to each other at $t=0$, so $f(0)=g(0)=0$ and $\dot{f}(0)=\dot{g}(0)=$ 0 , and a point $\mathbf{x}=(a, b)$. Assume $b \neq 0$ so that \mathbf{x} is not on the tangent to γ at $\gamma(0)=(0,0)$, which is also the tangent to δ at $\delta(0)=(0,0)$. Then, by taking affine transformations, it can be assumed that $\mathbf{x}=(0,1)$. We require $(0,0)$ not to be an inflexion (so the affine tangent and affine normal exist), so we need $\ddot{f}(0) \neq 0, \ddot{g}(0) \neq 0$. We shall establish a relationship between the number of points of contact between γ and δ at $(0,0)$ and the vanishing of derivatives of the affine distance function with respect to an arbitrary parameter (not necessarily the affine arclength parameter).

The curves γ and δ have at least k-point contact at $(0,0) \Longleftrightarrow$ the $(k-1)$ jets of f and g are equal at $t=0$. Using (1.5), the affine distance from \mathbf{x} to $(0,0)$ on γ is

$$
\begin{aligned}
d_{\gamma}(\mathbf{x}, t) & =\left[\mathbf{x}-\gamma(t), \gamma^{\prime}(t)\right] \\
& =\left[\mathbf{x}-\gamma(t),\left(k_{\gamma}(t)\right)^{-1 / 3} \dot{\gamma}(t)\right]
\end{aligned}
$$

Here, $k_{\gamma}(t)$ is given by

$$
k_{\gamma}(t)=[\dot{\gamma}(t), \ddot{\gamma}(t)]=\ddot{f}(t) .
$$

So

$$
d_{\gamma}=(-t \dot{f}+f-1)(\ddot{f})^{-1 / 3},
$$

dropping the dependence on t. For the affine distance from \mathbf{x} to $(0,0)$ on δ, replace f by g in the above:

$$
d_{\delta}=(-t \dot{g}+g-1)(\ddot{g})^{-1 / 3} .
$$

Then

$$
\begin{aligned}
d_{\gamma}(\mathbf{x}, 0) & =d_{\delta}(\mathbf{x}, 0) \Longleftrightarrow \\
(-(0) \dot{f}(0)+f(0)-1)(\ddot{f}(0))^{-1 / 3} & =(-(0) \dot{g}(0)+g(0)-1)(\ddot{g}(0))^{-1 / 3} \\
\Longleftrightarrow(-1)(\ddot{f}(0))^{-1 / 3} & =(-1)(\ddot{g}(0))^{-1 / 3} \\
\Longleftrightarrow \quad \ddot{f}(0) & =\ddot{g}(0) .
\end{aligned}
$$

Now d_{γ} and d_{δ} can be regarded as functions of t and so for the purposes of this section it will not be necessary to differentiate with respect to the affine arclength parameter. Hence all the following derivatives are with respect to t. So

$$
\begin{aligned}
& \dot{d}_{\gamma}=-t(\ddot{f})^{2 / 3}-\dddot{f}\left(\frac{1}{3}\right)(\ddot{f})^{-4 / 3}(f-t \dot{f}-1), \\
& \dot{d}_{\delta}=-t(\ddot{g})^{2 / 3}-\dddot{g}\left(\frac{1}{3}\right)(\ddot{g})^{-4 / 3}(g-t \dot{g}-1)
\end{aligned}
$$

Then

$$
\begin{aligned}
\dot{d}_{\gamma}(\mathbf{x}, 0) & =\dot{d}_{\delta}(\mathbf{x}, 0) \\
\Longleftrightarrow \quad 0-\dddot{f}(0)\left(\frac{1}{3}\right)(\ddot{f}(0))^{-4 / 3}(-1) & =0-\dddot{g}(0)\left(\frac{1}{3}\right)(\ddot{g}(0))^{-4 / 3}(-1),
\end{aligned}
$$

and if $d_{\gamma}(\mathbf{x}, 0)=d_{\delta}(\mathbf{x}, 0)$ is assumed, so $\ddot{f}(0)=\ddot{g}(0)$, then

$$
\begin{aligned}
& \dot{d}_{\gamma}(\mathbf{x}, 0)=\dot{d}_{\delta}(\mathbf{x}, 0) \\
& \Longleftrightarrow \quad \dddot{f}(0)\left(\frac{1}{3}\right)(\ddot{f}(0))^{-4 / 3}(-1)=\dddot{g}(0)\left(\frac{1}{3}\right)(\ddot{f}(0))^{-4 / 3}(-1) \\
& \Longleftrightarrow \dddot{f}(0)=\dddot{g}(0), \\
& \text { since } \ddot{f}(0) \neq 0 .
\end{aligned}
$$

These calculations point towards the following.
Lemma 2.3.2.1 Consider two curves γ and δ given respectively by $\gamma(t)=$ $(t, f(t))$ and $\delta(t)=(t, g(t))$, where $f(0)=g(0)=0$ and $\dot{f}(0)=\dot{g}(0)=0$. Then the affine distance functions d_{γ}, d_{δ} of γ, δ satisfy

$$
\begin{aligned}
& \left\{d_{\gamma}^{(i)}(\mathbf{x}, 0)=d_{\delta}^{(i)}(\mathbf{x}, 0) \text { for } i=0, \ldots, n\right\} \\
\Longleftrightarrow \quad & \left\{f^{(i+2)}(0)=g^{(i+2)}(0) \text { for } i=0, \ldots, n\right\}
\end{aligned}
$$

Proof. This can be proved by induction. This relies on the fact that $d_{\gamma}^{(i)}=$ $A_{i}+B f^{(i+2)}$, where A_{i} is in terms of $t, f, \dot{f}, \ldots, f^{(i+1)}$, and

$$
B=\left(\frac{1}{3}\right)(\ddot{f})^{-4 / 3}(t \dot{f}+1-f) .
$$

Also, $B(0) \neq 0$ since $B(0)=(1 / 3)(\ddot{f}(0))^{-4 / 3}(1)$, and $\ddot{f}(0) \neq 0$ since $(0,0)$ is not an inflexion (see the second paragraph of $\S 2.3 .2$). Also $d_{\delta}^{(i)}=\tilde{A}_{i}+\tilde{B} g^{(i+2)}$, where \tilde{A}_{i} is A_{i} with $f, \dot{f}, \ldots, f^{(i+1)}$ replaced respectively by $g, \dot{g}, \ldots, g^{(i+1)}$, and \tilde{B} is B with f, \dot{f}, \ddot{f} replaced respectively by g, \dot{g}, \ddot{g}. This means that $\tilde{A}_{i}(0)=A_{i}(0)$ and $\tilde{B}(0)=B(0)$. These can also be proved by induction. Then at each step of the induction

$$
\begin{aligned}
& d_{\gamma}{ }^{(i)}(\mathrm{x}, 0)=d_{\delta}{ }^{(i)}(\mathbf{x}, 0) \\
& \Longleftrightarrow \\
& A_{i}(0)+B(0) f^{(i+2)}(0)=\tilde{A}_{i}(0)+\tilde{B}(0) g^{(i+2)}(0) \\
& \Longleftrightarrow \\
& \text { since } B(0) f^{(i+2)}=\tilde{B}(0) g^{(i+2)} \\
& \tilde{A}_{i}(0)=A_{i}(0) \\
& \text { since } \Longleftrightarrow f^{(i+2)}(0)=g^{(i+2)}(0), \\
& \tilde{B}(0)=B(0) \neq 0 .
\end{aligned}
$$

Hence the result.

Lemma 2.3.2.1 leads to the following.

Proposition 2.3.2.2 Given two curves γ and δ given by $(t, f(t))$ and $(t, g(t))$ which have at least 2-point contact with each other at $\gamma(0)=\delta(0)=(0,0)$, which is not an inflexion of γ or of δ, and a point \mathbf{x} which does not lie on the tangent to γ at $(0,0)$ (so \mathbf{x} can be taken to be $(0,1)$ by affine transformations), then γ and δ have k-point contact at $(0,0)$ if and only if

$$
\begin{aligned}
d_{\gamma}^{(i)}(\mathbf{x}, 0) & =d_{\delta}{ }^{(i)}(\mathbf{x}, 0) \text { for } i=0, \ldots, k-3 \\
\text { and } d_{\gamma}{ }^{(k-2)}(\mathbf{x}, 0) & \neq d_{\delta}{ }^{(k-2)}(\mathbf{x}, 0) .
\end{aligned}
$$

What relevance does this result have for deciding whether or not it is possible for cusps of the ADSS to be in the ADMA? By Lemma 2.2.4 a point of the ADSS of a curve is an ordinary cusp when one of the corresponding conics has exactly 5 -point contact with the curve (recall that a point of the ADSS is the centre of two conics having 4-point contact with the curve and sharing the
same affine radius). Take δ to be a conic which has exactly 5 -point contact with a curve γ at $(0,0)$ and let \mathbf{x} be its centre. Then, by Lemma 1.3.3, $d_{\delta}(\mathbf{x}, t)=c$ (a constant) for all t and all derivatives of $d_{\delta}(\mathbf{x}, t)$ are zero. Then Proposition 2.3.2.2 implies that

$$
\begin{aligned}
d_{\gamma}(\mathbf{x}, 0) & =d_{\delta}(\mathbf{x}, 0)=c \\
\dot{d}_{\gamma}(\mathbf{x}, 0) & =\dot{d}_{\delta}(\mathbf{x}, 0)=0, \\
\ddot{d}_{\gamma}(\mathbf{x}, 0) & =\ddot{d}_{\delta}(\mathbf{x}, 0)=0, \\
\text { and } \quad \dddot{d}_{\gamma}(\mathbf{x}, 0) & \neq \dddot{d}_{\delta}(\mathbf{x}, 0)=0 .
\end{aligned}
$$

This means that the affine distance from the centre of the conic δ to the point of contact of the curve γ cannot be an absolute minimum; in fact it cannot even be a maximum or a minimum. Therefore we have the following.

Proposition 2.3.2.3 Cusps of the ADSS are not in the ADMA.
Remark 2.3.2.4 A singularity of the ADSS worse than a cusp can lie on the ADMA, for example when two cusps disappear at an $A_{1} A_{3}$ transition - see Figures 2.5 to 2.11 .

2.4 Affine Envelope Symmetry Set

2.4.1 Discussion of Features of the AESS

As shown in §2.3.1, the pre-ADSS and the pre-ADMA can be altered by projective transformations, since the number of horizontal or vertical tangents can be changed and self-crossings can be caused. This is not true of the pre-AESS; it will be unchanged by a projective transformation, since projective transformations preserve contact between curves. The reason for this is that the AESS is obtained by finding points where the curve has (at least) 3-point contact with a single conic. Contrast this with Remark 2.3.1.2. The AESS also differs from the ADSS in that there does not appear to be a sensible definition of an affine envelope medial axis (AEMA). This is because the AESS is not defined
in terms of a distance function which can be maximized (or minimized). This is an area of further research: is there such a definition of the AESS? (see §2.5).

Since the pre-AESS is unchanged by projective transformations, the number of branches and the number of endpoints will be unaltered by projective transformations. Because of this, it seems less likely than for the ADSS that the structure of the AESS of a given curve would be altered by arbitrary projective transformations. Consider cusps on the AESS. These occur in two different ways, one type arising when tangents to the curve are parallel at two points contributing to the AESS, the other because of horizontal or vertical tangents to the pre-AESS (see [GS00]). Since the pre-AESS is unaltered by projective transformations, the latter type of cusp of the AESS cannot be destroyed or created by projective transformations. The remaining possibility is whether the former type of cusp can be destroyed or created by a projective transformation.

Here is a result about the existence of such cusps, which comes from [GS00, pp.181, 182].

Lemma 2.4.1.1 As for the pre-ADSS, the pre-AESS is represented as a curve in the torus and a component which is (m, n) winds m times round one way and n times round the other. For a generic oval curve (that is one for which the pre-AESS is non-singular) the pre-AESS has the following global properties:
(i) For any $(1,1)$ component of the pre-AESS there is always at least one point corresponding to a pair of parallel tangents of the curve. Hence there is always at least one cusp along this branch belonging to the AESS.
(ii) There are no $(1,-1)$ components and there is an odd number of $(1,1)$ components; hence at least one. (The only other possibility is a (0,0) component).

So we know that there is at least one cusp in the AESS corresponding to parallel tangents. These cusps connect the AESS and another affine-invariant set called the MPTL, which is defined below:

Figure 2.13: The standard swallowtail transition: a swallowtail (left) shrinks to a swallowtail point (centre) and then the curve becomes smooth (right).

Definition 2.4.1.2 The MPTL (mid-parallel-tangents locus) of a smooth plane curve γ is the locus of midpoints of chords joining points of contact of parallel tangents to γ.

The MPTL is sometimes called the anti-symmetry set and can also be defined as the envelope of lines halfway between points of γ with parallel tangents.

Cusps of the AESS corresponding to parallel tangents to the curve are also part of the MPTL, in fact they are also cusps of the MPTL. And it is also known that if a point of the AESS corresponding to a $\left(t_{1}, t_{2}\right)$ pair coincides with a point of the MPTL corresponding to the same $\left(t_{1}, t_{2}\right)$ pair then they meet in a dual beaks singularity at the cusps. Because of this it is necessary to treat the AESS and the MPTL together.

Consider a point of the AESS which is a cusp corresponding to a pair of parallel tangents and so is also a cusp of the MPTL. Is it possible to make this a swallowtail point, which is a higher singularity, by a projective transformation? If so, we could take 'nearby' projective transformations, ones for which A, \ldots, K (as in Definition 2.2.8) differ slightly, to get a swallowtail transition. A swallowtail transition is when a swallowtail gets smaller and smaller until it becomes a swallowtail point and then becomes a smooth point, as in Figure 2.13. If it were possible to make this transition happen, the cusps of the AESS and of the MPTL would be destroyed and the AESS and MPTL would both be smooth.

This section shows that it is possible to make a swallowtail transition occur simultaneously on the AESS and on the MPTL. Hence we must first obtain the conditions for a swallowtail point to occur on the AESS and on the MPTL.

2.4.2 Conditions for Cusps and for Swallowtail Points on the AESS

The AESS is affine-invariant, so we can set up a local coordinate system as follows, without loss of generality. We take two arcs γ_{1}, γ_{2} of a curve respectively near the points $t_{1}=0, t_{2}=0$:

$$
\left.\begin{array}{l}
\gamma_{1}\left(t_{1}\right)=\left(t_{1}, f\left(t_{1}\right)\right)=\left(t_{1}, c_{2} t_{1}^{2}+c_{3} t_{1}^{3}+c_{4} t_{1}^{4}+\cdots\right) \tag{2.13}\\
\gamma_{2}\left(t_{2}\right)=\left(t_{2}, a+g\left(t_{2}\right)\right)=\left(t_{2}, a+b_{1} t_{2}+b_{2} t_{2}^{2}+b_{3} t_{2}^{3}+b_{4} t_{2}^{4}+\cdots\right)
\end{array}\right\}
$$

The pre-AESS, that is the set of parameter pairs $\left(t_{1}, t_{2}\right)$ which contribute points to the AESS, is given by the AESS condition (2.8) from Lemma 2.2.7. These are then mapped to the AESS using (2.9). For the coordinate system given by (2.13), the AESS condition becomes

$$
\begin{align*}
& {\left[\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right), \gamma^{\prime}\left(t_{1}\right)+\gamma^{\prime}\left(t_{2}\right)\right] }=0 \\
& \Longleftrightarrow\left|\begin{array}{cc}
t_{1}-t_{2} & \left(\ddot{f}\left(t_{1}\right)\right)^{1 / 3}+\left(\ddot{g}\left(t_{2}\right)\right)^{1 / 3} \\
f\left(t_{1}\right)-g\left(t_{2}\right) & \left(\ddot{f}\left(t_{1}\right)\right)^{1 / 3} \dot{f}\left(t_{1}\right)+\left(\ddot{g}\left(t_{2}\right)\right)^{1 / 3} \dot{g}\left(t_{2}\right)
\end{array}\right|=0 . \tag{2.14}
\end{align*}
$$

Hence t_{1} and t_{2} are in the pre-AESS if and only if this condition holds. It is easy to show that $\left(t_{1}, t_{2}\right)=(0,0)$ is in the pre-AESS if and only if

$$
a\left(b_{2}+c_{2}\right)=0 \Longleftrightarrow b_{2}+c_{2}=0
$$

(since $a=0$ means the curve would be non-simple)

$$
\Longleftrightarrow \kappa_{1}(0)+\kappa_{2}(0)=0,
$$

where $\kappa_{i}\left(t_{i}\right)$ is the Euclidean curvature of the arc γ_{i} at t_{i}. We consider ovals, so there are no inflexions on the two arcs, so $b_{2} \neq 0, c_{2} \neq 0$. Now let $b_{2}+c_{2}=0$, so that $\left(t_{1}, t_{2}\right)=(0,0)$ is in the pre-AESS.

In order to obtain the pre-AESS, we express one of t_{1}, t_{2} as a function of the other and solve (2.14) for this function. Firstly, we need to examine which is an appropriate parameter for the pre-AESS. By differentiating the left-hand side of (2.14) with respect to t_{1} and to t_{2}, we find the following.

- When $\left(b_{1} b_{2}+a b_{3}\right) \neq 0$ then t_{1} is a parameter.
- When $\left(b_{1} c_{2}+a c_{3}\right) \neq 0$ then t_{2} is a parameter.
- When $\left(b_{1} b_{2}+a b_{3}\right)=\left(b_{1} c_{2}+a c_{3}\right)=0$ then the pre-AESS is singular.

We are interested in cusps of the AESS, so we ignore the case of the pre-AESS being singular. In each of the cases $\left(b_{1} b_{2}+a b_{3}\right) \neq 0,\left(b_{1} b_{2}+a b_{3}\right) \neq 0$ we can map the pre-AESS to the AESS using (2.9). Then we get the following.

Proposition 2.4.2.1 There is an ordinary cusp on the AESS of a smooth plane curve γ corresponding to $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$, neither of which is an inflexion, if and only if one of the following occurs.

1. The tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are parallel; the affine normals at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not parallel; and the tangent to the pre-AESS at $\left(t_{1}, t_{2}\right)$ is not parallel to the diagonal $\left(t_{1}=t_{2}\right)$, not horizontal and not vertical.
2. The tangent to the pre-AESS at $\left(t_{1}, t_{2}\right)$ is horizontal, at which the preAESS is not an inflexion, and the tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not parallel.
3. The tangent to the pre-AESS at $\left(t_{1}, t_{2}\right)$ is vertical, at which the pre-AESS is not an inflexion, and the tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not parallel.

There is a swallowtail point on the AESS of a smooth plane curve γ corresponding to $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$, neither of which is an inflexion, if and only if one of the following occurs.

1. The tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are parallel, the affine normals at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are parallel and the affine curvatures of γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not equal.
2. The tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are parallel and the tangent to the pre-AESS is horizontal at $\left(t_{1}, t_{2}\right)$, at which the pre-AESS does not have an inflexion.
3. The tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are parallel and the tangent to the pre-AESS is vertical at $\left(t_{1}, t_{2}\right)$, at which the pre-AESS does not have an inflexion.
4. The tangent to the pre-AESS is horizontal at $\left(t_{1}, t_{2}\right)$, at which the preAESS has an inflexion, but not a vertex, and the tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not parallel.
5. The tangent to the pre-AESS is vertical at $\left(t_{1}, t_{2}\right)$, at which the pre-AESS has an inflexion, but not a vertex, and the tangents to γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not parallel.

Proof. For the AESS at $t_{1}=t_{2}=0$ to be an ordinary cusp, we need that the first derivative of the parametrization of the AESS is the zero vector at $t_{1}=t_{2}=0$ and that the second and third derivatives are independent. Recall that $b_{2}+c_{2}=0$, which means that $\left(t_{1}, t_{2}\right)=(0,0)$ is on the pre-AESS and that $b_{2} \neq 0, c_{2} \neq 0$, so $\gamma_{1}(0), \gamma_{2}(0)$ are not inflexions.

Consider firstly the case when t_{1} is a parameter, that is when $\left(b_{1} b_{2}+a b_{3}\right) \neq 0$. Then the pre-AESS is given by

$$
t_{2}=-\frac{\left(b_{1} c_{2}+a c_{3}\right)}{\left(b_{1} b_{2}+a b_{3}\right)} t_{1}+\cdots
$$

and so the pre-AESS does not have a vertical tangent at $t_{1}=t_{2}=0$. Then, the AESS is non-regular at $t_{1}=t_{2}=0$ if and only if

$$
a b_{1}\left(b_{1} c_{2}+a c_{3}\right)=0 .
$$

We ignore the case of $a=0$, since the two arcs γ_{1}, γ_{2} would cross if $a=0$. Hence there are two cases that could possibly mean there were cusps on the AESS. The condition $b_{1}=0$ is the same as the two arcs γ_{1}, γ_{2} having parallel tangents at $t_{1}=t_{2}=0$ and the condition $\left(b_{1} c_{2}+a c_{3}\right)=0$ is the same as the pre-AESS having a horizontal tangent at $t_{1}=t_{2}=0$.

When $b_{1}=0$ the second and third derivatives of the parametrization of the

AESS at $t_{1}=t_{2}=0$ are independent if and only if $c_{3}\left(b_{3}-c_{3}\right)\left(b_{3}+c_{3}\right) \neq 0$.

$$
\text { When } \begin{aligned}
b_{1}=0, & c_{3} \neq 0
\end{aligned} \begin{aligned}
d t_{1} & \Longleftrightarrow 0) \neq 0 \\
\left(b_{3}+c_{3}\right) \neq 0 & \Longleftrightarrow \frac{d t_{2}}{d t_{1}}(0) \neq 1
\end{aligned}
$$

Hence, when $b_{1}=\left(b_{2}-c_{2}\right)=0$, then $c_{3}\left(b_{3}+c_{3}\right) \neq 0$ if and only if the tangent to the pre-AESS is not horizontal and not parallel to the diagonal $t_{1}=t_{2}$. When $b_{1}=0$ the affine normals $\gamma_{1}^{\prime \prime}(0), \gamma_{2}^{\prime \prime}(0)$ are as follows, using Definition 1.3.1:

$$
\gamma_{1}^{\prime \prime}(0)=\left(-2 c_{3}\left(2 c_{2}\right)^{-5 / 3},\left(2 c_{2}\right)^{1 / 3}\right), \gamma_{2}^{\prime \prime}(0)=\left(-2 b_{3}\left(2 b_{2}\right)^{-5 / 3},\left(2 b_{2}\right)^{1 / 3}\right) .
$$

Hence, when $b_{1}=\left(b_{2}-c_{2}\right)=0$ then $\left(b_{3}-c_{3}\right) \neq 0$ if and only if the affine normals at $t_{1}=t_{2}=0$ are not parallel.

When $\left(b_{1} c_{2}+a c_{3}\right)=0$, the second and third derivatives of the parametrization of the AESS at $t_{1}=t_{2}=0$ are independent if and only if $b_{1}\left(a c_{2}^{2}+b_{1}^{2}-\right.$ $\left.a^{2} c_{4}\right) \neq 0$. When $\left(b_{1} c_{2}+a c_{3}\right)=0$ the pre-AESS has a horizontal tangent at $t_{1}=t_{2}=0$ and becomes

$$
t_{2}=-\frac{2\left(a^{2} c_{4}-a c_{2}^{2}-b_{1}^{2} c_{2}\right)}{a\left(b_{1} b_{2}+a b_{3}\right)} t_{1}^{2}+\cdots .
$$

Hence, when $\left(b_{1} c_{2}+a c_{3}\right)=\left(b_{2}-c_{2}\right)=0$, then $b_{1}\left(a c_{2}^{2}+b_{1}^{2}-a^{2} c_{4}\right) \neq 0$ if and only if the tangents to the two arcs γ_{1}, γ_{2} at $t_{1}=t_{2}=0$ are not parallel and the pre-AESS does not have a horizontal inflexion.

In summary, when a point of the pre-AESS does not have a vertical tangent, the corresponding point of the AESS is a cusp if and only if

- the two arcs γ_{1}, γ_{2} have parallel tangents and the tangent to the pre-AESS is not horizontal and not parallel to the diagonal $t_{1}=t_{2}$
or
- the point of the pre-AESS has a horizontal tangent, but is not an inflexion, and the two arcs γ_{1}, γ_{2} do not have parallel tangents.

Similarly, in the case when t_{2} is a parameter, that is when a point of the preAESS does not have a horizontal tangent, the corresponding point of the AESS is a cusp if and only if

- the two arcs γ_{1}, γ_{2} have parallel tangents and the tangent to the pre-AESS is not vertical and not parallel to the diagonal $t_{1}=t_{2}$
or
- the point of the pre-AESS has a vertical tangent, but is not an inflexion, and the two arcs γ_{1}, γ_{2} do not have parallel tangents.

We assumed that the pre-AESS does not have both a horizontal and a vertical tangent at the same point, since otherwise it would be singular. Hence there are only three ways in which there is a cusp on the AESS, as described in the result.

Now we consider the condition for the AESS at $t_{1}=t_{2}=0$ to be a swallowtail point. The canonical form for an ordinary cusp is $\left(t^{2}, t^{3}\right)$ and from this are obtained the criteria for a curve to have an ordinary cusp. Similarly, the canonical form for a swallowtail point is $\left(t^{3}, t^{4}\right)$ and so the criteria for a swallowtail point are that the first two derivatives of a curve are the zero vector and that the third and fourth derivatives are independent.

Again we consider firstly the case when t_{1} is a parameter $\left(b_{1} b_{2}+a b_{3} \neq 0\right)$, so that the pre-AESS does not have a horizontal tangent. Again ignoring the case $a=0$, the first two derivatives of the parametrization of the AESS are the zero vector at $t_{1}=t_{2}=0$ if and only if one of the following cases occurs:

$$
\begin{array}{ll}
& b_{1}=c_{3}=0, \\
\text { or } & b_{1}=b_{3}-c_{3}=0, \\
\text { or } & a c_{3}+b_{1} c_{2}=a^{2} c_{4}-a c_{2}^{2}-b_{1}^{2} c_{2}=0 .
\end{array}
$$

When $b_{1}=c_{3}=0$, the third and fourth derivatives of the parametrization of the AESS are independent if and only if $\left(a c_{4}-c_{2}^{2}\right) \neq 0$. When $b_{1}=c_{3}=0$ the pre-AESS has a horizontal tangent at $t_{1}=t_{2}=0$ and becomes

$$
t_{2}=-\frac{2\left(a c_{4}-c_{2}^{2}\right)}{a b_{3}} t_{1}^{2}+\cdots
$$

Hence, when $b_{1}=c_{3}=0$, then $\left(a c_{4}-c_{2}^{2}\right) \neq 0$ if and only if the pre-AESS does not have a horizontal inflexion. When $b_{1}=b_{3}-c_{3}=0$, the third and fourth
derivatives of the parametrization of the AESS are independent if and only if $\left(b_{4}+c_{4}\right) \neq 0$. Using Definition 1.3.1 and (1.4), we get formulae for the affine curvatures μ_{1}, μ_{2} of the $\operatorname{arcs} \gamma_{1}, \gamma_{2}$ at $t_{1}=0, t_{2}=0$:

$$
\mu_{1}(0)=\left(2 c_{2}\right)^{1 / 3}\left(\frac{2 c_{4}}{c_{2}^{2}}-\frac{5 c_{3}^{2}}{2 c_{2}^{3}}\right), \quad \mu_{2}(0)=\left(2 b_{2}\right)^{1 / 3}\left(\frac{2 b_{4}}{b_{2}^{2}}-\frac{5 b_{3}^{2}}{2 b_{2}^{3}}\right) .
$$

Hence, when $b_{2}=-c_{2}, b_{1}=b_{3}-c_{3}=0$, then the affine curvatures at $t_{1}=t_{2}=0$ are not equal if and only if $\left(b_{4}+c_{4}\right) \neq 0$. When $\left(a c_{3}+b_{1} c_{2}\right)=\left(a^{2} c_{4}-\right.$ $\left.a c_{2}^{2}-b_{1}^{2} c_{2}\right)=0$, the third and fourth derivatives of the parametrization of the AESS are independent if and only if $b_{1}\left(a^{3} c_{5}+3 a b_{1} c_{2}^{2}+b_{1}^{3} c_{2}\right) \neq 0$. When $\left(a c_{3}+b_{1} c_{2}\right)=\left(a^{2} c_{4}-a c_{2}^{2}-b_{1}^{2} c_{2}\right)=0$, the pre-AESS is given by

$$
t_{2}=-\frac{10\left(a^{3} c_{5}+3 a b_{1} c_{2}^{2}+b_{1} c_{2}\right)}{3 a^{2}\left(a b_{3}-b_{1} c_{2}\right)} t_{1}^{3}+\cdots
$$

Hence, when $\left(a c_{3}+b_{1} c_{2}\right)=\left(a^{2} c_{4}-a c_{2}^{2}-b_{1}^{2} c_{2}\right)=0$, then $b_{1}\left(a^{3} c_{5}+3 a b_{1} c_{2}^{2}+b_{1}^{3} c_{2}\right) \neq$ 0 if and only if the tangents to the two arcs γ_{1}, γ_{2} at $t_{1}=t_{2}=0$ are not parallel and the pre-AESS does not have a horizontal vertex.

In summary, we have shown the possibilities 1., 2. and 4. for a swallowtail point on the AESS when the pre-AESS does not have a vertical tangent. When the pre-AESS does not have a horizontal tangent we get the remaining cases 3. and 5. Hence the result.

This result gives us a candidate for a type of swallowtail point which could be created or destroyed on the AESS by a family of projective transformations, namely case 1. An interesting question is what happens on the MPTL when there is a swallowtail point on the AESS? The next section deals with this matter.

2.4.3 Conditions for Cusps and for Swallowtail Points on the MPTL

The MPTL is affine-invariant, so we can use the coordinate system (2.13), but with $b_{1}=0$ so that the two arcs γ_{1} and γ_{2} are parallel at $t_{1}=t_{2}=0$. The
pre-MPTL is the parameter pairs $\left(t_{1}, t_{2}\right)$ such that $d f / d t_{1}=d g / d t_{2}$ for all t_{1}, t_{2} near $t_{1}=t_{2}=0$. As for the pre-AESS, we obtain the pre-MPTL by expressing one of t_{1}, t_{2} as a function of the other and solving $d f / d t_{1}=d g / d t_{2}$ for this function. Differentiating ($d f / d t_{1}-d g / d t_{2}$) with respect to t_{1} and to t_{2}, we find the following.

- When $b_{2} \neq 0$ then t_{1} is a parameter.
- When $c_{2} \neq 0$ then t_{2} is a parameter.
- When $b_{2}=c_{2}=0$ then the pre-MPTL is singular.

We are interested in cusps of the MPTL, so we ignore the case of the pre-MPTL being singular. By Definition 2.4.1.2 the parametrization of the MPTL is

$$
\frac{1}{2}\left(t_{1}+t_{2}, a+f\left(t_{1}\right)+g\left(t_{2}\right)\right)
$$

We have the following.
Proposition 2.4.3.1 A point of the MPTL of a smooth plane curve γ corresponding to $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$, neither of which is an inflexion, is an ordinary cusp if and only if it is also on the AESS and the affine normals of γ at $\gamma\left(t_{1}\right)$ and at $\gamma\left(t_{2}\right)$ are not parallel. The point of the MPTL is a swallowtail point if and only if it is also on the AESS, the affine normals at $\gamma\left(t_{1}\right)$ and at $\gamma\left(t_{2}\right)$ are parallel, and the affine curvatures of γ at $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$ are not equal.

Proof. Solving $d f / d t_{1}=d g / d t_{2}$ for t_{2} in terms of t_{1} gives the following parametrization $M\left(t_{1}\right)$ of the MPTL near $t_{1}=0$:

$$
M\left(t_{1}\right)=\left(\left(\frac{b_{2}+c_{2}}{2 b_{2}}\right) t_{1}+\cdots, \frac{a}{2}+\frac{c_{2}\left(b_{2}+c_{2}\right)}{2 b_{2}} t_{1}^{2} \cdots\right) .
$$

Note that this assumes $b_{2} \neq 0$. Hence the MPTL is non-regular at $t_{1}=0$ if and only if $b_{2}+c_{2}=0$, and so we require that $b_{2}=-c_{2} \neq 0$. (We ignore the case $b_{2}=c_{2}=0$, since in this case the pre-MPTL is singular.) When $b_{2}=-c_{2}$,
it can be shown that

$$
\begin{aligned}
\frac{d^{2} M}{d t_{1}^{2}}(0) & =\left(\frac{3\left(c_{3}-b_{3}\right)}{2 b_{2}}, 0\right), \\
\frac{d^{3} M}{d t_{1}^{3}}(0) & =\left(\frac{3\left(9 b_{3}\left(c_{3}-b_{3}\right)+4 b_{2}\left(b_{4}+c_{4}\right)\right.}{2 b_{2}^{2}}, 6\left(b_{3}-c_{3}\right)\right) .
\end{aligned}
$$

These are linearly independent if and only if $b_{3} \neq c_{3}$. Hence, there is an ordinary cusp on the MPTL at $t_{1}=t_{2}=0$ if and only if $b_{2}=-c_{2} \neq 0$ and $b_{3} \neq c_{3}$. Now consider when the first two derivatives of $M\left(t_{1}\right)$ are zero. This is happens if and only if $\left(b_{2}+c_{2}\right)=\left(b_{3}-c_{3}\right)=0$. Then

$$
\begin{aligned}
\frac{d^{3} M}{d t_{1}^{3}}(0) & =\left(\frac{6\left(b_{4}+c_{4}\right)}{b_{2}}, 0\right) \\
\frac{d^{4} M}{d t_{1}^{4}}(0) & =\left(\frac{6\left(12\left(b_{4}+c_{4}\right)+5 b_{2}\left(c_{5}-b_{5}\right)\right.}{b_{2}^{2}},-36\left(b_{4}+c_{4}\right)\right) .
\end{aligned}
$$

These are linearly independent if and only if $b_{4}+c_{4} \neq 0$. Hence, there is a swallowtail point on the MPTL at $t_{1}=t_{2}=0$ if and only if $b_{2}=-c_{2} \neq 0$, $b_{3}=c_{3}$ and $b_{4} \neq c_{4}$. The proof of Proposition 2.4.2.1 gives the interpretations of these conditions, and so we get the required result.

2.4.4 A Projective Transformation which Creates a Swallowtail Point on the AESS

From Propositions 2.4.2.1, 2.4.3.1 we know that a swallowtail point occurs on the AESS and on the MPTL when the tangents to the curves at the contributing points are parallel, the affine normals are parallel and the affine curvatures are not equal. The question is, can such a swallowtail point be created on the AESS and on the MPTL by a family of projective transformations? This section gives an example of such a transition. We start with a cusp of the AESS given by parallel tangents to the two arcs and then take a projective transformation on the two arcs so the corresponding point of the AESS becomes a swallowtail point given by parallel tangents and parallel affine normals at the corresponding
points of the transformed arcs. Hence, the local coordinate system of such a situation is given by (2.13), but with $b_{2}=-c_{2}$:

$$
\left.\begin{array}{rl}
\gamma_{1}\left(t_{1}\right)=\left(t_{1}, f\left(t_{1}\right)\right) & =\left(t_{1}, c_{2} t_{1}^{2}+c_{3} t_{1}^{3}+c_{4} t_{1}^{4}+\cdots\right), \tag{2.15}\\
\left(t_{2}\right)=\left(t_{2}, a+g\left(t_{2}\right)\right) & =\left(t_{2}, a-c_{2} t_{2}^{2}+b_{3} t_{2}^{3}+b_{4} t_{2}^{4}+\cdots\right)
\end{array}\right\}
$$

So the tangents are parallel at the points $\gamma_{1}(0)$ and $\gamma_{2}(0)$, which, because $b_{2}=-c_{2}$, contribute to the AESS (see the start of $\S 2.4 .2$). Then, by Propositions 2.4.2.1, 2.4.3.1, the point $(0, a / 2)$ is a cusp of the AESS and of the MPTL. We assume that $b_{3} \neq c_{3}$, since this means that the affine normals $\gamma_{1}^{\prime \prime}(0), \gamma_{2}^{\prime \prime}(0)$ are not parallel, and so, again by Propositions 2.4.2.1, 2.4.3.1, the point $(0, a / 2)$ is neither a swallowtail point of the AESS nor of the MPTL.

It can be shown that an example of a projective transformation which keeps the tangents parallel at the points to which $\gamma_{1}(0)$ and $\gamma_{2}(0)$ are taken, while making parallel the affine normals at these transformed points is

$$
\begin{aligned}
& (x: y: z) \mapsto(A x+B y+C z: D x+E y+F z: G x+H y+K z), \\
& \text { where } G=0, \quad H=\frac{K\left(c_{3}-b_{3}\right)}{a b_{3}}
\end{aligned}
$$

So there is some freedom of choice for the other constants in the projective transformation. If one chooses $A=1, B=C=D=0, E \neq 0, F=0, K=1$ then the result is a non-singular projective transformation. It can be shown that this transformation keeps the tangents to the curve parallel at $\gamma_{1}(0)$ and at $\gamma_{2}(0)$, so the swallowtail point can be easily identified in pictures of the example to follow in $\S 2.4 .5$. A point of the transformed curve is given by

$$
(x, y) \mapsto\left(\frac{x}{H y+1}, \frac{E y}{H y+1}\right), \text { where } H=\frac{c_{3}-b_{3}}{a b_{3}} .
$$

If we also want the point $(0, a)$ to be sent to $(0, a)$ then

$$
(0, a) \mapsto\left(0, \frac{E a}{H a+1}\right)=(0, a) \Longleftrightarrow E=H a+1
$$

and so a point of the transformed curve is given by

$$
\begin{equation*}
\left(\frac{x}{H y+1}, \frac{(H a+1) y}{H y+1}\right), \text { where } H=\frac{c_{3}-b_{3}}{a b_{3}} . \tag{2.16}
\end{equation*}
$$

Hence, the points of the transformed arcs are given by

$$
\begin{array}{r}
\gamma_{1}\left(t_{1}\right) \mapsto\left(\frac{a b_{3} t_{1}}{\left(c_{3}-b_{3}\right)\left(c_{2} t_{1}^{2}+\cdots\right)+a b_{3}}, \frac{a c_{3}\left(c_{2} t_{1}^{2}+\cdots\right)}{\left(c_{3}-b_{3}\right)\left(c_{2} t_{1}^{2}+\cdots\right)+a b_{3}}\right), \\
\gamma_{2}\left(t_{2}\right) \mapsto\left(\frac{a b_{3} t_{2}}{\left(c_{3}-b_{3}\right)\left(a-c_{2} t_{2}^{2}+\cdots\right)+a b_{3}}, \frac{a c_{3}\left(a-c_{2} t_{2}^{2}+\cdots\right)}{\left(c_{3}-b_{3}\right)\left(a-c_{2} t_{2}^{2}+\cdots\right)+a b_{3}}\right) .
\end{array}
$$

From Propositions 2.4.2.1, 2.4.3.1, the condition to ensure that no worse than a swallowtail point occurs on the AESS and on the MPTL of the transformed curve is that the affine curvatures of the transformed arcs at $t_{1}=t_{2}=0$ are not equal. Calculation shows that this is true for the projectively transformed curve given by (2.16) if and only if

$$
\begin{equation*}
c_{2}^{2}\left(c_{3}^{2}-b_{3}^{2}\right)+a\left(b_{4} c_{3}^{2}+c_{4} b_{3}^{2}\right) \neq 0 . \tag{2.17}
\end{equation*}
$$

2.4.5 Example of Creating a Swallowtail Transition on the AESS and on the MPTL

Taking projective transformations near to the one which creates a swallowtail point on the MPTL and on the AESS at the point corresponding to $t_{1}=t_{2}=0$, a swallowtail transition can be created on the MPTL and on the AESS. The following example shows this. The standard swallowtail transition is as in Figure 2.13, which we want to happen on the MPTL and on the AESS for the following choice of arcs. The local coordinate system of the original two arcs is as in (2.15), with

$$
a=4, \quad b_{2}=-0.2, \quad b_{3}=0.2, \quad b_{4}=-0.25, \quad c_{2}=0.2, \quad c_{3}=0.3, \quad c_{4}=0.35
$$

and all of the higher order coefficients zero, so that the arcs of (2.15) become the following:

$$
\left.\begin{array}{rl}
\gamma_{1}\left(t_{1}\right)=\left(t_{1}, f\left(t_{1}\right)\right) & =\left(t_{1}, 0.2 t_{1}^{2}+0.3 t_{1}^{3}+0.35 t_{1}^{4}\right), \tag{2.18}\\
\gamma_{2}\left(t_{2}\right)=\left(t_{2}, a+g\left(t_{2}\right)\right) & =\left(t_{2}, 4-0.2 t_{2}^{2}+0.2 t_{2}^{3}-0.25 t_{2}^{4}\right) .
\end{array}\right\}
$$

Note that $b_{3}-c_{3}=-0.1 \neq 0$, which ensures there is not a swallowtail point on the AESS and on the MPTL of the two arcs γ_{1}, γ_{2} near to $t_{1}=t_{2}=0$.

Finally we need the condition (2.17) to be satisfied for there to be a swallowtail point and no worse created on the AESS and on the MPTL. This condition is satisfied, since

$$
c_{2}^{2}\left(c_{3}^{2}-b_{3}^{2}\right)+a\left(b_{4} c_{3}^{2}+c_{4} b_{3}^{2}\right)=-0.032 \neq 0 .
$$

Then the projective transformation as in Definition 2.2.8 making the point of the AESS and the point of the MPTL corresponding to $t_{1}=t_{2}=0$ a swallowtail point of the AESS and of the MPTL has

$$
\begin{aligned}
& A=1, \quad B=C=D=0, \quad F=0, \quad G=0, \quad K=1 \\
& H=\frac{K\left(c_{3}-b_{3}\right)}{\left(a b_{3}\right)}=0.125, \quad \text { so } \quad E=H a+1=1.5
\end{aligned}
$$

If we take these values for A, \ldots, K, but treat H as a parameter, we get a family of transformed arcs:

$$
\begin{gather*}
\left(\frac{t_{1}}{H\left(0.2 t_{1}^{2}+0.3 t_{1}^{3}+0.35 t_{1}^{4}\right)+1}, \frac{1.5\left(0.2 t_{1}^{2}+0.3 t_{1}^{3}+0.35 t_{1}^{4}\right)}{H\left(0.2 t_{1}^{2}+0.3 t_{1}^{3}+0.35 t_{1}^{4}\right)+1}\right) \tag{2.19}\\
\left(\frac{t_{2}}{H\left(4-0.2 t_{2}^{2}+0.2 t_{2}^{3}-0.25 t_{2}^{4}\right)+1}, \frac{1.5\left(4-0.2 t_{2}^{2}+0.2 t_{2}^{3}-0.25 t_{2}^{4}\right)}{H\left(4-0.2 t_{2}^{2}+0.2 t_{2}^{3}-0.25 t_{2}^{4}\right)+1}\right) \tag{2.20}
\end{gather*}
$$

Figures 2.14 and 2.15 are of the original arcs before any projective transformation, that is γ_{1} and γ_{2} as in (2.18). Figures 2.16 to 2.19 are of arcs given by taking projective transformations on the arcs (2.18), which result in the arcs given by (2.19), (2.20), for different values of H. In this way we observe a swallowtail transition on the AESS and on the MPTL. It is hard to see what is happening in the pictures, as what we are interested in takes place in a very small neighbourhood of a point of the MPTL and AESS. The transition is clearer in Figure 2.20, which is a 'cartoon' of the transition, showing the main features of Figures 2.16 to 2.19. This example shows that the combinatorial structure of the AESS (and of the MPTL) can be altered by a family of projective transformations, since two swallowtails (the piece of curve with two cusps as in Figure 2.13, right) are created and then made smooth, one on the AESS and one on the MPTL.

Figure 2.14: Top: the two arcs given by (2.18) are drawn with the MPTL (thick curve) and AESS (thin curve) corresponding to points of contact between a conic and a point on each of the two arcs. The pre-MPTL is in a box on the left of the picture, with the pre-AESS in a box on the right of the picture. Bottom: a closer look at the AESS and MPTL.

Figure 2.15: Top: the same view as for Figure 2.14, but with the MPTL shifted down. There are two swallowtails on the AESS, but two of the cusps result from vertical tangents to the pre-AESS (see Figure 2.14). Bottom left: zoom on the righthand cusp of the MPTL. We are only interested in what happens near here since the MPTL has a horizontal tangent at the cusp. Bottom right: same view as for bottom left but with the MPTL shifted up.

Figure 2.16: The sequence of Figures 2.16 to 2.19 are of arcs given by taking projective transformations on those of Figure 2.14, which result in the arcs given by (2.19), (2.20), for different values of H. This figure is for $H=0.093$. We concentrate on the neighbourhood of the points of the AESS and MPTL with horizontal tangents, since it has been shown in $\S \S 2.4 .4,2.4 .5$ that when $H=0.125$ a swallowtail point will be created here on the AESS and on the MPTL. Bottom: the MPTL is shifted down in the same view as in the picture at the top. Each of the MPTL and the AESS has acquired a swallowtail.

Figure 2.17: This figure is for $H=0.1$. Again the picture at the bottom is of the same view as in the picture at the top, but with the MPTL shifted up. The two swallowtails have got smaller and they will continue to shrink until they become swallowtail points.

Figure 2.18: Here $H=0.125$, so the MPTL and the AESS have a swallowtail point. Top: the transformed arcs, MPTL, AESS, pre-MPTL, and pre-AESS. Note the preAESS has not changed, as expected. Bottom left: a closer look at the area near the swallowtail point (recognized by the MPTL having a horizontal tangent), bottom right: same view as for bottom left, but with the MPTL shifted up.

Figure 2.19: Now $H=0.14$, and the picture at the bottom has the MPTL shifted up in the same view as in the picture at the top. This figure shows the area near where the swallowtail point was - now the AESS and the MPTL are smooth curves at the point where the tangent to the MPTL and to the AESS is horizontal.

Figure 2.20: Cartoon of the example of creating a swallowtail transition by a family of projective transformations, as in Figures 2.16 to 2.19. The two swallowtails shrink until they become coincident swallowtail points and then these points become smooth points of the MPTL and AESS.

2.4.6 Examining the Direction in which Cusps Face on the MPTL and AESS

Figures 2.16 to 2.19 show a swallowtail transition in which a cusp of the swallowtail on the AESS faced in the same direction as a cusp of the swallowtail on the MPTL. In other examples cusps of the MPTL have been observed to face the coincident cusps of the AESS. Hence an interesting question is whether or not coincident cusps of the AESS and of the MPTL face in the same direction or the opposite direction 'near' to a swallowtail point arising because of tangents being parallel and affine normals being parallel at two points of the curve contributing to the AESS? If so, a swallowtail transition such as that of Figure 2.21 might be possible on the AESS and one the MPTL. 'Near' means curves which can be perturbed slightly to give a swallowtail point on the MPTL and on the AESS. One would suspect that the cusps do face the same way near to such a swallowtail point, since the MPTL and the AESS both have swallowtails in which each cusp of the MPTL coincides with a cusp of the AESS. The following shows this is true.

If we go back to the local coordinate system with two arcs parallel to the x-axis and a cusp on the MPTL at the point corresponding to $t_{1}=t_{2}=0$, so this point is a cusp of the AESS, then the two arcs γ_{1}, γ_{2} are given by (2.15). The corresponding parametrization of the MPTL as used in the proof of Proposition 2.4.3.1 is given by:

$$
\left(\frac{3}{4} \frac{\left(b_{3}-c_{3}\right)}{c_{2}} t_{1}^{2}+\cdots, \frac{a}{2}+\left(b_{3}-c_{3}\right) t_{1}^{3}+\cdots\right) .
$$

The sign of $\epsilon_{1}=\frac{\left(b_{3}-c_{3}\right)}{c_{2}}$ determines which side of the y-axis the MPTL lies on:

$$
\text { if } \begin{aligned}
\epsilon_{1} & =\frac{\left(b_{3}-c_{3}\right)}{c_{2}}>0, \text { the cusp is to the right of the } y \text {-axis, } \\
\epsilon_{1} & =\frac{\left(b_{3}-c_{3}\right)}{c_{2}}<0, \text { the cusp is to the left of the } y \text {-axis. }
\end{aligned}
$$

The proof of Proposition 2.4.2.1 also used a parametrization of the AESS of the arcs γ_{1}, γ_{2} given by (2.15):

$$
\left(\frac{3}{4} \frac{c_{3}}{b_{3}} \frac{\left(b_{3}-c_{3}\right)}{c_{2}} t_{1}^{2}+\cdots, \frac{a}{2}+\frac{1}{2} \frac{c_{3}\left(b_{3}-c_{3}\right)\left(b_{3}+c_{3}\right)}{b_{3}^{2}} t_{1}^{3}+\cdots\right) .
$$

The sign of $\epsilon_{2}=\frac{c_{3}}{b_{3}} \frac{\left(b_{3}-c_{3}\right)}{c_{2}}$ determines which side of the y-axis the AESS lies on:

$$
\begin{aligned}
\text { if } \epsilon_{2} & =\frac{c_{3}}{b_{3}} \frac{\left(b_{3}-c_{3}\right)}{c_{2}}>0, \text { the cusp is to the right of the } y \text {-axis, } \\
\epsilon_{2} & =\frac{c_{3}}{b_{3}} \frac{\left(b_{3}-c_{3}\right)}{c_{2}}<0, \text { the cusp is to the left of the } y \text {-axis. }
\end{aligned}
$$

Figure 2.21: From Proposition 2.4.6.1 for curves close to a swallowtail point given by parallel affine tangents and parallel affine normals, coincident cusps on the AESS and on the MPTL face in the same direction. Hence, in this case, the swallowtail transition as pictured cannot happen.

For the two cusps to face each other then ϵ_{1} and ϵ_{2} must have opposite signs, but $\epsilon_{2}=\epsilon_{1} c_{3} / b_{3}$, so we need c_{3} / b_{3} to be negative. However,we are interested in cusps that are part of a swallowtail of the AESS of curves 'near to' a curve with a swallowtail point given by parallel affine tangents and parallel affine normals at points which contribute to the AESS, and this means that b_{3} is close to c_{3}. So c_{3} / b_{3} cannot be negative for curves near to one with such a swallowtail point. Hence

Proposition 2.4.6.1 For curves close to a curve with a swallowtail point arising because of parallel tangents and parallel affine normals at points contributing to the AESS, a cusp that is part of the swallowtail of the MPTL faces in the same direction as the corresponding cusp of the AESS.

This means that the swallowtail transition as in Figure 2.21 cannot occur for a swallowtail point arising in this way. The swallowtail transition which does happen is as in the last three pictures of Figure 2.20.

2.4.7 Conditions for the Standard Swallowtail Transition

Figures 2.14 to 2.19 show swallowtail transitions on the AESS and on the MPTL, but it would be good to check that these are the standard pictures of a swallowtail transition. We shall do this by regarding each as an envelope of lines: from Definition 2.4.1.2 it can be shown that the MPTL can also be defined as the envelope of lines halfway between points of γ with parallel tangents, and it can also be shown that the AESS is the envelope of lines halfway between points of γ with at least 3 -point contact with a conic (see [GS00]).

Consider a family of lines in the plane given by

$$
\begin{equation*}
F(t, x, y) \equiv y+m(t) x+c(t)=0 \tag{2.21}
\end{equation*}
$$

The envelope is obtained by solving (2.21) with

$$
\frac{\partial F}{\partial t}=\dot{m}(t) x+\dot{c}(t)=0
$$

where ' (dot) denotes differentiation with respect to t. Now consider a family of these envelopes:

$$
\left.\begin{array}{r}
G(t, u, x, y) \equiv y+m(t, u) x+c(t, u)=0 \tag{2.22}\\
\text { where } G_{0}(t)=G\left(t, u_{0}, x_{0}, y_{0}\right) \text { for } u_{0}, x_{0}, y_{0} \text { constants. }
\end{array}\right\}
$$

For $u=u_{0}$ the situation is the same as in (2.21). Consider the set

$$
\begin{equation*}
E=\left\{(u, x, y) \in \mathbb{R}^{3}: G=\frac{\partial G}{\partial t}=0 \text { at }(t, u, x, y) \text { for some } t\right\} \tag{2.23}
\end{equation*}
$$

For $u=u_{0}$ this is an envelope of lines and as u_{0} varies the envelopes of various families of lines are obtained. The envelopes form a surface E in (u, x, y)-space. The conditions for the sections as u_{0} is changed to give the standard swallowtail transition as in Figure 2.13 are:
(i) we need G_{0} to have a singularity of type A_{3} at $t=0$,
(ii) we need G to be a versal unfolding of the A_{3} singularity,
(iii) we require a generic family of sections of the surface E.

Compare this with [BG86, pp.179-187].

(i)

From [BG92, p.51], the condition for G_{0} to have an A_{3} singularity at $t=0$ is that

$$
\frac{d G_{0}}{d t}(0)=\frac{d^{2} G_{0}}{d t^{2}}(0)=\frac{d^{3} G_{0}}{d t^{3}}(0)=0 \text { and } \frac{d^{4} G_{0}}{d t^{4}}(0) \neq 0
$$

We also need $G_{0}(0)=0$ from (2.22). Hence we require

$$
\left.\begin{array}{rl}
y_{0}+m\left(0, u_{0}\right) x_{0}+c\left(0, u_{0}\right) & =0, \\
m_{t}\left(0, u_{0}\right) x_{0}+c_{t}\left(0, u_{0}\right) & =0, \\
m_{t t}\left(0, u_{0}\right) x_{0}+c_{t t}\left(0, u_{0}\right) & =0, \tag{2.24}\\
m_{t t t}\left(0, u_{0}\right) x_{0}+c_{t t t}\left(0, u_{0}\right) & =0, \\
\text { and } m_{t t t t}\left(0, u_{0}\right) x_{0}+c_{t t t t}\left(0, u_{0}\right) & \neq 0,
\end{array}\right\}
$$

where suffices denote differentiation.
If $m_{t}\left(0, u_{0}\right)=0$ then t does not give a unique point of the envelope when $u=u_{0}$. As an example, consider the tangents to $y=x^{3}$. The tangent through the point $\left(t, t^{3}\right)$ is given by

$$
\begin{aligned}
\left(y-t^{3}\right) & =\frac{3 t^{2}}{1}(x-t) \\
\text { so } y & =x\left(3 t^{2}\right)-2 t^{3} .
\end{aligned}
$$

The envelope of tangents is then given by $F=\partial F / \partial t=0$, where $F=y-$ $x\left(3 t^{2}\right)+2 t^{3}$. So the envelope is given by

$$
\begin{aligned}
y-x\left(3 t^{2}\right)+2 t^{3} & =0 \\
\text { and }-x(6 t)+6 t^{2} & =0 .
\end{aligned}
$$

For $t=0$ this gives the whole of the x-axis, $y=0$, so $t=0$ does not give a unique point of the envelope. Hence, going back to our case of a swallowtail transition, we also require that $m_{t} \neq 0$ at $\left(0, u_{0}\right)$ and therefore nearby.

We can solve the first two equations of (2.24) for x_{0} and y_{0} and so, for G_{0}
to have type A_{3} at $t=0$, we require

$$
\begin{align*}
x_{0} & =-\frac{c_{t}\left(0, u_{0}\right)}{m_{t}\left(0, u_{u}\right)}, \\
y_{0} & =m\left(0, u_{0}\right) \frac{c_{t}\left(0, u_{0}\right)}{m_{t}\left(0, u_{0}\right)}-c\left(0, u_{0}\right), \\
-m_{t t}\left(0, u_{0}\right) \frac{c_{t}\left(0, u_{0}\right)}{m_{t}\left(0, u_{0}\right)}+c_{t t}\left(0, u_{0}\right) & =0, \tag{2.25}\\
-m_{t t t}\left(0, u_{0}\right) \frac{c_{t}\left(0, u_{0}\right)}{m_{t}\left(0, u_{0}\right)}+c_{t t t}\left(0, u_{0}\right) & =0, \\
-m_{t t t t}\left(0, u_{0}\right) \frac{c_{t}\left(0, u_{0}\right)}{m_{t}\left(0, u_{0}\right)}+c_{t t t t}\left(0, u_{0}\right) & \neq 0 .
\end{align*}
$$

(ii)

The second condition is that G must be a versal unfolding of the A_{3} singularity. From [BG92, pp.134-140], we consider the 2-jets with constant at $t=0$ of $\partial G / \partial u, \partial G / \partial x, \partial G / \partial y$, all evaluated at $\left(t, u_{0}, x_{0}, y_{0}\right)$:

$$
\begin{aligned}
\frac{\partial G}{\partial u}\left(t, u_{0}, x_{0}, y_{0}\right)= & \left(m_{u}\left(0, u_{0}\right) x_{0}+c_{u}\left(0, u_{0}\right)\right) \\
& +\left(m_{t u}\left(0, u_{0}\right) x_{0}+c_{t u}\left(0, u_{0}\right)\right) t \\
& +\frac{1}{2!}\left(m_{t t u}\left(0, u_{0}\right) x_{0}+c_{t t u}\left(0, u_{0}\right)\right) t^{2}+\cdots, \\
\frac{\partial G}{\partial x}\left(t, u_{0}, x_{0}, y_{0}\right)= & \left(m\left(0, u_{0}\right)\right)+\left(m_{t}\left(0, u_{0}\right)\right) t+\frac{1}{2!}\left(m_{t t}\left(0, u_{0}\right)\right) t^{2}+\cdots, \\
\frac{\partial G}{\partial x}\left(t, u_{0}, x_{0}, y_{0}\right)= & 1
\end{aligned}
$$

Then, we have versality if and only if the rank of the matrix of coefficients is 3

$$
\begin{align*}
& \Longleftrightarrow\left|\begin{array}{ccc}
m_{u}\left(0, u_{0}\right) x_{0}+c_{u}\left(0, u_{0}\right) & m^{\left(0, u_{0}\right)} & 1 \\
m_{t u}\left(0, u_{0}\right) x_{0}+c_{t u}\left(0, u_{0}\right) & m_{t}\left(0, u_{0}\right) & 0 \\
m_{t t u}\left(0, u_{0}\right) x_{0}+c_{t t u}\left(0, u_{0}\right) & m_{t t}\left(0, u_{0}\right) & 0
\end{array}\right| \neq 0 \\
& \left.\Longleftrightarrow \quad \begin{array}{c}
m_{t}\left(0, u_{0}\right)\left(m_{t t u}\left(0, u_{0}\right) x_{0}+c_{t t u}\left(0, u_{0}\right)\right) \\
\neq m_{t t}\left(0, u_{0}\right)\left(m_{t u}\left(0, u_{0}\right) x_{0}+c_{t u}\left(0, u_{0}\right)\right) .
\end{array}\right\} \tag{2.26}
\end{align*}
$$

(iii)

To ensure that the family of sections $u=u_{0}$ of the surface E from (2.23) gives the standard pictures, we require that the plane $u=u_{0}$ does not contain the limit of any tangents to any of the strata passing through the $\left(A_{3}\right)$ swallowtail
point. For the standard swallowtail surface, the limiting tangents to the A_{2} and $A_{1} A_{1}$ strata are the same line, and this line is contained in the limiting tangent planes to the A_{1} strata at points tending to the A_{3} point. So in our case, we need only check that the limiting tangent to the A_{2} stratum does not lie in the plane $u=u_{0}$. Hence for our surface E we need to verify that the limiting tangent to the cuspidal edge (A_{2} stratum) does not lie in the plane $u=u_{0}$.

The cuspidal edge of E is the set (a curve in (u, x, y)-space)

$$
\Sigma=\left\{(u, x, y) \in \mathbb{R}^{3}: G=\frac{\partial G}{\partial t}=\frac{\partial^{2} G}{\partial t^{2}}=0 \text { at }(t, u, x, y) \text { for some } t\right\}
$$

A tangent vector to this is obtained in the usual way:

The cuspidal edge is given by $\pi(\tilde{G}(0,0,0))$, and a tangent vector to the A_{2} stratum is (θ, ξ, η), where $(\tau, \theta, \xi, \eta)$ is a non-zero kernel vector of the Jacobian matrix of \tilde{G}. So, what is required is that the limit of these tangent vectors at smooth points (u, x, y) tending to the swallowtail point does not lie in the plane $u=u_{0}$, that is the limit of u-coordinates of these vectors (θ above) is not zero.

The Jacobian matrix of \tilde{G} is

$$
\left(\begin{array}{cccc}
G_{t} & G_{u} & G_{x} & G_{y} \\
G_{t t} & G_{t u} & G_{t x} & G_{t y} \\
G_{t t t} & G_{t t u} & G_{t t x} & G_{t t y}
\end{array}\right) .
$$

At a point of the cuspidal edge which is not the swallowtail point, $G=G_{t}=$ $G_{t t}=0$ and $G_{t t t} \neq 0$, so kernel vectors of the Jacobian matrix evaluated at this
point of the cuspidal edge are given by

$$
\left(\begin{array}{cccc}
0 & m_{u} x+c_{u} & m & 1 \\
0 & m_{t u} x+c_{t u} & m_{t} & 0 \\
G_{t t t} & m_{t t u} x+c_{t t u} & m_{t t} & 0
\end{array}\right)\left(\begin{array}{c}
\tau \\
\theta \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)
$$

This gives an equation to determine η :

$$
\begin{equation*}
\left(m_{u} x+c_{u}\right) \theta+m \xi+\eta=0 \tag{2.27}
\end{equation*}
$$

an equation to determine τ :

$$
\begin{equation*}
G_{t t t} \tau+\left(m_{t t u} x+c_{t t u}\right) \theta+m_{t t} \xi=0 \tag{2.28}
\end{equation*}
$$

and another equation to get ξ in terms of θ :

$$
\begin{equation*}
\left(m_{t u} x+c_{t u}\right) \theta+m_{t} \xi=0 . \tag{2.29}
\end{equation*}
$$

We start with a non-zero tangent vector (θ, ξ, η) to the A_{2} stratum in (u, x, y)-space where $(\tau, \theta, \xi, \eta)$ is a non-zero kernel vector of the Jacobian of G. Then we let this tangent vector tend towards a non-zero tangent vector at the A_{3} point. Now consider when $\theta=0$, then by (2.29) ξ must also be zero as $m_{t}\left(0, u_{0}\right) \neq 0$ is assumed. Then, by (2.27) η must also be zero, which gives $(\tau, \theta, \xi, \eta)=\mathbf{0}$. Hence no non-zero tangent vector to the cuspidal edge in (u, x, y)-space exists with the first component $\theta=0$. Therefore the limiting tangent to the cuspidal edge cannot lie in the plane $u=u_{0}$.

In summary, the sections of $u=u_{0}$ and E as u_{0} varies form the standard swallowtail transition if and only if the point $(t, u, x, y)=\left(0, u_{0}, x_{0}, y_{0}\right)$ is an A_{3} singularity (and so satisfies (2.25)), and u, x, y are versal unfolding parameters (so (2.26) is satisfied at $\left(0, u_{0}, x_{0}, y_{0}\right)$).

2.4.8 Verification of Conditions for the Swallowtail Transitions on the AESS and on the MPTL

The conditions (2.25) and (2.26) for a family of envelopes of lines to give the standard swallowtail transition need to be checked for the swallowtail transitions of the AESS and MPTL from $\S 2.4 .4$ and $\S 2.4 .5$. The two arcs γ_{1}, γ_{2} as
in (2.15) that were projectively transformed so that a swallowtail point was created on the AESS and on the MPTL were given by (2.16):

$$
\begin{array}{r}
\gamma_{1}\left(t_{1}\right) \mapsto\left(\frac{a b_{3} t_{1}}{\left(c_{3}-b_{3}\right)\left(c_{2} t_{1}^{2}+\cdots\right)+a b_{3}}, \frac{a c_{3}\left(c_{2} t_{1}^{2}+\cdots\right)}{\left(c_{3}-b_{3}\right)\left(c_{2} t_{1}^{2}+\cdots\right)+a b_{3}}\right), \\
\gamma_{2}\left(t_{2}\right) \mapsto\left(\frac{a b_{3} t_{2}}{\left(c_{3}-b_{3}\right)\left(a-c_{2} t_{2}^{2}+\cdots\right)+a b_{3}}, \frac{a c_{3}\left(a-c_{2} t_{2}^{2}+\cdots\right)}{\left(c_{3}-b_{3}\right)\left(a-c_{2} t_{2}^{2}+\cdots\right)+a b_{3}}\right) .
\end{array}
$$

Using the same method as in the proof of Proposition 2.4.2.1, we can express t_{2} in terms of t_{1} such that the points of the transformed curve corresponding to t_{1}, t_{2} contribute to the AESS. Then the family of midlines (that is infinitesimal axes of affine reflexional symmetry of a curve) whose envelope is the AESS is given by

$$
G_{1}\left(t_{1}, x, y\right) \equiv M_{1}\left(t_{1}, t_{2}\left(t_{1}\right)\right) x+y+C_{1}\left(t_{1}, t_{2}\left(t_{1}\right)\right),
$$

where M_{1}, and C_{1} are known functions of t_{1}. If we now assume H is a function of u, so $H=q_{0}+q_{1} u+q_{2} u^{2}+q_{3} u^{3}+\cdots$, then $M_{1}=M_{1}\left(t_{1}, u\right)$ and $C_{1}=C_{1}\left(t_{1}, u\right)$ so we have the same situation as in (2.22). Hence, increasing u from positive to negative values gives a transition. We want $u=0$ to correspond to the A_{3} point, so we let $q_{0}=\left(c_{3}-b_{3}\right) / a b_{3}$.

The conditions for $t_{1}=0$ to give an A_{3} singularity are given by replacing m, c by M_{1}, C_{1} in (2.25) and (2.26). The first two conditions of (2.25) give x_{0} and y_{0} in terms of the original arcs and it can be shown that the third and fourth conditions of (2.25) are automatically satisfied. Also, from (2.25) we require

$$
\frac{\partial M_{1}}{\partial t_{1}}(0,0) \neq 0 \quad \Longleftrightarrow \quad c_{2} c_{3} \neq 0
$$

Then, the last condition of (2.25) is satisfied if and only if

$$
\begin{equation*}
c_{3}\left(a c_{4} b_{3}^{2}+a b_{4} c_{3}^{2}+c_{2}^{2}\left(c_{3}^{2}-b_{3}^{2}\right)\right) \neq 0 . \tag{2.30}
\end{equation*}
$$

Given that the A_{3} conditions are satisfied, the versality condition (2.26) is satisfied if and only if $c_{3} c_{2} a q_{1} \neq 0$, so let $q_{1}=1$, so that $H(u)=\left(c_{3}-\right.$ $\left.b_{3}\right) /\left(a b_{3}\right)+u+\cdots$. Then the versality condition is that

$$
\begin{equation*}
a c_{2} c_{3} \neq 0 \tag{2.31}
\end{equation*}
$$

The condition (2.30) is the same as (2.17), which is the condition to ensure that no worse than a swallowtail point occurs on the AESS and on the MPTL of the transformed curve, given at least an A_{3} singularity. This is the same as the affine curvatures of the transformed arcs at $t_{1}=t_{2}=0$ being not equal.

The same method can be carried out for the MPTL, which is the envelope of the family of lines halfway between points of a curve with parallel tangents. This gives rise to the same conditions (2.30) and (2.31) for the transition on the MPTL to be a swallowtail transition. Hence we can check (2.30) and (2.31) for both the AESS and the MPTL.

In the example of $\S 2.4 .5$, the values taken for the arcs of (2.15) were

$$
a=4, \quad b_{2}=-0.2, \quad b_{3}=0.2, \quad b_{4}=-0.25, \quad c_{2}=0.2, \quad c_{3}=0.3, \quad c_{4}=0.35
$$

and all coefficients of higher order terms zero (that is $b_{i}=c_{j}=0$ for $i \geq 5$, $j \geq 5)$. Since the conditions (2.30), (2.31) do not involve the coefficients of $H(u)=\left(c_{3}-b_{3}\right) /\left(a b_{3}\right)+u+q_{2} u^{2}+q_{3} u^{3}+\cdots$, we can let $H=\left(c_{3}-b_{3}\right) / a b_{3}+u$, so $H(0)=q_{0}=0.125$. The values of H giving the transition were $H=0.1$, $H=0.125$, and $H=0.14$. Then the values of u corresponding to these values of H are $u=-0.025, u=0$, and $u=0.15$. These values of the parameter values satisfy both (2.30) and (2.31). Therefore the transition in the example of $\S 2.4 .5$ is the standard swallowtail transition on the AESS and on the MPTL.

2.4.9 Altering the Structure of the AESS and of the MPTL by Projective Transformations

In $\S 2.4 .4$ we showed that a projective transformation can simultaneously create a swallowtail point on the AESS and on the MPTL. Then $\S 2.4 .5$ gave an example of a family of projective transformations which seemed to cause a swallowtail transition on the AESS and on the MPTL. In §§2.4.7, 2.4.8 we obtained and verified the conditions for the transition observed to be a genuine swallowtail transition. Hence we have the following.

Proposition 2.4.9.1 A family of projective transformations can destroy or create cusps in pairs on the AESS and on the MPTL by causing a swallowtail
transition to occur on the AESS and on the MPTL. Hence the combinatorial structure of the AESS can be altered by a projective transformation.

2.5 Further Research

There is a natural restriction of the ADSS by requiring that the affine distance function $d(\mathbf{x}, s)$ has an absolute minimum at one of s_{1}, s_{2} in the pre-ADSS. By doing this the ADMA is obtained. This is because the ADSS is part of the bifurcation set of the family of affine distance functions on γ. An analogous definition of the AESS is not known, since the AESS is defined in terms of contact between curves and conics or by an envelope of lines, and so the AESS is not part of a bifurcation set. Can the AESS be defined using a distance function? If this could be done then an AEMA could be found by minimizing this distance function. Then the question is whether or not the combinatorial structure of this medial axis is unchanged by projective transformations. This topic is still to be investigated.

Also, as noted in $\S 2.2$, as yet there is no natural definition for one affineinvariant symmetry set. Hence this is a problem to be decided.

Chapter 3

The Euclidean Medial Axis in Three Dimensions

3.1 Introduction

The Euclidean symmetry set and medial axis were introduced in $\S 1.1$. In \mathbb{R}^{2}, the medial axis of a generic curve consists of smooth branches with endpoints, the branches meeting in threes at special points (see for example [GK99]). Given a smooth branch γ and a radius function r of arclength s satisfying $|d r / d s|<1$ we can reconstruct, at any rate locally, the two corresponding parts γ^{+}and γ^{-} of the outer boundary as an envelope of circles, centred on the smooth branch and of radius r. (See for example [GK03]; there will be other conditions which are needed for the circles to be maximal.)

However, given a connected set of smooth branches with endpoints and triple junctions it is far from obvious that this can be the medial axis of a shape with a smooth boundary. Even considering the local situation, it is not clear that from an arbitrary triple junction furnished with three radius functions (agreeing at the junction point) we can expect to recover a smooth shape. Nor is it clear that an arbitrary smooth curve with an endpoint, furnished with a radius function satisfying $r^{\prime}= \pm 1$ at the endpoint, can be the medial axis of a smooth curve with a curvature extremum. In fact these two questions were
examined in detail in [GK03], where it was shown that at the triple junction there are constraints on the geometry of the three branches and on the 'dynamics', that is the derivatives of the three radius functions. Two of the simplest of these constraints are

$$
\left.\begin{array}{l}
\cos \left(\phi_{2}+\phi_{3}\right)=-\cos \phi_{1}=\frac{d r_{1}}{d s_{1}}, \tag{3.1}\\
\frac{\kappa_{1}}{\sin \phi_{1}}+\frac{\kappa_{2}}{\sin \phi_{2}}+\frac{\kappa_{3}}{\sin \phi_{3}}=0,
\end{array}\right\}
$$

where ϕ_{i} is the angle between the tangent to the medial curve γ_{i} and the line joining the point of contact and the centre of the tritangent circle. The first of these is a constraint on the velocities of the medial curves near to an A_{1}^{3} point. It comes from the fact that the ϕ_{i} add to π. Also, κ_{i} is the curvature of the medial curve γ_{i}. (See also [S99, SSG99] for work on the relationship between the curvatures of the medial axis and the boundary.)

Constraints such as those above have an important application in the study of stochastic shape. For work on this by D. Mumford, see [M03]. The constraints arise because close to a triple junction there are two ways to use the medial axis to construct each piece of the shape boundary. Given two smooth medial axis branches γ_{1}, γ_{2}, close to a triple junction, and choosing orientations suitably, we reconstruct $\gamma_{1}^{ \pm}$and $\gamma_{2}^{ \pm}$. Then γ_{1}^{+}must agree with γ_{2}^{-}at the point where they meet. (See Figure 3.1.)

On the other hand in [GK03] it is shown that there is no constraint on the medial axis and radius function at an endpoint, beyond the fact that $r^{\prime \prime}$ should be non-zero at the endpoint - in fact if arclength is measured towards the endpoint then $r^{\prime \prime}$ should be >0 to ensure a minimum of radius. An explicit formula is given for the curvature κ of the medial axis at its endpoint, in terms of the curvature k say of the boundary curve of the shape at the corresponding point, an extremum of curvature:

$$
\begin{equation*}
\kappa=-\frac{3}{5} \frac{k^{3} k^{\prime \prime \prime}}{\left(k^{\prime \prime}\right)^{2}}, \tag{3.2}
\end{equation*}
$$

where ' ('prime') means differentiation with respect to arclength on the boundary of the shape. Notice that this formula does not make any reference to the radius function.

Figure 3.1: The A_{1}^{3} case in 2D, where three smooth medial branches meet at an A_{1}^{3} point. At this point the medial axis must satisfy certain conditions, such as (3.1), in order for the boundary to be smoothly reconstructed by an envelope of circles centred on the medial axis.

In this chapter we take the step from \mathbb{R}^{2} into \mathbb{R}^{3}. In \mathbb{R}^{3}, the medial axis M of a generic surface S, referred to as the boundary surface, has one of the local forms given in Figure 3.2. We shall refer to these by their standard names from singularity theory, where A_{k} means that the contact between S and a sphere has this singularity type. Thus A_{1} means that the centre c of the sphere lies on the normal line to S at a point p, making 'ordinary tangency' between the sphere and S at $p ; A_{2}$ means that c is a centre of principal curvature of S at p; and A_{3} that in addition p is a 'ridge point' (see for example [HGYGM99]). Juxtaposition indicates more than one contact point; thus $A_{1} A_{1}=A_{1}^{2}$ indicates a sphere ordinarily tangent at two points.

This chapter examines in greater detail research that has already appeared [PGK04] and in a form [PGK05] intended for submission to in a journal. It examines connections between the geometry of the medial axis and dynamics of the associated radius functions at points of these local forms of the medial axis. The following cases are examined.

- The A_{1}^{3} case: when three smooth sheets of the medial axis intersect in a curve, called the A_{1}^{3} curve. Points of this curve are called A_{1}^{3} points. Alternatively they are referred to as ' Y -junction curves, points'.

Figure 3.2: The local forms of the medial axis in \mathbb{R}^{3} in the generic case. Thus A_{1}^{2} is a smooth sheet, A_{1}^{3} is a Y-junction curve, A_{3} is a boundary edge of a smooth sheet, A_{1}^{4} is a point where four A_{1}^{3} curves lying on six sheets meet. Finally the ' $A_{1} A_{3} \mathrm{SS}$ ' picture shows the 'symmetry set', consisting of a swallowtail surface and a smooth sheet with boundary; this is truncated as shown in the $A_{1} A_{3}$ medial axis picture. The point where the boundary $\left(A_{3}\right)$ edge and the Y-junction $\left(A_{1}^{3}\right)$ curve end is the $A_{1} A_{3}$ point, also called a 'fin point'.

- The A_{3} case: where the two points of contact on the boundary surface of a single medial axis sheet come into coincidence. This corresponds to the medial axis being locally a surface with boundary - this boundary is the A_{3} curve, referred to as the 'edge' of the medial axis, whose points are A_{3} points.
- The A_{1}^{4} case: the point at which six smooth sheets of the medial axis intersect, called an A_{1}^{4} point, or ' 6 -junction point'. At this point, four A_{1}^{3} curves intersect, corresponding to a sphere tangent to the boundary in four points.
- The $A_{1} A_{3}$ case: where an A_{1}^{3} curve and an A_{3} curve meet and end, also called a 'fin point', since the medial axis looks locally like a fin emerging from another surface.

Here is a brief summary of the sections of this chapter.

§3.2: A Coordinate System for the Medial Axis in Three Dimensions.

This introduces the geometry and dynamics of the medial axis and gives formulae to be used in the rest of the chapter.
§3.3: Radial Shape Operator. We review the definitions of Damon's radial shape operator [D03, D04, D05] and formulae connecting the differential shape operator of the boundary and radial shape operator. We choose a basis for our case of a two-dimensional medial axis and obtain a connection between the trace, determinant of the corresponding radial shape operator matrix. Also we obtain an expression for the principal directions on the boundary to be used in the A_{1}^{3} case in $\S 3.4$.
§3.4: The A_{1}^{3} Case. We obtain constraints on the geometry and dynamics of the three medial sheets analogous to those discovered in the case of the medial axis in two dimensions. We equate normals of the corresponding boundary surfaces to discover first order information about the medial axis. Then we use $\S 3.3$ to equate principal curvatures and principal directions on the boundaries to discover second order information about the medial axis.
§3.5: First Example of the A_{1}^{3} Case. We take three general cylinders as the medial axis near to an A_{1}^{3} curve, where the radius functions r_{1}, r_{2}, r_{3} are unknown. Then we see what information we can obtain from the A_{1}^{3} constraints of $\S 3.4$ about the radius functions.
§3.6: Second Example of the A_{1}^{3} Case. We take a parabolic gutter and a plane as the boundary near to an A_{1}^{3} curve, so all of the terms in the A_{1}^{3} constraints of $\S 3.4$ can be calculated. Hence we can check that these constraints are satisfied in this example.
§3.7: The A_{1}^{4} Case. Consistency conditions on the medial axis are obtained at A_{1}^{4} points, using the constraints of §3.4.
§3.8: The A_{3} Case. We discover a restriction on the radius function at an A_{3} point similar to that in two dimensions. Also we find a limiting value for the Gauss curvature of the medial axis in terms of the geometry of the boundary at an A_{3} point.
§3.9: The $A_{1} A_{3}$ Case. We obtain the limiting form of the constraints in the A_{1}^{3} case as two of the points of contact come into coincidence. We revisit the second A_{1}^{3} example from $\S 3.6$ to illustrate the $A_{1} A_{3}$ case.

3.2 A Coordinate System for the Medial Axis in Three Dimensions

In order to obtain results analogous to (3.1) in \mathbb{R}^{3} we shall need to describe carefully the construction of the boundary surface S from its medial axis M and the radius function r. We begin with some definitions and formulae concerning the geometry of the medial axis in \mathbb{R}^{3}, quoted from [GK04]. Consider Figure 3.3, where there is a smooth $\left(A_{1}^{2}\right)$ medial axis sheet γ and its corresponding local boundary surfaces γ^{+}and γ^{-}. Thus spheres of radius r and centred on γ are tangent to the $\gamma^{ \pm}$. We have

$$
\begin{equation*}
\gamma^{ \pm}=\gamma-r N^{ \pm} \tag{3.3}
\end{equation*}
$$

where $N^{ \pm}$is the unit normal to the boundary surface $\gamma^{ \pm}$, oriented towards the centre of the bitangent sphere. We shall assume that near a point of interest on γ the gradient of r is non-zero and use the coordinate system given by the lines $r=$ constant, parametrized by t, say and referred to as ' t-curves', and the gradient lines of r, parametrized by r and referred to as ' r-curves'. We can fix the (r, t) coordinate system close to $\left(r_{0}, 0\right)$ say, by taking t to be arclength along the t-curve $r=r_{0}$. Arclength along the r-curves will be denoted by s. Partial derivatives will be denoted by suffices in what follows.

The unit vector T is defined to be parallel to γ_{r}, with N a unit normal vector to the medial axis and taking $U=N \times T$ makes an orthonormal triad T, U, N. The velocity v is defined by

$$
\begin{equation*}
\gamma_{r}=v T, \quad \gamma_{t}=w U \tag{3.4}
\end{equation*}
$$

for w a function which satisfies $w\left(r_{0}, t\right)=1$ for all t. The velocity v is $d s / d r$ along the r-curves and when the medial axis is a locally a smooth $\left(A_{1}^{2}\right)$ sheet we

Figure 3.3: The A_{1}^{2} case in \mathbb{R}^{3} : there is a sphere of contact between the boundary at $\gamma^{ \pm}$. At the centre of the sphere of contact the unit vectors T and U lie in the tangent plane to γ and the vector N is the unit normal to γ. Also, N^{+}is the unit normal to the boundary surface at γ^{+}and T^{+}is in the tangent plane to the boundary surface at γ^{+}. Similarly for N^{-}and T^{-}at γ^{-}. The angle ϕ is the angle between the line joining one of the contact points and the centre of the bitangent sphere. On the left ϕ is obtuse, on the right ϕ is acute. The cases where $\phi=0, \pi / 2, \pi$ are limiting cases.
can choose $v>0$, that is T to be in the direction of $\nabla r(\operatorname{that}$ is $\operatorname{grad}(r))$, and so $T=\nabla r /\|\nabla r\|$. This corresponds to the picture on the left of Figure 3.3. In the $\left(A_{1}^{3}\right)$ case of the medial axis being locally three intersecting sheets there are three such velocities v_{i}, for $i=1,2,3$, but it is not possible to choose each v_{i} to be positive (see §3.4.1). Even so, in this case each v_{i} is taken to be non-zero.

The convention of taking the boundary point γ^{+}to be on the ' $+N$ ' side of T and denoting ϕ to be the angle $(0<\phi<\pi)$ turned anti-clockwise from T to $-N^{+}$, in the plane oriented by T, N, means that

$$
\left.\begin{array}{l}
N^{ \pm}=-\cos \phi T \mp \sin \phi N \tag{3.5}\\
T^{ \pm}=\mp \sin \phi T+\cos \phi N
\end{array}\right\}
$$

Here the unit vector $T^{ \pm}$is tangent to $\gamma^{ \pm}$and parallel to $U \times N^{ \pm}$. We have the important equation

$$
\begin{equation*}
\cos \phi=-\frac{1}{v} \tag{3.6}
\end{equation*}
$$

so that $T^{ \pm}$and $N^{ \pm}$can also be expressed in terms of v as follows:

$$
\begin{aligned}
N^{ \pm} & =\frac{1}{v} T \mp \sqrt{1-\frac{1}{v^{2}}} N, \\
T^{ \pm} & =\mp \sqrt{1-\frac{1}{v^{2}}} T-\frac{1}{v} N .
\end{aligned}
$$

These formulae for $N^{ \pm}, T^{ \pm}$hold for all points of γ.
Three 'accelerations' are important and are defined by:

$$
\text { radial : } a=v_{r} ; \text { transverse : } a^{t}=v_{t} ; \text { mixed: } a^{*}=w_{r} .
$$

Then, at $\gamma\left(r_{0}, 0\right)$, we have

$$
\left.\begin{array}{l}
\gamma_{r r}=a T+v^{2} g^{r} U+v^{2} \kappa^{r} N \tag{3.7}\\
\gamma_{r t}=-v g^{r} T+v g^{t} U+f N, \quad\left(\text { where } f=v \tau^{r}=-v \tau^{t}\right) \\
\gamma_{t t}=-g^{t} T+\kappa^{t} N
\end{array}\right\}
$$

Here $g^{r}, \kappa^{r}, \tau^{r}$ are the geodesic curvature, normal curvature, geodesic torsion of the r-curve at $\left(r_{0}, 0\right)$. Similarly, $g^{t}, \kappa^{t}, \tau^{t}$ are the geodesic curvature, normal curvature, geodesic torsion of the t-curve at $\left(r_{0}, 0\right)$. Some of the terms in the above can be expressed in terms of the above accelerations. We have

$$
\begin{equation*}
-v g^{r}=a^{t} \text { and } v g^{t}=a^{*} \tag{3.8}
\end{equation*}
$$

Now consider the medial axis as an arbitrary local parametrization $\gamma(x, y)$ with an associated radius function $r(x, y)$. Then the envelope of spheres centred on γ is

$$
\begin{aligned}
& \left\{\mathbf{x}: \text { there exist } x, y \text { with } F_{d}=\frac{\partial F_{d}}{\partial x}=\frac{\partial F_{d}}{\partial y}=0\right\} \\
& \text { where } F_{d}=(\mathbf{x}-\gamma(x, y)) \cdot(\mathbf{x}-\gamma(x, y))-(r(x, y))^{2}
\end{aligned}
$$

(This function is labelled F_{d} since it is similar to the distance-squared function.) Let us calculate the envelope. Let $(\mathbf{x}-\gamma(x, y))=\lambda \gamma_{x}+\mu \gamma_{y}+\eta N$ for some λ, μ, η, where suffices denote differentiation and N is the unit normal to γ at
(x, y). So

$$
\begin{aligned}
F_{d} & =\|\mathbf{x}-\gamma\|^{2}-r^{2}=\lambda^{2} E+2 \lambda \mu F+\mu^{2} G+\eta^{2}=0 \\
\frac{\partial F_{d}}{\partial x} & =-2 \gamma_{x} \cdot(\mathbf{x}-\gamma)-2 r r_{x}=-2(\lambda E+\mu F)-2 r r_{x}=0 \\
\frac{\partial F_{d}}{\partial y} & =-2 \gamma_{y} \cdot(\mathbf{x}-\gamma)-2 r r_{y}=-2(\lambda F+\mu G F)-2 r r_{y}=0
\end{aligned}
$$

where $E=\gamma_{x} \cdot \gamma_{x}, F=\gamma_{x} \cdot \gamma_{y}, G=\gamma_{y} \cdot \gamma_{y}$. Solving the these equations for λ, μ, η gives

$$
\lambda=\frac{r\left(F r_{y}-G r_{x}\right)}{E G-F^{2}}, \mu=\frac{r\left(F r_{x}-E r_{y}\right)}{E G-F^{2}}, \eta=r \sqrt{1-\frac{E r_{y}^{2}-2 F r_{x} r_{y}+G r_{x}^{2}}{E G-F^{2}}}
$$

Hence, relabelling \mathbf{x} as $\gamma^{ \pm}$and using (3.3), we have

$$
\begin{align*}
\gamma^{ \pm}= & \gamma+\frac{r\left(\gamma_{x}\left(F r_{y}-G r_{x}\right)+\gamma_{y}\left(F r_{x}-E r_{y}\right)\right)}{E G-F^{2}} \\
& \pm r \sqrt{1-\left(\frac{E r_{y}^{2}-2 F r_{x} r_{y}+G r_{x}^{2}}{E G-F^{2}}\right)} N \tag{3.9}
\end{align*}
$$

Comparison with $(3.4),(3.3),(3.5)$ gives

$$
\begin{align*}
\sin \phi & =\sqrt{1-\left(\frac{E r_{y}^{2}-2 F r_{x} r_{y}+G r_{x}^{2}}{E G-F^{2}}\right)} \tag{3.10}\\
\cos ^{2} \phi & =\frac{1}{v^{2}}=\frac{E r_{y}^{2}-2 F r_{x} r_{y}+G r_{x}^{2}}{E G-F^{2}} \tag{3.11}\\
\gamma_{r} & =\frac{\gamma_{x}\left(G r_{x}-F r_{y}\right)+\gamma_{y}\left(E r_{y}-F r_{x}\right)}{E r_{y}^{2}-2 F r_{x} r_{y}+G r_{x}^{2}} \tag{3.12}
\end{align*}
$$

3.3 Radial Shape Operator

This section contains results connecting the geometry and dynamics of a medial axis sheet with the two corresponding boundary surfaces in three-space. These are Lemmas 3.3.1.4, 3.3.2.1, 3.3.2.2 and 3.3.3.2, and will enable us to obtain expressions for the principal curvatures and principal directions on the boundary in terms of information about the medial axis and radius function. This has most importance in the A_{1}^{3} case, in $\S 3.4$. In order to obtain these lemmas we consider the radial shape operator from [D03, D04, D05], introduced below.

3.3.1 Introducing the Radial Shape Operator

We consider from [D04, D05] a smooth n-dimensional boundary $B \subset \mathbb{R}^{n+1}$ with its n-dimensional medial axis $M \subset \mathbb{R}^{n+1}$ and the multivalued vector field R on M such that $B=\{x+R(x): x \in M$, all values of $R\}$. The pair (M, R) is referred to as the skeletal structure. (In [D03] Damon considers a more general M, that is an n-dimensional skeletal set, a special type of Whitney stratified set, of which a medial axis is a special case.) We have $R=r R_{1}$, where R_{1} is a unit vector field and r is the radius function. Defined below is the radial shape operator S_{rad} of the skeletal structure (M, R). (In [D03, D04, D05] U is used for our R, but for us U is already in use.)

Definition 3.3.1.1 ([D04, §1]) In a neighbourhood of a point $x_{0} \in M$ with a single smooth choice of value for R, let $\psi_{t}(x)=x+t R(x)$ be a local representation of the radial flow from M to B, and let the radial map be given by $\psi_{1}(x)=x+R(x)$. (The radial map is the time one map of the radial flow.)

See Figure 3.4, left for a picture of the radial flow.

Definition 3.3.1.2 ([D04, §1]) At a non-edge point x_{0} of M with a smooth value of R, let

$$
S_{\mathrm{rad}}(v)=-\operatorname{proj}_{R}\left(\frac{\partial R_{1}}{\partial v}\right)
$$

for $v \in T_{x_{0}} M$. Here proj_{R} denotes projection onto $T_{x_{0}} M$ along R. Also, $\partial R_{1} / \partial v$ is the covariant derivative of R_{1} in the direction of v. The principal radial curvatures $\kappa_{r i}$ are the eigenvalues of S_{rad}. The corresponding eigenvectors are the principal radial directions.

In the above, the boundary points of M are called edge points so as not to be confused with points of B. See Figure 3.4, right for a picture of the radial shape operator.

We choose a basis $\mathbf{v}=\left\{v_{1}, \ldots, v_{n}\right\}$ for $T_{x_{0}} M$ and let $S_{\mathbf{v}}$ denote the matrix representation of $S_{\text {rad }}$ with respect to this basis. Then $\partial R_{1} / \partial v_{i}$ is represented

Figure 3.4: Left: the local representation of the radial flow from the medial axis M to the associated boundary B in \mathbb{R}^{2}, where R is a multivalued vector field from points of M to B. Right: the projection for defining the radial shape operator S_{rad}; this picture is in \mathbb{R}^{3}.
for each i by

$$
\begin{equation*}
\frac{\partial R_{1}}{\partial v_{i}}=a_{i} \cdot R_{1}-\sum_{j=1}^{n} s_{j i} v_{j} . \tag{3.13}
\end{equation*}
$$

Using this, we can write

$$
\frac{\partial R_{1}}{\partial \mathbf{v}}=A_{\mathbf{v}} \cdot R_{1}-S_{\mathbf{v}}^{\mathrm{T}} \cdot \mathbf{v}
$$

where $\partial R_{1} / \partial \mathbf{v}$ is a column vector with vector entries $\partial R_{1} / \partial v_{i}$, and $A_{\mathbf{v}} R_{1}$ is the column vector with entries $a_{i} R_{1}$. Also, \mathbf{v} denotes the column vector with i-th entry v_{i} (allowing an abuse of notation). The derivative of the radial flow can be written as

$$
\begin{equation*}
\frac{\partial \psi_{t}}{\partial v_{i}}=v_{i}+t\left(\frac{\partial r}{\partial v_{i}} \cdot R_{1}+r \cdot \frac{\partial R_{1}}{\partial v_{i}}\right) . \tag{3.14}
\end{equation*}
$$

Let $d \psi_{t}\left(v_{i}\right)=\partial \psi_{t} / \partial v_{i}$ and $d r\left(v_{i}\right)=\partial r / \partial v_{i}$.
In [D04] Damon proves the following.

Lemma 3.3.1.3 ([D04, Lemma 3.1]) Suppose (M, R) is a skeletal structure and that $x_{0} \in M$ is a non-edge point. Let R be a smooth value (on a nonedge local manifold component M_{B} of x_{0}) for which $1 / r$ is not an eigenvalue
of S_{rad} at x_{0}. Then, the corresponding 'compatibility 1-form' η_{R}, given by $\eta_{R}(v)=v \cdot R_{1}+d r(v)$, vanishes at x_{0} if and only if $R\left(x_{0}\right)$ is orthogonal to the associated boundary at $\psi_{1}\left(x_{0}\right)$.

Lemma 3.3.1.4 ([D04, Theorem 3.2]) Suppose (M, R) is a skeletal structure such that, for a choice of smooth value of R, the associated compatibility 1-form η_{R} vanishes identically on a neighbourhood of a smooth point x_{0} of M, and $1 / r$ is not an eigenvalue of S_{rad} at x_{0}. Let $x_{0}^{\prime}=\psi_{1}\left(x_{0}\right)$, and \mathbf{v}^{\prime} be the image of \mathbf{v} for a basis $\left\{v_{1}, \ldots, v_{n}\right\}$.

1. The differential geometric shape operator S_{B} of B at x_{0}^{\prime} has a matrix representation with respect to \mathbf{v}^{\prime} given by

$$
\begin{equation*}
S_{B \mathbf{v}^{\prime}}=\left(I-r \cdot S_{\mathbf{v}}\right)^{-1} S_{\mathbf{v}} . \tag{3.15}
\end{equation*}
$$

2. Hence, there is a bijection between the principal curvatures κ_{i} of B at x_{0}^{\prime} and the principal radial curvatures $\kappa_{r i}$ of M at x_{0} (counted with multiplicities) given by

$$
\begin{equation*}
\kappa_{i}=\frac{\kappa_{r i}}{1-r \kappa_{r i}} \quad \text { or equivalently } \quad \kappa_{r i}=\frac{\kappa_{i}}{1+r \kappa_{i}} . \tag{3.16}
\end{equation*}
$$

3. Also, the principal radial directions corresponding to $\kappa_{r i}$ are mapped by $d \psi_{1}$ to the principal directions corresponding to κ_{i}.

The above definitions and results about the radial shape operator are for a medial axis $M \subset \mathbb{R}^{n+1}$. Now we will specialize to consider a smooth twodimensional medial axis M of a smooth boundary B and a radius function $r>0$ in three-space. We will choose a basis $\mathbf{v}=\left\{v_{1}, v_{2}\right\}$ for $T_{x_{0}} M$ and obtain the matrix representation of the radial shape operator with respect to this basis. The matrix $S_{\mathbf{v}}$ will be expressed in terms of the geometry and dynamics of the medial axis and, using Lemma 3.3.1.4, we will obtain an expression for the principal curvatures and principal directions on the boundary.

Before Lemma 3.3.1.4 can be used, we need to check that its conditions are satisfied in our situation of a medial axis in three dimensions. Firstly, we
require that for a choice of smooth value of R, the associated compatibility 1 form η_{R} vanishes identically on a neighbourhood of a smooth point x_{0} of M. In our situation of smooth medial axis with smooth boundary we only consider R_{1} orthogonal to the boundary B. By Lemma 3.3.1.3 this means the compatibility 1-form η_{R} vanishes for all points of the medial axis. Hence

$$
\begin{aligned}
\eta_{R}(v) & =v \cdot R_{1}+d r(v)=0 \\
\Rightarrow \quad d r(v) & =-v \cdot R_{1}
\end{aligned}
$$

for all $v \in T_{x_{0}} M$, taking $-N^{+}$or $-N^{-}$as R_{1} (see (3.5)). Secondly, we need $1 / r$ not to be an eigenvalue of $S_{\text {rad }}$ at x_{0}. Since the boundary B is assumed to be smooth, by Lemma 4.1 of [D05] we have that

$$
r<\min \left\{\frac{1}{\kappa_{r i}}\right\} \text { for all positive principal radial curvatures } \kappa_{r i}
$$

and for $\kappa_{r i}<0$ we have $1-r \kappa_{r i}>0$. Therefore $1 / r$ cannot be an eigenvalue of $S_{\text {rad }}$ at any point of M. Hence the conditions of Lemma 3.3.1.4 are satisfied, so we can apply its results.

3.3.2 A Matrix Representation of $S_{\text {rad }}$ in Three Dimensions

Now we shall calculate the radial shape operator of γ with respect to a chosen basis $\{T, U\}$, where T, U are the vectors as defined in $\S 3.2$ at the point $\gamma(r=$ $\left.r_{0}, t=0\right)$. Also, as in $\S 3.2$, the medial axis will be labelled γ, and the two boundary sheets are $\gamma^{ \pm}$. The derivatives $\partial R_{1} / \partial v_{i}$, for $i=1,2$, are needed for the radial shape operator. Note that R is assumed to be pointing from points of the medial axis to points of the boundary, whereas $N^{ \pm}$points in the opposite direction, from points of the boundary to points of the medial axis. Therefore we shall take R_{1} as $-N^{ \pm}$in what follows. Let $S_{\mathrm{v}}^{ \pm}$denote the matrix representation of the radial shape operator of γ corresponding to boundary $\gamma^{ \pm}$ with respect to the basis $\mathbf{v}=\{T, U\}$ at $\gamma\left(r_{0}, 0\right)$. Then we can write

$$
S_{\mathbf{v}}^{ \pm}=\left(\begin{array}{cc}
s_{11}^{ \pm} & s_{12}^{ \pm} \\
s_{21}^{ \pm} & s_{22}^{ \pm}
\end{array}\right)
$$

By (3.13), we need $\partial N^{ \pm} / \partial T, \partial N^{ \pm} / \partial U$ in order to calculate the $s_{i j}^{ \pm}$at $\gamma\left(r_{0}, 0\right)$. At a point of the medial axis T is tangent to the curve $t=$ constant, that is the ' r-curve' parametrized by r. So the covariant derivative $\partial N^{ \pm} / \partial T$ is the same as $\partial N^{ \pm} / \partial s$, where s is arclength along the r-curve. Similarly, U is tangent to the curve $r=$ constant, that is the ' t-curve' parametrized by t, which is arclength along this t-curve. Hence $\partial N^{ \pm} / \partial U$ is the same as $\partial N^{ \pm} / \partial t$. Since the following calculations will be used for the A_{1}^{3} case, we do not assume that $v=d s / d r$ is positive along the r-curves, which can be done when the medial axis is locally a smooth A_{1}^{2} sheet (see $\S \S 3.2,3.4 .1$). Then, using suffices to denote differentiation, (3.13) for the chosen basis becomes

$$
\left.\begin{array}{l}
N_{s}^{ \pm}=a_{1}^{ \pm} N^{ \pm}+s_{11}^{ \pm} T+s_{21}^{ \pm} U \tag{3.17}\\
N_{t}^{ \pm}=a_{2}^{ \pm} N^{ \pm}+s_{12}^{ \pm} T+s_{22}^{ \pm} U
\end{array}\right\}
$$

Now consider $N_{s}^{ \pm}$and $N_{t}^{ \pm}$. By (3.5) we have

$$
\begin{aligned}
& N_{s}^{ \pm}=\phi_{s}(\sin \phi T \mp \cos \phi N)-\cos \phi T_{s} \mp \sin \phi N_{s} \\
& N_{t}^{ \pm}=\phi_{t}(\sin \phi T \mp \cos \phi N)-\cos \phi T_{t} \mp \sin \phi N_{t}
\end{aligned}
$$

By definition, at $\gamma\left(r_{0}, 0\right)$ we can write the derivatives of T, U, N in the schematic form

$$
\begin{aligned}
\frac{\partial}{\partial s}\left(\begin{array}{c}
T \\
U \\
N
\end{array}\right) & =\left(\begin{array}{ccc}
0 & g^{r} & \kappa^{r} \\
-g^{r} & 0 & \tau^{r} \\
-\kappa^{r} & -\tau^{r} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
U \\
N
\end{array}\right), \\
\text { and } \frac{\partial}{\partial t}\left(\begin{array}{c}
U \\
-T \\
N
\end{array}\right) & =\left(\begin{array}{ccc}
0 & g^{t} & \kappa^{t} \\
-g^{t} & 0 & \tau^{t} \\
-\kappa^{t} & -\tau^{t} & 0
\end{array}\right)\left(\begin{array}{c}
U \\
-T \\
N
\end{array}\right) .
\end{aligned}
$$

Hence $N_{s}^{ \pm}, N_{t}^{ \pm}$become

$$
\begin{aligned}
& N_{s}^{ \pm}=\left(\phi_{s} \pm \kappa^{r}\right) \sin \phi T+\left(-g^{r} \cos \phi \pm \tau^{r} \sin \phi\right) U+\left(\mp \phi_{s}-\kappa^{r}\right) \cos \phi N \\
& N_{t}^{ \pm}=\left(\phi_{t} \mp \tau^{t}\right) \sin \phi T+\left(-g^{t} \cos \phi \pm \kappa^{t} \sin \phi\right) U+\left(\mp \phi_{t}+\tau^{t}\right) \cos \phi N
\end{aligned}
$$

We can simplify these expressions further by differentiating (3.6) with respect to arclength along the t-curve, that is set $r=r_{0}$ and differentiate with respect
to t. (This is allowed since (3.6) holds for all points of γ.) Then we can set $t=0$ to evaluate the derivative with respect to t at the point $\gamma\left(r_{0}, 0\right)$. This gives

$$
\phi_{t}=-v_{t} \frac{1}{v^{2} \sin \phi}=-\frac{a^{t}}{v^{2} \sin \phi}
$$

since $a^{t}=v_{t}$ by definition. Then differentiate (3.6) with respect to arclength along the r-curve, that is set $t=0$ and differentiate with respect to s. Then we can set $r=r_{0}$ to evaluate the derivative with respect to s at the point $\gamma\left(r_{0}, 0\right)$. This gives

$$
\phi_{s}=-\frac{1}{v^{2} \sin \phi}\left(v_{r} \frac{d r}{d s}\right)=-\frac{a}{v^{3} \sin \phi}
$$

since we know $d s / d r$ is v along the r-curve. Also, from (3.7) and (3.8) we have $\tau^{r}=-\tau^{t}, g^{r}=-a^{t} / v$, and $g^{t}=a^{*} / v$. Then, using (3.5), we get the following:

$$
\begin{align*}
& N_{s}^{ \pm}=\left(\pm \frac{a}{v^{3} \sin \phi}-\kappa^{r}\right) T^{ \pm}+\left(\frac{a^{t} \cos \phi}{v} \mp \tau^{t} \sin \phi\right) U \tag{3.18}\\
& N_{t}^{ \pm}=\left(\pm \frac{a^{t}}{v^{2} \sin \phi}+\tau^{t}\right) T^{ \pm}+\left(-\frac{a^{*} \cos \phi}{v} \pm \kappa^{t} \sin \phi\right) U \tag{3.19}
\end{align*}
$$

In order to calculate the radial shape operator, we must deduce $a_{1}^{ \pm}, a_{2}^{ \pm}$, $s_{11}^{ \pm}, s_{12}^{ \pm}, s_{21}^{ \pm}, s_{22}^{ \pm}$from (3.17), using (3.18) and (3.19). This gives two vector equations to be solved, the first of which (from (3.17) and (3.18)) is as follows:

$$
\begin{aligned}
& a_{1}^{ \pm}(-\cos \phi T \mp\sin \phi N)+s_{11}^{ \pm} T+s_{21}^{ \pm} U \\
&=\left(-\frac{a}{v^{3} \sin \phi} \pm \kappa^{r}\right)(\sin \phi T \mp \cos \phi N)+\left(\frac{a^{t} \cos \phi}{v} \mp \tau^{t} \sin \phi\right) U \\
& \Longleftrightarrow \mathbf{0}=\left(-a_{1}^{ \pm} \cos \phi+s_{11}^{ \pm}+\frac{a}{v^{3}} \mp \kappa^{r} \sin \phi\right) T \\
&+\left(s_{21}^{ \pm}-\frac{a^{t} \cos \phi}{v} \pm \tau^{t} \sin \phi\right) U \\
&+\left(\mp a_{1}^{ \pm} \sin \phi \mp \frac{a \cos \phi}{v^{3} \sin \phi}+\kappa^{r} \cos \phi\right) N
\end{aligned}
$$

By definition, T, U, N form an orthonormal triad, so the above holds if and only if the coefficients of T, U, N are zero. Solving the coefficients of T, U,
N equal to zero and using the fact that $\cos \phi=-1 / v$ from (3.6) gives the following:

$$
\begin{aligned}
a_{1}^{ \pm} & =\left(\frac{-a}{v^{3} \sin ^{2} \phi} \pm \frac{\kappa^{r}}{\sin \phi}\right) \cos \phi, \\
s_{11}^{ \pm} & =\frac{-a}{v^{3} \sin ^{2} \phi} \pm \frac{\kappa^{r}}{\sin \phi}, \\
s_{21}^{ \pm} & =-\frac{a^{t}}{v^{2}} \mp \tau^{t} \sin \phi .
\end{aligned}
$$

The second vector equation to be solved (from (3.17) and (3.19)) is as follows:

$$
\begin{aligned}
a_{2}^{ \pm}(-\cos \phi T \mp & \sin \phi N)+s_{12}^{ \pm} T+s_{22}^{ \pm} U \\
=\left(-\frac{a^{t}}{v^{2} \sin \phi} \mp \tau^{t}\right) & (\sin \phi T \mp \cos \phi N)+\left(-\frac{a^{*} \cos \phi}{v} \pm \kappa^{t} \sin \phi\right) U \\
\Longleftrightarrow 0= & \left(-a_{2}^{ \pm} \cos \phi+s_{12}^{ \pm}+\frac{a^{t}}{v^{2}} \pm \tau^{t} \sin \phi\right) T \\
& +\left(s_{22}^{ \pm}+\frac{a^{*} \cos \phi}{v} \mp \kappa^{t} \sin \phi\right) U \\
& +\left(\mp a_{2}^{ \pm} \sin \phi \mp \frac{a^{t} \cos \phi}{v^{3} \sin \phi}-\tau^{t} \cos \phi\right) N .
\end{aligned}
$$

Again, this holds if and only if the coefficients of T, U, N are zero in the above. Solving the coefficients of T, U, N equal to zero and using the fact that $\cos \phi=-1 / v$ from (3.6) gives the following:

$$
\begin{aligned}
a_{2}^{ \pm} & =\left(\frac{-a^{t}}{v^{2} \sin ^{2} \phi} \mp \frac{\tau^{r}}{\sin \phi}\right) \cos \phi, \\
s_{12}^{ \pm} & =\frac{-a^{t}}{v^{2} \sin ^{2} \phi} \mp \frac{\tau^{r}}{\sin \phi}, \\
s_{22}^{ \pm} & =\frac{a^{*}}{v^{2}} \pm \kappa^{t} \sin \phi .
\end{aligned}
$$

Hence we have the following.
Lemma 3.3.2.1 The radial shape operator $S_{\mathrm{v}}^{ \pm}$with respect to $-N^{ \pm}$and the basis $\{T, U\}$ at $\gamma\left(r_{0}, 0\right)$ is as below:

$$
S_{\mathbf{v}}^{ \pm}=\left(\begin{array}{cc}
s_{11}^{ \pm} & s_{12}^{ \pm} \tag{3.20}\\
s_{21}^{ \pm} & s_{22}^{ \pm}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{a}{v^{3} \sin ^{2} \phi} \pm \frac{\kappa^{r}}{\sin \phi} & \left(-\frac{a^{t}}{v^{2}} \mp \tau^{t} \sin \phi\right) \frac{1}{\sin ^{2} \phi} \\
-\frac{a^{t}}{v^{2}} \mp \tau^{t} \sin \phi & \frac{a^{*}}{v^{2}} \pm \kappa^{t} \sin \phi
\end{array}\right)
$$

Let trace ${ }^{ \pm}$, $\operatorname{det}^{ \pm}$denote trace $\left(S_{\mathbf{v}}^{ \pm}\right)$, determinant $\left(S_{\mathbf{v}}^{ \pm}\right)$. Then

$$
\begin{aligned}
\operatorname{trace}^{ \pm}= & -\frac{a}{v^{3} \sin ^{2} \phi}+\frac{a^{*}}{v^{2}} \pm\left(\frac{\kappa^{r}}{\sin \phi}+\kappa^{t} \sin \phi\right) \\
\operatorname{det}^{ \pm}= & -\frac{a^{*} a}{v^{5} \sin ^{2} \phi}+\kappa^{r} \kappa^{t}-\frac{\left(a^{t}\right)^{2}}{v^{4} \sin ^{2} \phi}-\left(\tau^{t}\right)^{2} \\
& \pm\left(\frac{a^{*} \kappa^{r} v-a \kappa^{t}-2 a^{t} \tau^{t} v}{v^{3} \sin \phi}\right)
\end{aligned}
$$

So we have the following.
Lemma 3.3.2.2 The trace and determinant of $S_{\mathrm{v}}^{ \pm}$satisfy

$$
\begin{align*}
\frac{1}{2}\left(\operatorname{trace}^{+}-\operatorname{trace}^{-}\right) & =\frac{\kappa^{r}}{\sin \phi}+\kappa^{t} \sin \phi \tag{3.21}\\
\frac{1}{2}\left(\operatorname{det}^{+}-\operatorname{det}^{-}\right) & =\frac{a^{*} \kappa^{r} v-a \kappa^{t}-2 a^{t} \tau^{t} v}{v^{3} \sin \phi} \tag{3.22}
\end{align*}
$$

3.3.3 Principal Directions on the Boundary

The principal directions on the boundary can be expressed in terms of the geometry of the medial axis by using (3.14) and Lemma 3.3.1.4. Let $\kappa_{r i}^{ \pm}$be one of the principal radial curvatures, that is an eigenvalue of $S_{\mathbf{v}}^{ \pm}$given by (3.20). The corresponding principal radial direction is given by

$$
\begin{equation*}
V_{1}^{ \pm}=s_{12}^{ \pm} T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U, \tag{3.23}
\end{equation*}
$$

or, alternatively,

$$
V_{2}^{ \pm}=\left(\kappa_{r i}^{ \pm}-s_{22}^{ \pm}\right) T+s_{21}^{ \pm} U .
$$

The expression for the principal direction on the boundary using (3.23) is

$$
\begin{aligned}
d \psi_{1}^{ \pm}\left(V_{1}^{ \pm}\right)= & s_{12}^{ \pm} T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U+\frac{\partial r}{\partial V_{1}}\left(-N^{ \pm}\right)+r\left(\frac{-\partial N^{ \pm}}{\partial V_{1}}\right) \\
= & s_{12}^{ \pm} T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U-\left(V_{1}^{ \pm} \cdot\left(-N^{ \pm}\right)\right)\left(-N^{ \pm}\right) \\
& +r\left(-s_{12}^{ \pm} \frac{\partial N^{ \pm}}{\partial s}-\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) \frac{\partial N^{ \pm}}{\partial t}\right) \\
= & s_{12}^{ \pm} T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U+s_{12}^{ \pm} \cos \phi N^{ \pm} \\
& +r s_{12}^{ \pm}\left(-a_{1}^{ \pm} N^{ \pm}-s_{11}^{ \pm} T-s_{21}^{ \pm} U\right) \\
& +r\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right)\left(-a_{2}^{ \pm} N^{ \pm}-s_{12}^{ \pm} T-s_{22}^{ \pm} U\right) \\
= & s_{12}^{ \pm} T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U+s_{12}^{ \pm} \cos \phi(-\cos \phi T \mp \sin \phi N) \\
& +r s_{12}^{ \pm}\left(-a_{1}^{ \pm}(-\cos \phi T \mp \sin \phi N)-s_{11}^{ \pm} T-s_{21}^{ \pm} U\right) \\
& +r\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right)\left(-a_{2}^{ \pm}(-\cos \phi T \mp \sin \phi N)-s_{12}^{ \pm} T-s_{22}^{ \pm} U\right) .
\end{aligned}
$$

After substitution for $s_{i j}^{ \pm}$and $a_{1,2}^{ \pm}$we get

$$
\begin{aligned}
d \psi_{1}^{ \pm}\left(V_{1}^{ \pm}\right)= & \left(-\frac{a^{t}}{v^{2}} \mp \tau^{t} \sin \phi\right)\left(1-r \kappa_{r i}^{ \pm}\right) T \\
& +\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}+r\left(\operatorname{det}^{ \pm}-s_{22}^{ \pm} \kappa_{r i}^{ \pm}\right)\right) U \\
& \mp\left(-\frac{a^{t}}{v^{2}} \mp \tau^{t} \sin \phi\right) \frac{\cos \phi}{\sin \phi}\left(1-r \kappa_{r i}^{ \pm}\right) N,
\end{aligned}
$$

which is the same as

$$
\begin{align*}
d \psi_{1}^{ \pm}\left(V_{1}^{ \pm}\right)= & s_{12}^{ \pm} \sin ^{2} \phi\left(1-r \kappa_{r i}^{ \pm}\right) T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}+r\left(\operatorname{det}^{ \pm}-s_{22}^{ \pm} \kappa_{r i}^{ \pm}\right)\right) U \tag{3.24}\\
& \mp s_{12}^{ \pm} \cos \phi \sin \phi\left(1-r \kappa_{r i}^{ \pm}\right) N .
\end{align*}
$$

This is not the end, since by the following lemma we can further simplify the right-hand side of (3.24).

Lemma 3.3.3.1 The principal radial curvatures $\kappa_{r i}^{ \pm}$and the principal curvatures $\kappa_{j}^{ \pm}$on the boundary $\gamma^{ \pm}$at $\gamma^{ \pm}\left(r_{0}, 0\right)$ satisfy

$$
\begin{equation*}
\kappa_{j}^{ \pm}\left(1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right)=\kappa_{r i}^{ \pm}-r \operatorname{det}^{ \pm}, \tag{3.25}
\end{equation*}
$$

for $i=1,2, j=1,2$.

Proof. Since the boundary sheet $\gamma^{ \pm}$is smooth, we know that $1 / r$ is not an eigenvalue of $S_{\mathrm{v}}^{ \pm}$and, using (3.15) from Lemma 3.3.1.4, we have a matrix representation $S_{\gamma^{ \pm} \mathbf{v}^{\prime}}$ of $S_{\gamma^{ \pm}}$, the differential geometric shape operator of $\gamma^{ \pm}$at $\psi_{1}^{ \pm}\left(\gamma\left(r_{0}, 0\right)\right)$ with respect to \mathbf{v}^{\prime}, as follows:

$$
S_{\gamma^{ \pm} \mathbf{v}^{\prime}}=\left(I-r \cdot S_{\mathbf{v}}^{ \pm}\right)^{-1} S_{\mathbf{v}}^{ \pm}
$$

It is easy to show from this that

$$
\begin{aligned}
\operatorname{trace}\left(S_{\gamma^{ \pm} \mathbf{v}^{\prime}}\right) & =\frac{\operatorname{trace}^{ \pm}-2 r \operatorname{det}^{ \pm}}{1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}}, \\
\operatorname{det}\left(S_{\gamma^{ \pm} \mathbf{v}^{\prime}}\right) & =\frac{\operatorname{det}^{ \pm}}{1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}}, \\
\text {and }\left(\operatorname{trace}\left(S_{\gamma^{ \pm} \mathbf{v}^{\prime}}\right)\right)^{2}-4 \operatorname{det}\left(S_{\gamma^{ \pm} \mathbf{v}^{\prime}}\right) & =\frac{\left(\operatorname{trace}^{ \pm}\right)^{2}-4 \operatorname{det}^{ \pm}}{\left(1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right)^{2}},
\end{aligned}
$$

so the eigenvalues $\kappa_{j}^{ \pm}$of $S_{\gamma^{ \pm} \mathbf{v}^{\prime}}$ are

$$
\frac{\operatorname{trace}^{ \pm}-2 r \operatorname{det}^{ \pm} \pm \eta \sqrt{\left(\operatorname{trace}^{ \pm}\right)^{2}-4 \operatorname{det}^{ \pm}}}{2\left(1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right)}
$$

where $\eta=\operatorname{sign}\left(1-r\right.$ trace $\left.^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right)$. So

$$
\begin{aligned}
\kappa_{j}^{ \pm}\left(1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right) & =\frac{\operatorname{trace}^{ \pm} \pm \eta \sqrt{\left(\operatorname{trace}^{ \pm}\right)^{2}-4 \operatorname{det}^{ \pm}}}{2}-r \operatorname{det}^{ \pm} \\
& =\kappa_{r i}^{ \pm}-r \operatorname{det}^{ \pm},
\end{aligned}
$$

where $i=1,2, j=1,2$, as required.

We can use Lemma 3.3.3.1 to simplify the expression for a principal direction on the boundary from (3.24) as follows. Since we have a smooth boundary we know that $1-r \kappa_{r i}^{ \pm} \neq 0$ and so

$$
\begin{aligned}
\frac{d \psi_{1}^{ \pm}\left(V_{1}^{ \pm}\right)}{1-r \kappa_{r i}^{ \pm}}= & s_{12}^{ \pm} \sin ^{2} \phi T+\frac{\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}+r\left(\operatorname{det}^{ \pm}-s_{22}^{ \pm} \kappa_{r i}^{ \pm}\right)\right)}{1-r \kappa_{r i}^{ \pm}} U \\
& \mp s_{12}^{ \pm} \cos \phi \sin \phi N .
\end{aligned}
$$

Using (3.16) from Lemma 3.3.1.4, the coefficient of U in the above becomes

$$
\begin{aligned}
& \frac{\kappa_{r i}^{ \pm}}{1-r \kappa_{r i}^{ \pm}}\left(1-r s_{22}^{ \pm}\right)+\frac{r \operatorname{det}^{ \pm}-s_{11}^{ \pm}}{1-r \kappa_{r i}^{ \pm}} \\
= & \kappa_{i}^{ \pm}\left(1-r s_{22}^{ \pm}\right)+\left(1+r \kappa_{i}^{ \pm}\right)\left(r \operatorname{det}^{ \pm}-s_{11}^{ \pm}\right), \\
& \text {since } \frac{1}{1-r \kappa_{r i}^{ \pm}}=1+r \kappa_{i}^{ \pm} \\
= & \kappa_{i}^{ \pm}\left(1-r \operatorname{trace}^{ \pm}+r^{2} \operatorname{det}^{ \pm}\right)+r \operatorname{det}^{ \pm}-s_{11}^{ \pm} \\
= & \kappa_{r j}^{ \pm}-s_{11}^{ \pm}, \quad \text { using Lemma 3.3.3.1. }
\end{aligned}
$$

Hence we have the following.
Lemma 3.3.3.2 The principal directions on $\gamma^{ \pm}$at $\gamma^{ \pm}\left(r_{0}, 0\right)$ are given by

$$
\begin{equation*}
s_{12}^{ \pm} \sin ^{2} \phi T+\left(\kappa_{r i}^{ \pm}-s_{11}^{ \pm}\right) U \mp s_{12}^{ \pm} \cos \phi \sin \phi N, \tag{3.26}
\end{equation*}
$$

for $i=1,2$ and where $s_{11}^{ \pm}, s_{12}^{ \pm}, s_{21}^{ \pm}, s_{22}^{ \pm}$are given in (3.20).
The results connecting trace ${ }^{+}$, trace ${ }^{-}$and $\operatorname{det}^{+}, \operatorname{det}^{-}$, and the expressions for the principal directions on the boundary will be used in the following section in the A_{1}^{3} case.

3.4 The A_{1}^{3} Case

The A_{1}^{3} case of the medial axis in \mathbb{R}^{3} is that of points which are the centres of spheres tangent to a surface in three points. In this case the medial axis is locally three sheets intersecting transversally along a curve, called the A_{1}^{3} curve or Y-junction curve. Points of this curve are called A_{1}^{3} points or Y-junction points and are centres of tritangent spheres, that is the spheres tangent to the boundary in three points. The A_{1}^{4} case corresponds to the centre of a sphere with tangency with a surface in four points; it is a point where four A_{1}^{3} curves meet. An $A_{1} A_{3}$ point is an A_{1}^{3} point where two of the points of contact have come into coincidence. Hence the A_{1}^{3} case is the major case to consider, since A_{1}^{4} and $A_{1} A_{3}$ points are limits of A_{1}^{3} points.

Let the medial sheets intersecting along an A_{1}^{3} curve be labelled γ_{1}, γ_{2}, γ_{3}. Associated to each γ_{i} are two boundary surfaces $\gamma_{i}^{ \pm}$and so there are six associated boundary surfaces, but each coincides with one, and only one, of the others, so there are three distinct surfaces. Let the identifications be $\gamma_{i}^{+}=\gamma_{i+1}^{-}$, where we evaluate $(i+1)$ modulo 3 when $(i+1)>3$. Hence we have $\gamma_{1}^{+}=\gamma_{2}^{-}, \gamma_{2}^{+}=\gamma_{3}^{-}, \gamma_{3}^{+}=\gamma_{1}^{-}$. This is analogous to the A_{1}^{3} case in $\mathbb{R}^{2}-$ see Figure 3.1. In \mathbb{R}^{2} the identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$had consequences for the geometry and dynamics of the medial curves in the form of constraints such as (3.1). Similarly, in \mathbb{R}^{3} the identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$give rise to conditions which must be satisfied by the medial axis. These conditions are obtained in this section.

Here is a brief summary of what is to come in this section. The coordinate systems used in the A_{1}^{3} case are described and summarized in Table 3.1. Using this the consequences of making the identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$at first order derivatives are examined, which result in Theorem 3.4.2.1. Then, using the first coordinate system, we go to the next order of derivatives and obtain Theorem 3.4.3.2, which contains consistency conditions on the medial axis. However, this does not obtain all of the information given by making the identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$up to second order derivatives and so, to extract all of this information, the second coordinate system is used. This means that we can reduce the number of variables involved in the conditions and so we obtain Theorem 3.4.5.2. Alternative forms of the consistency conditions from Theorem 3.4.5.2 are contained in Theorems 3.4.5.3, 3.4.5.4.

3.4.1 Coordinate Systems for the A_{1}^{3} Case

The consistency conditions of this section are expressed in terms of two coordinate systems, the first of which is based on the ' (r, t) ' coordinate system defined in $\S 3.2$ for a single A_{1}^{2} sheet. For the A_{1}^{3} case we define the same quantities on each medial sheet γ_{i} meeting along the A_{1}^{3} curve at an A_{1}^{3} point $\gamma_{i}\left(r_{i}=r_{0}, t_{i}=0\right)$ for r_{0} constant. See Table 3.1 for a summary of the notation used in this system.

Figure 3.5: The medial sheets γ_{1}, γ_{2}, and γ_{3} intersecting along an A_{1}^{3} curve in \mathbb{R}^{3} and the corresponding points of contact on the boundaries. Left: the vectors T, T_{1}, W_{1}, U_{1} are all in the tangent plane to $\gamma_{1} ; N_{1}$ is the unit normal to γ_{1} and N is the principal normal to the A_{1}^{3} curve. Each T_{i} points into γ_{i}, but depending on whether α_{i} is obtuse or not U_{i} might point out of the medial axis. Right: the angle ϕ between T and $-N_{i}^{ \pm}$, where ϕ is chosen to be obtuse and so T is in the direction of r increasing (r is the radius of the tritangent sphere).

The other coordinate system used is specially suited to the A_{1}^{3} case. We consider the generic case of the medial axis, which means that the curvature of the A_{1}^{3} curve is never zero. In this case we can set up a local Frenet frame $[T, N, B]$ at a point of the A_{1}^{3} curve, so T is the unit tangent to the A_{1}^{3} curve. Then α_{i} is defined as the angle between T_{i} and T (see Figure 3.5, left), and ψ_{i} is defined as the angle between N and N_{i}. Let the ψ_{i} be such that $0 \leq$ $\psi_{1}<\psi_{2}<\psi_{3}<2 \pi$ (see Figure 3.6). The angle between N_{i+1} and N_{i+2} is important when obtaining the consistency conditions, so let $\theta_{i}=\psi_{i+2}-\psi_{i+1}$ and $\epsilon_{i}=\operatorname{sign}\left(\cos \theta_{i}\right)$. Let r be the radius of tritangent spheres centred on the A_{1}^{3} curve. Then ϕ is defined to be the angle between T and the line joining one of the points of contact with the centre of a tritangent sphere (see Figure 3.5, right). Take r to be increasing along the A_{1}^{3}-curve so T is in the direction of r increasing, and so ϕ is obtuse. Let the tangents T_{i} for $i=1,2,3$ point into γ_{i}. Now consider the circle passing through the points of contact, looking along
the direction of $-T$. The normal N_{i} to the medial axis sheet γ_{i} is given by rotating by $\pi / 2$ coherently with this circle the projection of T_{i} into the plane of contact points perpendicular to T, as in Figure 3.7. This gives the required identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$. Then T_{i} is determined by the relation

$$
\operatorname{proj}\left(T_{i}\right)=N_{i} \times T
$$

since we know that T_{i} is parallel to the direction of ∇r_{i}.

Figure 3.6: This is in the plane of N and B, which are respectively the principal normal and the binormal to the A_{1}^{3} curve. The unit normals N_{i} to the medial sheets γ_{i} and the angles ψ_{i} between N and N_{i} are shown. The ψ_{i} are chosen so that $0 \leq \psi_{1}<\psi_{2}<\psi_{3}<2 \pi$.

These conventions mean we cannot assume each T_{i} is in the direction of ∇r_{i}. In the case of the medial axis being locally one A_{1}^{2} sheet we could choose the velocity v to be positive (see §3.2). For example, from Figure 3.7, left we have $T_{2}=-\nabla r_{2} /\left\|\nabla r_{2}\right\|$ and in Figure 3.7, right we have $T_{2}=+\nabla r_{2} /\left\|\nabla r_{2}\right\|$. Hence, for s_{i} arclength on the r_{i}-curve, we let $v_{i}=d s_{i} / d r_{i}$ be non-zero along the r_{i}-curves and so $T_{i}= \pm \nabla r_{i} /\left\|\nabla r_{i}\right\|$. Then ϕ_{i} might be acute or obtuse and so we allow v_{i} to be positive or negative, but not zero.

The vectors T_{i}, U_{i}, and N_{i} can be expressed in terms of ψ_{i} and α_{i} for all

Figure 3.7: The two possibilities for the points of contact in the A_{1}^{3} case. The view of the points of contact looking along the direction of $-T$: on the left the points of contact are in a semicircle, on the right they are not.
points of the A_{1}^{3} curve, as follows:

$$
\begin{aligned}
N_{i} & =\cos \psi_{i} N+\sin \psi_{i} B \\
T_{i} & =\cos \alpha_{i} T+p N+q B \\
U_{i} & =N_{i} \times T_{i} \\
& =\left(q \cos \psi_{i}-p \sin \psi_{i}\right) T+\sin \psi_{i} \cos \alpha_{i} N-\cos \psi_{i} \cos \alpha_{i} B
\end{aligned}
$$

where p, q are to be determined. From Figure 3.5 we have that

$$
\begin{aligned}
T \cdot U_{i}=\cos \left(\frac{\pi}{2}+\alpha_{i}\right) & =-\sin \alpha_{i} \\
& =\left(q \cos \psi_{i}-p \sin \psi_{i}\right)
\end{aligned}
$$

from the above expression for U_{i}. We also have $T_{i} \cdot N_{i}=0$ by definition, and so $p \cos \psi_{i}+q \sin \psi_{i}=0$. Hence we can solve for p and q and we get

$$
p=\sin \alpha_{i} \sin \psi_{i}, \quad q=-\sin \alpha_{i} \cos \psi_{i}
$$

Hence we get the following formulae, which are valid at all points of the A_{1}^{3} curve:

$$
\left.\begin{array}{l}
T_{i}=\cos \alpha_{i} T+\sin \alpha_{i} \sin \psi_{i} N-\sin \alpha_{i} \cos \psi_{i} B \tag{3.27}\\
U_{i}=-\sin \alpha_{i} T+\cos \alpha_{i} \sin \psi_{i} N-\cos \alpha_{i} \cos \psi_{i} B \\
N_{i}=\cos \psi_{i} N+\sin \psi_{i} B
\end{array}\right\}
$$

Alternatively, we can obtain T, N, B in terms of T_{i}, U_{i}, N_{i} :

$$
\left.\begin{array}{l}
T=\cos \alpha_{i} T_{i}-\sin \alpha_{i} U_{i} \tag{3.28}\\
N=\sin \alpha_{i} \sin \psi_{i} T_{i}+\cos \alpha_{i} \sin \psi_{i} U_{i}+\cos \psi_{i} N_{i} \\
B=-\sin \alpha_{i} \cos \psi_{i} T_{i}-\cos \alpha_{i} \cos \psi_{i} U_{i}+\sin \psi_{i} N_{i}
\end{array}\right\}
$$

An important direction is the one perpendicular to T in the tangent plane to γ_{i}, which will be called $W_{i}=N_{i} \times T$. Using (3.27) we get the following formula for W_{i}, valid at points of the A_{1}^{3} curve:

$$
\begin{equation*}
W_{i}=\sin \psi_{i} N-\cos \psi_{i} B \tag{3.29}
\end{equation*}
$$

The first order notation for the coordinate system based on the A_{1}^{3} curve has been covered, so now for the second order information. Let κ, τ be respectively the curvature, torsion of the A_{1}^{3} curve, where, as before, κ is assumed to be non-zero for all points of the A_{1}^{3} curve. Also, let κ_{i}^{W} be the normal curvature of γ_{i} in the direction of W_{i}. Differentiation with respect to arclength along the A_{1}^{3} curve is denoted by ' ('prime') and differentiation with respect to arclength along a curve lying on γ_{i} passing through the point $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve with tangent W_{i} is denoted by ('dot'). Table 3.1 contains all of the new symbols and their meanings.

3.4.2 Equating Normals of the Boundaries at A_{1}^{3} Points

A point of the A_{1}^{3} curve is a point of each γ_{i}, so the identifications $\gamma_{i}^{+}=\gamma_{i+1}^{-}$ and (3.3) mean that, for $r=r(s)$ the radius of a tritangent sphere centred at a point $\gamma_{1}(s)=\gamma_{2}(s)=\gamma_{3}(s)$ of the A_{1}^{3} curve, where s is arclength along the A_{1}^{3} curve, we have

$$
\begin{aligned}
\gamma_{i}-r N_{i}^{+} & =\gamma_{i+1}-r N_{i+1}^{-} \\
\Longleftrightarrow N_{i}^{+} & =N_{i+1}^{-} \\
\Longleftrightarrow \quad-\cos \phi_{i} T_{i}-\sin \phi_{i} N_{i} & =-\cos \phi_{i+1} T_{i+1}+\sin \phi_{i+1} N_{i+1}
\end{aligned}
$$

using (3.5). Adding the three equations given by $N_{i}^{+}=N_{i+1}^{-}$gives

$$
\begin{equation*}
\sin \phi_{1} N_{1}+\sin \phi_{2} N_{2}+\sin \phi_{3} N_{3}=0 \tag{3.30}
\end{equation*}
$$

The ' $\left(r_{i}, t_{i}\right)$ ' Coordinate System	
Symbol	Explanation of Notation
γ_{i}, r_{i}	A sheet of the medial axis near to an A_{1}^{3} curve $(i=1,2,3)$ with associated radius function r_{i}
r_{i}-curves	Gradient lines of r_{i}, parametrized by r_{i}
t_{i}-curves	Lines $r_{i}=$ constant, parametrized by t_{i}
$\gamma_{i}\left(r_{0}, 0\right)$	Point on the A_{1}^{3} curve, where $r_{i}=r_{0}$ (constant) and $t_{i}=0$
T_{i}, N_{i}, U_{i}	Unit tangent to the r_{i}-curve, unit normal to γ_{i}, $U_{i}=N_{i} \times T_{i}$
$\gamma_{i}^{ \pm}$	The two boundary surfaces corresponding to γ_{i}
$N_{i}^{ \pm}$	Unit normal to $\gamma_{i}^{ \pm}$
ϕ_{i}, v_{i}	Angle from T_{i} to $-N_{i}^{ \pm}$, velocity $v_{i}=-1 / \cos \phi_{i}$
$a_{i}, a_{i}^{t}, a_{i}^{*}$	Accelerations on γ_{i} (see (3.7) for a single medial sheet γ)
κ_{i}^{r}	Normal curvature of γ_{i} in the direction of the r_{i}-curve
κ_{i}^{t}	Normal curvature of γ_{i} in the direction of the t_{i}-curve
τ_{i}^{t}	Geodesic torsion of γ_{i} in the direction of the t_{i}-curve
The ' A_{1}^{3} Curve' Coordinate System	
Symbol	Explanation of Notation
T, N, B	Unit tangent, principal normal, binormal of the A_{1}^{3} curve
κ, τ	Curvature, torsion of the A_{1}^{3} curve
α_{i}	Angle from T to T_{i}
ψ_{i}	Angle from N to N_{i}, chosen so that $0 \leq \psi_{1}<\psi_{2}<\psi_{3}<2 \pi$
θ_{i}	$\theta_{i}=\left(\psi_{i+2}-\psi_{i+1}\right)$, the angle between N_{i+1} and N_{i+2}
ϵ_{i}	The sign of $\cos \theta_{i}$
ϕ	Angle between T and $-N_{i}^{ \pm}$, chosen to be obtuse
κ_{i}^{W}	Normal curvature of γ_{i} in the direction of $W_{i}=N_{i} \times T$
${ }^{\prime}$ (prime)	Differentiation with respect to arclength along the A_{1}^{3} curve
(dot)	Differentiation with respect to arclength along a curve tangent to W_{i}

Table 3.1: Table of notation for the A_{1}^{3} case.

Using (3.5), (3.27) we have the following formula for $N_{i}^{ \pm}$in terms of ϕ_{i}, α_{i}, and ψ_{i} :

$$
\begin{align*}
N_{i}^{ \pm}= & -\cos \phi_{i}\left(\cos \alpha_{i} T+\sin \alpha_{i} \sin \psi_{i} N-\sin \alpha_{i} \cos \psi_{i} B\right) \tag{3.31}\\
& \mp \sin \phi_{i}\left(\cos \psi_{i} N+\sin \psi_{i} B\right) .
\end{align*}
$$

We want to set $N_{i}^{+}=N_{i+1}^{-}$at points of the A_{1}^{3} curve. From the formula above for $N_{i}^{ \pm}$, the T components of N_{i}^{+}and of N_{i+1}^{-}are equal. This gives $\cos \phi_{1} \cos \alpha_{1}=\cos \phi_{2} \cos \alpha_{2}=\cos \phi_{3} \cos \alpha_{3}$. Then we have

$$
\begin{equation*}
\cos \phi=\cos \phi_{i} \cos \alpha_{i} \tag{3.32}
\end{equation*}
$$

since $\cos \phi=-N_{i}^{ \pm} \cdot T$ by the definition of ϕ. Let $\hat{N}_{i}^{ \pm}$be the normalized component of $N_{i}^{ \pm}$in the N, B plane. Then we have the following:

$$
\begin{align*}
\hat{N}_{i}^{ \pm}= & \frac{\cos \phi_{i} \sin \alpha_{i}}{\sin \phi}\left(\sin \psi_{i} N-\cos \psi_{i} B\right) \\
& \pm \frac{\sin \phi_{i}}{\sin \phi}\left(\cos \psi_{i} N+\sin \psi_{i} B\right) \\
\text { so } N_{i}^{ \pm}= & -\cos \phi T-\sin \phi \hat{N}_{i}^{ \pm} \tag{3.33}
\end{align*}
$$

Using (3.33) we have

$$
N_{i}^{+}-N_{i}^{-}=-\sin \phi\left(\hat{N}_{i}^{+}-\hat{N}_{i}^{-}\right)=-\sin \phi\left(\hat{N}_{i+1}^{-}-\hat{N}_{i}^{-}\right) .
$$

From (3.5) we have

$$
N_{i}^{+}-N_{i}^{-}=-\cos \phi_{i} T_{i}-\sin \phi N_{i}-\left(-\cos \phi_{i} T_{i}+\sin \phi N_{i}\right)=-2 \sin \phi_{i} N_{i}
$$

Hence $N_{i}^{+}=N_{i+1}^{-}$implies the following vector equation:

$$
\begin{equation*}
\sin \phi\left(\hat{N}_{i+1}^{-}-\hat{N}_{i}^{-}\right)=2 \sin \phi_{i} N_{i} \tag{3.34}
\end{equation*}
$$

Let us introduce auxiliary variables in order to solve (3.34). Set

$$
\begin{equation*}
\hat{N}_{i}^{+}=\hat{N}_{i+1}^{-}=\cos \beta_{i, i+1} N+\sin \beta_{i, i+1} B \tag{3.35}
\end{equation*}
$$

for $i=1,2,3$ at points of the A_{1}^{3} curve, and where $(i+1),(i+2)$ are evaluated modulo 3 when $(i+1),(i+2)$ are respectively greater than 3 . And so

$$
\begin{aligned}
& \hat{N}_{i+1}^{-}-\hat{N}_{i}^{-}=\left(\cos \beta_{i, i+1} N+\sin \beta_{i, i+1} B\right)-\left(\cos \beta_{i-1, i} N+\sin \beta_{i-1, i} B\right) \\
= & 2 \sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right) N \\
& +2 \sin \left(\frac{\beta_{i, i+1}-\beta_{i-1, i}}{2}\right) \cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) B .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\hat{N}_{i+1}^{-}-\hat{N}_{i}^{-}}{2}= \\
& \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right)\left(\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) N-\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) B\right) .
\end{aligned}
$$

Using this, (3.34) becomes the following:

$$
\sin \phi_{i}\left(\cos \psi_{i} N+\sin \psi_{i} B\right)=
$$

$\sin \phi \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right)\left(\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) N-\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right) B\right)$.
This equation is of the form $\mu P_{1}=\lambda Q_{1}$ where P_{1}, Q_{1} are unit vectors, and so gives the following two cases:

1. $\sin \phi_{i}=\sin \phi \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right)$,

$$
\left(\cos \psi_{i}, \sin \psi_{i}\right)=\left(\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right),-\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right)\right)
$$

2. $\sin \phi_{i}=-\sin \phi \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right)$,

$$
\left(\cos \psi_{i}, \sin \psi_{i}\right)=-\left(\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right),-\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right)\right)
$$

We can rule out case 2 given the conventions taken earlier, as follows. We
have

$$
\begin{aligned}
& \left(\cos \psi_{i}, \sin \psi_{i}\right)=\left(-\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right), \cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right)\right) \\
= & \left(\cos \left(\frac{-\beta_{i, i+1}-\beta_{i-1, i}}{2}-\frac{\pi}{2}\right),-\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}-\frac{\pi}{2}\right)\right) \\
= & \left(\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}+\pi}{2}\right),-\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}+\pi}{2}-\pi\right)\right) \\
= & \left(\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}+\pi}{2}\right), \sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}+\pi}{2}\right)\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\psi_{i} & =\frac{\beta_{i, i+1}+\beta_{i-1, i}+\pi}{2}, \quad \text { which gives } \\
\beta_{i, i+1} & =\psi_{i}+\psi_{i+1}-\psi_{i+2}-\frac{\pi}{2}, \\
\text { so } \beta_{i-1, i} & =\beta_{i+2, i} \operatorname{since} i-1 \equiv i+2 \bmod 3 \\
& =\psi_{i+2}+\psi_{i}-\psi_{i+1}-\frac{\pi}{2}, \\
\text { hence } \sin \phi_{i} & =-\sin \phi \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right) \\
& =\sin \phi \sin \left(\psi_{i+1}-\psi_{i+2}\right), \\
\text { so } \sin \phi_{1} & =\sin \phi \sin \left(\psi_{2}-\psi_{3}\right) \\
\sin \phi_{2} & =\sin \phi \sin \left(\psi_{3}-\psi_{1}\right) \\
\sin \phi_{3} & =\sin \phi \sin \left(\psi_{1}-\psi_{2}\right) .
\end{aligned}
$$

We know that N_{1}, N_{2}, and N_{3} cannot lie in an angle of π for γ_{1}, γ_{2}, and γ_{3} to be the medial axis near to an A_{1}^{3} curve. This means that, since

$$
\begin{aligned}
& 0 \leq \psi_{1}<\psi_{2}<\psi_{3}<2 \pi, \text { we must have } \\
& 0<\psi_{2}-\psi_{1}<\pi, 0<\psi_{3}-\psi_{2}<\pi, \pi<\psi_{3}-\psi_{1}<2 \pi \\
\Rightarrow \quad & \sin \left(\psi_{1}-\psi_{2}\right)<0, \sin \left(\psi_{2}-\psi_{3}\right)<0, \sin \left(\psi_{3}-\psi_{1}\right)<0 .
\end{aligned}
$$

Since $\sin \phi>0$ and $\sin \phi_{i}>0$ this means that $\sin \phi_{i}=\sin \phi \sin \left(\psi_{i+1}-\psi_{i+2}\right)$ cannot be true. Therefore, we get a contradiction and so case 2 cannot be true.

The remaining possibility is case 1 . We have

$$
\begin{aligned}
& \left(\cos \psi_{i}, \sin \psi_{i}\right)=\left(\sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right),-\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}\right)\right) \\
= & \left(\cos \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}-\frac{\pi}{2}\right), \sin \left(\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}-\frac{\pi}{2}\right)\right) .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\psi_{i} & =\frac{\beta_{i, i+1}+\beta_{i-1, i}}{2}-\frac{\pi}{2}, \\
\text { which gives } \beta_{i, i+1} & =\psi_{i}+\psi_{i+1}-\psi_{i+2}+\frac{\pi}{2}, \\
\text { so } \beta_{i-1, i} & =\beta_{i+2, i} \operatorname{since} i-1 \equiv i+2 \bmod 3 \\
& =\psi_{i+2}+\psi_{i}-\psi_{i+1}+\frac{\pi}{2}, \\
\text { hence } \sin \phi_{i} & =\sin \phi \sin \left(\frac{\beta_{i-1, i}-\beta_{i, i+1}}{2}\right) \\
& =\sin \phi \sin \left(\psi_{i+2}-\psi_{i+1}\right), \\
\text { and so } \sin \phi_{1} & =\sin \phi \sin \left(\psi_{3}-\psi_{2}\right), \\
\sin \phi_{2} & =\sin \phi \sin \left(\psi_{1}-\psi_{3}\right), \\
\sin \phi_{3} & =\sin \phi \sin \left(\psi_{2}-\psi_{1}\right) .
\end{aligned}
$$

These solutions for $\sin \phi_{i}$ are consistent with the conventions, $\operatorname{since} \sin \left(\psi_{2}-\psi_{1}\right)$, $\sin \left(\psi_{3}-\psi_{2}\right), \sin \left(\psi_{1}-\psi_{3}\right), \sin \phi$, and $\sin \phi_{i}$ are all greater than zero.

Lemma 3.4.1 Setting $N_{i}^{+}=N_{i+1}^{-}$implies $\sin \phi_{i}=\sin \phi \sin \left(\psi_{i+2}-\psi_{i+1}\right)$.

We can substitute for $\beta_{i, i+1}$ in (3.35) to get more information about ϕ_{i}, α_{i}. We get

$$
\begin{aligned}
& \hat{N}_{i}^{+}\left(=\hat{N}_{i+1}^{-}\right)=\cos \beta_{i, i+1} N+\sin \beta_{i, i+1} B \Longleftrightarrow \\
& \frac{\cos \phi_{i} \sin \alpha_{i}}{\sin \phi}\left(\sin \psi_{i} N-\cos \psi_{i} B\right)+\frac{\sin \phi_{i}}{\sin \phi}\left(\cos \psi_{i} N+\sin \psi_{i} B\right) \\
& =\cos \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}+\frac{\pi}{2}\right) N+\sin \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}+\frac{\pi}{2}\right) B \\
& =-\sin \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right) N+\cos \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right) B .
\end{aligned}
$$

Equating the components of N and the components of B of the above vector equation gives the following:

$$
\begin{aligned}
\cos \phi_{i} \sin \alpha_{i} \sin \psi_{i}+\sin \phi_{i} \cos \psi_{i} & =-\sin \phi \sin \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right), \\
-\cos \phi_{i} \sin \alpha_{i} \cos \psi_{i}+\sin \phi_{i} \sin \psi_{i} & =\sin \phi \cos \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right)
\end{aligned}
$$

Then, $\sin \psi_{i} \times$ first $-\cos \psi_{i} \times$ second gives the following:

$$
\begin{array}{ll}
& \cos \phi_{i} \sin \alpha_{i} \\
= & -\sin \phi\left(\cos \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right) \cos \psi_{i}+\sin \left(\psi_{i}+\psi_{i+1}-\psi_{i+2}\right) \sin \psi_{i}\right) \\
\Longleftrightarrow & \cos \phi_{i} \sin \alpha_{i}=-\sin \phi \cos \left(\psi_{i+2}-\psi_{i+1}\right) \\
\Longleftrightarrow & \cos \phi_{i}=-\frac{\sin \phi \cos \left(\psi_{i+2}-\psi_{i+1}\right)}{\sin \alpha_{i}} . \tag{3.36}
\end{array}
$$

Assume $\cos \phi \neq 0$ which, by (3.32), means $\cos \phi_{i} \neq 0$ and $\cos \alpha_{i} \neq 0$. Then we have

$$
\begin{equation*}
\cos \alpha_{i}=\frac{\cos \phi}{\cos \phi_{i}}=-\frac{\cos \phi \sin \alpha_{i}}{\sin \phi \cos \left(\psi_{i+2}-\psi_{i+1}\right)} . \tag{3.37}
\end{equation*}
$$

We can now solve for $\sin \alpha_{i}$ in terms of ϕ, ψ_{i} by using $\cos ^{2} \alpha_{i}+\sin ^{2} \alpha_{i}=1$:

$$
\begin{aligned}
& \cos ^{2} \alpha_{i}+\sin ^{2} \alpha_{i}=1 \Longleftrightarrow \\
& \sin ^{2} \alpha_{i}\left(\frac{\cos ^{2} \phi}{\sin ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}+1\right)=1 \\
\text { and so } \sin \alpha_{i}= & \sqrt{\frac{\tan ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}{1+\tan ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}}, \text { since } \sin \alpha_{i}>0 \\
= & \frac{-\tan \phi\left|\cos \left(\psi_{i+2}-\psi_{i+1}\right)\right|}{\sqrt{1+\tan ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}},
\end{aligned}
$$

since we took ϕ to be obtuse. Then from (3.37) we have

$$
\cos \alpha_{i}=\frac{-\cos \phi \sin \alpha_{i}}{\sin \phi \cos \left(\psi_{i+2}-\psi_{i+1}\right)}=\frac{\operatorname{sign}\left(\cos \left(\psi_{i+2}-\psi_{i+1}\right)\right)}{\sqrt{1+\tan ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}} .
$$

Also from (3.36) we have

$$
\begin{aligned}
\cos \phi_{i} & =-\frac{\sin \phi \cos \left(\psi_{i+2}-\psi_{i+1}\right)}{\sin \alpha_{i}} \\
& =\operatorname{sign}\left(\cos \left(\psi_{i+2}-\psi_{i+1}\right)\right) \cos \phi \sqrt{1+\tan ^{2} \phi \cos ^{2}\left(\psi_{i+2}-\psi_{i+1}\right)}
\end{aligned}
$$

Now let us substitute the solutions for ϕ_{i}, α_{i} into the expression (3.31) for $N_{i}^{ \pm}$. We get

$$
\begin{aligned}
N_{i}^{ \pm}= & -\cos \phi_{i}\left(\cos \alpha_{i} T+\sin \alpha_{i} \sin \psi_{i} N-\sin \alpha_{i} \cos \psi_{i} B\right) \\
& \mp \sin \phi_{i}\left(\cos \psi_{i} N+\sin \psi_{i} B\right) \\
= & -\cos \phi T \\
& +\sin \phi\left(\sin \psi_{i} \cos \left(\psi_{i+2}-\psi_{i+1}\right) \mp \cos \psi_{i} \sin \left(\psi_{i+2}-\psi_{i+1}\right)\right) N \\
& +\sin \phi\left(-\cos \psi_{i} \cos \left(\psi_{i+2}-\psi_{i+1}\right) \mp \sin \psi_{i} \sin \left(\psi_{i+2}-\psi_{i+1}\right)\right) B \\
= & -\cos \phi T+\sin \phi \sin \left(\psi_{i} \mp\left(\psi_{i+2}-\psi_{i+1}\right)\right) N \\
& -\sin \phi \cos \left(\psi_{i} \mp\left(\psi_{i+2}-\psi_{i+1}\right)\right) B .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
N_{i+1}^{-}= & -\cos \phi T+\sin \phi \sin \left(\psi_{i+1}+\psi_{i}-\psi_{i+2}\right) N \\
& -\sin \phi \cos \left(\psi_{i+1}+\psi_{i}-\psi_{i+2}\right) B \\
= & N_{i}^{+} .
\end{aligned}
$$

Hence the solutions for $\cos \phi_{i}, \sin \phi_{i}, \cos \alpha_{i}, \sin \alpha_{i}$ imply $N_{i}^{+}=N_{i+1}^{-}$and so at all points of the A_{1}^{3} curve, $N_{i}^{+}=N_{i+1}^{-}$for $i=1,2,3$ if and only if the solutions for $\cos \phi_{i}, \sin \phi_{i}, \cos \alpha_{i}, \sin \alpha_{i}$ hold. Hence we have the following.

Theorem 3.4.2.1 The angles ϕ_{i}, α_{i} are uniquely determined at all points of the A_{1}^{3} curve by the following:

$$
\begin{align*}
\cos \phi_{i} & =-\epsilon_{i} \sqrt{\cos ^{2} \phi+\sin ^{2} \phi \cos ^{2} \theta_{i}} \tag{3.38}\\
\sin \phi_{i} & =\sin \phi \sin \theta_{i} \tag{3.39}\\
\cos \alpha_{i} & =\frac{-\epsilon_{i} \cos \phi}{\sqrt{\cos ^{2} \phi+\sin ^{2} \phi \cos ^{2} \theta_{i}}} \tag{3.40}\\
\sin \alpha_{i} & =\frac{\sin \phi\left|\cos \theta_{i}\right|}{\sqrt{\cos ^{2} \phi+\sin ^{2} \phi \cos ^{2} \theta_{i}}} \tag{3.41}
\end{align*}
$$

where $\theta_{i}=\psi_{i+2}-\psi_{i+1}$ and $\epsilon_{i}=\operatorname{sign}\left(\cos \left(\psi_{i+2}-\psi_{i+1}\right)\right)$. There are no other conditions on the medial axis along the A_{1}^{3} curve at the level of first order derivatives. (See Table 3.1 for a summary of the notation used.)

Remark 3.4.2.2 The equations (3.38), (3.39), (3.40), and (3.41) uniquely determine α_{i}, ϕ_{i}, in terms of ϕ, ψ_{i}, and so the normals $N_{i}^{ \pm}$to the boundaries are uniquely determined by ϕ, ψ_{i}. Hence Theorem 3.4.2.1 gives the complete first order information about the boundaries $\gamma_{i}^{ \pm}$at points corresponding to the A_{1}^{3} curve. Now $\theta_{3}=\psi_{2}-\psi_{1}=-\theta_{1}-\theta_{2}$, and so $\cos \phi_{i}, \sin \phi_{i}, \cos \alpha_{i}, \sin \alpha_{i}$ can be expressed in terms of three variables ϕ, θ_{1}, and θ_{2}. In the case when $\cos \theta_{i}=0$ for some i the formulae of Theorem 3.4.2.1 are still valid, but we must interpret $-\epsilon_{i}$ as the sign of $\cos \phi_{i}$. Note that for any $\phi, \psi_{1}, \psi_{2}, \psi_{3}$ we have $\operatorname{sign}\left(\cos \phi_{i}\right)=-\epsilon_{i}$, since ϕ is obtuse. Then, from (3.6), we have that $\operatorname{sign}\left(v_{i}\right)=\epsilon_{i}$.

3.4.3 Equating Principal Curvatures, Directions of the Boundaries at A_{1}^{3} Points

The normal to a surface determines the surface up to first order; it determines the tangent plane to the surface. Then, in addition, the principal curvatures and principal directions determine the surface up to second order. Setting $N_{i}^{+}=N_{i+1}^{-}$gave first order information about the three medial sheets. Now we want to gain second order information about the three medial sheets, so we need to equate the principal curvatures and principal directions of γ_{i}^{+}and γ_{i+1}^{-}at a point $\gamma_{i}\left(r_{i}=r_{0}, t_{i}=0\right)$ of the A_{1}^{3} curve. Let $S_{\mathbf{v}_{i}}^{ \pm}$denote the matrix representation of the radial shape operator of γ_{i} corresponding to boundary $\gamma_{i}^{ \pm}$ with respect to the basis $\mathbf{v}_{i}=\left\{T_{i}, U_{i}\right\}$ at $\gamma_{i}\left(r_{0}, 0\right)$. Then let trace ${ }_{i}^{ \pm}, \operatorname{det}_{i}^{ \pm}$be the trace, determinant of $S_{\mathbf{v}_{i}}^{ \pm}$. From (3.20) and using the notation of Table 3.1 we have

$$
\left.\begin{array}{rl}
S_{\mathbf{v}_{i}}^{ \pm} & =\left(\begin{array}{cc}
\left(s_{11}^{ \pm}\right)_{i} & \left(s_{12}^{ \pm}\right)_{i} \\
\left(s_{21}^{ \pm}\right)_{i} & \left(s_{22}^{ \pm}\right)_{i}
\end{array}\right) \tag{3.42}\\
& =\left(\begin{array}{cc}
-\frac{a_{i}}{v_{i}^{3} \sin ^{2} \phi_{i}} \pm \frac{\kappa_{i}^{r}}{\sin \phi_{i}} & \left(-\frac{a_{i}^{t}}{v_{i}^{2}} \mp \tau_{i}^{t} \sin \phi_{i}\right) \frac{1}{\sin ^{2} \phi_{i}} \\
-\frac{a_{i}^{t}}{v_{i}^{2}} \mp \tau_{i}^{t} \sin \phi_{i} & \frac{a_{i}^{*}}{v_{i}^{2}} \pm \kappa_{i}^{t} \sin \phi_{i}
\end{array}\right)
\end{array}\right\}
$$

We have the following.

Lemma 3.4.3.1 Equating principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$at $\left(r_{0}, 0\right)$ is the same as setting trace ${ }_{i}^{+}=\operatorname{trace}_{i+1}^{-}$and $\operatorname{det}_{i}^{+}=\operatorname{det}_{i+1}^{-}$.

Proof. Let η be a principal radial curvature of γ_{i} corresponding to boundary γ_{i}^{+}. Similarly, let ν be a principal radial curvature of γ_{i+1} corresponding to boundary γ_{i+1}^{-}. Then, using (3.16) from Lemma 3.3.1.4, equating principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$is the same as setting

$$
\begin{aligned}
\frac{\eta}{1-r_{i} \eta} & =\frac{\nu}{1-r_{i+1} \nu} \\
\Longleftrightarrow \eta\left(1-r_{i} \nu\right) & =\nu\left(1-r_{i} \eta\right), \text { since } r_{i+1}=r_{i} \text { at points of the } A_{1}^{3} \text { curve } \\
\Longleftrightarrow \eta & =\nu
\end{aligned}
$$

So equating principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$is the same as setting the principal radial curvatures of γ_{i} corresponding to boundary γ_{i}^{+}equal to the principal radial curvatures of γ_{i+1} corresponding to boundary γ_{i+1}^{-}. Then, equating eigenvalues of two matrices is the same as equating the traces of the two matrices and equating the determinants of the two matrices. Hence the result.

Equating principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$gives the following.
Theorem 3.4.3.2 (Consistency Conditions at A_{1}^{3} Points) The following is satisfied at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve lying on γ_{i} for $i=1$, 2, 3:

$$
\begin{align*}
\sum_{i=1}^{3}\left(\kappa_{i}^{t} \sin \phi_{i}+\frac{\kappa_{i}^{r}}{\sin \phi_{i}}\right) & =0, \tag{3.43}\\
\text { and } \sum_{i=1}^{3}\left(\frac{a_{i}^{*} \kappa_{i}^{r} v_{i}-a_{i} \kappa_{i}^{t}-2 a_{i}^{t} \tau_{i}^{t} v_{i}}{v_{i}^{3} \sin \phi_{i}}\right) & =0 . \tag{3.44}
\end{align*}
$$

(See Table 3.1 for a summary of the notation used.)
Proof. By Lemma 3.4.3.1 we need to set trace ${ }_{i}^{+}=\operatorname{trace}_{i+1}^{-}$and $\operatorname{det}_{i}^{+}=\operatorname{det}_{i+1}^{-}$ for $i=1,2,3$ in order to equate the principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$. Then, by
equation (3.21) from Lemma 3.3.2.2, we have

$$
\begin{aligned}
\frac{1}{2}\left(\operatorname{trace}_{i}^{+}-\operatorname{trace}_{i}^{-}\right) & =\frac{\kappa_{i}^{r}}{\sin \phi_{i}}+\kappa_{i}^{t} \sin \phi_{i}, \\
\text { so } \frac{1}{2} \sum_{i=1}^{3}\left(\operatorname{trace}_{i}^{+}-\operatorname{trace}_{i}^{-}\right) & =\sum_{i=1}^{3}\left(\kappa_{i}^{t} \sin \phi_{i}+\frac{\kappa_{i}^{r}}{\sin \phi_{i}}\right) .
\end{aligned}
$$

But the left-hand side is zero, since trace ${ }_{i}^{+}=\operatorname{trace}_{i+1}^{-}$. Hence equation (3.43). Similarly, equation (3.22) from Lemma 3.3.2.2 gives

$$
\begin{aligned}
\frac{1}{2}\left(\operatorname{det}_{i}^{+}-\operatorname{det}_{i}^{-}\right) & =\frac{a_{i}^{*} \kappa_{i}^{r} v_{i}-a_{i} \kappa_{i}^{t}-2 a_{i}^{t} \tau_{i}^{t} v_{i}}{v_{i}^{3} \sin \phi_{i}}, \\
\text { so } \frac{1}{2} \sum_{i=1}^{3}\left(\operatorname{det}_{i}^{+}-\operatorname{det}_{i}^{-}\right) & =\sum_{i=1}^{3}\left(\frac{a_{i}^{*} \kappa_{i}^{r} v_{i}-a_{i} \kappa_{i}^{t}-2 a_{i}^{t} \tau_{i}^{t} v_{i}}{v_{i}^{3} \sin \phi_{i}}\right) .
\end{aligned}
$$

Again the left-hand side is zero, hence equation (3.44).

Now to equate principal directions on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$at the A_{1}^{3} point $\gamma_{i}\left(r_{0}, 0\right)$ using (3.26) from Lemma 3.3.3.2. The method for this is as follows. Consider principal directions $\left\{P_{1}, P_{2}\right\}$ on γ_{i}^{+}and principal directions $\left\{Q_{1}, Q_{2}\right\}$ on γ_{i+1}^{-}, all evaluated at $\left(r_{0}, 0\right)$. If we say P_{1} is in the same direction as Q_{1} and P_{2} is in the same direction as Q_{2} on $\gamma_{i}^{+}=\gamma_{i+1}^{-}$, this is the same as saying $P_{1} \cdot Q_{2}=0$. This is because, given that the principal curvatures on γ_{i}^{+}are equal to those on γ_{i+1}^{-} at $\left(r_{0}, 0\right)$, it is only one extra condition to say the principal directions are equal. Therefore, for another constraint, we want to identify the non-corresponding principal directions on γ_{i}^{+}and on γ_{i+1}^{-}and set their dot product equal to zero.

We assume $\gamma_{i}^{+}\left(r_{0}, 0\right)=\gamma_{i+1}^{-}\left(r_{0}, 0\right)$ is not an umbilic. Let $\left(\kappa_{r 1}^{ \pm}\right)_{i},\left(\kappa_{r 2}^{ \pm}\right)_{i}$ be the two principal radial curvatures of γ_{i} corresponding to $\gamma_{i}^{ \pm}$. Given that the principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$are equal at $\gamma_{i}^{+}\left(r_{0}, 0\right)=\gamma_{i+1}^{-}\left(r_{0}, 0\right)$, from Lemma 3.4.3.1 we have that $\left\{\left(\kappa_{r 1}^{+}\right)_{i},\left(\kappa_{r 2}^{+}\right)_{i}\right\}$ is the same as $\left\{\left(\kappa_{r 1}^{-}\right)_{i+1},\left(\kappa_{r 2}^{-}\right)_{i+1}\right\}$. Let

$$
\begin{aligned}
& \left(\kappa_{r 1}^{ \pm}\right)_{i}=\frac{1}{2}\left(\operatorname{trace}_{i}^{ \pm}+\sqrt{\left(\operatorname{trace}_{i}^{ \pm}\right)^{2}-4 \operatorname{det}_{i}^{ \pm}}\right) \\
& \left(\kappa_{r 2}^{ \pm}\right)_{i}=\frac{1}{2}\left(\operatorname{trace}_{i}^{ \pm}-\sqrt{\left(\operatorname{trace}_{i}^{ \pm}\right)^{2}-4 \operatorname{det}_{i}^{ \pm}}\right) .
\end{aligned}
$$

Then we must have $\left(\kappa_{r 1}^{+}\right)_{i}=\left(\kappa_{r 1}^{-}\right)_{i+1},\left(\kappa_{r 2}^{+}\right)_{i}=\left(\kappa_{r 2}^{-}\right)_{i+1}$ when $\gamma_{i}^{+}\left(r_{0}, 0\right)=$ $\gamma_{i+1}^{-}\left(r_{0}, 0\right)$ is a non-umbilic, since $\operatorname{trace}_{i}^{+}=\operatorname{trace}_{i+1}^{-}$, $\operatorname{det}_{i}^{+}=\operatorname{det}_{i+1}^{-}$at $\left(r_{0}, 0\right)$. We introduce a shortened notation:

$$
\begin{aligned}
& \left(\kappa_{r 1}^{+}\right)_{i}=\left(\kappa_{r 1}^{-}\right)_{i+1}=\frac{(\operatorname{tr})_{i, i+1}+\mathrm{D}_{i, i+1}}{2}, \\
& \left(\kappa_{r 2}^{+}\right)_{i}=\left(\kappa_{r 2}^{-}\right)_{i+1}=\frac{(\operatorname{tr})_{i, i+1}-\mathrm{D}_{i, i+1}}{2},
\end{aligned}
$$

where $(\operatorname{tr})_{i, i+1}=\operatorname{trace}_{i}^{+}=\operatorname{trace}_{i+1}^{-}$,

$$
\text { and } D_{i, i+1}=\sqrt{\left(\operatorname{trace}_{i}^{+}\right)^{2}-4 \operatorname{det}_{i}^{+}}=\sqrt{\left(\operatorname{trace}_{i+1}^{-}\right)^{2}-4 \operatorname{det}_{i+1}^{-}} .
$$

Using (3.26) from Lemma 3.3.3.2, the principal directions on $\gamma_{i}^{ \pm}$are

$$
\begin{aligned}
& \left(\left(s_{12}^{ \pm}\right)_{i} T_{i}+\left(\left(\kappa_{r 1}^{ \pm}\right)_{i}-\left(s_{11}^{ \pm}\right)_{i}\right) U_{i}+\left(s_{12}^{ \pm}\right)_{i} \cos \phi_{i} N_{i}^{ \pm}\right) \\
& \text {and } \quad\left(\left(s_{12}^{ \pm}\right)_{i} T_{i}+\left(\left(\kappa_{r 2}^{ \pm}\right)_{i}-\left(s_{11}^{ \pm}\right)_{i}\right) U_{i}+\left(s_{12}^{ \pm}\right)_{i} \cos \phi_{i} N_{i}^{ \pm}\right) .
\end{aligned}
$$

The dot product of perpendicular principal directions on $\gamma_{i}^{+}=\gamma_{i+1}^{-}$at $\gamma_{i}^{+}\left(r_{0}, 0\right)=\gamma_{i+1}^{-}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve is zero, so

$$
\begin{array}{r}
\left(\left(s_{12}^{-}\right)_{i+1} T_{i+1}+\left(\left(\kappa_{r 2}^{-}\right)_{i+1}-\left(s_{11}^{-}\right)_{i+1}\right) U_{i+1}+\left(s_{12}^{-}\right)_{i+1} \cos \phi_{i+1} N_{i+1}^{-}\right) \tag{3.45}\\
\cdot\left(\left(s_{12}^{+}\right)_{i} T_{i}+\left(\left(\kappa_{r 1}^{+}\right)_{i}-\left(s_{11}^{+}\right)_{i}\right) U_{i}+\left(s_{12}^{+}\right)_{i} \cos \phi_{i} N_{i}^{+}\right)=0
\end{array}
$$

Since $N_{i}^{+}\left(r_{0}, 0\right)=N_{i+1}^{-}\left(r_{0}, 0\right)$, we have

$$
\begin{array}{ll}
& U_{i} \perp N_{i+1}^{-}, U_{i+1} \perp N_{i}^{+} \\
& T_{i} \cdot N_{i+1}^{-}=T_{i} \cdot N_{i}^{+}=-\cos \phi_{i} \\
\text { and } & T_{i+1} \cdot N_{i}^{+}=T_{i+1} \cdot N_{i+1}^{-}=-\cos \phi_{i+1} .
\end{array}
$$

So (3.45) becomes

$$
\begin{align*}
& \left(\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1}\right) T_{i} \cdot T_{i+1} \\
& +\left(\left(\frac{(\operatorname{tr})_{i, i+1}+\mathrm{D}_{i, i+1}}{2}-\left(s_{11}^{+}\right)_{i}\right)\left(s_{12}^{-}\right)_{i+1}\right) U_{i} \cdot T_{i+1} \\
& +\left(\left(\frac{(\operatorname{tr})_{i, i+1}-\mathrm{D}_{i, i+1}}{2}-\left(s_{11}^{-}\right)_{i+1}\right)\left(s_{12}^{+}\right)_{i}\right) T_{i} \cdot U_{i+1} \tag{3.46}\\
& +\left(\left(\frac{\left(\operatorname{tr}_{i, i+1}+\mathrm{D}_{i, i+1}\right.}{2}-\left(s_{11}^{+}\right)_{i}\right)\left(\frac{(\operatorname{tr})_{i, i+1}-\mathrm{D}_{i, i+1}}{2}-\left(s_{11}^{-}\right)_{i+1}\right)\right) U_{i} \cdot U_{i+1} \\
& =\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1} \cos \phi_{i} \cos \phi_{i+1} .
\end{align*}
$$

Similarly, the two principal directions corresponding to $\left(\kappa_{r 2}^{+}\right)_{i}$ and $\left(\kappa_{r 1}^{-}\right)_{i+1}$ are perpendicular, so

$$
\begin{array}{r}
\left(\left(s_{12}^{-}\right)_{i+1} T_{i+1}+\left(\left(\kappa_{r 1}^{-}\right)_{i+1}-\left(s_{11}^{-}\right)_{i+1}\right) U_{i+1}+\left(s_{12}^{-}\right)_{i+1} \cos \phi_{i+1} N_{i+1}^{-}\right) \\
\cdot\left(\left(s_{12}^{+}\right)_{i} T_{i}+\left(\left(\kappa_{r 2}^{+}\right)_{i}-\left(s_{11}^{+}\right)_{i}\right) U_{i}+\left(s_{12}^{+}\right)_{i} \cos \phi_{i} N_{i}^{+}\right)=0 .
\end{array}
$$

Similarly, this simplifies to become

$$
\begin{align*}
& \left(\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1}\right) T_{i} \cdot T_{i+1} \\
& +\left(\left(\frac{\left(\operatorname{tr}_{i, i+1}-\mathrm{D}_{i, i+1}\right.}{2}-\left(s_{11}^{+}\right)_{i}\right)\left(s_{12}^{-}\right)_{i+1}\right) U_{i} \cdot T_{i+1} \\
& +\left(\left(\frac{\left(\operatorname{tr}_{i, i+1}+\mathrm{D}_{i, i+1}\right.}{2}-\left(s_{11}^{-}\right)_{i+1}\right)\left(s_{12}^{+}\right)_{i}\right) T_{i} \cdot U_{i+1} \tag{3.47}\\
& +\left(\left(\frac{\left(\operatorname{tr}_{i, i+1}-\mathrm{D}_{i, i+1}\right.}{2}-\left(s_{11}^{+}\right)_{i}\right)\left(\frac{\left(\operatorname{tr}_{i, i+1}+\mathrm{D}_{i, i+1}\right.}{2}-\left(s_{11}^{-}\right)_{i+1}\right)\right) U_{i} \cdot U_{i+1} \\
& =\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1} \cos \phi_{i} \cos \phi_{i+1} .
\end{align*}
$$

Then (3.46) - (3.47) is the same as

$$
\begin{align*}
0=\mathrm{D}_{i, i+1} & \left(\left(s_{12}^{-}\right)_{i+1} T_{i+1} \cdot U_{i}-\left(s_{12}^{+}\right)_{i} T_{i} \cdot U_{i+1}\right. \tag{3.48}\\
& \left.+\left(\left(s_{11}^{+}\right)_{i}-\left(s_{11}^{-}\right)_{i+1}\right) U_{i} \cdot U_{i+1}\right) .
\end{align*}
$$

and $(3.46)+(3.47)$ is the same as

$$
\begin{aligned}
& 2\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1} T_{i} \cdot T_{i+1}+\left(s_{12}^{-}\right)_{i+1}\left((\operatorname{tr})_{i, i+1}-2\left(s_{11}^{+}\right)_{i}\right) T_{i+1} \cdot U_{i} \\
& +\left(s_{12}^{+}\right)_{i}\left((\operatorname{tr})_{i, i+1}-2\left(s_{11}^{-}\right)_{i+1}\right) T_{i} \cdot U_{i+1} \\
& \left(\frac{1}{2}\left(\left((\operatorname{tr})_{i, i+1}\right)^{2}-\left(\mathrm{D}_{i, i+1}\right)^{2}\right)\right. \\
& \left.\left.\quad-(\operatorname{tr})_{i, i+1}\left(\left(s_{11}^{+}\right)_{i}\right)+\left(s_{11}^{-}\right)_{i+1}\right)+2\left(s_{11}^{+}\right)_{i}\left(s_{11}^{-}\right)_{i+1}\right) U_{i} \cdot U_{i+1} \\
& =\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1} \cos \phi_{i} \cos \phi_{i+1} .
\end{aligned}
$$

This simplifies (using the definitions of $(\operatorname{tr})_{i, i+1}, \mathrm{D}_{i, i+1}, \operatorname{trace}_{i}^{ \pm}$, and $\operatorname{det}_{i}^{ \pm}$) to become

$$
\begin{align*}
& 2\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1}\left(T_{i} \cdot T_{i+1}-\cos \phi_{i} \cos \phi_{i+1}\right) \\
& +\left(s_{12}^{-}\right)_{i+1}\left(\left(s_{22}^{+}\right)_{i}-\left(s_{11}^{+}\right)_{i}\right) T_{i+1} \cdot U_{i} \\
& +\left(s_{12}^{+}\right)_{i}\left(\left(s_{22}^{-}\right)_{i+1}-\left(s_{11}^{-}\right)_{i+1}\right) T_{i} \cdot U_{i+1} \tag{3.49}\\
& +\left(\left(\left(s_{11}^{+}\right)_{i}-\left(s_{11}^{-}\right)_{i+1}\right)\left(\left(s_{22}^{+}\right)_{i}-\left(s_{22}^{-}\right)_{i+1}\right)\right. \\
& \left.\quad-\left(s_{12}^{+}\right)_{i}\left(s_{21}^{+}\right)_{i}-\left(s_{12}^{-}\right)_{i+1}\left(s_{21}^{-}\right)_{i+1}\right) U_{i} \cdot U_{i+1}=0 .
\end{align*}
$$

Hence we have shown that $\{(3.46),(3.47)\}$ is the same as $\{(3.48),(3.49)\}$ and so equating principal directions on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$is the same as $\{(3.48),(3.49)\}$ being true at $\gamma_{i}\left(r_{0}, 0\right)$. But we know that $\mathrm{D}_{i, i+1} \neq 0$ since we assumed that the principal radial curvatures are distinct. Therefore we can cancel $D_{i, i+1}$ from (3.48). We can also use (3.27) to substitute for $T_{i} \cdot T_{i+1}, T_{i+1} \cdot U_{i}, T_{i} \cdot U_{i+1}$, and $U_{i} \cdot U_{i+1}$. We get

$$
\begin{aligned}
T_{i} \cdot T_{i+1} & =\cos \alpha_{i} \cos \alpha_{i+1}+\sin \alpha_{i} \sin \alpha_{i+1} \cos \theta_{i+2}, \\
T_{i} \cdot U_{i+1} & =-\cos \alpha_{i} \sin \alpha_{i+1}+\sin \alpha_{i} \cos \alpha_{i+1} \cos \theta_{i+2}, \\
T_{i+1} \cdot U_{i} & =-\sin \alpha_{i} \cos \alpha_{i+1}+\cos \alpha_{i} \sin \alpha_{i+1} \cos \theta_{i+2}, \\
U_{i} \cdot U_{i+1} & =\sin \alpha_{i} \sin \alpha_{i+1}+\cos \alpha_{i} \cos \alpha_{i+1} \cos \theta_{i+2} .
\end{aligned}
$$

Then, using Theorem 3.4.2.1, we get

$$
\begin{aligned}
& T_{i} \cdot T_{i+1} \epsilon_{i} \epsilon_{i+1} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i}} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i+1}} \\
= & 1+\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1} \cos \theta_{i+2}, \\
& T_{i} \cdot U_{i+1} \epsilon_{i} \epsilon_{i+1} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i}} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i+1}} \\
= & \frac{\sin \phi}{\cos \phi}\left(\cos \theta_{i+1}-\cos \theta_{i} \cos \theta_{i+2}\right), \\
& T_{i+1} \cdot U_{i} \epsilon_{i} \epsilon_{i+1} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i}} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i+1}} \\
= & \frac{\sin \phi}{\cos \phi}\left(\cos \theta_{i}-\cos \theta_{i+1} \cos \theta_{i+2}\right), \\
& U_{i} \cdot U_{i+1} \epsilon_{i} \epsilon_{i+1} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i}} \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i+1}} \\
= & \frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1}+\cos \theta_{i+2} .
\end{aligned}
$$

Using these, and substituting for $\left(s_{12}^{+}\right)_{i},\left(s_{12}^{-}\right)_{i+1},\left(s_{11}^{+}\right)_{i}$, and $\left(s_{11}^{-}\right)_{i+1}$ into (3.48) and (3.49), we get the following.

Proposition 3.4.3.3 (Constraint on Curvatures) Given that the principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$are equal, the principal directions on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$are equal at a non-umbilic point $\gamma_{i}^{+}\left(r_{0}, 0\right)=\gamma_{i+1}^{-}\left(r_{0}, 0\right)$ corresponding to $\gamma_{i}\left(r_{0}, 0\right)$
on the A_{1}^{3} curve if and only if the following equations hold:

$$
\begin{align*}
0= & \left(\frac{a_{i}^{t}}{v_{i}^{2}}+\tau_{i}^{t} \sin \phi_{i}\right) \frac{\left(\cos \theta_{i+1}-\cos \theta_{i} \cos \theta_{i+2}\right)}{\cos \phi \sin \phi \sin ^{2} \theta_{i}} \\
& +\left(-\frac{a_{i+1}^{t}}{v_{i+1}^{2}}+\tau_{i+1}^{t} \sin \phi_{i+1}\right) \frac{\left(\cos \theta_{i}-\cos \theta_{i+1} \cos \theta_{i+2}\right)}{\cos \phi \sin \phi \sin ^{2} \theta_{i+1}} \tag{3.50}\\
& +\left(-\frac{a_{i}}{v_{i}^{3} \sin ^{2} \phi_{i}}+\frac{\kappa_{i}^{r}}{\sin \phi_{i}}\right)\left(\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1}+\cos \theta_{i+2}\right) \\
& +\left(\frac{a_{i+1}}{v_{i+1}^{3} \sin ^{2} \phi_{i+1}}+\frac{\kappa_{i+1}^{r}}{\sin \phi_{i+1}}\right)\left(\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1}+\cos \theta_{i+2}\right)
\end{align*}
$$

and

$$
\begin{align*}
0 & =\left(s_{12}^{-}\right)_{i+1}\left(\left(s_{22}^{+}\right)_{i}-\left(s_{11}^{+}\right)_{i}\right) \frac{\sin \phi}{\cos \phi}\left(\cos \theta_{i}-\cos \theta_{i+1} \cos \theta_{i+2}\right) \\
& +\left(s_{12}^{+}\right)_{i}\left(\left(s_{22}^{-}\right)_{i+1}-\left(s_{11}^{-}\right)_{i+1}\right) \frac{\sin \phi}{\cos \phi}\left(\cos \theta_{i+1}-\cos \theta_{i} \cos \theta_{i+2}\right) \\
& +2\left(s_{12}^{+}\right)_{i}\left(s_{12}^{-}\right)_{i+1}\left(1+\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1} \cos \theta_{i+2}-\frac{\cos ^{2} \phi_{i} \cos ^{2} \phi_{i+1}}{\cos ^{2} \phi}\right) \tag{3.51}\\
& +\left[\left(\left(s_{11}^{+}\right)_{i}-\left(s_{11}^{-}\right)_{i+1}\right)\left(\left(s_{22}^{+}\right)_{i}-\left(s_{22}^{-}\right)_{i+1}\right)\right. \\
& \left.\quad-\left(s_{12}^{+}\right)_{i}\left(s_{21}^{+}\right)_{i}-\left(s_{12}^{-}\right)_{i+1}\left(s_{21}^{-}\right)_{i+1}\right]\left(\frac{\sin ^{2} \phi}{\cos ^{2} \phi} \cos \theta_{i} \cos \theta_{i+1}+\cos \theta_{i+2}\right)
\end{align*}
$$

where $\left(s_{11}^{ \pm}\right)_{i},\left(s_{12}^{ \pm}\right)_{i},\left(s_{21}^{ \pm}\right)_{i},\left(s_{22}^{ \pm}\right)_{i}$ are given by (3.42) and $\cos \phi_{i}=-1 / v_{i}$, $\sin \phi_{i}$ are given by Theorem 3.4.2.1. (See Table 3.1 for a summary of the notation used.)

3.4.4 Reducing the Number of Variables

Setting equal the principal curvatures on $\gamma_{i}^{+}=\gamma_{i+1}^{-}$at ($r_{0}, 0$) implies (3.43) and (3.44) from Theorem 3.4.3.2, but we want all of the information about the medial axis given by equating principal curvatures and principal directions. We want to reduce the number of variables involved in the principal curvatures and principal directions, which can be done by involving the geometry of the A_{1}^{3} curve. Consider the following lemma.

Figure 3.8: Two sets $\left\{\bar{e}_{1}, \bar{e}_{2}\right\},\left\{\hat{e}_{1}, \hat{e}_{2}\right\}$ of perpendicular tangent directions in relation to the principal directions e_{1}, e_{2} on the surface S. These directions are used to obtain formulae (3.56), (3.57), (3.58) for the normal curvatures and geodesic torsions of S in the directions \hat{e}_{1}, \hat{e}_{2} in terms of the normal curvatures of and geodesic torsions of S in the directions $\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ and the angle $(\hat{\theta}-\bar{\theta})$.

Lemma 3.4.4.1 (Euler Formula) Let the principal curvatures on a surface S at a point p be k_{1}, k_{2} with corresponding principal directions e_{1}, e_{2}. Then the normal curvature k_{n} of S in the direction of $V=e_{1} \cos \theta+e_{2} \sin \theta$ (where θ is the angle from e_{1} to V) is

$$
k_{n}=k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta .
$$

This equation is called the Euler formula. Also, the geodesic torsion t_{g} of S in the direction V is

$$
t_{g}=\left(k_{2}-k_{1}\right) \cos \theta \sin \theta .
$$

Assume we are given k_{1}, k_{2} and e_{1}, e_{2}. Then assume we are given the normal curvatures $\bar{\kappa}_{n 1}, \bar{\kappa}_{n 2}$ respectively in two perpendicular directions \bar{e}_{1}, \bar{e}_{2}, where the angle from e_{1} to \bar{e}_{1} is $\bar{\theta}$, and the geodesic torsion $\bar{\tau}_{g 1}$ in the direction of \bar{e}_{1}. Now consider an unknown set of 'geometries' $\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}, \hat{\tau}_{g 1}$, which are defined similarly as follows. We define $\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}$ as the normal curvatures of S at p in the corresponding perpendicular directions \hat{e}_{1}, \hat{e}_{2} where the angle from e_{1} to \hat{e}_{1} is $\hat{\theta}$. Also, let $\hat{\tau}_{g 1}$ be the geodesic torsion of S at p in the direction of \hat{e}_{1}. We want to obtain formulae for $\left\{\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}, \hat{\tau}_{g 1}\right\}$ in terms of $\left\{\bar{\kappa}_{n 1}, \bar{\kappa}_{n 2}, \bar{\tau}_{g 1}\right\}$. See Figure 3.8.

By Lemma 3.4.4.1 we have

$$
\begin{aligned}
\bar{\kappa}_{n 1} & =k_{1} \cos ^{2} \bar{\theta}+k_{2} \sin ^{2} \bar{\theta}, \quad \bar{\kappa}_{n 2}=k_{1} \sin ^{2} \bar{\theta}+k_{2} \cos ^{2} \bar{\theta} \\
\bar{\tau}_{g 1} & =\left(k_{2}-k_{1}\right) \cos \bar{\theta} \sin \bar{\theta}
\end{aligned}
$$

Solving these for k_{1}, k_{2} in terms of $\bar{\kappa}_{n 1}, \bar{\kappa}_{n 2}$ gives the following:

$$
\begin{gather*}
k_{1}=\frac{\bar{\kappa}_{n 1} \cos ^{2} \bar{\theta}-\bar{\kappa}_{n 2} \sin ^{2} \bar{\theta}}{\cos (2 \bar{\theta})}, \quad k_{2}=\frac{-\bar{\kappa}_{n 1} \sin ^{2} \bar{\theta}+\bar{\kappa}_{n 2} \cos ^{2} \bar{\theta}}{\cos (2 \bar{\theta})} \tag{3.52}\\
\Rightarrow k_{2}-k_{1}=\frac{\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right)}{\cos (2 \bar{\theta})} \Rightarrow \bar{\tau}_{g 1}=\frac{\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \sin 2 \bar{\theta}}{2 \cos (2 \bar{\theta})} . \tag{3.53}
\end{gather*}
$$

Also by Lemma 3.4.4.1 we have

$$
\begin{align*}
\hat{\kappa}_{n 1} & =k_{1} \cos ^{2} \hat{\theta}+k_{2} \sin ^{2} \hat{\theta}, \quad \hat{\kappa}_{n 2}=k_{1} \sin ^{2} \hat{\theta}+k_{2} \cos ^{2} \hat{\theta} \tag{3.54}\\
\hat{\tau}_{g 1} & =\left(k_{2}-k_{1}\right) \cos \hat{\theta} \sin \hat{\theta} \tag{3.55}
\end{align*}
$$

Hence, using (3.52), (3.54),

$$
\begin{align*}
\hat{\kappa}_{n 1} \cos 2 \bar{\theta}= & \bar{\kappa}_{n 1}\left(\cos ^{2} \hat{\theta} \cos ^{2} \bar{\theta}-\sin ^{2} \hat{\theta} \sin ^{2} \bar{\theta}\right) \\
& +\bar{\kappa}_{n 2}\left(\sin ^{2} \hat{\theta} \cos ^{2} \bar{\theta}-\cos ^{2} \hat{\theta} \sin ^{2} \bar{\theta}\right) \\
= & \bar{\kappa}_{n 1} \cos (\hat{\theta}-\bar{\theta}) \cos (\hat{\theta}+\bar{\theta})+\bar{\kappa}_{n 2} \sin (\hat{\theta}-\bar{\theta}) \sin (\hat{\theta}+\bar{\theta}) \\
= & \bar{\kappa}_{n 1} \cos (\hat{\theta}-\bar{\theta})(\cos (\hat{\theta}-\bar{\theta}) \cos (2 \bar{\theta})-\sin (\hat{\theta}-\bar{\theta}) \sin (2 \bar{\theta})) \\
& +\bar{\kappa}_{n 2} \sin (\hat{\theta}-\bar{\theta})(\sin (\hat{\theta}-\bar{\theta}) \cos (2 \bar{\theta})+\cos (\hat{\theta}-\bar{\theta}) \sin (2 \bar{\theta})) \\
\Longleftrightarrow \hat{\kappa}_{n 1}= & \bar{\kappa}_{n 1} \cos ^{2}(\hat{\theta}-\bar{\theta})+\bar{\kappa}_{n 2} \sin ^{2}(\hat{\theta}-\bar{\theta}) \\
& +\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \frac{\sin (2(\hat{\theta}-\bar{\theta}))}{2} \frac{\sin (2 \bar{\theta})}{\cos (2 \bar{\theta})} \\
\Longleftrightarrow \hat{\kappa}_{n 1}= & \bar{\kappa}_{n 1} \cos ^{2}(\hat{\theta}-\bar{\theta})+\bar{\kappa}_{n 2} \sin ^{2}(\hat{\theta}-\bar{\theta})+\bar{\tau}_{g 1} \sin (2(\hat{\theta}-\bar{\theta})), \tag{3.56}\\
& (u \operatorname{using}(3.53)) .
\end{align*}
$$

Similarly, from (3.52), (3.54)

$$
\begin{align*}
\hat{\kappa}_{n 2} \cos 2 \bar{\theta}= & \bar{\kappa}_{n 1}\left(\sin ^{2} \hat{\theta} \cos ^{2} \bar{\theta}-\cos ^{2} \hat{\theta} \sin ^{2} \bar{\theta}\right) \\
& +\bar{\kappa}_{n 2}\left(\cos ^{2} \hat{\theta} \cos ^{2} \bar{\theta}-\sin ^{2} \hat{\theta} \sin ^{2} \bar{\theta}\right) \\
= & \bar{\kappa}_{n 1} \sin (\hat{\theta}-\bar{\theta}) \sin (\hat{\theta}+\bar{\theta})+\bar{\kappa}_{n 2} \cos (\hat{\theta}-\bar{\theta}) \cos (\hat{\theta}+\bar{\theta}) \\
= & \bar{\kappa}_{n 1} \sin (\hat{\theta}-\bar{\theta})(\sin (\hat{\theta}-\bar{\theta}) \cos (2 \bar{\theta})+\cos (\hat{\theta}-\bar{\theta}) \sin (2 \bar{\theta})) \\
& +\bar{\kappa}_{n 2} \cos (\hat{\theta}-\bar{\theta})(\cos (\hat{\theta}-\bar{\theta}) \cos (2 \bar{\theta})-\sin (\hat{\theta}-\bar{\theta}) \sin (2 \bar{\theta})) \\
\Longleftrightarrow \hat{\kappa}_{n 2}= & \bar{\kappa}_{n 1} \sin ^{2}(\hat{\theta}-\bar{\theta})+\bar{\kappa}_{n 2} \cos ^{2}(\hat{\theta}-\bar{\theta}) \\
& -\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \frac{\sin (2(\hat{\theta}-\bar{\theta}))}{2} \frac{\sin (2 \bar{\theta})}{\cos (2 \bar{\theta})} \\
\Longleftrightarrow \hat{\kappa}_{n 2}= & \bar{\kappa}_{n 1} \sin ^{2}(\hat{\theta}-\bar{\theta})+\bar{\kappa}_{n 2} \cos ^{2}(\hat{\theta}-\bar{\theta})-\bar{\tau}_{g 1} \sin (2(\hat{\theta}-\bar{\theta})), \tag{3.57}
\end{align*}
$$ (using (3.53)).

Then, using (3.53), (3.55)

$$
\begin{align*}
\hat{\tau}_{g 1}= & \frac{\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \sin 2 \hat{\theta}}{2 \cos (2 \bar{\theta})} \\
= & \frac{\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right)}{2 \cos (2 \bar{\theta})}(\sin (2(\hat{\theta}-\bar{\theta})) \cos (2 \bar{\theta})+\cos (2(\hat{\theta}-\bar{\theta})) \sin (2 \bar{\theta})) \\
= & \frac{1}{2}\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \sin (2(\hat{\theta}-\bar{\theta})) \\
& +\frac{1}{2} \cos (2(\hat{\theta}-\bar{\theta}))\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \frac{\sin (2 \bar{\theta})}{\cos (2 \bar{\theta})} \\
\Longleftrightarrow \hat{\tau}_{g 1}= & \frac{1}{2}\left(\bar{\kappa}_{n 2}-\bar{\kappa}_{n 1}\right) \sin (2(\hat{\theta}-\bar{\theta}))+\bar{\tau}_{g 1} \cos (2(\hat{\theta}-\bar{\theta})), \tag{3.58}\\
& (\text { using }(3.53)) .
\end{align*}
$$

The equations (3.56), (3.57), (3.58) give formulae for $\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}, \hat{\tau}_{g 1}$ in terms of $\bar{\kappa}_{n 1}, \bar{\kappa}_{n 2}, \bar{\tau}_{g 1}$, and $(\hat{\theta}-\bar{\theta})$, which is the angle from \bar{e}_{1} to \hat{e}_{1}. Now consider these quantities on the medial sheet γ_{i} at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve and let T, $W_{i}=N_{i} \times T, \kappa_{i}^{T}, \kappa_{i}^{W}, \tau_{g i}^{T}$ be respectively $\bar{e}_{1}, \bar{e}_{2}, \bar{\kappa}_{n 1}, \bar{\kappa}_{n 2}, \bar{\tau}_{g 1}$. Also let T_{i}, U_{i} be respectively \hat{e}_{1}, \hat{e}_{2}. Then, by definition, $\kappa_{i}^{r}, \kappa_{i}^{t}, \tau_{i}^{r}$ are respectively $\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}$, $\hat{\tau}_{g 1}$. Then $(\hat{\theta}-\bar{\theta})=\alpha_{i}$ by definition of α_{i}. Compare Figures 3.5, left and 3.8. We can then substitute into (3.56), (3.57), (3.58) to get new formulae for κ_{i}^{r}, $\kappa_{i}^{t}, \tau_{i}^{t}=-\tau_{i}^{r}$, and we get the following.

Lemma 3.4.4.2 The following formulae hold at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve:

$$
\begin{aligned}
\kappa_{i}^{r} & =\kappa_{i}^{T} \cos ^{2} \alpha_{i}+\kappa_{i}^{W} \sin ^{2} \alpha_{i}+\tau_{g i}^{T} \sin \left(2 \alpha_{i}\right) \\
\kappa_{i}^{t} & =\kappa_{i}^{T} \sin ^{2} \alpha_{i}+\kappa_{i}^{W} \cos ^{2} \alpha_{i}-\tau_{g i}^{T} \sin \left(2 \alpha_{i}\right) \\
\tau_{i}^{t} & =-\tau_{i}^{r}=\frac{1}{2}\left(\kappa_{i}^{T}-\kappa_{i}^{W}\right) \sin \left(2 \alpha_{i}\right)-\tau_{g i}^{T} \cos \left(2 \alpha_{i}\right)
\end{aligned}
$$

where κ_{i}^{T}, $\tau_{g i}^{T}$ are respectively the normal curvature, geodesic torsion of γ_{i} in the direction of T at $\gamma_{i}\left(r_{0}, 0\right)$ and the rest of the notation used is contained in Table 3.1.

Introducing the Geometry of the A_{1}^{3} Curve

Now we shall find expressions for $\kappa_{i}^{T}, \tau_{g i}^{T}$ in terms of κ, τ, respectively the curvature and torsion of the A_{1}^{3} curve (see Table 3.1). We have the expression (3.29) for W_{i}, valid along the A_{1}^{3} curve. Then we have the following, at $\gamma_{i}\left(r_{0}, 0\right)$:

$$
\left(\begin{array}{l}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right)
$$

where ' ('prime') is differentiation with respect to arclength along the A_{1}^{3} curve. Also, at $\gamma_{i}\left(r_{0}, 0\right)$ we have

$$
\left(\begin{array}{c}
T^{\prime} \\
W_{i}^{\prime} \\
N_{i}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa_{g i}^{T} & \kappa_{i}^{T} \\
-\kappa_{g i}^{T} & 0 & \tau_{g i}^{T} \\
-\kappa_{i}^{T} & -\tau_{g i}^{T} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
W_{i} \\
N_{i}
\end{array}\right)
$$

where $\kappa_{g i}^{T}$ is the geodesic curvature of the A_{1}^{3} curve on γ_{i} at $\gamma_{i}\left(r_{0}, 0\right)$. Using (3.27) and comparing coefficients we can obtain formulae for $\kappa_{g i}^{T}, \kappa_{i}^{T}$, and $\tau_{g i}^{T}$ in terms of $\kappa, \tau, \psi_{i}^{\prime}$, and ψ_{i} :

$$
\begin{equation*}
\kappa_{g i}^{T}=\kappa \sin \psi_{i}, \quad \kappa_{i}^{T}=\kappa \cos \psi_{i}, \quad \tau_{g i}^{T}=\tau+\psi_{i}^{\prime} \tag{3.59}
\end{equation*}
$$

Substitution of these expressions for $\kappa_{i}^{T}, \tau_{g i}^{T}$ into the expressions for $\kappa_{i}^{r}, \kappa_{i}^{t}, \tau_{i}^{t}$ from Lemma 3.4.4.2 and using Theorem 3.4.2.1, we get the following.

Lemma 3.4.4.3 The following formulae hold at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve:

$$
\begin{align*}
\kappa_{i}^{r} & =\frac{\kappa \cos \psi_{i} \cos ^{2} \phi+\kappa_{i}^{W} \sin ^{2} \phi \cos ^{2} \theta_{i}-\left(\tau+\psi_{i}^{\prime}\right) \sin (2 \phi) \cos \theta_{i}}{\cos ^{2} \phi_{i}} \tag{3.60}\\
\kappa_{i}^{t} & =\frac{\kappa \cos \psi_{i} \sin ^{2} \phi \cos ^{2} \theta_{i}+\kappa_{i}^{W} \cos ^{2} \phi+\left(\tau+\psi_{i}^{\prime}\right) \sin (2 \phi) \cos \theta_{i}}{\cos ^{2} \phi_{i}} \tag{3.61}\\
\tau_{i}^{t} & =\frac{\frac{1}{2}\left(\kappa_{i}^{W}-\kappa \cos \psi_{i}\right) \sin (2 \phi) \cos \theta_{i}+\left(\tau+\psi_{i}^{\prime}\right)\left(\sin ^{2} \phi \cos ^{2} \theta_{i}-\cos ^{2} \phi\right)}{\cos ^{2} \phi_{i}} \tag{3.62}
\end{align*}
$$

where $\cos ^{2} \phi_{i}=\cos ^{2} \phi+\sin ^{2} \phi \cos ^{2} \theta_{i}$, by (3.38). Note that

$$
\left.\begin{array}{l}
\kappa_{i}^{r} \kappa_{i}^{t}-\left(\tau_{i}^{t}\right)^{2}=\kappa \kappa_{i}^{W} \cos \psi_{i}-\left(\tau+\psi_{i}^{\prime}\right)^{2} \tag{3.63}\\
\kappa_{i}^{r}+\kappa_{i}^{t}=\kappa \cos \psi_{i}+\kappa_{i}^{W}
\end{array}\right\}
$$

The notation used is contained in Table 3.1.

New Formulae for $a_{i}, a_{i}^{t}, a_{i}^{*}$

Let the A_{1}^{3} curve be parametrized by $r_{1}=r_{2}=r_{3}=r$, that is let it be $\gamma_{i}\left(r, t_{i}(r)\right)$ (same for each i). Then, for $s=$ arclength along the A_{1}^{3} curve, we have $\gamma_{i}\left(r, t_{i}(r)\right)=\gamma_{i}(s(r))$ for any r. Differentiating this with respect to r, we get the following:

$$
\begin{aligned}
T \frac{d s}{d r}= & \frac{\partial \gamma_{i}}{\partial r_{i}}+\frac{\partial \gamma_{i}}{\partial t_{i}} \frac{d t_{i}}{d r} \\
= & v_{i}\left(\cos \alpha_{i} T+\sin \alpha_{i} \sin \psi_{i} N-\sin \alpha_{i} \cos \psi_{i} B\right) \\
& +\frac{d t_{i}}{d r} w_{i}\left(r, t_{i}(r)\right)\left(-\sin \alpha_{i} T+\cos \alpha_{i} \sin \psi_{i} N-\cos \alpha_{i} \cos \psi_{i} B\right),
\end{aligned}
$$

using (3.27) and where s is arclength along the A_{1}^{3} curve. Comparing coefficients gives

$$
\begin{align*}
\frac{d s}{d r} & =-\frac{1}{\cos \phi} \text { for any } s \tag{3.64}\\
\Rightarrow \frac{d^{2} s}{d r^{2}} & =-\frac{d \phi}{d r} \frac{\sin \phi}{\cos ^{2} \phi}=\phi^{\prime} \frac{\sin \phi}{\cos ^{3} \phi} \text { for any } s, \\
\frac{d t_{i}}{d r} & =\frac{\sin \alpha_{i}}{\cos \phi} \text { at }\left(r_{i}=r_{0}, t_{i}=0\right) \text {, since } w_{i}\left(r_{0}, 0\right)=1
\end{align*}
$$

Then

$$
\begin{aligned}
& \frac{d}{d r}\left(T \frac{d s}{d r}=\frac{\partial \gamma_{i}}{\partial r_{i}}+\frac{\partial \gamma_{i}}{\partial t_{i}} \frac{d t_{i}}{d r}\right) \text { at } r_{i}=r_{0}, t_{i}=0 \text { is the same as } \\
& \kappa N\left(\frac{d s}{d r}\right)^{2}+T \frac{d^{2} s}{d r^{2}}=\frac{\partial^{2} \gamma_{i}}{\partial r_{i}^{2}}+2 \frac{\partial^{2} \gamma_{i}}{\partial r_{i} \partial t_{i}} \frac{d t_{i}}{d r}+\frac{\partial^{2} \gamma_{i}}{\partial t_{i}^{2}}\left(\frac{d t_{i}}{d r}\right)^{2}+\frac{\partial \gamma_{i}}{\partial t_{i}} \frac{d^{2} t_{i}}{d r^{2}} \\
& =\left(a_{i} T_{i}-a_{i}^{t} v_{i} U_{i}+\kappa_{i}^{r} v_{i}^{2} N_{i}\right)+2 \frac{\sin \alpha_{i}}{\cos \phi}\left(a_{i}^{t} T_{i}+a_{i}^{*} U_{i}-\tau_{i}^{t} v_{i} N_{i}\right) \\
& \quad+\frac{\sin ^{2} \alpha_{i}}{\cos ^{2} \phi}\left(-\frac{a_{i}^{*}}{v_{i}} T_{i}+\kappa_{i}^{t} N_{i}\right)+\frac{d^{2} t_{i}}{d r^{2}} U_{i}
\end{aligned}
$$

using (3.7) and (3.8). Then by equating components it can be shown that this gives the following and nothing else at $r_{i}=r_{0}, t_{i}=0$:

$$
\begin{align*}
& \frac{d^{2} t_{i}}{d r^{2}}=-\frac{a_{i}^{t}}{\cos \phi_{i}}-2 \frac{a_{i}^{*} \sin \alpha_{i}}{\cos \phi}+\frac{\kappa \cos \alpha_{i} \sin \psi_{i}}{\cos ^{2} \phi}-\frac{\phi^{\prime} \sin \phi \sin \alpha_{i}}{\cos ^{3} \phi}, \\
& \left.\begin{array}{r}
a_{i} \cos ^{3} \phi=-2 a_{i}^{t} \sin \alpha_{i} \cos ^{2} \phi-a_{i}^{*} \sin ^{2} \alpha_{i} \cos \phi_{i} \cos \phi \\
+\kappa \sin \alpha_{i} \sin \psi_{i} \cos \phi+\phi^{\prime} \sin \phi \cos \alpha_{i} .
\end{array}\right\} \tag{3.65}
\end{align*}
$$

(This can be checked by substituting for $\kappa_{i}^{r}, \kappa_{i}^{t}, \tau_{i}^{t}$ from Lemma 3.4.4.3.)
From (3.28) we have $T=\cos \alpha_{i} T_{i}-\sin \alpha_{i} U_{i}$ for any A_{1}^{3} point, and so this can be differentiated with respect to r :

$$
\begin{aligned}
\frac{d T}{d s} \frac{d s}{d r}= & -\alpha_{i}^{\prime} \frac{d s}{d r}\left(\sin \alpha_{i} T_{i}+\cos \alpha_{i} U_{i}\right)+\cos \alpha_{i}\left(\frac{\partial T_{i}}{\partial r_{i}}+\frac{\partial T_{i}}{\partial t_{i}} \frac{d t_{i}}{d r}\right) \\
& -\sin \alpha_{i}\left(\frac{\partial U_{i}}{\partial r_{i}}+\frac{\partial U_{i}}{\partial t_{i}} \frac{d t_{i}}{d r}\right),
\end{aligned}
$$

which, at $r_{i}=r_{0}, t_{i}=0$, is the same as

$$
\begin{aligned}
-\frac{\kappa N}{\cos \phi}= & \frac{\alpha_{i}^{\prime}}{\cos \phi}\left(\sin \alpha_{i} T_{i}+\cos \alpha_{i} U_{i}\right) \\
& +\cos \alpha_{i}\left(-a_{i}^{t} U_{i}-\frac{\kappa_{i}^{r}}{\cos \phi_{i}} N_{i}+\frac{\sin \alpha_{i}}{\cos \phi}\left(-a_{i}^{*} \cos \phi_{i} U_{i}-\tau_{i}^{t} N_{i}\right)\right) \\
& -\sin \alpha_{i}\left(a_{i}^{t} T_{i}-\frac{\tau_{i}^{t}}{\cos \phi_{i}} N_{i}+\frac{\sin \alpha_{i}}{\cos \phi}\left(a_{i}^{*} \cos \phi_{i} T_{i}+\kappa_{i}^{t} N_{i}\right)\right) .
\end{aligned}
$$

Equating components of the above gives the following and nothing else:

$$
\begin{equation*}
a_{i}^{t} \cos \phi+a_{i}^{*} \cos \phi_{i} \sin \alpha_{i}=\alpha_{i}^{\prime}+\kappa \sin \psi_{i} . \tag{3.66}
\end{equation*}
$$

The equations (3.28), (3.27) hold at all points of the A_{1}^{3} curve, and so they can be differentiated with respect to arclength along the A_{1}^{3} curve. It can be shown that the equations this gives are the same as (3.60), (3.61), (3.62), (3.65), and (3.66). Then, using (3.38), (3.39), (3.40), (3.41) from Theorem 3.4.2.1, we get the following.

Lemma 3.4.4.4 The following formulae hold at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve:

$$
\begin{align*}
a_{i}^{*} \sin \phi \cos \theta_{i} & =a_{i}^{t} \cos \phi-\kappa \sin \psi_{i}-\frac{\theta_{i}^{\prime} \cos \phi \sin \phi \sin \theta_{i}}{\cos ^{2} \phi_{i}}+\frac{\phi^{\prime} \cos \theta_{i}}{\cos ^{2} \phi_{i}} \tag{3.67}\\
\frac{a_{i} \cos ^{3} \phi_{i}}{\sin ^{2} \phi \sin ^{2} \theta_{i}} & =\frac{a_{i}^{t} \cos \theta_{i} \cos ^{2} \phi_{i}}{\cos \phi \sin \phi \sin ^{2} \theta_{i}}+\frac{\phi^{\prime}}{\sin \phi}+\frac{\theta_{i}^{\prime} \cos \theta_{i}}{\cos \phi \sin \theta_{i}} \tag{3.68}
\end{align*}
$$

where $\cos \phi_{i}$ is given by (3.38) and the notation used is contained in Table 3.1.

3.4.5 Obtaining the Complete Set of Consistency Conditions

From (3.42) we can get an expression for trace ${ }_{i}^{ \pm}$, the trace of $S_{\mathbf{v}_{i}}^{ \pm}$, which is the matrix representation of the radial shape operator of γ_{i} corresponding to boundary $\gamma_{i}^{ \pm}$with respect to the basis $\mathbf{v}_{i}=\left\{T_{i}, U_{i}\right\}$ at $\gamma_{i}\left(r_{0}, 0\right)$:

$$
\operatorname{trace}_{i}^{ \pm}=-\frac{a_{i}}{v_{i}^{3} \sin ^{2} \phi_{i}}+\frac{a_{i}^{*}}{v_{i}^{2}} \pm\left(\frac{\kappa_{i}^{r}}{\sin \phi_{i}}+\kappa_{i}^{t} \sin \phi_{i}\right) .
$$

Then, using Lemmas 3.4.4.3 and 3.4.4.4, we get the following.
Lemma 3.4.5.1 The trace of $S_{\mathbf{v}_{i}}^{ \pm}$is as follows:

$$
\begin{align*}
\operatorname{trace}_{i}^{ \pm}= & \frac{a_{i}^{t} \cos ^{4} \phi_{i}}{\cos \phi \sin \phi \cos \theta_{i} \sin ^{2} \theta_{i}}-\frac{\kappa \sin \psi_{i} \cos ^{2} \phi_{i}}{\sin \phi \cos \theta_{i}} \\
& +\frac{2 \phi^{\prime}}{\sin \phi}+\frac{\theta_{i}^{\prime} A_{i}}{\cos \phi \cos \theta_{i} \sin \theta_{i}} \tag{3.69}\\
& \pm \frac{\left(\kappa \cos \psi_{i} B_{i}+\kappa_{i}^{W} \sin ^{2} \phi-\left(\tau+\psi_{i}^{\prime}\right) \sin (2 \phi) \cos \theta_{i}\right)}{\sin \phi \sin \theta_{i}},
\end{align*}
$$

where $A_{i}=\cos ^{2} \theta_{i}-\cos ^{2} \phi \sin ^{2} \theta_{i}, B_{i}=\cos ^{2} \phi+\sin ^{2} \phi \sin ^{2} \theta_{i}$.
Using this expression we get the following.

Theorem 3.4.5.2 (Consistency Condition at A_{1}^{3} Points) The normal curvatures κ_{i}^{W} at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve, for $i=1$, 2, 3, are uniquely determined by the following:

$$
\begin{align*}
\frac{\kappa_{i}^{W_{i}} \sin \phi}{\sin \theta_{i}}= & \frac{\left(a_{i+1}^{t} \cos ^{4} \phi_{i+1}+\theta_{i+1}^{\prime} A_{i+1} \sin \phi \sin \theta_{i+1}\right)}{\cos \phi \sin \phi \cos \theta_{i+1} \sin ^{2} \theta_{i+1}} \\
& -\frac{\left(a_{i+2}^{t} \cos ^{4} \phi_{i+2}+\theta_{i+2}^{\prime} A_{i+2} \sin \phi \sin \theta_{i+2}\right)}{\cos \phi \sin \phi \cos \theta_{i+2} \sin ^{2} \theta_{i+2}} \tag{3.70}\\
& +\frac{\kappa}{\sin \phi}\left(\frac{\sin \psi_{i+2} \cos ^{2} \phi_{i+2}}{\cos \theta_{i+2}}-\frac{\sin \psi_{i+1} \cos ^{2} \phi_{i+1}}{\cos \theta_{i+1}}-\frac{B_{i} \cos \psi_{i}}{\sin \theta_{i}}\right) \\
& +\frac{2\left(\tau+\psi_{i}^{\prime}\right) \cos \phi \cos \theta_{i}}{\sin \theta_{i}} .
\end{align*}
$$

Here $A_{i}=\cos ^{2} \theta_{i}-\cos ^{2} \phi \sin ^{2} \theta_{i}, B_{i}=\cos ^{2} \phi+\sin ^{2} \phi \sin ^{2} \theta_{i}$. The equation (3.70), together with Theorem 3.4.2.1 at ($r_{0}, 0$), gives the complete set of consistency conditions on the medial axis at the A_{1}^{3} point $\gamma_{i}\left(r_{0}, 0\right)$ up to second order. From (3.70) we get

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\frac{\kappa_{i}^{W} \sin ^{2} \phi-2\left(\tau+\psi_{i}^{\prime}\right) \cos \phi \sin \phi \cos \theta_{i}+\kappa \cos ^{2} \phi \cos \psi_{i}}{\sin \theta_{i}}\right)=0 \tag{3.71}
\end{equation*}
$$

which is the same as (3.43), but expressed in terms of the coordinate system based on the A_{1}^{3} curve. (See Table 3.1 for a summary of the notation used.)

Proof. By Lemma 3.4.3.1 we have $\operatorname{trace}_{i}^{-}=\operatorname{trace}_{i+1}^{-}$for $i=1,2,3$. Then it is easy to show

$$
\left(\operatorname{trace}_{i}^{+}=\operatorname{trace}_{i+1}^{-}\right)-\left(\operatorname{trace}_{i+1}^{+}=\operatorname{trace}_{i+2}^{-}\right)+\left(\operatorname{trace}_{i+2}^{+}=\operatorname{trace}_{i}^{-}\right)
$$

is the same as (3.70). Conversely, substitution of $\kappa_{i}^{W}, \kappa_{i+1}^{W}$ into trace ${ }_{i}^{+}$, trace $_{i+1}^{-}$ implies that $\operatorname{trace}_{i}^{+}=\operatorname{trace}_{i+1}^{-}$for each i. Hence (3.70) for $i=1,2,3$ is the complete solution of trace ${ }_{i}^{+}=\operatorname{trace}_{i+1}^{-}$for each i. By Lemma 3.4.3.1, in order to equate principal curvatures on $\gamma_{i}^{+}, \gamma_{i+1}^{-}$at $\gamma_{i}\left(r_{0}, 0\right)$ we also need to set $\operatorname{det}_{i}^{+}=$ $\operatorname{det}_{i+1}^{-}$for $i=1,2,3$. Using (3.42) and Lemmas 3.4.4.3 and 3.4.4.4 we can obtain an expression for $\operatorname{det}_{i}^{ \pm}$(the determinant of $S_{\mathbf{v}_{i}}^{ \pm}$at $\gamma_{i}\left(r_{0}, 0\right)$). Then we can substitute for $\kappa_{1}^{W}, \kappa_{2}^{W}, \kappa_{3}^{W}$ and, using Maple, it can be shown that $\operatorname{det}_{i}^{+}=\operatorname{det}_{i+1}^{-}$
is satisfied for $i=1,2,3$. Finally, in addition to the principal curvatures of γ_{i}^{+}, γ_{i+1}^{-}at $\left(r_{0}, 0\right)$ being equal, the surfaces $\gamma_{i}^{+}, \gamma_{i+1}^{-}$are equal at $\left(r_{0}, 0\right)$ if and only if the principal directions at $\left(r_{0}, 0\right)$ are equal. From Proposition 3.4.3.3 this is the same as (3.50) and (3.51) being true. Then, using Lemmas 3.4.4.3 and 3.4.4.4, we can substitute for $\kappa_{1}^{W}, \kappa_{2}^{W}, \kappa_{3}^{W}$ in (3.50), (3.51) and it can be shown using Maple that (3.50), (3.51) are satisfied for $i=1,2,3$. Hence principal curvatures and principal directions of $\gamma_{i}^{+}, \gamma_{i+1}^{-}$for $i=1,2,3$ are equal at $\left(r_{0}, 0\right)$ if and only if (3.70) is true for $i=1,2,3$. Hence the first part of the result. Finally, it is easy to show using the definition of θ_{i} from Theorem 3.4.2.1 that taking the sum of (3.70) from $i=1$ to 3 , we get (3.71).

Alternative Versions of the Constraint

Using (3.67) we can express a_{i}^{t} in terms of a_{i}^{*} and so we get an alternative form of (3.70) from Theorem 3.4.5.2, as below.

Theorem 3.4.5.3 (Consistency Condition at A_{1}^{3} Points) The normal curvatures κ_{i}^{W} at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve, for $i=1$, 2, 3, are uniquely determined by the following:

$$
\begin{align*}
& \frac{\kappa_{i}^{W} \sin \phi}{\sin \theta_{i}}= \frac{2}{\cos \phi}\left(\frac{\theta_{i+1}^{\prime} \cos \theta_{i+1}}{\sin \theta_{i+1}}-\frac{\theta_{i+2}^{\prime} \cos \theta_{i+2}}{\sin \theta_{i+2}}\right) \\
&+\frac{2\left(\tau+\psi_{i}^{\prime}\right) \cos \phi \cos \theta_{i}}{\sin \theta_{i}} \\
&+\frac{\cos ^{2} \phi_{i+1}\left(a_{i+1}^{*} \cos ^{2} \phi_{i+1}-\frac{\phi^{\prime}}{\sin \phi}\right)}{\cos ^{2} \phi \sin ^{2} \theta_{i+1}} \tag{3.72}\\
& \quad-\frac{\cos ^{2} \phi_{i+2}\left(a_{i+2}^{*} \cos ^{2} \phi_{i+2}-\frac{\phi^{\prime}}{\sin \phi}\right)}{\cos ^{2} \phi \sin ^{2} \theta_{i+2}} \\
&+\frac{\kappa}{\sin \phi}\left(\frac{\sin \psi_{i+1} \cos ^{2} \phi_{i+1} \cos \theta_{i+1}}{\cos ^{2} \phi \sin ^{2} \theta_{i+1}}-\frac{\sin \psi_{i+2} \cos ^{2} \phi_{i+2} \cos \theta_{i+2}}{\cos ^{2} \phi \sin ^{2} \theta_{i+2}}-\frac{\cos \psi_{i} B_{i}}{\sin \theta_{i}}\right) .
\end{align*}
$$

Here $B_{i}=\cos ^{2} \phi+\sin ^{2} \phi \sin ^{2} \theta_{i}$. The equation (3.72), together with Theorem 3.4.2.1 at $\left(r_{0}, 0\right)$, gives the complete set of consistency conditions on the medial axis at the A_{1}^{3} point $\gamma_{i}\left(r_{0}, 0\right)$ up to second order. Taking the sum of
(3.72) from $i=1$ to 3 also gives (3.71). (See Table 3.1 for a summary of the notation used.)

Another version can be obtained as follows. We have

$$
\begin{aligned}
a_{i}^{t} & =\frac{\partial v_{i}}{\partial t_{i}} \text { by definition from } \S 3.2 \\
& =\frac{\partial}{\partial t_{i}}\left(\frac{-1}{\cos \phi_{i}}\right) \text { from (3.6) } \\
& =-\frac{\sin \phi_{i}}{\cos ^{2} \phi_{i}} \frac{\partial \phi_{i}}{\partial t_{i}} .
\end{aligned}
$$

Then, by (3.27) and (3.29)

$$
\begin{aligned}
U_{i} & =-\sin \alpha_{i} T+\cos \alpha_{i} W_{i} \\
\Rightarrow \frac{\partial(*)}{\partial t_{i}} & =-\sin \alpha_{i}(*)^{\prime}+\cos \alpha_{i}(\dot{*})
\end{aligned}
$$

at ($r_{0}, 0$), where ('dot') means differentiation with respect to arclength along a curve passing through $\gamma_{i}\left(r_{0}, 0\right)$, with tangent W_{i}. (See Table 3.1 for a summary of the notation used in the A_{1}^{3} case.) Hence

$$
\begin{aligned}
a_{i}^{t} & =-\frac{\sin \phi_{i}}{\cos ^{2} \phi_{i}}\left(-\phi_{i}^{\prime} \sin \alpha_{i}+\dot{\phi}_{i} \cos \alpha_{i}\right) \\
& =-\frac{\sin \phi_{i}}{\cos ^{2} \phi_{i}}\left(-\frac{\sin \alpha_{i}}{\cos \phi_{i}}\left(\phi^{\prime} \cos \phi \sin \theta_{i}+\theta_{i}^{\prime} \sin \phi \cos \theta_{i}\right)+\dot{\phi}_{i} \cos \alpha_{i}\right)
\end{aligned}
$$

by differentiating (3.39) from Theorem 3.4.2.1 with respect to arclength along the A_{1}^{3} curve. Then we get

$$
\begin{align*}
a_{i}^{t} \cos ^{4} \phi_{i}= & -\phi^{\prime} \cos \phi \sin ^{2} \phi \cos \theta_{i} \sin ^{2} \theta_{i}-\theta_{i}^{\prime} \sin ^{3} \phi \cos ^{2} \theta_{i} \sin \theta_{i} \tag{3.73}\\
& -\dot{\phi}_{i} \cos \phi_{i} \cos \phi \sin \phi \sin \theta_{i} .
\end{align*}
$$

Then, substitution of this into (3.70) from Theorem 3.4.5.2 gives the following.
curvatures κ_{i}^{W} at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve, for $i=1$, 2, 3, are uniquely determined by the following:

$$
\begin{align*}
\frac{\kappa_{i}^{W} \sin \phi}{\sin \theta_{i}}= & \frac{\left(\theta_{i+1}^{\prime} \cos \phi \cos \left(2 \theta_{i+1}\right)-\dot{\phi}_{i+1} \cos \phi_{i+1}\right)}{\cos \theta_{i+1} \sin \theta_{i+1}} \\
& -\frac{\left(\theta_{i+2}^{\prime} \cos \phi \cos \left(2 \theta_{i+2}\right)-\dot{\phi}_{i+2} \cos \phi_{i+2}\right)}{\cos \theta_{i+2} \sin \theta_{i+2}} \tag{3.74}\\
& +\frac{\kappa}{\sin \phi}\left(\frac{\sin \psi_{i+2} \cos ^{2} \phi_{i+2}}{\cos \theta_{i+2}}-\frac{\sin \psi_{i+1} \cos ^{2} \phi_{i+1}}{\cos \theta_{i+1}}-\frac{\cos \psi_{i} B_{i}}{\sin \theta_{i}}\right) \\
& +\frac{2\left(\tau+\psi_{i}^{\prime}\right) \cos \phi \cos \theta_{i}}{\sin \theta_{i}} .
\end{align*}
$$

Here $B_{i}=\cos ^{2} \phi+\sin ^{2} \phi \sin ^{2} \theta_{i}$. The equation (3.74), together with Theorem 3.4.2.1 at $\left(r_{0}, 0\right)$, gives the complete set of consistency conditions on the medial axis at the A_{1}^{3} point $\gamma_{i}\left(r_{0}, 0\right)$ up to second order. Taking the sum of (3.74) from $i=1$ to 3 also gives (3.71). (See Table 3.1 for a summary of the notation used.)

Remark 3.4.5.5 Consider when the denominators are zero in (3.70), (3.72) and (3.74). A point for which $\sin \theta_{i}=0$ for some i is an $A_{1} A_{3}$ point and will be covered in $\S 3.9$, which deals with the $A_{1} A_{3}$ case. When $\sin \phi=0$ the three points of contact on the boundary are coincident and so the sphere of contact has A_{5} contact with the boundary. This case is not generic for a surface, so we ignore it. When $\cos \phi=\cos \theta_{i}=0$ then $\cos \phi_{i}=0$ (see (3.38)), which means that $\left\|\nabla r_{i}\right\|=0$. We assumed $\left\|\nabla r_{i}\right\| \neq 0$ for our coordinate system in $\S 3.2$ and so, at $\gamma_{i}\left(r_{0}, 0\right)$, one of $\cos \phi, \cos \theta_{i}$ will be non-zero. Hence we can use either (3.72) or (3.74). Points where $\left\|\nabla r_{i}\right\|=0$ are isolated and only occur for generic surfaces on A_{1}^{2} sheets, so we do not need to consider them in the A_{1}^{3} case.

Now we consider when the radius r has a local maximum or minimum at an A_{1}^{3} point.

Proposition 3.4.5.6 When the radius r of the sphere of contact at an A_{1}^{3} point $\gamma_{i}\left(r_{0}, 0\right)$ has a local maximum or minimum, the normal curvatures κ_{i}^{W} satisfy
the following:

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\frac{\kappa_{i}^{W}}{\sin \theta_{i}}\right)=0 \tag{3.75}
\end{equation*}
$$

Proof. From (3.64), at $\gamma_{i}\left(r_{0}, 0\right)$,

$$
\frac{d r}{d s}=0 \quad \Longleftrightarrow \quad \cos \phi=0
$$

Then setting $\cos \phi=0$ in (3.71) gives the result.

Remark 3.4.5.7 The equation (3.75) is reminiscent of the second equation of (3.1) for the medial axis in \mathbb{R}^{2}. Note that $\cos \phi=0$ implies $\cos \phi_{i}=-\cos \theta_{i}$, $\sin \phi_{i}=\sin \theta_{i}, \cos \alpha_{i}=0$, and $\sin \alpha_{i}=1$, by Theorem 3.4.2.1. Then, from (3.27), we see that $T_{i}=\sin \psi_{i} N-\cos \psi_{i} B$, and hence that T_{i}, N_{i} are in the plane of N, B for each i. Then, from (3.3) and (3.5) this means that when $\cos \phi=0$ at $\gamma_{i}\left(r_{0}, 0\right)$ then $\gamma_{i}\left(r_{0}, 0\right)$ and $\gamma_{i}^{ \pm}\left(r_{0}, 0\right)$ are all in the same plane for each i. Hence the situation is similar to that of the medial axis in \mathbb{R}^{2}.

3.5 First Example of the A_{1}^{3} Case

Suppose the three medial surfaces γ_{i}, for $i=1,2,3$ are general cylinders intersecting in a line, that is the A_{1}^{3} set here is a straight line, the z-axis (see Figure 3.9). The consistency conditions of $\S 3.4$, including those of Theorem 3.4.5.2 (or alternatively one of Theorems 3.4.5.3, 3.4.5.4), were obtained using the assumption that the curvature κ of the A_{1}^{3} curve was never zero, enabling a Frenet frame to be set up. If the A_{1}^{3} curve is a straight line then κ is zero for all points of the A_{1}^{3} curve, which means the Frenet frame is not defined. When $\kappa \equiv 0$ the principal normal N and the binormal B to the A_{1}^{3} curve are arbitrary. Hence, in this section we will make choices for N, B and use the consistency conditions of $\S 3.4$ to gain information about the radius functions r_{1}, r_{2}, r_{3} associated to the three medial sheets $\gamma_{1}, \gamma_{2}, \gamma_{3}$ at a point of the A_{1}^{3} curve, the z-axis.

Figure 3.9: Left: an example of the medial axis as three general cylinders with the A_{1}^{3} curve being the z-axis. Right: a further simplification of the medial axis where each medial sheet γ_{i}, for $i=1,2,3$, is a flat sheet. Also shown is the corresponding boundary surface.

Given that δ_{i} is a unit speed space curve, we parametrize the cylinders as below:

$$
\begin{aligned}
\gamma_{i}(u, z)= & \delta_{i}(u)+z(0,0,1), \text { where } \delta_{i}(u)=\left(X_{i}(u), Y_{i}(u), 0\right), \\
\text { and } & \left(\frac{d X_{i}}{d u}\right)^{2}+\left(\frac{d Y_{i}}{d u}\right)^{2}=1 \text { for all } u\left(\delta_{i} \text { unit speed }\right), \\
\text { so } N_{i}(u, z)= & \eta_{i}\left(\frac{d Y_{i}}{d u},-\frac{d X_{i}}{d u}, 0\right), \text { where } \eta_{i}= \pm 1 .
\end{aligned}
$$

Let $\delta_{i}\left(u_{i}\right)=\mathbf{0}$, for u_{i} constant, so that $\gamma_{1}\left(u_{1}, z\right)=\gamma_{2}\left(u_{2}, z\right)=\gamma_{3}\left(u_{2}, z\right)$ is a point of the A_{1}^{3} curve. The radii r_{1}, r_{2}, r_{3} are all equal for points of the A_{1}^{3} curve, so $r(z)=r_{1}\left(u_{1}, z\right)=r_{2}\left(u_{2}, z\right)=r_{3}\left(u_{1}, z\right)$ for all z. Hence all of the derivatives of r_{i} with respect to z are equal at $\left(u_{i}, z\right)$. We shall consider the point on the A_{1}^{3} curve given by $u=u_{i}, z=0$, corresponding to $r_{i}=r_{0}, t_{i}=0$.

In this example we illustrate Theorem 3.4.2.1 and one of Theorems 3.4.5.2, 3.4.5.3, 3.4.5.4. Firstly we shall calculate some quantities such as $\cos \phi_{i}$ that appear in these results and some that will be of use for an example of the A_{3} case. Equations (3.9), (3.10), (3.11), (3.12) give such expressions in terms of an arbitrary parametrization. Using these (and replacing (x, y) with $(u, z))$ we get the following expressions, which hold for all (u, z) near to $u=u_{i}, z=0$,
where suffices denote differentiation:

$$
\begin{align*}
\frac{\partial \gamma_{i}}{\partial r_{i}} & =\frac{1}{r_{i u}^{2}+r_{i z}^{2}}\left(r_{i u} \frac{d X_{i}}{d u}, r_{i u} \frac{d Y_{i}}{d u}, r_{i z}\right) \tag{3.76}\\
v_{i} & =\frac{\epsilon_{i}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}, \text { where } \epsilon_{i}=\operatorname{sign}\left(\cos \theta_{i}\right) \tag{3.77}\\
T_{i} & =\frac{1}{v_{i}} \frac{\partial \gamma_{i}}{\partial r_{i}}=\frac{\epsilon_{i}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}\left(r_{i u} \frac{d X_{i}}{d u}, r_{i u} \frac{d Y_{i}}{d u}, r_{i z}\right) \tag{3.78}\\
U_{i} & =N_{i} \times T_{i}=\frac{\epsilon_{i} \eta_{i}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}\left(-r_{i z} \frac{d X_{i}}{d u},-r_{i z} \frac{d Y_{i}}{d u}, r_{i u}\right), \tag{3.79}\\
N_{i}^{ \pm} & =\left(r_{i u} \frac{d X_{i}}{d u}, r_{i u} \frac{d Y_{i}}{d u}, r_{i z}\right) \mp \eta_{i} \sqrt{1-r_{i u}^{2}-r_{i z}^{2}}\left(\frac{d Y_{i}}{d u},-\frac{d X_{i}}{d u}, 0\right) . \tag{3.80}
\end{align*}
$$

Using

$$
\begin{aligned}
& \frac{\partial \gamma_{i}}{\partial r_{i}} \frac{\partial r_{i}}{\partial u}+\frac{\partial \gamma_{i}}{\partial t_{i}} \frac{\partial t_{i}}{\partial u}=\frac{\partial \gamma_{i}}{\partial u}=\left(\frac{d X_{i}}{d u}, \frac{d Y_{i}}{d u}, 0\right), \\
& \frac{\partial \gamma_{i}}{\partial r_{i}} \frac{\partial r_{i}}{\partial z}+\frac{\partial \gamma_{i}}{\partial t_{i}} \frac{\partial t_{i}}{\partial z}=\frac{\partial \gamma_{i}}{\partial z}=(0,0,1),
\end{aligned}
$$

and the facts that $\partial \gamma_{i} / \partial r_{i} \cdot \partial \gamma_{i} / \partial t_{i}=0$ for all $\left(r_{i}, t_{i}\right)$ near ($r_{i}=r_{0}, t=0$) and that $\partial \gamma_{i} / \partial t_{i}=U_{i}$ at $r_{i}=r_{0}$ (see (3.4)), we obtain the following:

$$
\begin{align*}
t_{i u} & =-\frac{\epsilon_{i} \eta_{i} r_{i z}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}, \quad t_{i z}=\frac{\epsilon_{i} \eta_{i} r_{i u}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}, \tag{3.81}\\
\frac{\partial \gamma_{i}}{\partial t_{i}} & =\frac{\epsilon_{i} \eta_{i}}{\sqrt{r_{i u}^{2}+r_{i z}^{2}}}\left(-r_{i z} \frac{d X_{i}}{d u},-r_{i z} \frac{d Y_{i}}{d u}, r_{i u}\right), \tag{3.82}
\end{align*}
$$

all evaluated at $r_{i}=r_{0}$.
Now for second order terms. By definition a_{i}, a_{i}^{t} are respectively $\partial v_{i} / \partial r_{i}$, $\partial v_{i} / \partial t_{i}$. So we need to calculate these quantities in terms of the parametrizations of the cylinders γ_{i}. From the change of variables $(u, z) \mapsto\left(r_{i}, t_{i}\right)$ we get

$$
\left(\begin{array}{cc}
u_{r_{i}} & u_{t_{i}} \tag{3.83}\\
z_{r_{i}} & z_{t_{i}}
\end{array}\right)=\left(\begin{array}{cc}
r_{i u} & r_{i z} \\
t_{i u} & t_{i z}
\end{array}\right)^{-1}=\frac{1}{r_{i u} t_{i z}-r_{i z} t_{i u}}\left(\begin{array}{cc}
t_{i z} & -r_{i z} \\
-t_{i u} & r_{i u}
\end{array}\right) .
$$

Using this and differentiating (3.77) with subscript i (which is allowed since it
holds for all (u, z) close to $\left.u=u_{i}, z=0\right)$ we get the following:

$$
\begin{align*}
\frac{a_{i}}{v_{i}} & =-\frac{\left(r_{i u}^{2} r_{i u u}+2 r_{i u} r_{i z} r_{i u z}+r_{i z}^{2} r_{i z z}\right)}{\left(r_{i u}^{2}+r_{i z}^{2}\right)^{2}}, \tag{3.84}\\
a_{i}^{t} & =\eta_{i} \frac{\left(r_{i u} r_{i z} r_{i u u}+\left(r_{i z}^{2}-r_{i u}^{2}\right) r_{i u z}-r_{i u} r_{i z} r_{i z z}\right)}{\left(r_{i u}^{2}+r_{i z}^{2}\right)^{2}}, \tag{3.85}
\end{align*}
$$

both evaluated at $r_{i}=r_{0}$. Now to calculate a_{i}^{*}. From (3.7) and (3.8) we see that

$$
a_{i}^{*}=\frac{\partial^{2} \gamma_{i}}{\partial r_{i} \partial t_{i}} \cdot U_{i}=-v_{i} \frac{\partial^{2} \gamma_{i}}{\partial t_{i}^{2}} \cdot T_{i}
$$

Using the chain rule on $\partial \gamma_{i} / \partial u, \partial \gamma_{i} / \partial z$ and using (3.81), (3.84) and (3.85) at $r_{i}=r_{0}$ gives the following:

$$
\begin{equation*}
a_{i}^{*}=\frac{r_{i z}^{2} r_{i u u}-2 r_{i u} r_{i z} r_{i u z}+r_{i u}^{2} r_{i z z}}{\left(r_{i u}^{2}+r_{i z}^{2}\right)^{2}} . \tag{3.86}
\end{equation*}
$$

We can also calculate the terms of the geometry: $\kappa_{i}^{r}, \kappa_{i}^{t}$, and τ_{i}^{t}. Although these are not required for the constraints, they will be of use in §3.8. From (3.7) we have

$$
\begin{aligned}
\kappa_{i}^{r} & =\frac{1}{v_{i}^{2}} \frac{\partial^{2} \gamma_{i}}{\partial r_{i}^{2}} \cdot N_{i}=-\frac{1}{v_{i}^{2}} \frac{\partial \gamma_{i}}{\partial r_{i}} \cdot \frac{\partial N_{i}}{\partial r_{i}}, \\
-v_{i} \tau_{i}^{t} & =\frac{\partial^{2} \gamma_{i}}{\partial r_{i} \partial t_{i}} \cdot N_{i}=-\frac{\partial \gamma_{i}}{\partial r_{i}} \cdot \frac{\partial N_{i}}{\partial t_{i}}, \\
\kappa_{i}^{t} & =\frac{\partial^{2} \gamma_{i}}{\partial t_{i}^{2}} \cdot N_{i}=-\frac{\partial \gamma_{i}}{\partial t_{i}} \cdot \frac{\partial N_{i}}{\partial t_{i}} .
\end{aligned}
$$

Using (3.83), we can calculate $\partial N_{i} / \partial r_{i}$ and $\partial N_{i} / \partial t_{i}$, evaluated at $r_{i}=r_{0}$ Then, using (3.76) and (3.82) we get

$$
\begin{align*}
\kappa_{i}^{r} & =\frac{\eta_{i} r_{i u}^{2}}{r_{i u}^{2}+r_{i z}^{2}}\left(\frac{d^{2} X_{i}}{d u^{2}} \frac{d Y_{i}}{d u}-\frac{d X_{i}}{d u} \frac{d^{2} Y_{i}}{d u^{2}}\right), \tag{3.87}\\
\kappa_{i}^{t} & =\frac{\eta_{i} r_{i z}^{2}}{r_{i u}^{2}+r_{i z}^{2}}\left(\frac{d^{2} X_{i}}{d u^{2}} \frac{d Y_{i}}{d u}-\frac{d X_{i}}{d u} \frac{d^{2} Y_{i}}{d u^{2}}\right), \tag{3.88}\\
\tau_{i}^{t} & =\frac{r_{i u} r_{i z}}{r_{i u}^{2}+r_{i z}^{2}}\left(\frac{d^{2} X_{i}}{d u^{2}} \frac{d Y_{i}}{d u}-\frac{d X_{i}}{d u} \frac{d^{2} Y_{i}}{d u^{2}}\right), \tag{3.89}
\end{align*}
$$

all evaluated at $r_{i}=r_{0}$.

We want to gain information about the radius functions r_{i} along the A_{1}^{3} curve from Theorem 3.4.2.1 and one of Theorems 3.4.5.2, 3.4.5.3, 3.4.5.4, which must hold at points of the A_{1}^{3} axis. As described above, the Frenet frame is not defined when κ is zero, but since $\kappa \equiv 0$ we choose $T=(0,0,1)$, and $N=(0,1,0)$ and then $B=T \times N=(-1,0,0)$. Then $\kappa \equiv 0$ and $\tau \equiv 0$. The A_{1}^{3} curve is $\gamma_{i}\left(u_{i}, z\right)=(0,0, z)$, so by (3.27) we have

$$
\begin{align*}
N_{i} & =\cos \psi_{i} N+\sin \psi_{i} B \\
\Rightarrow \quad\left(-\sin \psi_{i}, \cos \psi_{i}, 0\right) & =\eta_{i}\left(\frac{d Y_{i}}{d u}\left(u_{i}\right),-\frac{d X_{i}}{d u}\left(u_{i}\right), 0\right) \\
\Rightarrow \frac{d X_{i}}{d u}\left(u_{i}\right)=-\eta_{i} \cos \psi_{i} & , \frac{d Y_{i}}{d u}\left(u_{i}\right)=-\eta_{i} \sin \psi_{i}, \tag{3.90}
\end{align*}
$$

for any z and where the derivatives of δ_{i} are evaluated at $u=u_{i}$. Using these we can get expressions for $\cos \theta_{i}, \sin \theta_{i}$, since by definition $\theta_{i}=\psi_{i+2}-\psi_{i+1}$. Note that the ψ_{i} are constants along the A_{1}^{3} curves, that is at $\left(u=u_{i}, z\right)$. Hence $\psi_{i}^{\prime} \equiv 0$ along the A_{1}^{3} curve. By (3.64) we have $d r / d s=-\cos \phi$, where s is arclength along the A_{1}^{3} curve. In our example z is arclength along the A_{1}^{3} curve, so we have

$$
\cos \phi=-r_{i z}\left(u_{i}, z\right)=-r_{z} \Rightarrow \phi^{\prime}=\frac{r_{z z}}{\sin \phi}
$$

We assumed ϕ was obtuse along the A_{1}^{3} curve in the general case, so $\cos \phi<0$. Hence $r_{z}>0$.

3.5.1 First Order

Now we shall consider Theorem 3.4.2.1, which gives

$$
\begin{aligned}
\cos \phi_{i} & =\epsilon_{i} \cos \phi \sqrt{1+\tan ^{2} \phi \cos ^{2} \theta_{i}}=-\epsilon_{i} r_{z} \sqrt{1+\frac{\left(1-r_{z}^{2}\right)}{r_{z}^{2}} \cos ^{2} \theta_{i}} \\
& =-\epsilon_{i} \sqrt{r_{i u}^{2}+r_{z}^{2}}, \text { from }(3.77), \\
\Rightarrow \quad r_{i u}^{2} & =\left(1-r_{z}^{2}\right) \cos ^{2} \theta_{i} \text { and so }\left(1-r_{z}^{2}\right) \geq 0,
\end{aligned}
$$

for any z and where the derivatives of δ_{i} are evaluated at $u=u_{i}$. Using (3.80) and the fact that $N_{i}^{+}=N_{i+1}^{-}$along the A_{1}^{3} curve we get

$$
\begin{equation*}
r_{i u}=-\eta_{i} \cos \theta_{i} \sqrt{1-r_{z}^{2}} \text { at }\left(u=u_{i}, z\right) \tag{3.91}
\end{equation*}
$$

Hence we can uniquely determine $r_{i u}\left(u_{i}, z\right)$ in terms of $r_{z}(z)$ and the first order derivatives of $\delta_{1,2,3}$ at $u=u_{1,2,3}$ and so we have the following.

Remark 3.5.1.1 Knowledge of the first order derivatives of the radius along the A_{1}^{3} curve and of the curves δ_{i} at a point of the A_{1}^{3} curve uniquely determines the first derivatives of the r_{i} in every direction.

3.5.2 Second Order

Now we shall consider the second order constraints, that is (3.72) from Theorem 3.4.5.3. For the moment $\cos \phi$ is assumed to be non-zero, that is $r_{z} \neq 0$. Most of the terms vanish since $\kappa \equiv 0, \tau \equiv 0$ and $\psi_{i}^{\prime} \equiv 0$ along the A_{1}^{3} curve. Firstly, we can differentiate (3.91) along the A_{1}^{3} curve, that is with respect to z, to get an expression for $r_{i u z}\left(u_{i}, z\right)$:

$$
r_{i u z}=\frac{\eta_{i} \cos \theta_{i} r_{z} r_{z z}}{\sqrt{1-r_{z}^{2}}} .
$$

We have $\phi^{\prime}=r_{z z} / \sin \phi$ and (3.86) gives us a_{i}^{*}, so the last term we need is κ_{i}^{W}. By definition

$$
W_{i}=N_{i} \times T, \kappa_{i}^{W}=-\dot{N}_{i} \cdot W_{i},
$$

where by definition ('dot') means differentiation with respect to arclength along a curve passing through $\gamma_{i}\left(r_{0}, 0\right)$ with tangent W_{i} (see Table 3.1). Now

$$
W_{i}=-\eta_{i}\left(\frac{d X_{i}}{d u}, \frac{d Y_{i}}{d u}, 0\right)=-\eta_{i} \frac{\partial \gamma_{i}}{\partial u}(u, z=0),
$$

and so for this example let ('dot') be the same as $\left(-\eta_{i} d / d u\right)$ at $z=0$ for all u on γ_{i}. Therefore

$$
\begin{equation*}
\kappa_{i}^{W}=-\left(-\eta_{i} \frac{d N_{i}}{d u}(u, 0)\right) \cdot W_{i}=-\eta_{i}\left(\frac{d X_{i}}{d u} \frac{d^{2} Y_{i}}{d u^{2}}-\frac{d^{2} X_{i}}{d u^{2}} \frac{d Y_{i}}{d u}\right) . \tag{3.92}
\end{equation*}
$$

Using these expressions, (3.74) from Theorem 3.4.5.3 becomes the following at ($u=u_{i}, z=0$):

$$
\begin{aligned}
\frac{\kappa_{i}^{W} \sqrt{1-r_{z}^{2}}}{\sin \theta_{i}}= & \frac{\left(r_{(i+1) u}^{2}+r_{z}^{2}\right)}{r_{z}^{2} \sin ^{2} \theta_{i+1}}\left(r_{z}^{2} r_{(i+1) u u}+\frac{r_{z z}}{\left(1-r_{z}^{2}\right)}\left(\left(1-r_{z}^{4}\right) \cos ^{2} \theta_{i+1}-1\right)\right) \\
& -\frac{\left(r_{(i+2) u}^{2}+r_{z}^{2}\right)}{r_{z}^{2} \sin ^{2} \theta_{i+2}}\left(r_{z}^{2} r_{(i+2) u u}+\frac{r_{z z}}{\left(1-r_{z}^{2}\right)}\left(\left(1-r_{z}^{4}\right) \cos ^{2} \theta_{i+2}-1\right)\right),
\end{aligned}
$$

for $i=1,2,3$ and where κ_{i}^{W} is given by (3.92). Attempting to solve these consistency conditions for $r_{i u u}\left(u_{i}, 0\right)$ for $i=1,2,3$ only gives

$$
\begin{aligned}
& r_{2 u u} \frac{\left(r_{2 u}^{2}+r_{z}^{2}\right)}{\sin ^{2} \theta_{2}}=-\frac{\kappa_{3}^{W} \sin \phi}{\sin \theta_{3}}+\frac{\left(r_{1 u}^{2}+r_{z}^{2}\right) r_{z z}}{r_{z}^{2}\left(1-r_{z}^{2}\right) \sin ^{2} \theta_{1}}\left(\cos ^{2} \theta_{1}\left(1-r_{z}^{4}\right)-1\right) \\
&+\frac{\left(r_{1 u}^{2}+r_{z}^{2}\right) r_{1 u u}}{\sin ^{2} \theta_{1}}-\frac{\left(r_{2 u}^{2}+r_{z}^{2}\right) r_{z z}}{r_{z}^{2}\left(1-r_{z}^{2}\right) \sin ^{2} \theta_{2}}\left(\cos ^{2} \theta_{2}\left(1-r_{z}^{4}\right)-1\right), \\
& r_{3 u u} \frac{\left(r_{3 u}^{2}+r_{z}^{2}\right)}{\sin ^{2} \theta_{3}}= \frac{\kappa_{2}^{W} \sin \phi}{\sin \theta_{2}}+\frac{\left(r_{1 u}^{2}+r_{z}^{2}\right) r_{z z}}{r_{z}^{2}\left(1-r_{z}^{2}\right) \sin ^{2} \theta_{1}}\left(\cos ^{2} \theta_{1}\left(1-r_{z}^{4}\right)-1\right) \\
&+\frac{\left(r_{1 u}^{2}+r_{z}^{2}\right) r_{1 u u}}{\sin ^{2} \theta_{1}}-\frac{\left(r_{3 u}^{2}+r_{z}^{2}\right) r_{z z}}{r_{z}^{2}\left(1-r_{z}^{2}\right) \sin ^{2} \theta_{3}}\left(\cos ^{2} \theta_{3}\left(1-r_{z}^{4}\right)-1\right), \\
& \sum_{i=1}^{3}\left(\frac{\kappa_{i}^{W}}{\sin \theta_{i}}\right)=0,
\end{aligned}
$$

so we can only solve for two of $r_{1 u u}\left(u_{1}, 0\right), r_{2 u u}\left(u_{2}, 0\right), r_{3 u u}\left(u_{3}, 0\right)$. This last equation is a constraint on the curves δ_{i} - it must be satisfied if there is to be a smooth reconstruction of the boundary. Compare this with the second equation of (3.1) in \mathbb{R}^{2}, since for three general cylinders the three points of contact of the tritangent sphere with the boundary are in the same plane as the corresponding A_{1}^{3} point.

Now consider the case when $\cos \phi=0$. Using Theorem 3.4.2.1, substitution of $\cos \phi=0$ in (3.74), with some simplification, gives the following:

$$
\begin{equation*}
\frac{\kappa_{i}^{W}}{\sin \theta_{i}}=\frac{\dot{\phi}_{i+1}}{\sin \theta_{i+1}}-\frac{\dot{\phi}_{i+2}}{\sin \theta_{i+2}} \tag{3.93}
\end{equation*}
$$

In this example $\cos \phi=0 \Longleftrightarrow r_{z}=0$. We have that ' ('dot') is the same as $\left(-\eta_{i} d / d u\right)$ on γ_{i} and, using (3.77), we get

$$
\dot{\phi}_{i} \cos \phi_{i}=\frac{\eta_{i}\left(r_{i u} r_{i u u}+r_{i z} r_{i u z}\right)}{\sin \phi_{i}} \text { at }\left(u=u_{i}, z\right) .
$$

Then, using Theorem 3.4.2.1 we get $\dot{\phi}_{i}=r_{i u u} / \sin \theta_{i}$ when $r_{z}(0)=0$ at $\left(u_{i}, 0\right)$. Hence (3.93) becomes

$$
\frac{\kappa_{i}^{W} \sin \phi}{\sin \theta_{i}}=\frac{r_{(i+1) u u}}{\sin ^{2} \theta_{i+1}}-\frac{r_{(i+2) u u}}{\sin ^{2} \theta_{i+2}} .
$$

This then gives

$$
\begin{aligned}
& r_{2 u u}=\frac{r_{1 u u}}{\sin ^{2} \theta_{1}}-\frac{\kappa_{3}^{W} \sin \phi}{\sin \theta_{3}}, r_{3 u u}=\frac{r_{1 u u}}{\sin ^{2} \theta_{1}}+\frac{\kappa_{2}^{W} \sin \phi}{\sin \theta_{2}}, \\
& \text { and } \quad \sum_{i=1}^{3} \frac{\kappa_{i}^{W}}{\sin \theta_{i}}=0,
\end{aligned}
$$

at a point of the A_{1}^{3} curve for which $\cos \phi=0$. So again we can only solve for two of $r_{1 u u}\left(u_{1}, 0\right), r_{2 u u}\left(u_{2}, 0\right), r_{3 u u}\left(u_{3}, 0\right)$.

Remark 3.5.2.1 In summary, for a given set of three general cylinders, the derivatives $r_{z}(0), r_{1 u u}\left(u_{1}, 0\right)$ and $r_{z z}(0)$ and the first and second derivatives of δ_{i} at $u=u_{i}$ uniquely determine all of the other derivatives (up to second order) of r_{i} in all directions at $\left(u=u_{i}, z=0\right)$ for $i=1,2,3$. The curves δ_{i} must also satisfy the constraint:

$$
\begin{aligned}
& \sum_{i=1}^{3} \frac{\kappa_{i}^{W}}{\sin \theta_{i}}=0, \text { that is } \\
& \sum_{i=1}^{3}\left(\frac{\frac{d^{2} X_{i}}{d u^{2}}\left(u_{i}\right) \frac{d Y_{i}}{d u}\left(u_{i}\right)-\frac{d X_{i}}{d u}\left(u_{i}\right) \frac{d^{2} Y_{i}}{d u^{2}}\left(u_{i}\right)}{\frac{d X_{i+1}}{d u}\left(u_{i+1}\right) \frac{d Y_{i+2}}{d u}\left(u_{i+2}\right)-\frac{d X_{i+2}}{d u}\left(u_{i+2}\right) \frac{d Y_{i+1}}{d u}\left(u_{i+1}\right)}\right)=0 .
\end{aligned}
$$

3.5.3 Three Planes

Now consider the curves δ_{i} as straight lines, so the γ_{i} are planes, parametrized as below:

$$
\begin{aligned}
\delta_{1}(u) & =\left(X_{1}(u), Y_{1}(u), 0\right)=(u, 0,0), \\
\delta_{2}(u) & =\left(X_{2}(u), Y_{2}(u), 0\right)=\frac{(-u, \lambda u, 0)}{\sqrt{1+\lambda^{2}}}, \\
\delta_{3}(u) & =\left(X_{3}(u), Y_{3}(u), 0\right)=\frac{(-u,-\rho u, 0)}{\sqrt{1+\rho^{2}}},
\end{aligned}
$$

for $u \geq 0$ and where λ, ρ are both positive constants. Then $u_{1}=u_{2}=u_{3}=0$ corresponds to the A_{1}^{3} point. Using (3.90) we get

$$
\begin{aligned}
\cos \psi_{1} & =-\eta_{1}, \sin \psi_{1}=0, \\
\cos \psi_{2} & =\frac{\eta_{2}}{\sqrt{1+\lambda^{2}}}, \quad \sin \psi_{2}=-\frac{\eta_{2} \lambda}{\sqrt{1+\lambda^{2}}}, \\
\cos \psi_{3} & =\frac{\eta_{3}}{\sqrt{1+\rho^{2}}}, \quad \sin \psi_{3}=\frac{\eta_{3} \rho}{\sqrt{1+\rho^{2}}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sin \theta_{1}=\sin \left(\psi_{3}-\psi_{2}\right)=\frac{\eta_{2} \eta_{3}(\lambda+\rho)}{\sqrt{1+\lambda^{2}} \sqrt{1+\rho^{2}}}, \\
& \sin \theta_{2}=\sin \left(\psi_{1}-\psi_{3}\right)=\frac{\eta_{1} \eta_{3} \rho}{\sqrt{1+\rho^{2}}}, \\
& \sin \theta_{3}=\sin \left(\psi_{2}-\psi_{1}\right)=\frac{\eta_{1} \eta_{2} \lambda}{\sqrt{1+\lambda^{2}}} .
\end{aligned}
$$

Since $\sin \theta_{i}>0$ for each i we get $\eta_{1}=\eta_{2}=\eta_{3}$. Then

$$
\begin{aligned}
& \cos \theta_{1}=\cos \left(\psi_{3}-\psi_{2}\right)=\frac{1-\lambda \rho}{\sqrt{1+\lambda^{2}} \sqrt{1+\rho^{2}}} \\
& \cos \theta_{2}=\cos \left(\psi_{1}-\psi_{3}\right)=\frac{-1}{\sqrt{1+\rho^{2}}} \\
& \cos \theta_{3}=\cos \left(\psi_{2}-\psi_{1}\right)=\frac{-1}{\sqrt{1+\lambda^{2}}} .
\end{aligned}
$$

By definition (see Theorem 3.4.2.1) we have that

$$
\operatorname{sign}\left(\cos \phi_{i}\right)=-\operatorname{sign}\left(\cos \theta_{i}\right)=-\epsilon_{i}=-\operatorname{sign}\left(v_{i}\right),
$$

by (3.6). Therefore, for this example, we get

$$
\operatorname{sign}\left(v_{1}\right)=\operatorname{sign}(1-\rho \lambda), v_{2}<0, v_{3}<0 .
$$

So there are two cases: if the angle between the half-lines δ_{2}, δ_{3} is acute, then $v_{1}>0, v_{2}<0, v_{3}<0$; if the angle between δ_{2}, δ_{3} is obtuse, then $v_{i}<0$ for $i=1,2,3$. When $(1-\rho \lambda)=0$ then $\cos \theta_{1}=0$. By Remark 3.4.2.2 when this happens we must interpret ϵ_{1} as the sign of v_{1}. Hence there are still two cases: v_{1} positive or negative.

3.5.4 Three Circular Cylinders

Now consider the curves δ_{i} as segments of circles, so the γ_{i} are segments of circular cylinders, parametrized as below:

$$
\delta_{i}(u)=\left(p_{i}+d_{i} \cos \left(\frac{u}{d_{i}}\right), q_{i}+d_{i} \sin \left(\frac{u}{d_{i}}\right), 0\right),
$$

where p_{i}, q_{i}, and d_{i} are constants, and $d_{i}>0$ for each i. Then (3.30) becomes

$$
\sum_{i=1}^{3} \eta_{i} \sin \phi_{i}\left(\cos \left(\frac{u_{i}}{d_{i}}\right), \sin \left(\frac{u_{i}}{d_{i}}\right), 0\right)=\mathbf{0} .
$$

From (3.92) we get $\kappa_{i}^{W}=-\eta_{i} / d_{i}$ for all u. Then

$$
\sum_{i=1}^{3} \frac{\kappa_{i}^{W}}{\sin \theta_{i}}=0 \text { becomes } \sum_{i=1}^{3} \frac{\eta_{i}}{d_{i} \sin \theta_{i}}=0
$$

and, since $d_{i}>0, \sin \theta_{i}>0$ for each i, we cannot have all of $\eta_{1}, \eta_{2}, \eta_{3}$ the same sign. (Recall from the start of this section that η_{i} is defined by

$$
\left.N_{i}(u, z)=\eta_{i}\left(\frac{d Y_{i}}{d u},-\frac{d X_{i}}{d u}, 0\right), \text { where } \eta_{i}= \pm 1 .\right)
$$

3.6 Second Example of the A_{1}^{3} Case

Let the boundary surface be a parabolic gutter given by $z=b y^{2}$ and the plane $x=p$ for $b>0, p>0$ constants. The boundary is not smooth for points where $x=p$ intersects with $z=b y^{2}$, but we imagine the boundary is 'smoothed off' near to these points. A sphere whose centre lies on the A_{1}^{3} curve has two points of contact with $z=b y^{2}$ and one with $x=p$. See Figure 3.10 where $b=1, p=0.6$. We shall explicitly calculate the medial axis and all of the terms which appear in the constraints in the A_{1}^{3} case given by one of Theorems 3.4.5.2, 3.4.5.3, 3.4.5.4. These constraints can be verified in this case.

3.6.1 Calculating the Medial Axis

Firstly consider a sphere tangent to the parabolic gutter in two places. A general point of the normal to $z=b y^{2}$ at $\left(x, y, b y^{2}\right)$ is

$$
\left(x, y, b y^{2}\right)+\mu(0,-2 b y, 1),
$$

where $\mu>0$ since $(0,-2 b y, 1)$ is an inward normal (compare with $N^{ \pm}$from (3.5) which points from the boundary towards the centre of the corresponding

Figure 3.10: An example of a boundary surface consisting of a parabolic gutter $z=b y^{2}$ with a flat end $x=p$ for $b=1, p=0.6$ and its medial axis near to an A_{1}^{3} curve. The boundary is in wireframe, the medial axis is shaded. The A_{1}^{3} curve is where the three medial sheets intersect. The A_{3} curve, or edge, lies on the flat medial sheet and corresponds to centres of bitangent spheres where the two points of contact have come into coincidence at the bottom of the gutter. This edge is a straight line parametrized by ($u, 0,1 / 2 b$) and ends at an $A_{1} A_{3}$ point, where the A_{1}^{3} curve also ends.
sphere). By symmetry the centre of the sphere will lie on the plane $Y=0$ and the points of contact of the sphere with the parabolic gutter will have equal and opposite values for y. Hence $\mu=1 / 2 b$ and the centre of the sphere is

$$
\left(x, 0, b y^{2}+\frac{1}{2 b}\right) .
$$

From (3.3) we have $r=\left\|\gamma^{ \pm}-\gamma\right\|$, and so the radius of the sphere tangent to the parabolic gutter at $\left(x, y, b y^{2}\right)$ and $\left(x,-y, b y^{2}\right)$ is

$$
\begin{aligned}
& \left\|\left(x, y, b y^{2}\right)+\mu(0,-2 b y, 1)-\left(x, y, b y^{2}\right)\right\| \\
= & \left\|\left(x,-y, b y^{2}\right)+\mu(0,-2 b y, 1)-\left(x,-y, b y^{2}\right)\right\| \\
= & \frac{1}{2 b} \sqrt{1+4 b^{2} y^{2}} .
\end{aligned}
$$

Hence, labelling the A_{1}^{2} sheet corresponding to the two points of contact on the parabolic gutter as γ_{1}, we have

$$
\begin{equation*}
\gamma_{1}(x, y)=\left(x, 0, b y^{2}+\frac{1}{2 b}\right), r_{1}(x, y)=\frac{1}{2 b} \sqrt{1+4 b^{2} y^{2}} \tag{3.94}
\end{equation*}
$$

In a similar way, labelling γ_{3} as the A_{1}^{2} sheet corresponding to the points of contact (p, u, v) and $\left(x, y, b y^{2}\right)$, we get

$$
\begin{equation*}
\gamma_{3}(x, y)=\left(x, y(1-2 b \lambda), b y^{2}+\lambda\right), r_{3}(x, y)=p-x \tag{3.95}
\end{equation*}
$$

$$
\text { where } \lambda=\frac{p-x}{\sqrt{1+4 b^{2} y^{2}}} .
$$

(This is labelled γ_{3} since if it were labelled γ_{2}, it can be shown that conventions taken in the general case are violated.) Symmetry gives the other medial sheet γ_{2} corresponding to the points of contact (p, u, v) and $\left(x,-y, b y^{2}\right)$

$$
\begin{equation*}
\gamma_{2}(x, y)=\left(x,-y(1-2 b \lambda), b y^{2}+\lambda\right), r_{2}(x, y)=p-x . \tag{3.96}
\end{equation*}
$$

Hence (3.94), (3.95), and (3.96) give us parametrizations of the three medial sheets $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and their corresponding radius functions r_{1}, r_{2}, r_{3} in terms of (x, y), where $y>0$ and $\left(x, y, b y^{2}\right)$ is a point on the parabolic gutter.

Using the parametrizations, the terms involved in the consistency conditions of Theorem 3.4.5.2, (or Theorem 3.4.5.3, or Theorem 3.4.5.4) can be calculated. From (3.94), (3.95), and (3.96) we get the following:

$$
\begin{aligned}
& N_{1}(x, y)=\left(0, \eta_{1}, 0\right) \\
& N_{2}(x, y)=\frac{\eta_{2}}{\sqrt{2} \sqrt{1+4 b^{2} y^{2}}}\left(\sqrt{1+4 b^{2} y^{2}}, 2 b y, 1\right) \\
& N_{3}(x, y)=\frac{\eta_{3}}{\sqrt{2} \sqrt{1+4 b^{2} y^{2}}}\left(\sqrt{1+4 b^{2} y^{2}},-2 b y, 1\right)
\end{aligned}
$$

where $\eta_{1}= \pm 1, \eta_{2}= \pm 1, \eta_{3}= \pm 1$. From (3.11) we get

$$
\begin{aligned}
\cos ^{2} \phi_{1}=\frac{1}{1+4 b^{2} y^{2}} & \Rightarrow \sin \phi_{1}=\frac{2 b y}{\sqrt{1+4 b^{2} y^{2}}} \\
\cos ^{2} \phi_{2}=\frac{1}{2} & \Rightarrow \sin \phi_{2}=\frac{1}{\sqrt{2}} \\
& \cos ^{2} \phi_{3}=\frac{1}{2}
\end{aligned} \Rightarrow \sin \phi_{3}=\frac{1}{\sqrt{2}}, \text { all evaluated at }(x, y) .
$$

Since ϕ_{2} and ϕ_{3} are constants for all x, y and $\cos \phi_{i}=-1 / v_{i}$ (see Table 3.1) we have that $a_{2}, a_{2}^{t}, a_{3}, a_{3}^{t}$ are zero for all x, y, since $a_{i}=\partial v_{i} / \partial r_{i}, a_{i}^{t}=\partial v_{i} / \partial t_{i}$ by
definition. (See $\S 3.2$ immediately before (3.7).) For a_{1}, a_{1}^{t} consider (3.83), where (u, z) is replaced by (x, y) and where suffices are used to denote differentiation:

$$
a_{1}=\frac{v_{1 x} t_{1 y}-v_{1 y} t_{1 x}}{r_{1 x} t_{1 y}-r_{1 y} t_{1 x}}=\frac{v_{1 y}}{r_{1 y}}, \quad a_{1}^{t}=\frac{-v_{1 x} r_{1 y}+v_{1 y} r_{1 x}}{r_{1 x} t_{1 y}-r_{1 y} t_{1 x}}=0,
$$

since $v_{1 x}, r_{1 x}$ are zero for all x, y.

3.6.2 Involving the A_{1}^{3} Curve

The centre of the sphere tangent to the parabolic gutter at $\left(x, y, b y^{2}\right)$ and $\left(x,-y, b y^{2}\right)$, and to the plane $x=p$ is given by setting $\gamma_{1}(x, y)=\gamma_{2}(x, y)=$ $\gamma_{3}(x, y)$ from (3.94), (3.95), and (3.96). If we label this centre as $C(y)$, we get

$$
\begin{equation*}
C(y)=\left(p-\frac{1}{2 b} \sqrt{1+4 b^{2} y^{2}}, 0, b y^{2}+\frac{1}{2 b}\right), r(y)=\frac{1}{2 b} \sqrt{1+4 b^{2} y^{2}}, \tag{3.97}
\end{equation*}
$$

where $r(y)$ is the radius of the tritangent sphere. The expressions of (3.97) give a parametrization of the A_{1}^{3} curve, which we label C, and so we can obtain expressions for T, N, B, κ, τ (see Table 3.1). We get

$$
\begin{aligned}
\frac{d s}{d y} & =2 \sqrt{2} b y \frac{\sqrt{1+2 b^{2} y^{2}}}{\sqrt{1+4 b^{2} y^{2}}}, \text { where } s \text { is arclength on } C, \\
T(y) & =\frac{1}{\sqrt{2} \sqrt{1+2 b^{2} y^{2}}}\left(-1,0, \sqrt{1+4 b^{2} y^{2}}\right), \\
N(y) & =\frac{1}{\sqrt{2} \sqrt{1+2 b^{2} y^{2}}}\left(\sqrt{1+4 b^{2} y^{2}}, 0,1\right), \\
B(y) & =(0,1,0), \\
\kappa(y) & =\frac{b}{\sqrt{2}\left(1+2 b^{2} y^{2}\right)^{3 / 2}}, \tau(y)=0 .
\end{aligned}
$$

We expect B to be a constant vector and τ to be zero at every point of the A_{1}^{3} curve since C lies in a plane. From (3.64) we have $d r / d s=-\cos \phi$, so for this example we get

$$
\begin{aligned}
\cos \phi & =-\frac{1}{\sqrt{2} \sqrt{1+2 b^{2} y^{2}}} \Rightarrow \sin \phi=\frac{\sqrt{1+4 b^{2} y^{2}}}{\sqrt{2} \sqrt{1+2 b^{2} y^{2}}} \\
\Rightarrow \quad \phi^{\prime} & =-\frac{b}{\sqrt{2}\left(1+2 b^{2} y^{2}\right)^{3 / 2}}
\end{aligned}
$$

where ' ('prime') means differentiation with respect to arclength s along the A_{1}^{3} curve. Note that $\cos \phi$ is always negative, which agrees with the convention of T being in the direction of r increasing.

We can find expressions for the angles ψ_{i} as follows (see Table 3.1). From (3.27) we have $\cos \psi_{i}=N \cdot N_{i}$ and $\sin \psi_{i}=B \cdot N_{i}$, so

$$
\cos \psi_{1}=0, \sin \psi_{1}=\eta_{1}= \pm 1 \text { for all } y .
$$

Using $\theta_{i}=\psi_{i+2}-\psi_{i+1}$ and the fact that $\sin \theta_{i}>0$ for each i, it can be shown that $\eta_{3}=-\eta_{2}=\sin \psi_{1}$ and

$$
\begin{aligned}
& \cos \psi_{2}=-\cos \psi_{3}=-\sin \psi_{1} \frac{\sqrt{1+2 b^{2} y^{2}}}{\sqrt{1+4 b^{2} y^{2}}} \\
& \sin \psi_{2}=\sin \psi_{3}=-\frac{\sqrt{2} b y \sin \psi_{1}}{\sqrt{1+4 b^{2} y^{2}}}
\end{aligned}
$$

Using these expressions we get

$$
\psi_{1}^{\prime}=0, \psi_{2}^{\prime}=-\psi_{3}^{\prime}=\frac{1}{2 y\left(1+2 b^{2} y^{2}\right) \sqrt{1+4 b^{2} y^{2}}} .
$$

Now for the geometrical terms involved in Theorems 3.4.5.2, 3.4.5.3 and 3.4.5.4. Since N_{1} is a constant vector for all x, y we have $\kappa_{1}^{W}=0$ for all x, y. By definition ` ('dot') is differentiation with respect to arclength along a curve passing through $\gamma_{i}\left(r_{0}, 0\right)$ with tangent W_{i} (see Table 3.1), and so we have

$$
W_{i}=\frac{\partial \gamma_{i}}{\partial x} \dot{x}_{i}+\frac{\partial \gamma_{i}}{\partial y} \dot{y}_{i} \quad \text { at } C(y), \quad \dot{N}_{i}=\frac{\partial N_{i}}{\partial x} \dot{x}_{i}+\frac{\partial N_{i}}{\partial y} \dot{y}_{i} .
$$

We solve the first equation for \dot{x}_{i}, \dot{y}_{i} to get \dot{N}_{i} from the second and then, since $\kappa_{i}^{W}=-\dot{N}_{i} \cdot W_{i}$ by definition, we get

$$
\kappa_{2}^{W}=-\kappa_{3}^{W}=-\frac{\sin \psi_{1}}{2 \sqrt{2} b y^{2} \sqrt{1+4 b^{2} y^{2}}\left(1+2 b^{2} y^{2}\right)} .
$$

3.6.3 The Consistency Conditions in this Example

Having calculated all of the terms involved in (3.70) from Theorem 3.4.5.2, it can be shown that (3.70) is satisfied for $i=1,2,3$ if and only if $\sin \psi_{1}=-1$.

As a check we can substitute the following into (3.72), (3.74) respectively from Theorems 3.4.5.3, 3.4.5.4:

$$
\begin{aligned}
a_{1}^{*} & =0, a_{2}^{*}=a_{3}^{*}=-\frac{1}{2 b y^{2} \sqrt{1+4 b^{2} y^{2}}}, \\
\dot{\phi}_{1} \cos \phi_{1} & =-\frac{1}{\sqrt{2} y \sqrt{1+2 b^{2} y^{2}}\left(1+4 b^{2} y^{2}\right)^{3 / 2}}, \dot{\phi}_{2}=\dot{\phi}_{3}=0,
\end{aligned}
$$

using $\sin \psi_{1}=-1$. These were obtained from (3.67), (3.73).

3.7 The A_{1}^{4} Case

When there is a sphere tangent to a surface in four distinct points, its centre is said to be an A_{1}^{4} point. In this case the medial axis is locally six sheets γ_{i}, for $i=1, \ldots, 6$, which meet at the A_{1}^{4} point (and so the A_{1}^{4} point is also referred to as a ' 6 -junction point'). There are four A_{1}^{3} curves which meet and end at an A_{1}^{4} point and each medial sheet γ_{i} contains two A_{1}^{3} curves. Let the A_{1}^{3} curves be labelled P, Q, L, M, so that we have the following.

1. The curve P is the transversal intersection of γ_{1}, γ_{2}, and γ_{3}.
2. The curve Q is the transversal intersection of γ_{3}, γ_{4}, and γ_{5}.
3. The curve L is the transversal intersection of γ_{2}, γ_{5}, and γ_{6}.
4. The curve M is the transversal intersection of γ_{1}, γ_{4}, and γ_{6}.

This is as in Figure 3.11. We want to use the constraints from $\S 3.4$ which hold along an A_{1}^{3} curve to obtain information about the medial axis at an A_{1}^{4} point. Firstly, we consider the reconstruction of the four boundary points given certain information on the medial axis.

3.7.1 Recovery of the Points of Tangency

Let $T_{P}, T_{Q}, T_{L}, T_{M}$ be respectively the unit tangents to the curves P, Q, L, M. As in the A_{1}^{3} case, $T_{P}, T_{Q}, T_{L}, T_{M}$ are assumed to point in the direction

Figure 3.11: The A_{1}^{4} case, corresponding to the centre O of a sphere of radius r_{0} tangent to the boundary at four points A, B, C, D. Top left: the points of contact and the line from the A_{1}^{4} point O to the circumcentre of the triangle through B, C and D. The tangent vector T_{P} to the A_{1}^{3} curve given by spheres with tangency to the boundary surface in three points near to B, C, D is parallel to this line and so is perpendicular to the triangle through B, C and D. The other three diagrams are of the tangent planes to the medial axis near to an A_{1}^{4} point: taken together, these look locally like a tetrahedron. The bold lines are the tangent lines to the four A_{1}^{3} curves which meet at the A_{1}^{4} point. The tangent planes to the six medial sheets γ_{i} are identified by the edge which connects two vertices of the tetrahedron. The last three pictures show the three possible configurations of r increasing along the four A_{1}^{3} curves. Arrows indicate the direction of increasing radius r.
of increasing radius along P, Q, L, M. Also, it is assumed that no three of $T_{P}, T_{Q}, T_{L}, T_{M}$ are coplanar. As shown in [GK04], there are three possible combinations for these tangents to point towards or away from the A_{1}^{4} point. See Figure 3.11. We assume we are given $T_{P}, T_{Q}, T_{L}, T_{M}$; the tangent planes to the six medial sheets; and the radius r_{0} sphere tangent to the boundary at the four contact points at the A_{1}^{4} point. The A_{1}^{4} point is labelled as O and the four contact points as A, B, C, D. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ be respectively the vectors from O to A, to B, to C, and to D. Going back to the A_{1}^{3} case, we had that the tangent to the A_{1}^{3} curve was perpendicular to the plane of contact points. (Check this by using $\gamma_{i}^{+}=\gamma_{i+1}^{-},(3.3),(3.5)$, and (3.27).) Hence we let T_{P}, T_{Q}, T_{L}, T_{M} be respectively perpendicular to the planes $B C D, A C D, A B D, A B C$. Using this, we have the following.

- The point A reflects in the plane spanned by T_{L}, T_{M} to give B.
- The point B reflects in the plane spanned by T_{P}, T_{M} to give C.
- The point A reflects in the plane spanned by T_{Q}, T_{M} to give C.
- The point A reflects in the plane spanned by T_{Q}, T_{L} to give D.
- The point B reflects in the plane spanned by T_{P}, T_{L} to give D.
- The point C reflects in the plane spanned by T_{P}, T_{Q} to give D.

These mean that

$$
\begin{aligned}
& \mathbf{b}=\mathbf{a}-2 \frac{\left[\mathbf{a}, T_{L}, T_{M}\right]}{\left\|T_{L} \times T_{M}\right\|^{2}}\left(T_{L} \times T_{M}\right), \\
& \mathbf{c}=\mathbf{a}-2 \frac{\left[\mathbf{a}, T_{Q}, T_{M}\right]}{\left\|T_{Q} \times T_{M}\right\|^{2}}\left(T_{Q} \times T_{M}\right), \\
& \mathbf{d}=\mathbf{a}-2 \frac{\left[\mathbf{a}, T_{Q}, T_{L}\right]}{\left\|T_{Q} \times T_{L}\right\|^{2}}\left(T_{Q} \times T_{L}\right), \\
& \mathbf{d}=\mathbf{b}-2 \frac{\left[\mathbf{b}, T_{P}, T_{L}\right]}{\left\|T_{P} \times T_{L}\right\|^{2}}\left(T_{P} \times T_{L}\right), \\
& \mathbf{d}=\mathbf{c}-2 \frac{\left[\mathbf{c}, T_{P}, T_{Q}\right]}{\left\|T_{P} \times T_{Q}\right\|^{2}}\left(T_{P} \times T_{Q}\right), \\
& \mathbf{b}=\mathbf{c}-2 \frac{\left[\mathbf{c}, T_{P}, T_{M}\right]}{\left\|T_{P} \times T_{M}\right\|^{2}}\left(T_{P} \times T_{M}\right),
\end{aligned}
$$

where for example $\left[\mathbf{a}, T_{L}, T_{M}\right]$ means $\mathbf{a} \cdot\left(T_{L} \times T_{M}\right)$. Note that these vector equations depend only on the tangent lines to the A_{1}^{3} curves, since the equations are unchanged by substituting $-T_{P}$ for T_{P}, or $-T_{Q}$ for T_{Q}, or $-T_{L}$ for T_{L}, or $-T_{M}$ for T_{M}. Using the fact that $\|\mathbf{a}\|=\|\mathbf{b}\|=\|\mathbf{c}\|=\|\mathbf{d}\|=r_{0}$, these six vector equations can be solved for $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} and we get two sets of solutions:

$$
\begin{equation*}
\left\{\mathbf{a}=\delta \mathbf{a}_{0}, \mathbf{b}=\delta \mathbf{b}_{0}, \mathbf{c}=\delta \mathbf{c}_{0}, \mathbf{d}=\delta \mathbf{d}_{0}\right\} \tag{3.98}
\end{equation*}
$$

where $\delta= \pm 1$ and $\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}$ and \mathbf{d}_{0} are uniquely determined by the four tangent lines to P, Q, L, M and r_{0}.

The ambiguity about whether to take $\delta=+1$ or $\delta=-1$, that is to take one set of points of contact or the set of diametrically opposite ones, can be resolved as follows. The tangent plane to the medial sheet containing L and M (that is, $\left.\gamma_{6}\right)$ is given by $\mathbf{x} \cdot(\mathbf{a}-\mathbf{b})=0$. Using [GK04, pp.8, 11] we can determine the part of this tangent plane which corresponds to the medial axis, rather than just the symmetry set. On each of the medial sheets $\gamma_{i}, i=1, \ldots, 6$, there are two separatrices between the medial axis and the non-medial axis - these are two of the A_{1}^{3} curves meeting at the A_{1}^{4} point. On the medial sheet containing L and M, the line

$$
\begin{equation*}
\mathbf{x} \cdot(\mathbf{a}-\mathbf{b})=0, \mathbf{x} \cdot(\mathbf{a}-\mathbf{c})=0 \tag{3.99}
\end{equation*}
$$

is tangent to one of the separatrices. Then,

$$
\mathbf{c} \cdot(\mathbf{a}-\mathbf{c})=\mathbf{c} \cdot \mathbf{a}-r_{0}^{2}=r_{0}^{2}(\cos \beta-1),
$$

where β is the angle between \mathbf{a} and \mathbf{c}. This right-hand side is always ≤ 0, so the side of the line (3.99) which is remote from \mathbf{c} is given by $\mathbf{x} \cdot(\mathbf{a}-\mathbf{c}) \geq 0$. Similarly, the line

$$
\mathbf{x} \cdot(\mathbf{a}-\mathbf{b})=0, \mathbf{x} \cdot(\mathbf{a}-\mathbf{d})=0
$$

is tangent to the other separatrix and so the side of this line remote from \mathbf{d} is given by $\mathbf{x} \cdot(\mathbf{a}-\mathbf{d}) \geq 0$. Hence, the part of the tangent plane $\mathbf{x} \cdot(\mathbf{a}-\mathbf{b})=0$ which corresponds to the medial axis, rather than just the symmetry set, is

Figure 3.12: The A_{1}^{3} case in \mathbb{R}^{2} - see Figure 3.1 for another picture of this case. The picture at the top shows the tangent lines to the symmetry set at an A_{1}^{3} point, the two pictures at the bottom show the two possibilities for the tangents corresponding to the medial branches. Hence, given the tangent lines to the three medial branches, there are two possible sets of solutions for the points of tangency between the sphere and the boundary curve: the set of grey points and the set of black points.
given by $\mathbf{x} \cdot(\mathbf{a}-\mathbf{c}) \geq 0$ and $\mathbf{x} \cdot(\mathbf{a}-\mathbf{d}) \geq 0$. If we have the knowledge of what part of this tangent plane corresponds to the medial axis, we can get a point $\mathrm{x}=\mathbf{x}_{0}$, assumed not to be the A_{1}^{4} point, which lies on the part of this tangent plane corresponding to the medial axis. Then, using (3.98), we have

$$
\begin{array}{r}
\mathbf{x}_{0} \cdot\left(\mathbf{a}_{0}-\mathbf{b}_{0}\right)=0 \\
\delta \mathbf{x}_{0} \cdot\left(\mathbf{a}_{0}-\mathbf{c}_{0}\right) \geq 0 \quad, \quad \delta \mathbf{x}_{0} \cdot\left(\mathbf{a}_{0}-\mathbf{d}_{0}\right) \geq 0
\end{array}
$$

These are now relations in known quantities, except δ, since $\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}$ and \mathbf{d}_{0} are uniquely determined by the four tangent lines to P, Q, L, M and r_{0}. Given that $\mathbf{x}=\mathbf{x}_{0}$ is assumed not to be the A_{1}^{4} point, we know that at least one of $\mathbf{x}_{0} \cdot\left(\mathbf{a}_{0}-\mathbf{c}_{0}\right), \mathbf{x}_{0} \cdot\left(\mathbf{a}_{0}-\mathbf{d}_{0}\right)$ is >0. Hence we can determine the sign of δ, and so we can decide which of the two possible solutions (3.98) is the correct one for the points of contact. Hence the following has been proved.

Proposition 3.7.1.1 (Reconstruction in the A_{1}^{4} Case) The four points of tangency between a sphere and the boundary surface are uniquely determined by
the lines of tangency to the four A_{1}^{3} curves at an A_{1}^{4} point, the knowledge of what parts of the tangent planes to the A_{1}^{2} sheets of the symmetry set correspond to the medial axis, and the radius r_{0} of the sphere centred at the A_{1}^{4} point. Given only the lines of tangency to the four A_{1}^{3} curves at the A_{1}^{4} point and r_{0}, then the points of tangency are only determined up to a choice of two solutions of the form (3.98), where $\delta= \pm 1$, and $\mathbf{a}_{0}, \mathbf{b}_{0}, \mathbf{c}_{0}$ and \mathbf{d}_{0} are uniquely determined by the four tangent lines to the A_{1}^{3} curves and r_{0}.

Remark 3.7.1.2 The reconstruction of the four points of contact in the A_{1}^{4} case in \mathbb{R}^{3} is reminiscent of the reconstruction of the three points of contact in the A_{1}^{3} case in \mathbb{R}^{2}. Given the lines of tangency to the three medial branches and the radius of the sphere centred at the A_{1}^{3} point, the three points of tangency on the boundary curve are determined up to two possible choices: each point of one solution is the diametrical opposite of a point of the other solution. This arises because there are two choices for the configuration of tangents to the medial branches at the A_{1}^{3} point, given the tangent lines to the symmetry set (see Figure 3.12). However, given the tangent vectors oriented into the medial branches, in addition to the radius of the sphere centred at the A_{1}^{3} point, the points of tangency on the boundary curve are uniquely determined.

3.7.2 Consistency Conditions in the A_{1}^{4} Case

Now we shall consider the consistency conditions of $\S 3.4$. These lead to quite complicated equations in the A_{1}^{4} case, so we will give details of some constraints which can be obtained simply, but these do not constitute a complete set of constraints. For each A_{1}^{3} curve we want the same situation as in Figure 3.7, that is, the circle of contact points is oriented anti-clockwise, looking along the opposite direction of the tangent to the A_{1}^{3} curve. However, this means that there are two formulae for N_{i} on γ_{i} at the A_{1}^{4} point in terms of the Frenet frame of the two A_{1}^{3} curves on γ_{i}, and these formulae might be the same or minus each other, because of the conventions taken for each A_{1}^{3} curve. So, from (3.27) we have the following at an A_{1}^{4} point, where $N_{P}, B_{P}, \psi_{1 P}$, etc. are defined
analogous to the A_{1}^{3} case:

$$
\begin{aligned}
& N_{1 P}=\cos \psi_{1 P} N_{P}+\sin \psi_{1 P} B_{P} \quad, \quad N_{1 M}=\cos \psi_{1 M} N_{M}+\sin \psi_{1 M} B_{M} \text {, } \\
& N_{2 P}=\cos \psi_{2 P} N_{P}+\sin \psi_{2 P} B_{P} \quad, \quad N_{2 L}=\cos \psi_{1 L} N_{L}+\sin \psi_{2 L} B_{L}, \\
& N_{3 P}=\cos \psi_{3 P} N_{P}+\sin \psi_{3 P} B_{P} \quad, \quad N_{3 L}=\cos \psi_{3 Q} N_{Q}+\sin \psi_{3 Q} B_{Q}, \\
& N_{4 Q}=\cos \psi_{4 Q} N_{Q}+\sin \psi_{4 Q} B_{Q} \quad, \quad N_{4 M}=\cos \psi_{4 M} N_{M}+\sin \psi_{4 M} B_{M} \text {, } \\
& N_{5 Q}=\cos \psi_{5 Q} N_{Q}+\sin \psi_{5 Q} B_{Q} \quad, \quad N_{5 L}=\cos \psi_{5 L} N_{L}+\sin \psi_{5 L} B_{L}, \\
& N_{6 L}=\cos \psi_{6 L} N_{L}+\sin \psi_{6 L} B_{L} \quad, \quad N_{6 M}=\cos \psi_{6 M} N_{M}+\sin \psi_{6 M} B_{M}, \\
& \text { where } N_{1 P}=\eta_{1} N_{1 M}, N_{2 P}=\eta_{2} N_{2 L}, \quad N_{3 P}=\eta_{3} N_{3 Q} \text {, } \\
& N_{4 Q}=\eta_{4} N_{4 M} \quad, \quad N_{5 Q}=\eta_{5} N_{5 L}, \quad N_{6 L}=\eta_{6} N_{6 M},
\end{aligned}
$$

for $\eta_{i}= \pm 1$. By examining the three cases of the direction of r increasing along the A_{1}^{3} curves as in the three pictures of Figure 3.11, it can be shown that there are three cases:
(i). $\quad \eta_{1}=\eta_{2}=\eta_{3}=\eta_{4}=\eta_{5}=\eta_{6}=-1$ (top right of Figure 3.11);
(ii). $\eta_{1}=\eta_{4}=\eta_{6}=+1, \eta_{2}=\eta_{3}=\eta_{5}=-1$ (bottom left of Figure 3.11);
(iii). $\eta_{2}=\eta_{3}=\eta_{4}=\eta_{6}=+1, \eta_{1}=\eta_{5}=-1$ (bottom right of Figure 3.11).

These orientations for each A_{1}^{3} curve also affect the terms of the geometry involved in the A_{1}^{3} constraints from $\S 3.4$ at an A_{1}^{4} point. For example, at the A_{1}^{4} point, we have $\kappa_{1 P}^{r}=\eta_{1} \kappa_{1 M}^{r}, \kappa_{1 P}^{t}=\eta_{1} \kappa_{1 M}^{t}, \tau_{1 P}^{t}=\eta_{1} \tau_{1 M}^{t}$, and similarly for the other medial sheets. Then we can use (3.63) from Lemma 3.4.4.3 to get relations among the geometry of the four A_{1}^{3} curves at the A_{1}^{4} point. The first equation of (3.63) gives the following:

$$
\begin{aligned}
& \kappa_{P} \kappa_{1 P}^{W} \cos \psi_{1 P}-\left(\tau_{P}+\psi_{1 P}^{\prime}\right)^{2}=\kappa_{M} \kappa_{1 M}^{W} \cos \psi_{1 M}-\left(\tau_{M}+\psi_{1 M}^{\prime}\right)^{2}, \\
& \kappa_{P} \kappa_{2 P}^{W} \cos \psi_{2 P}-\left(\tau_{P}+\psi_{2 P}^{\prime}\right)^{2}=\kappa_{L} \kappa_{2 L}^{W} \cos \psi_{2 L}-\left(\tau_{L}+\psi_{2 L}^{\prime}\right)^{2}, \\
& \kappa_{P} \kappa_{3 P}^{W} \cos \psi_{3 P}-\left(\tau_{P}+\psi_{3 P}^{\prime}\right)^{2}=\kappa_{Q} \kappa_{3 Q}^{W} \cos \psi_{3 Q}-\left(\tau_{Q}+\psi_{3 Q}^{\prime}\right)^{2}, \\
& \kappa_{Q} \kappa_{4 Q}^{W} \cos \psi_{4 Q}-\left(\tau_{Q}+\psi_{4 Q}^{\prime}\right)^{2}=\kappa_{M} \kappa_{4 M}^{W} \cos \psi_{4 M}-\left(\tau_{M}+\psi_{4 M}^{\prime}\right)^{2}, \\
& \kappa_{Q} \kappa_{5 Q}^{W} \cos \psi_{5 Q}-\left(\tau_{Q}+\psi_{5 Q}^{\prime}\right)^{2}=\kappa_{L} \kappa_{5 L}^{W} \cos \psi_{5 L}-\left(\tau_{L}+\psi_{5 L}^{\prime}\right)^{2}, \\
& \kappa_{L} \kappa_{6 L}^{W} \cos \psi_{6 L}-\left(\tau_{L}+\psi_{6 L}^{\prime}\right)^{2}=\kappa_{M} \kappa_{6 M}^{W} \cos \psi_{6 M}-\left(\tau_{M}+\psi_{6 M}^{\prime}\right)^{2} .
\end{aligned}
$$

Then the second equation of (3.63) gives the following:

$$
\begin{aligned}
\kappa_{1 P}^{W}+\kappa_{P} \cos \psi_{1 P} & =\eta_{1}\left(\kappa_{1 M}^{W}+\kappa_{M} \cos \psi_{1 M}\right), \\
\kappa_{2 P}^{W}+\kappa_{P} \cos \psi_{2 P} & =\eta_{2}\left(\kappa_{2 L}^{W}+\kappa_{L} \cos \psi_{2 L}\right), \\
\kappa_{3 P}^{W}+\kappa_{P} \cos \psi_{3 P} & =\eta_{3}\left(\kappa_{3 Q}^{W}+\kappa_{Q} \cos \psi_{3 Q}\right), \\
\kappa_{4 Q}^{W}+\kappa_{Q} \cos \psi_{4 Q} & =\eta_{4}\left(\kappa_{4 M}^{W}+\kappa_{M} \cos \psi_{4 M}\right), \\
\kappa_{5 Q}^{W}+\kappa_{Q} \cos \psi_{5 Q} & =\eta_{5}\left(\kappa_{5 L}^{W}+\kappa_{L} \cos \psi_{5 L}\right), \\
\kappa_{6 L}^{W}+\kappa_{L} \cos \psi_{6 L} & =\eta_{6}\left(\kappa_{6 M}^{W}+\kappa_{M} \cos \psi_{6 M}\right) .
\end{aligned}
$$

These twelve equations can then be solved for the κ_{*}^{W}-type terms. Then these solutions can be substituted into the four constraints given by (3.71) from Theorem 3.4.5.2. Then we get the following.

Proposition 3.7.2.1 (Condition at A_{1}^{4} Points) At an A_{1}^{4} point, the following equations hold. From (3.71) for P we get

$$
\begin{gathered}
\frac{1}{\sin \left(\psi_{3 P}-\psi_{2 P}\right)}\left(\frac{\left(\tau_{P}+\psi_{1 P}^{\prime}\right)^{2}-\left(\tau_{M}+\psi_{1 M}^{\prime}\right)^{2}}{\kappa_{P} \cos \psi_{1 P}-\eta_{1} \kappa_{M} \cos \psi_{1 M}}+\eta_{1} \kappa_{M} \cos \psi_{1 M}\right) \\
+\frac{1}{\sin \left(\psi_{1 P}-\psi_{3 P}\right)}\left(\frac{\left(\tau_{P}+\psi_{2 P}^{\prime}\right)^{2}-\left(\tau_{L}+\psi_{2 L}^{\prime}\right)^{2}}{\kappa_{P} \cos \psi_{2 P}-\eta_{2} \kappa_{L} \cos \psi_{2 L}}+\eta_{2} \kappa_{L} \cos \psi_{2 L}\right) \\
+\frac{1}{\sin \left(\psi_{2 P}-\psi_{1 P}\right)}\left(\frac{\left(\tau_{P}+\psi_{3 P}^{\prime}\right)^{2}-\left(\tau_{Q}+\psi_{3 Q}^{\prime}\right)^{2}}{\kappa_{P} \cos \psi_{3 P}-\eta_{3} \kappa_{Q} \cos \psi_{3 Q}}+\eta_{3} \kappa_{Q} \cos \psi_{3 Q}\right) \\
=2 \frac{\cos \phi_{P}}{\sin \phi_{P}}\left(\frac{\left(\tau_{P}+\psi_{1 P}^{\prime}\right) \cos \left(\psi_{3 P}-\psi_{2 P}\right)}{\sin \left(\psi_{3 P}-\psi_{2 P}\right)}+\frac{\left(\tau_{P}+\psi_{2 P}^{\prime}\right) \cos \left(\psi_{1 P}-\psi_{3 P}\right)}{\sin \left(\psi_{1 P}-\psi_{3 P}\right)}\right. \\
\left.\quad+\frac{\left(\tau_{P}+\psi_{3 P}^{\prime}\right) \cos \left(\psi_{2 P}-\psi_{1 P}\right)}{\sin \left(\psi_{2 P}-\psi_{1 P}\right)}\right) \\
-\frac{\kappa_{P} \cos ^{2} \phi_{P}}{\sin ^{2} \phi_{P}}\left(\frac{\cos \psi_{1 P}}{\sin \left(\psi_{3 P}-\psi_{2 P}\right)}+\frac{\cos \psi_{2 P}}{\sin \left(\psi_{1 P}-\psi_{3 P}\right)}+\frac{\cos \psi_{3 P}}{\sin \left(\psi_{2 P}-\psi_{1 P}\right)}\right)
\end{gathered}
$$

From (3.71) for Q we get

$$
\begin{gathered}
\frac{1}{\sin \left(\psi_{4 Q}-\psi_{5 Q}\right)}\left(\frac{\left(\tau_{Q}+\psi_{3 Q}^{\prime}\right)^{2}-\left(\tau_{P}+\psi_{3 P}^{\prime}\right)^{2}}{\kappa_{Q} \cos \psi_{3 Q}-\eta_{3} \kappa_{P} \cos \psi_{3 P}}+\eta_{3} \kappa_{P} \cos \psi_{3 P}\right) \\
+\frac{1}{\sin \left(\psi_{5 Q}-\psi_{3 Q}\right)}\left(\frac{\left(\tau_{Q}+\psi_{4 Q}^{\prime}\right)^{2}-\left(\tau_{M}+\psi_{4 M}^{\prime}\right)^{2}}{\kappa_{Q} \cos \psi_{4 Q}-\eta_{4} \kappa_{M} \cos \psi_{4 M}}+\eta_{4} \kappa_{M} \cos \psi_{4 M}\right) \\
+\frac{1}{\sin \left(\psi_{3 Q}-\psi_{4 Q}\right)}\left(\frac{\left(\tau_{Q}+\psi_{5 Q}^{\prime}\right)^{2}-\left(\tau_{L}+\psi_{5 L}^{\prime}\right)^{2}}{\kappa_{Q} \cos \psi_{5 Q}-\eta_{5} \kappa_{L} \cos \psi_{5 L}}+\eta_{5} \kappa_{L} \cos \psi_{5 L}\right) \\
= \\
2 \frac{\cos \phi_{Q}}{\sin \phi_{Q}}\left(\frac{\left(\tau_{Q}+\psi_{3 Q}^{\prime}\right) \cos \left(\psi_{4 Q}-\psi_{5 Q}\right)}{\sin \left(\psi_{4 Q}-\psi_{5 Q}\right)}+\frac{\left(\tau_{Q}+\psi_{4 Q}^{\prime}\right) \cos \left(\psi_{5 Q}-\psi_{3 Q}\right)}{\sin \left(\psi_{5 Q}-\psi_{3 Q}\right)}\right. \\
\left.\quad+\frac{\left(\tau_{Q}+\psi_{5 Q}^{\prime}\right) \cos \left(\psi_{3 Q}-\psi_{4 Q}\right)}{\sin \left(\psi_{3 Q}-\psi_{4 Q}\right)}\right) \\
-\frac{\kappa_{Q} \cos ^{2} \phi_{Q}}{\sin ^{2} \phi_{Q}}\left(\frac{\cos \psi_{3 Q}}{\sin \left(\psi_{4 Q}-\psi_{5 Q}\right)}+\frac{\cos \psi_{4 Q}}{\sin \left(\psi_{5 Q}-\psi_{3 Q}\right)}+\frac{\cos \psi_{5 Q}}{\sin \left(\psi_{3 Q}-\psi_{4 Q}\right)}\right)
\end{gathered}
$$

From (3.71) for L we get

$$
\begin{gathered}
\frac{1}{\sin \left(\psi_{5 L}-\psi_{6 L}\right)}\left(\frac{\left(\tau_{L}+\psi_{2 L}^{\prime}\right)^{2}-\left(\tau_{P}+\psi_{2 P}^{\prime}\right)^{2}}{\kappa_{L} \cos \psi_{2 L}-\eta_{2} \kappa_{P} \cos \psi_{2 P}}+\eta_{2} \kappa_{P} \cos \psi_{2 P}\right) \\
+\frac{1}{\sin \left(\psi_{6 L}-\psi_{2 L}\right)}\left(\frac{\left(\tau_{L}+\psi_{5 L}^{\prime}\right)^{2}-\left(\tau_{Q}+\psi_{5 Q}^{\prime}\right)^{2}}{\kappa_{L} \cos \psi_{5 L}-\eta_{5} \kappa_{Q} \cos \psi_{5 Q}}+\eta_{5} \kappa_{Q} \cos \psi_{5 Q}\right) \\
+\frac{1}{\sin \left(\psi_{2 L}-\psi_{5 L}\right)}\left(\frac{\left(\tau_{L}+\psi_{6 L}^{\prime}\right)^{2}-\left(\tau_{M}+\psi_{6 M}^{\prime}\right)^{2}}{\kappa_{L} \cos \psi_{6 L}-\eta_{6} \kappa_{M} \cos \psi_{6 M}}+\eta_{6} \kappa_{M} \cos \psi_{6 M}\right) \\
=2 \frac{\cos \phi_{L}}{\sin \phi_{L}}\left(\frac{\left(\tau_{L}+\psi_{2 L}^{\prime}\right) \cos \left(\psi_{5 L}-\psi_{6 L}\right)}{\sin \left(\psi_{5 L}-\psi_{6 L}\right)}+\frac{\left(\tau_{L}+\psi_{5 L}^{\prime}\right) \cos \left(\psi_{6 L}-\psi_{2 L}\right)}{\sin \left(\psi_{6 L}-\psi_{2 L}\right)}\right. \\
\left.\quad+\frac{\left(\tau_{L}+\psi_{6 L}^{\prime}\right) \cos \left(\psi_{2 L}-\psi_{5 L}\right)}{\sin \left(\psi_{2 L}-\psi_{5 L}\right)}\right) \\
-\frac{\kappa_{L} \cos ^{2} \phi_{L}}{\sin ^{2} \phi_{L}}\left(\frac{\cos \psi_{2 L}}{\sin \left(\psi_{5 L}-\psi_{6 L}\right)}+\frac{\cos \psi_{5 L}}{\sin \left(\psi_{6 L}-\psi_{2 L}\right)}+\frac{\cos \psi_{6 L}}{\sin \left(\psi_{2 L}-\psi_{5 L}\right)}\right) .
\end{gathered}
$$

And finally, from (3.71) for M we get

$$
\begin{gathered}
\frac{1}{\sin \left(\psi_{6 M}-\psi_{4 M}\right)}\left(\frac{\left(\tau_{M}+\psi_{1 M}^{\prime}\right)^{2}-\left(\tau_{P}+\psi_{1 P}^{\prime}\right)^{2}}{\kappa_{M} \cos \psi_{1 M}-\eta_{1} \kappa_{P} \cos \psi_{1 P}}+\eta_{1} \kappa_{P} \cos \psi_{1 P}\right) \\
+\frac{1}{\sin \left(\psi_{1 M}-\psi_{6 M}\right)}\left(\frac{\left(\tau_{M}+\psi_{4 M}^{\prime}\right)^{2}-\left(\tau_{Q}+\psi_{4 Q}^{\prime}\right)^{2}}{\kappa_{M} \cos \psi_{4 M}-\eta_{4} \kappa_{Q} \cos \psi_{4 Q}}+\eta_{4} \kappa_{Q} \cos \psi_{4 Q}\right) \\
+\frac{1}{\sin \left(\psi_{4 M}-\psi_{1 M}\right)}\left(\frac{\left(\tau_{M}+\psi_{6 M}^{\prime}\right)^{2}-\left(\tau_{L}+\psi_{6 L}^{\prime}\right)^{2}}{\kappa_{M} \cos \psi_{6 M}-\eta_{6} \kappa_{L} \cos \psi_{6 L}}+\eta_{6} \kappa_{L} \cos \psi_{6 L}\right) \\
=2 \frac{\cos \phi_{M}}{\sin \phi_{M}}\left(\frac{\left(\tau_{M}+\psi_{1 M}^{\prime}\right) \cos \left(\psi_{6 M}-\psi_{4 M}\right)}{\sin \left(\psi_{6 M}-\psi_{4 M}\right)}+\frac{\left(\tau_{M}+\psi_{4 M}^{\prime}\right) \cos \left(\psi_{1 M}-\psi_{6 M}\right)}{\sin \left(\psi_{1 M}-\psi_{6 M}\right)}\right. \\
\left.\quad \quad+\frac{\left(\tau_{M}+\psi_{6 M}^{\prime}\right) \cos \left(\psi_{4 M}-\psi_{1 M}\right)}{\sin \left(\psi_{4 M}-\psi_{1 M}\right)}\right) \\
-\frac{\cos \psi_{M} \cos ^{2} \phi_{M}}{\sin ^{2} \phi_{M}}\left(\frac{\cos \psi_{1 M}}{\sin \left(\psi_{6 M}-\psi_{4 M}\right)}+\frac{\cos \psi_{4 M}}{\sin \left(\psi_{1 M}-\psi_{6 M}\right)}+\frac{\cos \psi_{6 M}}{\sin \left(\psi_{4 M}-\psi_{1 M}\right)}\right) .
\end{gathered}
$$

Remark 3.7.2.2 The equations of Proposition 3.7.2.1 are constraints on the geometry of the four A_{1}^{3} curves and the derivatives of angles between principal normals to the A_{1}^{3} curves and the normals to the medial sheets γ_{i} for $i=1, \ldots, 6$ at the A_{1}^{4} point.

3.8 The A_{3} Case

Consider the medial axis γ locally as a single $\left(A_{1}^{2}\right)$ sheet. When the two points of contact on the boundary surface $\gamma^{ \pm}$come into coincidence the medial axis is locally a surface with boundary - this boundary is the A_{3} curve, referred to as the edge of the medial axis. The corresponding curve on the boundary $\gamma^{ \pm}$ is called a ridge curve and its points are ridge points. From (3.3) we have

$$
\gamma^{ \pm}=\gamma-r N^{ \pm}
$$

and, using (3.5), we see that $\gamma^{+}=\gamma^{-}$if and only if $\cos ^{2} \phi=1$. Hence, from (3.6), a point of the edge is a point where $v^{2}=1$. Consider Figure 3.3 - the A_{3} case corresponds to $\phi=0$ or π.

In $\S 3.1$, the conditions on the medial axis in \mathbb{R}^{2} at an endpoint $\left(A_{3}\right)$ were discussed. The condition on the radius function was that $r^{\prime \prime}$ should be nonzero at the endpoint, where ' ('prime') means differentiation with respect to arclength on the boundary curve. Also there was (3.2), an expression for the curvature κ of the medial axis at an endpoint in terms of the curvature k of the boundary curve. This section contains the analogues of these in \mathbb{R}^{3}; there is a condition (3.102) contained in Proposition 3.8.1.2 for the smoothness of the boundary at A_{1}^{2} points (for the condition at A_{3} points, substitute $v^{2}=1$ to get (3.103)). Also, (3.107) from Proposition 3.8.2.1 is a formula for the Gauss curvature of the medial axis at an A_{3} point in terms of the derivatives of the boundary.

3.8.1 Smoothness Condition on the Boundary

The envelope of spheres centred on γ is

$$
\left.\begin{array}{l}
\left\{\mathbf{x}: \quad \text { there exist } r, t \text { with } F=\frac{\partial F}{\partial r}=\frac{\partial F}{\partial t}=0\right\} \tag{3.100}\\
\text { where } F=(\mathbf{x}-\gamma(r, t)) \cdot(\mathbf{x}-\gamma(r, t))-r^{2} .
\end{array}\right\}
$$

Consider the following:

$$
\left.\begin{array}{ccc}
\mathbb{R}^{5} & \xrightarrow{g} & \mathbb{R}^{3} \tag{3.101}\\
(x, y, z, r, t) & \longmapsto & \left(F, \frac{\partial F}{\partial r}, \frac{\partial F}{\partial t}\right) \\
\pi \downarrow^{\prime} & & \\
\mathbb{R}^{3} & & \\
(x, y, z) & &
\end{array}\right\}
$$

The medial axis is $\pi\left(g^{-1}(\mathbf{0})\right)$. For $g^{-1}(\mathbf{0})$ to be smooth we need $\mathbf{0}$ to be a regular value of g. Then, for $\mathbf{x}=(x, y, z)$ and $\gamma(r, t)=(X(r, t), Y(r, t), Z(r, t))$, the

Jacobian J of g evaluated at (r, t) is given by

$$
\begin{aligned}
&-\frac{1}{2} J(r, t)=\left(\begin{array}{ccccc}
F_{x} & F_{y} & F_{z} & F_{r} & F_{t} \\
F_{x r} & F_{y r} & F_{z r} & F_{r r} & F_{r t} \\
F_{x t} & F_{y t} & F_{z t} & F_{r t} & F_{t t}
\end{array}\right) \\
&=\left(\begin{array}{ccccc}
X-x & Y-y & Z-z & 0 & 0 \\
X_{r} & Y_{r} & Z_{r} & (\mathrm{x}-\gamma) \cdot \gamma_{r r}-v^{2}+1 & (\mathrm{x}-\gamma) \cdot \gamma_{r t} \\
X_{t} & Y_{t} & Z_{t} & (\mathrm{x}-\gamma) \cdot \gamma_{r t} & (\mathrm{x}-\gamma) \cdot \gamma_{t t}-w^{2}
\end{array}\right) .
\end{aligned}
$$

We have $\mathbf{x}=\gamma^{ \pm}$. Now consider the three left most columns of the above. From (3.3), (3.4), (3.5), and (3.6) we have

$$
\begin{aligned}
(X-x, Y-y, Z-z) & =\gamma-\gamma^{ \pm}=\frac{r}{v} T \mp r \sqrt{1-\frac{1}{v^{2}}} N, \\
\left(X_{r}, Y_{r}, Z_{r}\right) & =\gamma_{r}=v T \\
\left(X_{t}, Y_{t}, Z_{t}\right) & =\gamma_{t}=w U .
\end{aligned}
$$

These three vectors are linearly independent if and only if $v^{2} \neq 1$. Therefore, when $v^{2} \neq 1$ at $\left(r=r_{0}, t=0\right)$ there is a 3×3 minor of $J\left(r_{0}, 0\right)$ which is non-zero, and so in this case $\mathbf{0}$ is a regular value of g.

When $v^{2}=1$ at $\left(r_{0}, 0\right)$ we need to consider the other 3×3 minors of $J\left(r_{0}, 0\right)$. In this case we have

$$
\left(\gamma^{ \pm}\left(r_{0}, 0\right)-\gamma\left(r_{0}, 0\right)\right)=-\frac{r_{0}}{v} T
$$

and, from (3.7) we have

$$
\begin{aligned}
\left(\gamma^{ \pm}\left(r_{0}, 0\right)-\gamma\left(r_{0}, 0\right)\right) \cdot \gamma_{r r}\left(r_{0}, 0\right) & =-\frac{r_{0} a}{v} \\
\left(\gamma^{ \pm}\left(r_{0}, 0\right)-\gamma\left(r_{0}, 0\right)\right) \cdot \gamma_{r t}\left(r_{0}, 0\right) & =-\frac{r_{0} a^{t}}{v} \\
\left(\gamma^{ \pm}\left(r_{0}, 0\right)-\gamma\left(r_{0}, 0\right)\right) \cdot \gamma_{t t}\left(r_{0}, 0\right) & =\frac{r_{0} a^{*}}{v^{2}}=r_{0} a^{*}
\end{aligned}
$$

Let $T\left(r_{0}, 0\right)=\left(T_{1}, T_{2}, T_{3}\right)$ and $U\left(r_{0}, 0\right)=\left(U_{1}, U_{2}, U_{3}\right)$. Then, using the fact that $w\left(r_{0}, t\right)=1$ for all t near $t=0$, we have

$$
J\left(r_{0}, 0\right)=-2\left(\begin{array}{ccccc}
\frac{r_{0}}{v} T_{1} & \frac{r_{0}}{v} T_{2} & \frac{r_{0}}{v} T_{3} & 0 & 0 \\
v T_{1} & v T_{2} & v T_{3} & -\frac{r_{0} a}{v} & -\frac{r_{0} a^{t}}{v} \\
U_{1} & U_{2} & U_{3} & -\frac{r_{0} a^{t}}{v} & r_{0} a^{*}-1
\end{array}\right) .
$$

We know that $\mathbf{0}$ is not a regular value of g at $\left(r_{0}, 0\right)$ if and only if all of the 3×3 minors of $J\left(r_{0}, 0\right)$ are zero. Given $r_{0}>0$, this is true if and only if all of the following are true, where a, a^{t}, and a^{*} are all evaluated at $\left(r_{0}, 0\right)$:

$$
\begin{aligned}
& a\left(T_{1} U_{2}-U_{1} T_{2}\right)=0, a\left(T_{1} U_{3}-U_{1} T_{3}\right)=0, a\left(T_{2} U_{3}-U_{2} T_{3}\right)=0, \\
& a^{t}\left(T_{1} U_{2}-U_{1} T_{2}\right)=0, a^{t}\left(T_{1} U_{3}-U_{1} T_{3}\right)=0, a^{t}\left(T_{2} U_{3}-U_{2} T_{3}\right)=0, \\
& T_{1}\left(r_{0}\left(\frac{a a^{*}}{v}+\left(a^{t}\right)^{2}\right)-\frac{a}{v}\right)=0, \\
& T_{2}\left(r_{0}\left(\frac{a a^{*}}{v}+\left(a^{t}\right)^{2}\right)-\frac{a}{v}\right)=0, \\
& T_{3}\left(r_{0}\left(\frac{a a^{*}}{v}+\left(a^{t}\right)^{2}\right)-\frac{a}{v}\right)=0 .
\end{aligned}
$$

We have $N\left(r_{0}, 0\right)=\left(T_{2} U_{3}-U_{2} T_{3}, T_{3} U_{1}-U_{3} T_{1}, T_{1} U_{2}-U_{1} T_{2}\right)$ by definition. We assume that T, U and N are not zero vectors, so all of the 3×3 minors of $J\left(r_{0}, 0\right)$ are zero from the above if and only if $a=0$ and $a^{t}=0$. Hence we have the following.

Lemma 3.8.1.1 Consider the medial axis as $\pi\left(g^{-1}(\mathbf{0})\right)$ given by (3.100) and (3.101). When $\gamma\left(r_{0}, 0\right)$ is an A_{1}^{2} point $\left(\right.$ so $\left.v^{2} \neq 1\right)$ then $g^{-1}(\mathbf{0})$ is smooth at $\gamma\left(r_{0}, 0\right)$. When $\gamma\left(r_{0}, 0\right)$ is an A_{3} point (so $v^{2}=1$) then $g^{-1}(\mathbf{0})$ is smooth at $\gamma\left(r_{0}, 0\right)$ if and only if at least one of a, a^{t} is non-zero.

For $\gamma^{ \pm}$to be smooth near to $\left(r_{0}, 0\right)$, that is for $\pi\left(g^{-1}(\mathbf{0})\right)$ to be smooth, we require that $g^{-1}(\mathbf{0})$ is smooth (that is that $\mathbf{0}$ is a regular value of g) and that, if $\underline{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \xi_{5}\right)$ is a tangent vector to $g^{-1}(\mathbf{0})$ at $\left(r_{0}, 0\right)$ in \mathbb{R}^{5} and projects to $(0,0,0)$ in \mathbb{R}^{3}, then $\underline{\xi}=\mathbf{0}$. In other words, we require that no non-zero tangent vectors to $g^{-1}(\mathbf{0})$ are sent to $(0,0,0)$ in \mathbb{R}^{3} by π. We have the following, which is true when $\gamma\left(r_{0}, 0\right)$ is an A_{1}^{2} point or an A_{3} point. (When $\gamma\left(r_{0}, 0\right)$ is an A_{3} point, substitute $v^{2}=1$.) From $\pi:(x, y, z, r, t) \rightarrow(x, y, z)$ we
see that $\xi_{1}=\xi_{2}=\xi_{3}=0$. Then $\underline{\xi}$ is sent to $(0,0,0)$ by π if and only if

$$
\begin{aligned}
J\left(r_{0}, 0\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
\xi_{4} \\
\xi_{5}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) & \Longleftrightarrow \\
\left((\mathbf{x}-\gamma) \cdot \gamma_{r r}-v^{2}+1\right) \xi_{4}+\left((\mathbf{x}-\gamma) \cdot \gamma_{r t}\right) \xi_{5} & =0, \\
\text { and }\left((\mathbf{x}-\gamma) \cdot \gamma_{r t}\right) \xi_{4}+\left((\mathbf{x}-\gamma) \cdot \gamma_{t t}-1\right) \xi_{5} & =0,
\end{aligned}
$$

where $\mathbf{x}=\gamma^{ \pm}$. If

$$
\left((\mathbf{x}-\gamma) \cdot \gamma_{r r}-v^{2}+1\right)\left((\mathbf{x}-\gamma) \cdot \gamma_{t t}-1\right)-\left((\mathbf{x}-\gamma) \cdot \gamma_{r t}\right)^{2} \neq 0
$$

where the left-hand side is evaluated at $\left(r_{0}, 0\right)$, then $\xi_{4}=\xi_{5}=0$, and so the only tangent vector to $g^{-1}(\mathbf{0})$ which projects to $\mathbf{0}$ under π is $\mathbf{0}$. We have

$$
\begin{aligned}
\mathbf{x}-\gamma & =-\frac{r}{v} T \pm r \sqrt{1-\frac{1}{v^{2}}} N, \\
\text { so }(\mathbf{x}-\gamma) \cdot \gamma_{r r} & =-\frac{r a}{v} \pm r v^{2} \kappa^{r} \sqrt{1-\frac{1}{v^{2}}} \\
(\mathbf{x}-\gamma) \cdot \gamma_{r t} & =-\frac{r a^{t}}{v} \mp r v \tau^{t} \sqrt{1-\frac{1}{v^{2}}} \\
(\mathbf{x}-\gamma) \cdot \gamma_{t t} & =\frac{r a^{*}}{v^{2}} \pm r \kappa^{t} \sqrt{1-\frac{1}{v^{2}}}
\end{aligned}
$$

Using these, we get the following.
Proposition 3.8.1.2 (Smoothness of the Boundary) When γ is locally a single sheet, the condition for smoothness of the boundary $\gamma^{ \pm}$at $\left(r_{0}, 0\right)$ (corresponding either to an A_{1}^{2} point or to an A_{3} point) is

$$
\begin{align*}
0 \neq & -\frac{r_{0}^{2}}{v^{2}}\left(\frac{a a^{*}}{v}+\left(a^{t}\right)^{2}\right)+\frac{r_{0} a}{v} \\
& +\left(v^{2}-1\right)\left(r_{0}^{2}\left(\kappa^{r} \kappa^{t}-\left(\tau^{t}\right)^{2}\right)-\frac{r_{0} a^{*}}{v^{2}}+1\right) \tag{3.102}\\
& \pm r_{0} \sqrt{1-\frac{1}{v^{2}}}\left(r_{0}\left(a^{*} \kappa^{r}-\frac{a \kappa^{t}}{v}-2 a^{t} \tau^{t}\right)-v^{2} \kappa^{r}+\left(1-v^{2}\right) \kappa^{t}\right) .
\end{align*}
$$

(For ridge points substitute $v^{2}=1$.)

Proof. By Lemma 3.8.1.1, when $v^{2} \neq 1$ at $\gamma\left(r_{0}, 0\right)$ we have that $g^{-1}(\mathbf{0})$ is smooth. Then $\pi\left(g^{-1}(\mathbf{0})\right)$ is smooth if (3.102) holds. When $v^{2}=1$ at $\gamma\left(r_{0}, 0\right)$ we have that $g^{-1}(\mathbf{0})$ is smooth if and only if at least one of a, a^{t} is non-zero. Hence $\pi\left(g^{-1}(\mathbf{0})\right)$ is smooth if, in addition, we have (3.102); in other words if

$$
\begin{equation*}
0 \neq-r_{0}\left(\frac{a a^{*}}{v}+\left(a^{t}\right)^{2}\right)+\frac{a}{v} . \tag{3.103}
\end{equation*}
$$

But if (3.103) holds then at least one of a, a^{t} being non-zero follows. Hence (3.102) with $v^{2}=1$ is the condition for smoothness of $\gamma^{ \pm}$at a ridge point.

Remark 3.8.1.3 Consider the medial axis in \mathbb{R}^{2}. As stated at the start of this section, the condition for smoothness of the boundary curve at a point corresponding to an endpoint $\left(A_{3}\right)$ of the medial axis in two dimensions is that $r^{\prime \prime}(0) \neq 0$. Using a similar method as was employed to obtain the condition (3.102) for smoothness in Proposition 3.8.1.2, the same can be done for the medial axis in \mathbb{R}^{2}. The envelope of circles centred on the medial axis γ is

$$
\left\{\mathrm{x}: \quad \text { there exists } s \text { with } G=\frac{\partial G}{\partial s}=0\right\}
$$

where $G=(\mathbf{x}-\gamma(s)) \cdot(\mathbf{x}-\gamma(s))-r(s)^{2}$. Then, the corresponding boundary curve is smooth at $\gamma(s)$ (corresponding to an A_{1}^{2} point or an A_{3} point) if

$$
\frac{\partial^{2} G}{\partial s^{2}}=1-r^{\prime 2}-r r^{\prime \prime} \mp r \kappa \sqrt{1-r^{\prime 2}} \neq 0 .
$$

(For an endpoint, substitute $r^{\prime}= \pm 1$.)

Smoothness Condition for a General Cylinder

From the first example of the A_{1}^{3} case ($\S 3.5$) we had expressions (3.84), (3.85), (3.86), (3.87), (3.88), (3.89) respectively for $a_{i}, a_{i}^{t}, a_{i}^{*}, \kappa_{i}^{r}, \kappa_{i}^{t}, \tau_{i}^{t}$ for a medial sheet γ_{i} in terms of the radius function $r_{i}(u, z)$. These expressions are also valid away from the A_{1}^{3} curve. Hence we can consider the expressions for a single
medial sheet γ which is a general cylinder given by

$$
\begin{aligned}
\gamma(u, z)= & \delta(u)+z(0,0,1), \text { where } \delta(u)=\left(X_{i}(u), Y_{i}(u), 0\right), \\
\text { and } & \left(\frac{d X}{d u}\right)^{2}+\left(\frac{d Y}{d u}\right)^{2}=1 \text { for all } u(\delta \text { unit speed }), \\
\text { so } N(u, z)= & \eta\left(\frac{d Y}{d u},-\frac{d X}{d u}, 0\right), \text { where } \eta= \pm 1 .
\end{aligned}
$$

Consider the smoothness condition (3.102) from Proposition 3.8.1.2 for the boundary surface $\gamma^{ \pm}$corresponding to γ as a general cylinder parametrized as above. Then (3.102) becomes

$$
\begin{aligned}
0 \neq & \left.-r_{0}\left(r_{0}\left(r_{u z}-r_{u u} r_{z z}\right)+\frac{r_{u}^{2} r_{u u}+2 r_{u} r_{z} r_{u z}+r_{z}^{2} r_{z z}}{r_{u}^{2}+r_{z}^{2}}\right)\right) \\
& +\left(1-r_{u}^{2}-r_{z}^{2}\right)\left(1-r_{0} \frac{\left(r_{z}^{2} r_{u u}-2 r_{u} r_{z} r_{u z}+r_{u}^{2} r_{z z}\right)}{r_{u}^{2}+r_{z}^{2}}\right) \\
& \pm \eta \sqrt{1-r_{u}^{2}-r_{z}^{2}}\left(r_{0} r_{z z}+r_{z}^{2}-1\right)\left(\frac{d^{2} X_{i}}{d u^{2}} \frac{d Y_{i}}{d u}-\frac{d X_{i}}{d u} \frac{d^{2} Y_{i}}{d u^{2}}\right) .
\end{aligned}
$$

Hence this is the condition for the boundary $\gamma^{ \pm}$to be smooth at an A_{1}^{2} or an A_{3} point (for A_{3}, set $r_{u}^{2}+r_{z}^{2}=1$).

3.8.2 Gauss Curvature on the Medial Axis at an A_{3} Point

We want to obtain the analogue of (3.2) in \mathbb{R}^{3}, that is to acquire a result connecting the geometry of the boundary and the geometry of the medial axis at the edge. A parametrization of the medial axis near to an edge point can be obtained in Maple by taking the associated boundary in Monge form near to a ridge point. Let the boundary be $(x, y, f(x, y))$, where

$$
\left.\begin{array}{rl}
f(x, y)= & \frac{1}{2}\left(\kappa_{1} x^{2}+\kappa_{2} y^{2}\right)+\left((0) x^{3}+b_{1} x^{2} y+b_{2} x y^{2}+b_{3} y^{3}\right) \tag{3.104}\\
& +\left(c_{0} x^{4}+c_{1} x^{3} y+c_{2} x^{2} y^{2}+c_{3} x y^{3}+c_{4} y^{4}\right) \\
& +\left(d_{0} x^{5}+d_{1} x^{4} y+d_{2} x^{3} y^{2}+d_{3} x^{2} y^{3}+d_{4} x y^{4}+d_{5} y^{5}\right)+\cdots
\end{array}\right\}
$$

Since the coefficient of x^{3} is zero, the ridge corresponds to the x-direction and a ridge point corresponds to $x=y=0$. We proceed by taking two points
$(u, v, f(u, v)),(s, t, f(s, t))$ near to $\mathbf{0}$. From (3.3), the condition for there to be a sphere tangent to the boundary at these two points is that

$$
\begin{equation*}
(u, v, f(u, v))+r N_{1}(u, v)=(s, t, f(s, t))+r N_{2}(s, t), \tag{3.105}
\end{equation*}
$$

where r is the radius of the bitangent sphere and N_{1}, N_{2} are the unit normals to the boundary at (u, v) and at (s, t), respectively. Then we solve for u, v and r as functions of s and t such that (3.105) is satisfied. Using Maple a parametrization of the medial axis near to an edge point can be calculated explicitly. We get

$$
\begin{align*}
r(s, t)= & \frac{1}{\kappa_{1}}-\frac{2 b_{1}}{\kappa_{1}^{2}} t+\frac{\kappa_{1}^{3}-8 c_{0}}{2 \kappa_{1}^{2}} s^{2}-\frac{2 c_{1}}{\kappa_{1}^{2}} s t+(*) t^{2} \\
& -\frac{4 d_{0}}{\kappa_{1}^{2}} s^{3}+(*) s^{2} t+(*) s t^{2}+(*) t^{3}+\text { h.o.t. } \tag{3.106}
\end{align*}
$$

where the more complicated coefficients are denoted $(*)$. The parametrization of the medial axis near to an edge point is then $\left(G_{1}(s, t), G_{2}(s, t), G_{3}(s, t)\right)=$ $(s, t, f(s, t))-r(s, t) N_{2}(s, t)$ where

$$
\begin{aligned}
G_{1}(s, t)= & -\frac{b_{2}}{\kappa_{1}} t^{2}-\frac{c_{1}}{\kappa_{1}} s^{2} t+4\left(\frac{\left(\kappa_{1}^{3}-8 c_{0}\right) b_{2}^{2}+\left(\kappa_{1}-\kappa_{2}\right) c_{1}^{2}+4 b_{1} b_{2} c_{1}}{\kappa_{1}\left(\left(\kappa_{1}-\kappa_{2}\right)\left(\kappa_{1}^{3}-8 c_{0}\right)-4 b_{1}^{2}\right)}\right) s t^{2} \\
& +\frac{2 b_{1} b_{2}-\kappa_{1} c_{3}}{\kappa_{1}^{2}} t^{3}-\frac{d_{0}}{\kappa_{1}} s^{4}+(*) s^{3} t+(*) s^{2} t^{2} \\
& +(*) s t^{3}+(*) t^{4}+\text { h.o.t. }, \\
G_{2}(s, t)= & \left(\frac{\kappa_{1}-\kappa_{2}}{\kappa_{1}}\right) t-\frac{b_{1}}{\kappa_{1}} s^{2}-\frac{2 b_{2}}{\kappa_{1}} s t+\left(\frac{2 \kappa_{2} b_{1}-3 \kappa_{1} b_{3}}{\kappa_{1}^{2}}\right) t^{2}-\frac{c_{1}}{\kappa_{1}} s^{3} \\
& +2\left(\frac{b_{1}^{2}-\kappa_{1} c_{2}+2 \kappa_{2} c_{0}}{\kappa_{1}^{2}}\right) s^{2} t+\left(\frac{4 b_{1} b_{2}-3 \kappa_{1} c_{3}+2 \kappa_{2} c_{1}}{\kappa_{1}^{2}}\right) s t^{2} \\
& +(*) t^{3}+\left(\frac{4 b_{1} c_{0}-\kappa_{1} d_{1}}{\kappa_{1}^{2}}\right) s^{4} \\
& +2\left(\frac{2 b_{1} c_{1}+4 b_{2} c_{0}+2 \kappa_{2} d_{0}-\kappa_{1} d_{2}}{\kappa_{1}^{2}}\right) s^{3} t+(*) s^{2} t^{2} \\
& +(*) s t^{3}+(*) t^{4}+\text { h.o.t. }, \\
G_{3}(s, t)= & \frac{1}{\kappa_{1}}-\frac{2 b_{1}}{\kappa_{1}^{2}} t+\left(\frac{\kappa_{1}^{3}-8 c_{0}}{2 \kappa_{1}^{2}}\right) s^{2}-\frac{2 c_{1}}{\kappa_{1}^{2}} s t+(*) t^{2} \\
& -\frac{4 d_{0}}{\kappa_{1}^{2}} s^{3}+(*) s^{2} t+(*) s t^{2}+(*) t^{3}+\text { h.o.t. }
\end{aligned}
$$

A standard formula for the Gauss curvature K at a point \mathbf{p} of a surface is as follows, where suffices denote differentiation:

$$
\begin{aligned}
K & =\frac{e g-f^{2}}{E G-F^{2}}, \text { where } \\
E & =X_{u} \cdot X_{u}, F=X_{u} \cdot X_{v}, G=X_{v} \cdot X_{v}, \\
\tilde{e} & =X_{u u} \cdot N, \tilde{f}=X_{u v} \cdot N, \tilde{g}=X_{v v} \cdot N,
\end{aligned}
$$

where N is a unit normal to S at \mathbf{p}. Using this formula for K and the parametrization $G(s, t)$ of the medial axis near to an A_{3} point we can calculate the Gauss curvature on the medial axis at (s, t).

Proposition 3.8.2.1 The limiting value (if it exists) of the Gauss curvature K (which is the product of the principal curvatures on the medial axis) as x, y tend to zero, that is as we tend towards the edge point, is as follows:

$$
\begin{equation*}
K=\frac{4\left(4 b_{2} d_{0}-c_{1}^{2}\right) \kappa_{1}^{4}}{\left(\left(\kappa_{1}-\kappa_{2}\right)\left(\kappa_{1}^{3}-8 c_{0}\right)-4 b_{1}^{2}\right)^{2}} . \tag{3.107}
\end{equation*}
$$

(The reason for the qualifying 'if it exists' is that not all of the limiting directions tending towards the edge point $\left(0,0,1 / \kappa_{1}\right)$ have been considered in the calculation of (3.107).)

The denominator of the right-hand side of (3.107) is zero only if $\mathbf{0}$ corresponds to an A_{4} point, which we assume is not true. Compare this value with the expression for the limiting value of the curvature of the medial axis in \mathbb{R}^{2} at the endpoint given by (3.2). This depends on the third derivative of the curvature of the boundary, that is it depends on the 5 -jet of the boundary at the corresponding point. The limiting value of K as in (3.107) also depends on the 5 -jet of the boundary in three dimensions.

Equation (3.107) gives a criterion for $K=0$ on the medial axis. We can also express K in terms of derivatives of the principal curvatures κ_{1} and κ_{2} at $(x, y)=(0,0)$ on the boundary by using Maple to expand the principal curvatures κ_{1}, κ_{2} as functions of x and y near to $x=y=0$. (See [HGYGM99,
pp.128-142].) Then we get

$$
\begin{aligned}
\kappa_{1}(0,0) & =\kappa_{1} \quad \text { (const.) }, \kappa_{2}(0,0)=\kappa_{2} \quad \text { (const.) }, \\
\kappa_{1 x}(0,0) & =2 b_{1}, \kappa_{2 x}(0,0)=2 b_{2} \\
\kappa_{1 x x}(0,0) & =\frac{8 b_{1}^{2}-3 \kappa_{1}^{3}\left(\kappa_{1}-\kappa_{2}\right)}{\kappa_{1}-\kappa_{2}}+24 c_{0}, \\
\kappa_{1 x y}(0,0) & =\frac{8 b_{1} b_{2}}{\kappa_{1}-\kappa_{2}}+6 c_{1}, \\
\kappa_{1 x x x}(0,0) & =24 b_{1}\left(\frac{3 c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}}{\left(\kappa_{1}-\kappa_{2}\right)^{2}}\right)+120 d_{0} .
\end{aligned}
$$

Using (3.107) we can express the limiting value of K at an edge point in terms of the derivatives of κ_{1} and κ_{2} as follows:
$K=\frac{\kappa_{1}^{4}\left(\left(\kappa_{1}-\kappa_{2}\right)^{2}\left(3 \kappa_{2 x} \kappa_{1 x x x}-5 \kappa_{1 x y}^{2}\right)+2\left(\kappa_{1}-\kappa_{2}\right) \kappa_{1 x} \kappa_{2 x} \kappa_{1 x y}-2 \kappa_{1 x}^{2} \kappa_{2 x}^{2}\right)}{5\left(\kappa_{1}-\kappa_{2}\right)^{2}\left(\kappa_{1 x}^{2}+\left(\kappa_{1}-\kappa_{2}\right) \kappa_{1 x x}\right)^{2}}$.
The above shows that the Gauss curvature of the medial axis at an edge point depends on up to the third derivatives of the principal curvatures, and so on the fifth derivatives of the boundary at ridge points. This is analogous to the situation in \mathbb{R}^{2}; from (3.2) the curvature of the medial axis in two dimensions at an endpoint depends on up to the third derivative of curvature, so up to fifth derivatives of the boundary curve.

3.8.3 Local Maximum or Minimum of r Along the Ridge

Here is a result about the ridge, which is the space curve lying on $\gamma^{ \pm}$whose points are obtained from the points of the edge by (3.3).

Proposition 3.8.3.1 At a point of the ridge corresponding to the principal curvature κ_{1} on the boundary surface given by (3.104), the radius of the sphere of contact with the boundary surface has a local maximum or minimum if and only if κ_{1} has a critical point on the boundary.

Proof. From [HGYGM99, pp.144, 162], the tangent to the ridge curve on the boundary surface given by (3.104) is

$$
\left(\left(\kappa_{1}-\kappa_{2}\right)\left(8 c_{0}-\kappa_{1}^{3}\right)+4 b_{1}^{2}\right) x+\left(2 c_{1}\left(\kappa_{1}-\kappa_{2}\right)+4 b_{1} b_{2}\right) y=0 .
$$

Then the derivative of r along the ridge at $x=y=0$ is

$$
\left(\left(\kappa_{1}-\kappa_{2}\right)\left(8 c_{0}-\kappa_{1}^{3}\right)+4 b_{1}^{2}\right) \frac{\partial r}{\partial y}(0,0)-\left(2 c_{1}\left(\kappa_{1}-\kappa_{2}\right)+4 b_{1} b_{2}\right) \frac{\partial r}{\partial x}(0,0) .
$$

Using (3.106), this is zero if and only if

$$
b_{1}\left(\left(\kappa_{1}-\kappa_{2}\right)\left(8 c_{0}-\kappa_{1}^{3}\right)+4 b_{1}^{2}\right)=0 .
$$

From (3.107) we know that $\left(\left(\kappa_{1}-\kappa_{2}\right)\left(8 c_{0}-\kappa_{1}^{3}\right)+4 b_{1}^{2}\right) \neq 0$. Hence

$$
r \text { has a local maximum or minimum } \Longleftrightarrow b_{1}=0,
$$

which is the same as κ_{1} having a critical point on the boundary.

3.8.4 Principal Curvatures, Principal Directions of the Boundary

Now we shall consider the information sufficient to determine the boundary at ridge points up to second order. Assume we have the edge of the medial axis as a space curve with curvature κ and torsion τ, the tangent planes to the medial sheet, the radius function r on the edge, and the angle α between the tangent to the edge and $\nabla r\left({ }^{(} \operatorname{grad}(r) '\right)$ at a point of the edge.

We can express $N^{ \pm}$in terms of ∇r by using the facts that $\nabla r=T\|\nabla r\|$ and $\cos \phi=-\|\nabla r\|$, so the formula for $N^{ \pm}$from (3.5) becomes

$$
N^{ \pm}=\nabla r \mp \sqrt{1-\|\nabla r\|^{2}} N .
$$

Hence, as $\sin \phi \rightarrow 0$ (corresponding to $\|\nabla r\| \rightarrow 1$) we see that $N^{ \pm} \rightarrow \nabla r$. Since we are given the tangent to the ridge curve and α, we can determine ∇r and hence $N^{ \pm}$at each point of the edge. Then, using (3.3), we have each ridge point and so we have the ridge curve. Since we have the normal $N^{ \pm}$along the ridge, we also have the tangent planes to $\gamma^{ \pm}$along the ridge. Hence we have determined the first order geometry of $\gamma^{ \pm}$along a ridge curve.

Now for the second order geometry of the boundary. Given the ridge curve we have its geodesic curvature, normal curvature, $\hat{\kappa}_{n 1}$ say, and geodesic torsion, $\hat{\tau}_{g 1}$ say. We also know that one of the principal curvatures of the boundary at a ridge point is $1 / r$. We label this $k_{1}=1 / r$. Let k_{2} be the other principal curvature on $\gamma^{ \pm}$at a ridge point, let $\hat{\theta}$ be the angle from the principal direction corresponding to k_{1} to the tangent to the ridge curve, and $\hat{\kappa}_{n 2}$ be the normal curvature of $\gamma^{ \pm}$in the tangent direction to $\gamma^{ \pm}$perpendicular to the ridge curve. Equations (3.54), (3.55) give formulae for $\hat{\kappa}_{n 1}, \hat{\kappa}_{n 2}, \hat{\tau}_{g 1}$. (These were used in the A_{1}^{3} case, but are valid here too.) We can solve these to obtain formulae for $\hat{\theta}, k_{2}$, and $\hat{\kappa}_{n 2}$, and we get

$$
\begin{aligned}
k_{2} & =\hat{\kappa}_{n 1}+\frac{\hat{\tau}_{g 1}^{2}}{\hat{\kappa}_{n 1}-k_{1}}, \hat{\kappa}_{n 2}=k_{1}+\frac{\hat{\tau}_{g 1}^{2}}{\hat{\kappa}_{n 1}-k_{1}}, \\
\cos \hat{\theta} & = \pm \frac{\hat{\tau}_{g 1}}{\sqrt{\hat{\tau}_{g 1}^{2}+\left(\hat{\kappa}_{n 1}-k_{1}\right)^{2}}}, \sin \hat{\theta}=\frac{\left|\hat{\kappa}_{n 1}-k_{1}\right|}{\sqrt{\hat{\tau}_{g 1}^{2}+\left(\hat{\kappa}_{n 1}-k_{1}\right)^{2}}}
\end{aligned}
$$

where $\operatorname{sign}(\cos \hat{\theta})=\operatorname{sign}\left(\hat{\kappa}_{n 1}-k_{1}\right)$. Hence we can determine the principal curvatures of the boundary at ridge points. However, these formulae are not enough to determine the normal curvature of $\gamma^{ \pm}$in an arbitrary direction V at a point of the ridge; we need the angle from the first principal direction to V in addition to k_{1}, k_{2} (see Lemma 3.4.4.1).

Now for the principal directions on the boundary. Let ($r=r_{0}, t=0$) correspond to an edge point, so $\sin \phi=0$ at $\left(r_{0}, 0\right)$. Let $s, s^{ \pm}$be respectively arclengths on $\gamma(r, 0), \gamma^{ \pm}(r, 0)$. Then from (3.3), (3.5), and (3.18) we get

$$
\begin{aligned}
\frac{d \gamma^{ \pm}}{d s}(r, 0) & =\mp \sin \phi T^{ \pm}-r \frac{d N^{ \pm}}{d s}, \text { where } \\
\frac{d N^{ \pm}}{d s}(r, 0) & =\left(\mp \frac{a \cos ^{3} \phi}{\sin \phi}-\kappa^{r}\right) T^{ \pm}+\left(-a^{t} \cos ^{2} \phi \mp \tau^{t} \sin \phi\right) U
\end{aligned}
$$

Using these we get

$$
\frac{d s^{ \pm}}{d s}=\frac{\sqrt{\left(\mp \sin ^{2} \phi \pm r a \cos ^{3} \phi+r \kappa^{r} \sin \phi\right)^{2}+r^{2} \sin ^{2} \phi\left(a^{t} \cos ^{2} \phi \pm \tau^{t} \sin \phi\right)^{2}}}{\sin \phi}
$$

at $(r, 0)$. Hence

$$
\begin{aligned}
\frac{d \gamma^{ \pm}}{d s^{ \pm}} & =\frac{\left(\mp \sin ^{2} \phi \pm r a \cos ^{3} \phi+r \kappa^{r} \sin \phi\right) T^{ \pm}+r \sin \phi\left(a^{t} \cos ^{2} \phi \pm \tau^{t} \sin \phi\right) U}{\sqrt{\left(\mp \sin ^{2} \phi \pm r a \cos ^{3} \phi+r \kappa^{r} \sin \phi\right)^{2}+r^{2} \sin ^{2} \phi\left(a^{t} \cos ^{2} \phi \pm \tau^{t} \sin \phi\right)^{2}}} \\
\frac{d N^{ \pm}}{d s^{ \pm}} & =\frac{\left(\mp a \cos ^{3} \phi-\kappa^{r} \sin \phi\right) T^{ \pm}+\left(-a^{t} \cos ^{2} \phi \mp \tau^{t} \sin \phi\right) \sin \phi U}{\sqrt{\left(\mp \sin ^{2} \phi \pm r a \cos ^{3} \phi+r \kappa^{r} \sin \phi\right)^{2}+r^{2} \sin ^{2} \phi\left(a^{t} \cos ^{2} \phi \pm \tau^{t} \sin \phi\right)^{2}}},
\end{aligned}
$$

both at $(r, 0)$. Then as we let $r \rightarrow r_{0}$, so that $\sin \phi \rightarrow 0$ and $\cos ^{2} \phi \rightarrow 1$, we get

$$
\begin{equation*}
\lim _{r \rightarrow r_{0}}\left(\frac{d N^{ \pm}}{d s^{ \pm}}(r, 0)\right)=\frac{\mp a}{r_{0}|a|} N, \quad \lim _{r \rightarrow r_{0}}\left(\frac{d \gamma^{ \pm}}{d s^{ \pm}}(r, 0)\right)=\frac{ \pm a}{|a|} N . \tag{3.108}
\end{equation*}
$$

Now let $t^{ \pm}$be arclength on $\gamma^{ \pm}\left(r_{0}, t\right)$. Then from (3.3), (3.5), and (3.19) we get

$$
\begin{aligned}
\frac{d \gamma^{ \pm}}{d t}\left(r_{0}, t\right) & =U-r_{0} \frac{d N^{ \pm}}{d t}, \text { where } \\
\frac{d N^{ \pm}}{d t}\left(r_{0}, t\right) & =\left(\pm \frac{a^{t} \cos ^{2} \phi}{\sin \phi}+\tau^{t}\right) T^{ \pm}+\left(a^{*} \cos ^{2} \phi \pm \kappa^{t} \sin \phi\right) U
\end{aligned}
$$

From these we get

$$
\frac{d t^{ \pm}}{d t}=\frac{\sqrt{r_{0}^{2}\left(\pm a^{t} \cos ^{2} \phi+\tau^{t} \sin \phi\right)^{2}+\sin ^{2} \phi\left(1-r_{0} a^{*} \cos ^{2} \phi \mp r_{0} \kappa^{t} \sin \phi\right)^{2}}}{\sin \phi}
$$

at $\left(r_{0}, t\right)$. Hence

$$
\begin{aligned}
& \frac{d \gamma^{ \pm}}{d t^{ \pm}}=\frac{r_{0}\left(\mp a^{t} \cos ^{2} \phi-\tau^{t} \sin \phi\right) T^{ \pm}+\sin \phi\left(1-r_{0} a^{*} \cos ^{2} \phi \mp r_{0} \kappa^{t} \sin \phi\right) U}{\sqrt{r_{0}^{2}\left(\pm a^{t} \cos ^{2} \phi+\tau^{t} \sin \phi\right)^{2}+\sin ^{2} \phi\left(1-r_{0} a^{*} \cos ^{2} \phi \mp r_{0} \kappa^{t} \sin \phi\right)^{2}}}, \\
& \frac{d N^{ \pm}}{d t}=\frac{\left(\pm a^{t} \cos ^{2} \phi+\tau^{t} \sin \phi\right) T^{ \pm}+\sin \phi\left(a^{*} \cos ^{2} \phi \pm \kappa^{t} \sin \phi\right) U}{\sqrt{r_{0}^{2}\left(\pm a^{t} \cos ^{2} \phi+\tau^{t} \sin \phi\right)^{2}+\sin ^{2} \phi\left(1-r_{0} a^{*} \cos ^{2} \phi \mp r_{0} \kappa^{t} \sin \phi\right)^{2}}},
\end{aligned}
$$

both at $\left(r_{0}, t\right)$. Similar to before, as we let $t \rightarrow 0$, so that $\sin \phi \rightarrow 0$ and $\cos ^{2} \phi \rightarrow 1$, we get

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(\frac{d N^{ \pm}}{d t^{ \pm}}\left(r_{0}, t\right)\right)=\frac{ \pm a^{t} \cos \phi}{r_{0}\left|a^{t}\right|} N, \lim _{t \rightarrow 0}\left(\frac{d \gamma^{ \pm}}{d t^{ \pm}}\left(r_{0}, t\right)\right)=\frac{\mp a^{t} \cos \phi}{\left|a^{t}\right|} N . \tag{3.109}
\end{equation*}
$$

Now we shall interpret (3.108), (3.109). We assume that the boundary $\gamma^{ \pm}$is smooth at all points near to $\left(r_{0}, 0\right)$ and so, by (3.102) from Proposition 3.8.1.2,
we know that at least one of a, a^{t} is non-zero at $\left(r_{0}, 0\right)$. Then (3.108), (3.109) imply that the derivative of $N^{ \pm}$in the N direction is parallel to N itself, and so N is a principal direction of $\gamma^{ \pm}$at ridge points. The vector $N^{ \pm}$becomes parallel to T at edge points, and so the other principal direction on $\gamma^{ \pm}$at ridge points is U.

Hence, the following has been proved.
Proposition 3.8.4.1 Given the edge of the medial axis as a space curve with curvature κ and torsion τ, the tangent planes to the medial sheet, the radius function r on the edge, and the angle α between the tangent to the edge and ∇r (' $\operatorname{grad}(r)$ ') at a point of the edge; then the principal curvatures and principal directions of the boundary at a ridge point are determined.

This shows that not much information about the medial axis at an edge point is needed to give second order information of the boundary at ridge points.

3.9 The $A_{1} A_{3}$ Case

An $A_{1} A_{3}$ point on the medial axis is where an A_{1}^{3} curve and an A_{3} curve meet and end, that is the $A_{1} A_{3}$ point is the centre of a sphere which is tangent to a surface in three places, but two of the points of contact coincide. The medial axis near to an $A_{1} A_{3}$ point looks like part of a swallowtail surface with a 'fin' (another medial sheet) intersecting with the swallowtail in a curve (see the self-intersection curve of Figure 3.13). The $A_{1} A_{3}$ point is then the point where the edge curve of the fin meets the other two sheets.

3.9.1 Taking the Limit at Points Tending Towards the $A_{1} A_{3}$ Point

The equations (3.70), (3.72), (3.74), which are respectively from Theorems 3.4.5.2, 3.4.5.3 and 3.4.5.4, all hold at $\gamma_{i}\left(r_{0}, 0\right)$ on the A_{1}^{3} curve, so they hold

Figure 3.13: The $A_{1} A_{3}$ (or fin point) case. The medial axis is locally part of a swallowtail surface with another sheet meeting along the curve of self-intersection. Part of the swallowtail surface above is only on the symmetry set, not on the medial axis (compare with Figure 3.2). The two sheets of the swallowtail surface that are on the medial axis are labelled $\gamma_{j+1}, \gamma_{j+2}$ and the other sheet of the medial axis is labelled γ_{j} for some j. An A_{1}^{3} curve and an A_{3} curve meet and end at an $A_{1} A_{3}$ point.
in the limit as we tend towards an $A_{1} A_{3}$ point. Hence, in order to obtain the forms of $(3.70),(3.72),(3.74)$ at an $A_{1} A_{3}$ point, we need to calculate the limits of the terms involved as two of the points of contact with the boundary surface coincide. Let these points be γ_{j}^{+}and γ_{j}^{-}for some j, which means that $\sin \phi_{j}=0$ at the $A_{1} A_{3}$ point, from (3.3) and (3.5). From (3.39) this corresponds to $\sin \theta_{j}=0$ (we dismissed the possibility of $\sin \phi=0$ for a generic surface in Remark 3.4.5.5). Therefore the other two sheets γ_{j+1} and γ_{j+2} are part of the swallowtail surface. Let $\sin \phi_{j}=0$ in (3.30). This gives

$$
\begin{aligned}
& \sin \phi_{j+1} N_{j+1}+\sin \phi_{j+2} N_{j+2}=\mathbf{0} \\
\Rightarrow & N_{j+1}=-N_{j+2}, \sin \phi_{j+1}=\sin \phi_{j+2} \\
\Rightarrow & \cos \theta_{j}=N_{j+1} \cdot N_{j+2}=-1 \Rightarrow \theta_{j}=\psi_{j+2}-\psi_{j+1}=\pi
\end{aligned}
$$

From this and Theorem 3.4.2.1 we can deduce the following at the $A_{1} A_{3}$ point:

$$
\begin{aligned}
& \sin \psi_{j+1}=-\sin \psi_{j+2}, \cos \psi_{j+1}=-\cos \psi_{j+2}, \\
& \cos \theta_{j+1}=-\cos \theta_{j+2}, \sin \theta_{j+1}=\sin \theta_{j+2} \\
& \cos \phi_{j+1}=-\cos \phi_{j+2}, \text { so } v_{j+1}=-v_{j+2}
\end{aligned}
$$

From Remark 3.4.2.2 we have $\operatorname{sign}\left(v_{i}\right)=\epsilon_{i}=\operatorname{sign}\left(\cos \theta_{i}\right)$. Hence at the $A_{1} A_{3}$ point we have $v_{j}=-1, v_{j+1}=-v_{j+2}$, which means that we have two of the velocities negative and one positive at the $A_{1} A_{3}$ point.

Consider the standard swallowtail surface, which is given by
$\left\{\left(u_{1}, u_{2}, u_{3}\right): \exists t\right.$ with $\left.F=\frac{\partial F}{\partial t}=0\right\}$, where $F=t^{4}+u_{1} t^{2}+u_{2} t+u_{3}$.
A parametrization of this is

$$
X(u, v)=\left(u,-4 v^{3}-2 u v, 3 v^{4}+u v^{2}\right) .
$$

The double curve where two sheets intersect transversally is

$$
X\left(u(t)=-2 t^{2}, v(t)= \pm t\right)=\left(-2 t^{2}, 0, t^{4}\right)
$$

and so the swallowtail point is at $t=0$.
A general swallowtail surface, \bar{S} say, is a local diffeomorphism of the standard swallowtail surface. Then the medial axis near to an $A_{1} A_{3}$ point is part of \bar{S} and another sheet γ_{j} which intersects with \bar{S} in the double curve on \bar{S}. We let the local diffeomorphism of the standard swallowtail be H :

$$
\begin{array}{rlcl}
\mathbb{R}^{2} & \xrightarrow{X} & \mathbb{R}^{3} & \xrightarrow{H} \\
(u, v) & \mathbb{R}^{3}, \\
(u) & (x, y, z) & \longmapsto & \left(H_{1}, H_{2}, H_{3}\right), \\
H(x, y, z)=\left(x+\bar{a}_{1} y+\bar{a}_{2} z\right. & + & \left(b_{11} x^{2}+b_{12} x y+b_{13} y^{2}\right)+\cdots, \\
\bar{a}_{3} y+\bar{a}_{4} z & + & \left(b_{21} x^{2}+b_{22} x y+b_{23} y^{2}\right)+\cdots, \\
\bar{a}_{5} z & + & \left.\left(b_{31} x^{2}+b_{32} x y+b_{33} y^{2}\right)+\cdots\right) .
\end{array}
$$

(The linear terms have been labelled so as not to be confused with the accelerations a_{1}, a_{2}, a_{3} - see $\S 3.2$, just above (3.7).) We assume the Jacobian
of H is non-singular, which means that $\bar{a}_{3} \bar{a}_{5} \neq 0$. Then a parametrization of \bar{S} is $H(x(u, v), y(u, v), z(u, v))$, where $x(u, v)=u, y(u, v)=-4 v^{3}-2 u v$, and $z(u, v)=3 v^{4}+u v^{2}$. Then the A_{1}^{3} curve is given by substituting $u=-2 t^{2}$, $v= \pm t$ into $H(x(u, v), y(u, v), z(u, v))$, and so the $A_{1} A_{3}$ point corresponds to $t=0$. Hence we can calculate all of the terms which appear in the A_{1}^{3} curvature constraints and take their limits tending along the A_{1}^{3} curve towards the $A_{1} A_{3}$ point.

Firstly, N_{j+1}, N_{j+2} are obtained along the double curve on \bar{S} as follows:

$$
\begin{aligned}
& N_{j+1}(t)=-\frac{H_{u} \times H_{v}}{\left\|H_{u} \times H_{v}\right\|}\left(u=-2 t^{2}, v=t\right) \\
& N_{j+2}(t)=\frac{H_{u} \times H_{v}}{\left\|H_{u} \times H_{v}\right\|}\left(u=-2 t^{2}, v=-t\right)
\end{aligned}
$$

Then we get

$$
\begin{align*}
\cos \theta_{j} & =\cos \left(\psi_{j+2}-\psi_{j+1}\right)=N_{j+1} \cdot N_{j+2}=-1+2 \frac{\bar{a}_{5}^{2}}{\bar{a}_{3}^{2}} t^{2}+O\left(t^{4}\right) \\
\sin \theta_{j} & =\sqrt{1-\cos ^{2} \theta_{j}}=2\left|\frac{\bar{a}_{5}}{\overline{a_{3}}}\right| t+O\left(t^{3}\right) \tag{3.110}
\end{align*}
$$

along the A_{1}^{3} curve, and so $\sin \theta_{j} \rightarrow 0, \cos \theta_{j} \rightarrow-1$, as $t \rightarrow 0$, as expected. Let the A_{1}^{3} curve on \bar{S} be $C(t)$. Then we can calculate T, N, B as functions of t, and so obtain κ, τ. We get

$$
\begin{aligned}
\frac{d s}{d t} & =t\left(4-4\left(\bar{a}_{2}+4 b_{11}\right) t^{2}+O\left(t^{4}\right)\right) \\
\kappa & =\frac{\sqrt{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}}{2}+O\left(t^{2}\right) \\
\tau & =\frac{12\left(c_{31}\left(\bar{a}_{4}+4 b_{21}\right)-c_{21}\left(\bar{a}_{5}+4 b_{31}\right)\right)}{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}+O\left(t^{2}\right),
\end{aligned}
$$

where s is arclength on C. Since we assumed κ was never zero when setting up the $[T, N, B]$ frame, we have that $\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2} \neq 0$, and so at least one of $\left(\bar{a}_{4}+4 b_{21}\right),\left(\bar{a}_{5}+4 b_{31}\right)$ is non-zero. Then we get

$$
\begin{aligned}
& \cos \psi_{j+1}=N_{j+1}(t) \cdot N(t)=\frac{\left(\bar{a}_{3}\left(\bar{a}_{5}+4 b_{31}\right)-\bar{a}_{5}\left(\bar{a}_{4}+4 b_{21}\right) t+O\left(t^{2}\right)\right)}{\left|\bar{a}_{3}\right| \sqrt{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}}, \\
& \cos \psi_{j+2}=N_{j+2}(t) \cdot N(t)=\frac{\left(-\bar{a}_{3}\left(\bar{a}_{5}+4 b_{31}\right)-\bar{a}_{5}\left(\bar{a}_{4}+4 b_{21}\right) t+O\left(t^{2}\right)\right)}{\left|\bar{a}_{3}\right| \sqrt{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}} .
\end{aligned}
$$

Since $\sin \psi_{j+2}=-\sin \psi_{j+1}$ at the $A_{1} A_{3}$ point, we get the following.

$$
\begin{aligned}
\sin \psi_{j+1} & =\eta \frac{\left(\left|\bar{a}_{4}+4 b_{21}\right|+O(t)\right)}{\sqrt{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}} \\
\sin \psi_{j+2} & =-\eta \frac{\left(\left|\bar{a}_{4}+4 b_{21}\right|+O(t)\right)}{\sqrt{\left(\bar{a}_{4}+4 b_{21}\right)^{2}+\left(\bar{a}_{5}+4 b_{31}\right)^{2}}}
\end{aligned}
$$

where $\eta= \pm 1$. Since $\sin \psi_{j+2}=-\sin \psi_{j+1}$ at $t=0$, then by the power series for $\sin \psi_{j+1}, \sin \psi_{j+2}$ above and the fact that $\psi_{j+2} \neq \psi_{j+1}$, this means that $\left(a_{4}+4 b_{21}\right) \neq 0$. Using these formulae, we can obtain $\psi_{j+1}^{\prime}, \psi_{j+2}^{\prime}$ at t :

$$
\begin{aligned}
\psi_{j+1}^{\prime} & =-\frac{d\left(\cos \psi_{j+1}\right)}{d t} \frac{1}{\sin \psi_{j+1} \frac{d s}{d t}} \\
& =\frac{1}{t}\left(\frac{\bar{a}_{5}\left(\bar{a}_{4}+4 b_{21}\right)+O(t)}{\eta\left|\bar{a}_{3}\right|\left(\left|\bar{a}_{4}+4 b_{21}\right|+O(t)\right)\left(4-4\left(\bar{a}_{2}+4 b_{11}\right) t^{2}+O\left(t^{4}\right)\right)}\right) \\
\psi_{j+2}^{\prime} & =-\frac{d\left(\cos \psi_{j+2}\right)}{d t} \frac{1}{\sin \psi_{j+2} \frac{d s}{d t}} \\
& =-\frac{1}{t}\left(\frac{\bar{a}_{5}\left(\bar{a}_{4}+4 b_{21}\right)+O(t)}{\eta\left|\bar{a}_{3}\right|\left(\left|\bar{a}_{4}+4 b_{21}\right|+O(t)\right)\left(4-4\left(\bar{a}_{2}+4 b_{11}\right) t^{2}+O\left(t^{4}\right)\right)}\right) .
\end{aligned}
$$

Therefore we have the following.
Lemma 3.9.1.1 The derivatives $\psi_{j+1}^{\prime}, \psi_{j+2}^{\prime}$ tend to infinity like $1 / t$ as t tends to zero. Then

$$
\lim _{\sin \theta_{j} \rightarrow 0}\left(\psi_{j+1}^{\prime} \sin \theta_{j}\right)=-\lim _{\sin \theta_{j} \rightarrow 0}\left(\psi_{j+2}^{\prime} \sin \theta_{j}\right)=\frac{\eta \bar{a}_{5}\left|\bar{a}_{5}\right|}{2 \bar{a}_{3}^{2}} \operatorname{sign}\left(\bar{a}_{4}+4 b_{21}\right),
$$

which is finite.
Now to calculate expressions for $\kappa_{j+1}^{W}, \kappa_{j+2}^{W}$ at t. Lemma 3.4.4.1 gives an expression for the normal curvature in a given direction, but its disadvantage is that it is in terms of the principal directions on the given surface. Another expression for the normal curvature k_{n} in the direction $\lambda X_{u}+\mu X_{v}$ for a surface S parametrized by $X(u, v)$ is

$$
\frac{e \lambda^{2}+2 f \lambda \mu+g \mu^{2}}{E \lambda^{2}+2 F \lambda \mu+G \mu^{2}},
$$

where E, F, G, e, f, g are the coefficients of the first and second fundamental forms on S. Now consider \bar{S}. A tangent to the double curve C is

$$
\left(H_{u} \frac{d u}{d t}+H_{v} \frac{d v}{d t}\right) \text { at } u=-2 t^{2}, v= \pm t
$$

Then a tangent vector perpendicular to this is

$$
\begin{aligned}
& \left(H_{u} \times H_{v}\right) \times\left(H_{u} \frac{d u}{d t}+H_{v} \frac{d v}{d t}\right) \\
= & \left(-\frac{d u}{d t} \bar{F}-\frac{d v}{d t} \bar{G}\right) H_{u}+\left(\frac{d u}{d t} \bar{E}+\frac{d v}{d t} \bar{F}\right) H_{v}
\end{aligned}
$$

evaluated at $u=-2 t^{2}, v= \pm t$, where $\bar{E}, \bar{F}, \bar{G}$ are the coefficients of the first fundamental form on \bar{S} with respect to the parametrization $H(u, v)$. Therefore

$$
\begin{aligned}
\kappa_{j+1}^{W}= & \frac{\bar{e}_{j+1} \lambda_{j+1}^{2}+2 \bar{f}_{j+1} \lambda_{j+1} \mu_{j+1}+\bar{g}_{j+1} \mu_{j+1}^{2}}{\bar{E}_{j+1} \lambda_{j+1}^{2}+2 \bar{F}_{j+1} \lambda_{j+1} \mu_{j+1}+\bar{G}_{j+1} \mu_{j+1}^{2}}, \text { where } \\
& \lambda_{j+1}=4 t \bar{F}_{j+1}-\bar{G}_{j+1}, \mu_{j+1}=-4 t \bar{E}_{j+1}+\bar{F}_{j+1}, \\
& \bar{e}_{j+1}=H_{u u} \cdot N_{j+1}, \bar{f}_{j+1}=H_{u v} \cdot N_{j+1}, \bar{g}_{j+1}=H_{v v} \cdot N_{j+1}, \\
& \bar{E}_{j+1}=H_{u} \cdot H_{u}, \bar{F}_{j+1}=H_{u} \cdot H_{v}, \bar{G}_{j+1}=H_{v} \cdot H_{v},
\end{aligned}
$$

$$
\text { all evaluated at } u=-2 t^{2}, v=t
$$

and $\kappa_{j+2}^{W}=\frac{\bar{e}_{j+2} \lambda_{j+2}^{2}+2 \bar{f}_{j+2} \lambda_{j+2} \mu_{j+2}+\bar{g}_{j+2} \mu_{j+2}^{2}}{\bar{E}_{j+2} \lambda_{j+2}^{2}+2 \bar{F}_{j+2} \lambda_{j+2} \mu_{j+2}+\bar{G}_{j+2} \mu_{j+2}^{2}}$, where

$$
\lambda_{3}=4 t \bar{F}_{3}+\bar{G}_{3}, \mu_{3}=-4 t \bar{E}_{3}-\bar{F}_{3},
$$

$$
\bar{e}_{j+2}=H_{u u} \cdot N_{j+2}, \bar{f}_{j+2}=H_{u v} \cdot N_{j+2}, \bar{g}_{j+2}=H_{v v} \cdot N_{j+2},
$$

$$
\bar{E}_{j+2}=H_{u} \cdot H_{u}, \bar{F}_{j+2}=H_{u} \cdot H_{v}, \bar{G}_{j+2}=H_{v} \cdot H_{v},
$$

$$
\text { all evaluated at } u=-2 t^{2}, v=-t
$$

Using these formulae, we get

$$
\begin{aligned}
& \kappa_{j+1}^{W}=\frac{1}{t^{2}}\left(\frac{128 \bar{a}_{3} \bar{a}_{5}+128 \bar{a}_{5}\left(4 \bar{a}_{1} \bar{a}_{3}-\bar{a}_{4}\right) t+O\left(t^{2}\right)}{\left|\bar{a}_{3}\right|\left(1024 \bar{a}_{3}^{2}+O(t)\right)}\right) \\
& \kappa_{j+2}^{W}=\frac{1}{t^{2}}\left(\frac{-128 \bar{a}_{3} \bar{a}_{5}+128 \bar{a}_{5}\left(4 \bar{a}_{1} \bar{a}_{3}-\bar{a}_{4}\right) t+O\left(t^{2}\right)}{\left|\bar{a}_{3}\right|\left(1024 \bar{a}_{3}^{2}+O(t)\right)}\right) .
\end{aligned}
$$

Hence we have the following.

Lemma 3.9.1.2 The normal curvatures $\kappa_{j+1}^{W}, \kappa_{j+2}^{W}$ tend to infinity like $1 / t^{2}$ as tends to zero. Then

$$
\lim _{\sin \theta_{j} \rightarrow 0}\left(\kappa_{j+1}^{W} \sin ^{2} \theta_{j}\right)=-\lim _{\sin \theta_{j} \rightarrow 0}\left(\kappa_{j+2}^{W} \sin ^{2} \theta_{j}\right)=\frac{\bar{a}_{5}^{3}}{2 \bar{a}_{3}^{3}\left|\bar{a}_{3}\right|},
$$

which is finite.

3.9.2 The A_{1}^{3} Consistency Conditions at an $A_{1} A_{3}$ point

Using Lemmas 3.9.1.1 and 3.9.1.2 we can obtain the forms of (3.72), (3.74) when $\sin \theta_{j}=0$. Since γ_{j} is not part of the swallowtail surface it is a smooth sheet, and so $a_{j}, a_{j}^{t}, a_{j}^{*}, \kappa_{j}^{r}, \kappa_{j}^{t}$, and τ_{j}^{t} are all finite as $\sin \theta_{j} \rightarrow 0$. Then, when we let $\sin \theta_{j} \rightarrow 0$ in (3.67) for $i=j$ from Lemma 3.4.4.4 and use Lemma 3.9.1.1, we get that ϕ^{\prime} is finite at the $A_{1} A_{3}$ point. Similarly, letting $\sin \theta_{j} \rightarrow 0$ in (3.60) and (3.73) for $i=j$ gives that both $\dot{\phi}_{j} \sin \theta_{j}$ and ψ_{j}^{\prime} tend to finite numbers. From Remark 3.4.5.5 we can use either (3.72) or (3.74), since $\cos \phi=\cos \theta_{i}=0$ is impossible for any i where $\nabla r_{i} \neq \mathbf{0}$.

Firstly we shall consider the limiting form of (3.72) from Theorem 3.4.5.3. For this, we assume $\cos \phi \neq 0$. For $i=j+1$, multiplying (3.72) by $\sin ^{2} \theta_{j}$ and then setting $\sin \theta_{j}=0$ we get

$$
\begin{aligned}
\frac{\kappa_{j+1}^{W} \sin ^{2} \theta_{j} \sin \phi}{\sin \theta_{j+1}}= & -\frac{2 \theta_{j}^{\prime} \sin \theta_{j}(-1)}{\cos \phi}+\frac{a_{j+2}^{*} \sin ^{2} \theta_{j} \cos ^{4} \phi_{j+2}}{\cos ^{2} \phi \sin ^{2} \theta_{j+2}}-\frac{a_{j}^{*}}{\cos ^{2} \phi} \\
& +\frac{\phi^{\prime}}{\cos ^{2} \phi \sin \phi}+\frac{\kappa}{\sin \phi}\left(-\frac{\sin \psi_{j}(-1)}{\cos ^{2} \phi}\right)
\end{aligned}
$$

which implies $a_{j+2}^{*} \sin ^{2} \theta_{j}$ is finite at the $A_{1} A_{3}$ point, since all of the other terms are finite. Then for $i=j+2$, multiplying (3.72) by $\sin ^{2} \theta_{j}$ and then setting $\sin \theta_{j}=0$ we get

$$
\begin{aligned}
\frac{\kappa_{j+2}^{W} \sin ^{2} \theta_{j} \sin \phi}{\sin \theta_{j+2}}= & \frac{2 \theta_{j}^{\prime} \sin \theta_{j}(-1)}{\cos \phi}-\frac{a_{j+1}^{*} \sin ^{2} \theta_{j} \cos ^{4} \phi_{j+1}}{\cos ^{2} \phi \sin ^{2} \theta_{j+1}}+\frac{a_{j}^{*}}{\cos ^{2} \phi} \\
& -\frac{\phi^{\prime}}{\cos ^{2} \phi \sin \phi}+\frac{\kappa}{\sin \phi}\left(\frac{\sin \psi_{j}(-1)}{\cos ^{2} \phi}\right),
\end{aligned}
$$

which implies $a_{j+1}^{*} \sin ^{2} \theta_{j}$ is finite at the $A_{1} A_{3}$ point, again since all of the other terms are finite. Note that $a_{j+1}^{*} \sin ^{2} \theta_{j}=a_{j+2}^{*} \sin ^{2} \theta_{j}$ when $\sin \theta_{j}=0$, since
$\kappa_{j+1}^{W} \sin ^{2} \theta_{j}=-\kappa_{j+2}^{W} \sin ^{2} \theta_{j}$ at $\sin \theta_{j}=0$. Finally, for $i=j$, multiplying (3.72) by $\sin \theta_{j}$ and then setting $\sin \theta_{j}=0$ gives

$$
\begin{aligned}
\kappa_{j}^{W} \sin \phi= & \frac{2 \cos \theta_{j+1}}{\cos \phi \sin \theta_{j+1}}\left(\theta_{j+1}^{\prime} \sin \theta_{j}+\theta_{j+2}^{\prime} \sin \theta_{j}\right)+2\left(\tau+\psi_{j}^{\prime}\right) \cos \phi(-1) \\
& +\frac{\cos ^{4} \phi_{j+1}}{\cos ^{2} \phi \sin ^{2} \theta_{j+1}}\left(a_{j+1}^{*}-a_{j+2}^{*}\right) \sin \theta_{j}+\frac{\kappa}{\sin \phi}\left(-\cos \psi_{j} \cos ^{2} \phi\right) .
\end{aligned}
$$

Hence $\left(a_{j+1}^{*}-a_{j+2}^{*}\right) \sin \theta_{j}$ is finite when $\sin \theta_{j}=0$. Hence we get the following.
Proposition 3.9.2.1 As an A_{1}^{3} point tends towards an $A_{1} A_{3}$ point along an A_{1}^{3} curve, the medial sheets must satisfy the following:

$$
\begin{gathered}
\lim _{\sin \theta_{j} \rightarrow 0}\left(a_{j+1}^{*} \sin ^{2} \theta_{j}\right)=\lim _{\sin \theta_{j} \rightarrow 0}\left(a_{j+2}^{*} \sin ^{2} \theta_{j}\right), \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\left(a_{j+1}^{*}-a_{j+2}^{*}\right) \sin \theta_{j}\right) \text { exists, } \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(\kappa_{j+1}^{W} \sin ^{2} \theta_{j}\right) \cos \phi \sin \phi}{\sin \theta_{j+1}}\right)=-\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(\kappa_{j+2}^{W} \sin ^{2} \theta_{j}\right) \cos \phi \sin \phi}{\sin \theta_{j+1}}\right) \\
=\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{a_{j+1}^{*} \sin ^{2} \theta_{j} \cos ^{4} \phi_{j+1}}{\cos \phi \sin ^{2} \theta_{j+1}}-4 \psi_{j+1}^{\prime} \sin \theta_{j}+\frac{\phi^{\prime}+\kappa \sin \psi_{j}-a_{j}^{*} \sin \phi}{\cos \phi \sin \phi}\right), \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\kappa_{j}^{W} \sin \phi\right)=\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(a_{j+1}^{*}-a_{j+2}^{*}\right) \sin \theta_{j} \cos ^{4} \phi_{j+1}}{\cos ^{2} \phi \sin \theta_{j+1}^{2}}-2\left(\tau+\psi_{j}^{\prime}\right) \cos \phi\right. \\
\left.+\frac{4 \psi_{j+1}^{\prime} \sin \theta_{j} \cos \theta_{j+1}}{\cos \phi \sin \theta_{j+1}}-\frac{\kappa \cos \psi_{j} \cos ^{2} \phi}{\sin \phi}\right) .
\end{gathered}
$$

Here $\cos \phi \neq 0$ and the notation used is contained in Table 3.1.

Now we shall consider the limiting form of (3.74) from Theorem 3.4.5.4. For this, we assume $\cos \theta_{i} \neq 0$ for any i. When $\cos \theta_{i}=0$ then Proposition 3.9.2.1 holds, since $\cos \phi \neq 0$ when $\cos \theta_{i}=0$. A similar argument to that which resulted in Proposition 3.9.2.1 gives the following.

Proposition 3.9.2.2 As an A_{1}^{3} point tends towards an $A_{1} A_{3}$ point along an A_{1}^{3} curve, the medial sheets must satisfy the following:

$$
\begin{array}{r}
\lim _{\sin \theta_{j} \rightarrow 0}\left(\dot{\phi}_{j+1} \sin ^{2} \theta_{j}\right)=\lim _{\sin \theta_{j} \rightarrow 0}\left(\dot{\phi}_{j+2} \sin ^{2} \theta_{j}\right) \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\left(\dot{\phi}_{j+1}-\dot{\phi}_{j+2}\right) \sin \theta_{j}\right) \text { exists } \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(\kappa_{j+1}^{W} \sin ^{2} \theta_{j}\right) \sin \phi}{\sin \theta_{j+1}}\right)=-\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(\kappa_{j+2}^{W} \sin ^{2} \theta_{j}\right) \sin \phi}{\sin \theta_{j+1}}\right) \\
=\lim _{\sin \theta_{j} \rightarrow 0}\left(-\frac{\dot{\phi}_{j+1} \sin ^{2} \theta_{j} \cos \phi_{j+1}}{\cos \theta_{j+1} \sin \theta_{j+1}}-2 \psi_{j+1}^{\prime} \sin \theta_{j} \cos \phi-\dot{\phi}_{j} \sin \theta_{j}\right) \\
\lim _{\sin \theta_{j} \rightarrow 0}\left(\kappa_{j}^{W} \sin \phi\right)=\lim _{\sin \theta_{j} \rightarrow 0}\left(\frac{\left(\dot{\phi}_{j+2}-\dot{\phi}_{j+1}\right) \sin \theta_{j} \cos \phi_{j+1}}{\cos \theta_{j+1} \sin \theta_{j+1}}-2\left(\tau+\psi_{j}^{\prime}\right) \cos \phi\right. \\
\left.+\frac{2 \psi_{j+1}^{\prime} \sin \theta_{j} \cos \phi \cos \left(2 \theta_{j+1}\right)}{\cos \theta_{j+1} \sin \theta_{j+1}}-\frac{\kappa \cos \psi_{j} \cos ^{2} \phi}{\sin \phi}\right)
\end{array}
$$

Here $\cos \theta_{i} \neq 0$ for any i and the notation used is contained in Table 3.1.

3.9.3 Second Example of A_{1}^{3} Case (Continued)

As stated in the first part (in §3.6) of this example we can calculate explicitly the terms which appear in Theorems 3.4.5.2, 3.4.5.3, and 3.4.5.4. Similarly we can illustrate Propositions 3.9.2.1, 3.9.2.2 by taking the limit as $\sin \theta_{j} \rightarrow 0$. Two of the points of contact on the parabolic gutter (given by $z=b y^{2}$) were $\left(x, y, b y^{2}\right)$ and $\left(x,-y, b y^{2}\right)$. These coincide when $y=0$. Hence the A_{1}^{3} point $C(y)$ from (3.97) is an $A_{1} A_{3}$ point when $y=0$. Then we can say that γ_{1} is the sheet which is not part of the swallowtail surface, $\operatorname{since} \sin \theta_{1}=0, \sin \theta_{2} \neq 0$ and $\sin \theta_{3} \neq 0$ at $y=0$. Hence $j=1$ in this example. From $\S 3.6$ we had

$$
a_{1}^{*}=0, a_{2}^{*}=a_{3}^{*}=-\frac{1}{2 b y^{2} \sqrt{1+4 b^{2} y^{2}}},
$$

so a_{2}^{*} and a_{3}^{*} tend to infinity like $1 / y^{2}$ as $y \rightarrow 0$. Then, since

$$
\sin \theta_{1}=\frac{2 \sqrt{2} b y \sqrt{1+2 b^{2} y^{2}}}{1+4 b^{2} y^{2}}
$$

we get $a_{2}^{*} \sin ^{2} \theta_{1} \rightarrow a_{3}^{*} \sin ^{2} \theta_{1}$ and $\left(a_{2}^{*}-a_{3}^{*}\right) \sin \theta_{1} \rightarrow$ a finite number as $y \rightarrow 0$, as in Proposition 3.9.2.1. The latter happens since $a_{2}^{*}=a_{3}^{*}$ for all (x, y). Also
from $\S 3.6$ we had

$$
\dot{\phi}_{1} \cos \phi_{1}=-\frac{1}{\sqrt{2} y \sqrt{1+2 b^{2} y^{2}}\left(1+4 b^{2} y^{2}\right)^{3 / 2}}, \quad \dot{\phi}_{2}=\dot{\phi}_{3}=0,
$$

so $\dot{\phi}_{3} \sin ^{2} \theta_{1} \rightarrow \dot{\phi}_{3} \sin ^{2} \theta_{1}$ and $\left(\dot{\phi}_{2}-\dot{\phi}_{3}\right) \sin \theta_{1} \rightarrow$ a finite number as $y \rightarrow 0$, as in Proposition 3.9.2.2. Finally, from $\S 3.6$ we had

$$
\kappa_{2}^{W}=-\kappa_{3}^{W}=\frac{1}{2 \sqrt{2} b y^{2} \sqrt{1+4 b^{2} y^{2}}\left(1+2 b^{2} y^{2}\right)},
$$

so κ_{2}^{W} and κ_{3}^{W} tend to infinity like $1 / y^{2}$ as $y \rightarrow 0$. It can be shown that the results of Proposition 3.9.2.1 are satisfied as $y \rightarrow 0$.

Chapter 4

Transitions on the Euclidean Symmetry Set and Medial Axis in Three Dimensions

4.1 Introduction

The complete list of possible transitions on the full bifurcation set of a generic family of functions of one variable was obtained in [BG86]. Also, the method of realizing the transitions on a family of distance-squared functions in two dimensions was described. This involved obtaining conditions on the family such that the considered singularity was versally unfolded and that the sections of the bifurcation set of the family were generic. Even though functions of one variable were considered in [BG86], the methods used were general and so can be employed in the case of functions of two variables, except when considering the so-called bad planes. In this case some additional work needs to be done - see the important Remark 4.2.1.1. Hence, the aim of this chapter is to carry out a similar study of one-parameter families of symmetry sets and of medial axes in three dimensions, using the same methods, for certain generic transitions. Connected to the evolution of the symmetry set in a generic family of surfaces is work by Bogaevsky [Bog90, Bog02a], which provides a complete
list of transitions (perestroikas) of generic 'minimum functions'.
The singularities that we expect to occur on a one-parameter family of medial axes in three dimensions are $A_{1}^{4}, A_{1}^{5}, A_{5}, A_{1} A_{3}$ (two types) and $A_{1}^{2} A_{3}$ (two types) (see [GK02, p.724]). We study these singularities in this chapter (except for A_{1}^{5}) and one of the singularities which are expected to happen only on the symmetry set, and not on the medial axis, namely $A_{1} A_{4}$. For each considered transition we want to obtain a family of surfaces in three dimensions for which the distance-squared function has a certain singularity at a value of the parameter of the family of surfaces. Then we require the singularity to be versally unfolded and we will obtain conditions for the sections of the 'big bifurcation set' (to be explained below) of the distance-squared function to be generic. Such conditions below will be interpreted geometrically and involve naturally occurring objects - most intriguingly the osculating plane of a line of curvature on a surface in \mathbb{R}^{3}.

The local structure of the medial axis as it undergoes such transitions is described in [GKP05], where some of the conditions obtained in this chapter are verified. However, [GKP05] does not concentrate on the conditions for realizing the transitions and so a paper which does focus on this would be desirable (see $\S 4.7$).

Definition 4.1.1 A function h where

$$
\begin{aligned}
h: \mathbb{R}^{2},(0,0) & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}\right) & \mapsto h\left(x_{1}, x_{2}\right)
\end{aligned}
$$

is said to have type A_{k} at $(0,0)$ when h is right-equivalent (take a diffeomorphism of \mathbb{R}^{2} and add a constant) to $\pm x_{2}^{2} \pm x_{1}^{k+1}$.

Bogaevsky [Bog02b] produced the following list of possible one-dimensional strata which can pass through the singularities of symmetry sets in \mathbb{R}^{3}. The stratum $D_{4}^{ \pm}$does not occur for the singularities considered in this chapter.

Possible 1-D strata passing through the considered singularities	
One-level strata	Two-level strata
A_{1}^{4}	A_{1}^{2} / A_{1}^{3}
$A_{1}^{2} A_{2}$	A_{1}^{3} / A_{2}
A_{2}^{2}	$A_{1}^{2} / A_{1} A_{2}$
$A_{1} A_{3}$	$A_{2} / A_{1} A_{2}$
A_{4}	A_{1}^{2} / A_{3}
$D_{4}^{ \pm}$	A_{2} / A_{3}

As mentioned above we will require unfoldings to be versal, so here is a brief summary of what this means, using the appendix from [BGG85]. Consider an n-parameter unfolding $g:\left(\mathbb{R}^{m} \times \mathbb{R}^{n},\left(q, u_{0}\right)\right) \rightarrow \mathbb{R}$ of a multi-germ $g_{0}:\left(\mathbb{R}^{m}, q\right) \rightarrow$ \mathbb{R}, where $g\left(q_{i}, u_{0}\right)=g_{0}\left(q_{i}\right)$ for all i and $q=\left(q_{1}, \ldots, q_{n}\right)$. Let k be 'sufficient', that is not less than the maximal degree of determinacy of the singularities $g_{0, i}:\left(\mathbb{R}^{m}, q_{i}\right) \rightarrow \mathbb{R}$. Then, from [BGG85], g is versal if
the k-multi-jets of $\frac{\partial g}{\partial u_{1}}\left(-, u_{0}\right), \ldots, \frac{\partial g}{\partial u_{n}}\left(-, u_{0}\right)$ at q, and $(1, \ldots, 1)$

$$
\operatorname{span} \frac{\mathcal{E}(m)}{J_{g_{0,1}}} \oplus \cdots \oplus \frac{\mathcal{E}(m)}{J_{g_{0, n}}},
$$

where $\mathcal{E}(m)$ is the algebra of germs at 0 of smooth functions on \mathbb{R}^{m} and $J_{g_{0, i}}$ is the Jacobian ideal of $g_{0, i}$. The vector $(1, \ldots, 1)$ corresponds to the fact that we are allowed to add the same constant to each $g_{0, i}$.

4.2 The A_{5} Transition

In this section we aim to find a family of surfaces in three dimensions which exhibits an A_{5} transition and to give an example with pictures of such a family. As in [BG86] we firstly consider the standard versal unfolding of an A_{5} singularity:

$$
\left.\begin{array}{c}
G: \mathbb{R}^{2} \times \mathbb{R}^{4} \rightarrow \mathbb{R} \tag{4.1}\\
\left(X, Y, u_{1}, u_{2}, u_{3}, u_{4}\right) \mapsto Y^{2}+X^{6}+u_{1} X^{4}+u_{2} X^{3}+u_{3} X^{2}+u_{4} X
\end{array}\right\}
$$

Here \mathbb{R}^{2} corresponds to (X, Y) and \mathbb{R}^{4} corresponds to the unfolding parameters $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. Now we require the big bifurcation set of G, which is

$$
\operatorname{Bif}_{G}=\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right): G \text { has a degenerate singularity for some }(X, Y)\right.
$$ or G has two singularities at the same level $\}$.

The sets of Bif_{G} for which G has two singularities at the same level are called A_{1}^{2} sets, and the ones for which G has a degenerate singularity are called A_{2} sets. This big bifurcation set is a three-dimensional object in $\mathbb{R}_{\mathbf{u}}^{4}$ (that is ($u_{1}, u_{2}, u_{3}, u_{4}$)-space) and the A_{5} point is at the origin. Taking sections of the big bifurcation set with non-singular surfaces near to $(0,0,0,0)$ gives one of the possible full bifurcation sets near to the A_{5} singularity. Then taking a family of such non-singular surfaces gives a family of full bifurcation sets which pass through the A_{5} point. There is only one A_{1}^{2} set in Bif_{G} :

$$
\left.\begin{array}{rl}
\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right): u_{2}=\right. & -2\left(X_{1}+X_{2}\right)\left(2 X_{1}^{2}+X_{1} X_{2}+2 X_{2}^{2}+u_{1}\right), \tag{4.2}\\
u_{3}= & u_{1}\left(X_{1}^{2}+4 X_{1} X_{2}+X_{2}^{2}\right) \\
& +3\left(X_{1}^{2}+3 X_{1} X_{2}+X_{2}^{2}\right)\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right), \\
u_{4}= & -2 X_{1} X_{2}\left(X_{1}+X_{2}\right)\left(u_{1}+3\left(X_{1}^{2}+X_{1} X_{2}+X_{2}^{2}\right)\right), \\
& \text { for } \left.X_{1} \neq X_{2}, X_{1} \neq 0, X_{2} \neq 0\right\} .
\end{array}\right\}
$$

The A_{2} set of Bif_{G} is given by

$$
\left.\begin{array}{rl}
\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right): u_{3}\right. & =-3 X\left(5 X^{3}+2 u_{1} X+u_{2}\right), \tag{4.3}\\
u_{4} & \left.=X^{2}\left(24 X^{3}+8 u_{1} X+3 u_{2}\right), \text { for } X \neq 0\right\}
\end{array}\right\}
$$

4.2.1 Bad 3-spaces

Following [BG86], a three-dimensional subspace through the origin in $\mathbb{R}_{\mathrm{u}}^{4}$ given by

$$
\begin{equation*}
\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}=0 \tag{4.4}
\end{equation*}
$$

is called a bad 3-space if it contains the limit of tangent spaces to a stratum of Bif_{G} at points tending to the origin. An as yet unresolved problem connected to this is described in the remark below.

Remark 4.2.1.1 In this chapter we have assumed that all limits of tangent spaces to strata of dimension greater than one contain a limit of tangent spaces to a one-dimensional stratum. This was the case in [BG86] and in correspondence with Bogaevsky [Bog02b] he has confirmed that this is true in all the cases he has checked, but there is as yet no general proof. Clearly this is an interesting topic for further investigation; for the purposes of the present chapter we note that our list of cases agrees with that of Bogaevsky, but in principle there might be additional normal forms for generic functions on these bifurcation sets.

Calculations show that of the possible one-dimensional strata only the following occur for an A_{5} transition:

$$
\begin{aligned}
A_{2}^{2}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-3 X^{2}, 0,3 X^{4}, 0\right)\right\}, \\
A_{1} A_{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-6 X^{2}, 4 X^{3}, 9 X^{4},-12 X^{5}\right)\right\}, \\
A_{4}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-15 X^{2}, 40 X^{3},-45 X^{4}, 24 X^{5}\right)\right\}, \\
A_{1}^{2} / A_{1}^{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-6 X^{2}, 0,9 X^{4}, 0\right)\right\}, \\
A_{1}^{2} / A_{1} A_{2}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left(-\left(3+2^{1 / 3}+2^{2 / 3}\right) X^{2},\left(-\frac{\left(2+2^{1 / 3}\right)}{3}\right) X^{3},\right. \\
& \left(\frac{23\left(2^{2 / 3}\right)+44+28\left(2^{1 / 3}\right)}{12}\right) X^{4}, \\
& \left.\left.\left(\frac{4+2\left(2^{1 / 3}\right)+2^{2 / 3}}{6}\right) X^{5}\right)\right\}, \\
A_{1}^{2} / A_{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-X^{2}, 0,0,0\right)\right\}, \\
A_{2} / A_{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\right. & \left.\left(-135 X^{2},-40 X^{3}, 120 X^{4}, 96 X^{5}\right)\right\},
\end{aligned}
$$

where $X \neq 0$. It is easy to see that this limit of tangent vectors is $(1,0,0,0)$. Hence, when considering the limits of tangent spaces to the one-dimensional strata, the bad 3 -spaces in $\mathbb{R}_{\mathrm{u}}^{4}$ are (4.4) for which $\lambda_{1}=0$. There might be other bad 3 -spaces (see Remark 4.2.1.1).

In $\mathbb{R} P^{3}$ the 3 -space $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}=0$ is represented by a point $\left(\lambda_{1}: \lambda_{2}: \lambda_{3}: \lambda_{4}\right)$. If Δ is the set of bad 3 -spaces, we are interested the number of regions in $\mathbb{R} P^{3}-\Delta$, and also the amount of types of transition given
by taking 3 -spaces which have representations from within these regions. By doing this we aim to identify the various types of transition and obtain criteria for realizing them. For the A_{5} transition $\mathbb{R} P^{3}-\Delta$ is in

$$
\begin{equation*}
\left\{\left(\lambda_{1}: \lambda_{2}: \lambda_{3}: \lambda_{4}\right): \lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}=0, \lambda_{1} \neq 0\right\} . \tag{4.5}
\end{equation*}
$$

If there are no other bad 3 -spaces then $\mathbb{R} P^{3}-\Delta$ has one region and hence there is only one type of A_{5} transition.

4.2.2 Representations of the A_{5} Transition

To obtain pictures of the symmetry set as it goes through an A_{5} transition, we choose a particular 3 -space which is not a bad space. From (4.5) the choice of

$$
\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right): u_{1}=k \text { const. }\right\}
$$

is not a bad 3 -space, provided there are no bad 3 -spaces given by considering limits of tangent spaces to two- and three-dimensional strata. In this case taking the sections of this with the A_{1}^{2} sets of Bif_{G} for various k gives the A_{5} transition on the family of symmetry sets. In Figures 4.1, 4.2 are pictures of these sections, in $\left(u_{2}, u_{3}, u_{4}\right)$-space.

Bogaevsky [Bog02b] suggested the following alternative to Figures 4.1, 4.2. Let $\pi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=(\xi, \eta)$ be a projection such that its fibre lies on an isochrone $\tau\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=u_{1}=k$. That is, $\tau(\cdot)=\sigma(\pi(\cdot))$ where $\sigma(\xi, \eta)$ is a smooth function. Consider in the plane with coordinates (ξ, η) the projection of all one-dimensional strata of the A_{1}^{2} and A_{2} sets of Bif_{G}, given by (4.2), (4.3). For some point $\left(\xi_{0}, \eta_{0}\right)$ of the complement to this projection we can draw the curve $\pi^{-1}\left(\xi_{0}, \eta_{0}\right) \cap \operatorname{Bif}_{G}$. This 'clock face' with the curve $\sigma\left(\xi_{0}, \eta_{0}\right)=0$ helps to imagine the transition. It can be shown that the choice of

$$
\pi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\left(u_{2}+\frac{1}{10}\left(u_{3}+u_{4}\right), u_{1}\right)
$$

has the fact that π restricted to each of the two- and three-dimensional strata of Bif_{G} is a submersion at smooth points close to the origin. Also, the choice of $\sigma(\xi, \eta)=\eta$ means that $\sigma\left(\pi\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right)=u_{1}$.

Figure 4.1: The sections of the A_{1}^{2} sets of Bif_{G}, the big bifurcation set of the standard unfolding G given by (4.1), with the planes $u_{1}=k$ (const.). In these pictures, $k=-0.5$. Top: Two different views of the A_{1}^{2} sets and the special curves on them. Bottom: only the special curves and special points are shown. The blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves. The green, turquoise curves are $A_{1} A_{2}$ curves. The black, red and blue points correspond respectively to $A_{1} A_{3}, A_{4}, A_{2}^{2}$ points. Not all of the surfaces and curves in these pictures lie on the medial axis; the A_{3} (blue) curve would end on the medial axis where it meets the A_{1}^{3} (red) curve, and the $A_{1} A_{2}$ curves and A_{4}, A_{2}^{2} points would not lie on the medial axis.

Figure 4.2: Left: $k=0$, the moment of transition. All of the structure of the previous picture has collapsed, except for the A_{3} (blue) curve, on which is an A_{5} point. Right: $k=0.5$. There is a smooth A_{3} curve on the medial axis.

Figure 4.3 shows the projections under π of the one-dimensional strata of Bif_{G} in the plane with coordinates (ξ, η). These are labelled; for example the one-dimensional stratum corresponding to an A_{4} singularity of the standard unfolding (4.1) is labelled A_{4}. Also drawn is the curve $\sigma=-0.5$, which intersects the projections of the one-dimensional strata in the points labelled p_{i}. The points on $\sigma=-0.5$ which lie between the projections of the one-dimensional strata are labelled q_{i}. Finally, the point m_{2} corresponds to the A_{5} point. Figures 4.4 to 4.12 show $\pi^{-1}\left(p_{i}\right) \cap \operatorname{Bif}_{\mathrm{G}}, \pi^{-1}\left(q_{i}\right) \cap \operatorname{Bif}_{\mathrm{G}}$ and $\pi^{-1}\left(m_{2}\right) \cap \operatorname{Bif}_{\mathrm{G}}$. In order to obtain $\pi^{-1}\left(\xi_{0}, \eta_{0}\right) \cap\left\{A_{1}^{2}\right.$ set given by (4.2) $\}$ for ξ_{0}, η_{0} constants, it is necessary to solve equal to zero a polynomial in X_{1} and X_{2}. Hence the boxes in each of Figures 4.4 to 4.12 are the set of X_{1}, X_{2} near to zero for which this equation is satisfied for $\left(\xi_{0}, \eta_{0}\right)$ corresponding to one of the points p_{i}, q_{i} or m_{2}. Some of the transitions that occur in these pictures can be observed in these 'pre-sets' - see the captions to Figures 4.4 to 4.12.

Figure 4.3: Representing the A_{5} transition. The picture at the bottom is of the picture at the top, but with the ξ-axis stretched. The curves labelled A_{4}, etc. are the projections under π of the one-dimensional strata of Bif_{G} for the A_{5} transition. A curve $\sigma=-0.5$ intersects these in points p_{i}. In Figures 4.4 to 4.12, the intersections $\pi^{-1}\left(p_{i}\right) \cap \operatorname{Bif}_{\mathrm{G}}, \pi^{-1}\left(q_{i}\right) \cap \operatorname{Bif}_{\mathrm{G}}$ and $\pi^{-1}\left(m_{2}\right) \cap \operatorname{Bif}_{\mathrm{G}}$ are drawn.

Figure 4.4: In Figures 4.4 to 4.12, the intersections $\pi^{-1}\left(p_{i}\right) \cap \operatorname{Bif}_{G}, \pi^{-1}\left(q_{i}\right) \cap \operatorname{Bif}_{\mathrm{G}}$ and $\pi^{-1}\left(m_{2}\right) \cap \operatorname{Bif}_{\mathrm{G}}$ are drawn (see Figure 4.3 for an explanation of what p_{i}, q_{i}, m_{2} are). The intersection with the A_{2} part of Bif_{G} is drawn in bold, the intersection with the A_{1}^{2} part is the thinner curve. The boxes underneath the curves are the set of X_{1}, X_{2} such that $\pi^{-1}\left(\xi_{0}, \eta_{0}\right)$, for ξ_{0}, η_{0} constants, intersects with the A_{1}^{2} set given by (4.2). Some of the transitions that occur in these pictures can be observed in these 'pre-sets'. Top, from left: q_{1}, p_{1}; bottom, from left: q_{2}, p_{2}. Top right: a new piece of A_{1}^{2} set is about to form. Bottom left: this new piece of A_{1}^{2} set is a swallowtail with endpoints coinciding with newly created cusps on the A_{2} set. This new piece is visible on the pre-set. Bottom right: a cusp of the A_{2} curve meets a part of the A_{1}^{2} set.

Figure 4.5: Top: q_{3} (right: a closer look at the picture on the left); bottom: p_{3} (right: closer look). Top: there are two newly created cusps on the A_{1}^{2} set. Bottom: a cusp of the A_{2} set now meets another part of the A_{2} set.

Figure 4.6: Top, from left: q_{4}, p_{4}; bottom: q_{5}. Top left: the A_{2} piece now intersects the other A_{2} piece with a cusp in two points. Top right: a cusp of the A_{1}^{2} set now meets another part of the A_{1}^{2} set. Bottom right: an A_{1}^{2} piece with a cusp meets another part of the A_{1}^{2} set in two points.

Figure 4.7: Top: p_{5} (right: closer look); bottom: q_{6} (right: closer look). Top: a part of the A_{1}^{2} set passes through the leftmost cusp of the A_{2} set. Bottom: the branch of the A_{1}^{2} no longer passes through the leftmost cusp of the A_{2} set.

Figure 4.8: Top: p_{6} (right: closer look); bottom: q_{7} (right: closer look). Top: there is now a point where four branches of the A_{1}^{2} set meet. Bottom: now there is only a triple intersection and two double intersections nearby.

Figure 4.9: Top: p_{7} (right: closer look); bottom: q_{8} (right: closer look). Top: the moment of a nib transition on the A_{1}^{2} set - two cusps of the A_{1}^{2} set coincide at an intersection of two pieces of the A_{2} set. After this transition the branches will pair off differently from before. The moment of transition is visible on the pre-set, since there are two self crossings here. Bottom: the two cusps of the A_{1}^{2} set now lie only on one piece of the A_{2} set and they do not coincide. The branches on the pre-set and on the A_{1}^{2} set are now paired differently.

Figure 4.10: Top, from left: p_{8}, q_{9}; bottom: p_{9}. Top left: one of the cusps of the A_{1}^{2} set meets another piece of the A_{1}^{2} set and a piece of the A_{2} set. Top right: the same cusp meets only the A_{2} set, not the A_{1}^{2} set. Bottom: a cusp of the A_{2} set now meets another piece of the A_{2} set.

Figure 4.11: Top, from left: q_{10}, p_{10}; bottom, from left: q_{11}, p_{11}. Top left: the part of the A_{2} set near to the cusp at the bottom of the picture no longer intersects another part of the A_{2} set nearby. Top right: a cusp of the A_{2} set meets a part of the A_{1}^{2} set and two cusps of the A_{1}^{2} set collapse. Bottom left: the cusp of the A_{2} set no longer meets a part of the A_{1}^{2} set, which is smooth nearby. Bottom right: the moment of a piece of the A_{1}^{2} set vanishing and two cusps collapsing on the A_{2} set.

Figure 4.12: From left: q_{12}, m_{2}. Left: a piece of the A_{1}^{2} set has now vanished and two cusps of the A_{2} set have disappeared, leaving the A_{2} set smooth nearby. This picture is the same as that for q_{1}. Right: this corresponds to the A_{5} point. There is a cusp worse than $\left(t^{2}, t^{3}\right)$ on the A_{2} set.

4.2.3 A Family of Surfaces

Now we shall connect these calculations for the standard unfolding of an A_{5} singularity with a family F of distance-squared functions from a one-parameter family of surfaces in \mathbb{R}^{3} to a point in \mathbb{R}^{3}. Consider a family of surfaces in Monge form given by $z=f(x, y, t)$ where

$$
\begin{align*}
f_{0}(x, y)= & f(x, y, 0) \\
= & \frac{1}{2}\left(\kappa_{1} x^{2}+\kappa_{2} y^{2}\right)+\left(b_{0} x^{3}+b_{1} x^{2} y+b_{2} x y^{2}+b_{3} y^{3}\right) \\
& +\left(c_{0} x^{4}+c_{1} x^{3} y+c_{2} x^{2} y^{2}+c_{3} x y^{3}+c_{4} y^{4}\right) \tag{4.6}\\
& +\left(d_{0} x^{5}+d_{1} x^{4} y+d_{2} x^{3} y^{2}+d_{3} x^{2} y^{3}+d_{4} x y^{4}+d_{5} y^{5}\right) \\
& +\left(e_{0} x^{6}+e_{1} x^{5} y+e_{2} x^{4} y^{2}+e_{3} x^{3} y^{3}+e_{4} x^{2} y^{4}+e_{5} x y^{5}+e_{6} y^{6}\right) \\
& +\cdots
\end{align*}
$$

where we assume $\kappa_{1} \neq \kappa_{2}$, so that $\left(0,0, f_{0}(0,0)\right)$ is not an umbilic, and that $\kappa_{1} \neq 0$. Then the family F is given by

$$
\left.\begin{array}{l}
F: \mathbb{R}^{2} \times \mathbb{R}^{4},\left(0,0,0, \mathbf{p}_{0}\right) \rightarrow \mathbb{R} \tag{4.7}\\
(x, y, t, a, b, c) \mapsto\|(x, y, f(x, y, t))-(a, b, c)\|^{2}
\end{array}\right\}
$$

Hence $F(x, y, t, a, b, c)$ is the square of the distance from a point $(a, b, c) \in \mathbb{R}^{3}$ to a point $(x, y, f(x, y, t))$.

We want to realize an A_{5} transition on this family and so firstly we use Definition 4.1.1. Let F_{0} be such that $F_{0}(x, y)=F\left(x, y, 0, \mathbf{p}_{0}\right)$. Then we require F_{0} to be right-equivalent to $\pm y^{2} \pm x^{6}$.

Right-equivalence to $\pm y^{2} \pm x^{3}$. We have

$$
\begin{aligned}
F(x, y, 0, a, b, c)= & (x-a)^{2}+(y-b)^{2}+\left(f_{0}(x, y)-c\right)^{2} \\
= & a^{2}+b^{2}+c^{2}-2 a x-2 b y+\left(1-c \kappa_{1}\right) x^{2}+\left(1-c \kappa_{2}\right) y^{2} \\
& -2 c\left(b_{0} x^{3}+b_{1} x^{2} y+b_{2} x y^{2}+b_{3} y^{3}\right)+\text { h.o.t. in } x, y .
\end{aligned}
$$

Hence for F_{0} to be right-equivalent to $\pm y^{2} \pm x^{3}$ we need $a=b=0$ and $c=1 / \kappa_{1}$, so $\mathbf{p}_{0}=\left(0,0,1 / \kappa_{1}\right)$. (This is where we require $\kappa_{1} \neq 0$.) We need the y^{2} term to remain, which means that we assume $1-\kappa_{2} / \kappa_{1} \neq 0$. Let

$$
\lambda=1-\frac{\kappa_{2}}{\kappa_{1}}, \epsilon=\operatorname{sign}(\lambda) .
$$

Then take the change of variables

$$
x \mapsto x, y \mapsto y-\left(\frac{b_{1} x^{2}+b_{2} x y+b_{3} y^{2}}{\kappa_{1}-\kappa_{2}}\right)=y_{1}
$$

which makes $F\left(x, y\left(y_{1}\right), 0,0,0,1 / \kappa_{1}\right)=\frac{1}{\kappa_{1}^{2}}+\left(1-\frac{\kappa_{2}}{\kappa_{1}}\right) y_{1}^{2}-\frac{2 b_{0}}{\kappa_{1}} x^{3}+$ h.o.t.
Then if we take a further change of variables

$$
x \mapsto\left(\sqrt[3]{-\frac{2 b_{0}}{\kappa_{1}}}\right) x, y_{1} \mapsto(\sqrt{|\lambda|}) y_{1}
$$

we get that F_{0} is right-equivalent to $\epsilon y^{2}+x^{3}$ when $b_{0} \neq 0$ (since, by [A74], this is 3 -determined). Hence F_{0} has type A_{2} if $\mathbf{p}_{0}=\left(0,0,1 / \kappa_{1}\right), \kappa_{1} \neq 0, \lambda \neq 0$ and $b_{0} \neq 0$.

The following uses the same methods to obtain conditions for F_{0} to have A_{3}, A_{4}, and A_{5} at $x=y=0$. We assume that $\mathbf{p}_{0}=\left(0,0,1 / \kappa_{1}\right), \kappa_{1} \neq 0, \lambda \neq 0$ and $b_{0}=0$.

Right-equivalence to $\pm y^{2} \pm x^{4}$. If $\alpha_{0} \neq 0$ where

$$
\alpha_{0}=\frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}}
$$

then F_{0} is right-equivalent to $\epsilon y^{2}+\eta x^{4}$, where $\eta=\operatorname{sign}\left(\alpha_{0}\right)$, and so F_{0} has type A_{3} at $x=y=0$.

Right-equivalence to $\pm y^{2} \pm x^{5}$. Given $\alpha_{0}=0$ and $\beta_{0} \neq 0$, where

$$
\beta_{0}=-\frac{2 b_{1}\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+b_{1} b_{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}}-\frac{2 d_{0}}{\kappa_{1}},
$$

then F_{0} is right-equivalent to $\epsilon y^{2}+x^{5}$ and so has A_{4} at $x=y=0$.
Right-equivalence to $\pm y^{2} \pm x^{6}$. If $\alpha_{0}=\beta_{0}=0$ and $\gamma_{0} \neq 0$, where

$$
\begin{aligned}
\gamma_{0}= & \frac{\kappa_{1}^{4}}{8}-\frac{\left(2 b_{1} d_{1}+c_{1}^{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}+\frac{b_{1}\left(b_{1} \kappa_{1}^{3}-4 b_{1} c_{2}-8 b_{2} c_{1}\right)}{2 \kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}} \\
& -\frac{2 b_{1}^{2}\left(b_{1} b_{3}+2 b_{2}^{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{3}}-\frac{2 e_{0}}{\kappa_{1}},
\end{aligned}
$$

then F_{0} is right-equivalent to $\epsilon y^{2}+\nu x^{6}$, where $\nu=\operatorname{sign}\left(\gamma_{0}\right)$ and so has A_{5} at $x=y=0$.

Summary. If $\mathbf{p}_{0}=\left(0,0,1 / \kappa_{1}\right), \kappa_{1} \neq 0, \lambda \neq 0, b_{0}=0, \alpha_{0}=0, \beta_{0}=0$ and $\gamma_{0} \neq 0$ then F_{0} has type A_{5}. Moreover, if $\operatorname{sign}(\lambda)=\operatorname{sign}\left(\gamma_{0}\right)$ then F_{0} is rightequivalent to $\pm\left(y^{2}+x^{6}\right)$, which corresponds to an isolated intersection between the sphere centred at $\left(0,0,1 / \kappa_{1}\right)$ of radius $1 / \kappa_{1}$ and the surface $z=f_{0}(x, y)$ at the origin. This is what we want, since we are interested in the A_{5} transition on the medial axis rather than on the part of the symmetry set which is not on the medial axis.

4.2.4 Condition for Versal Unfolding

Given that F_{0} has type A_{5} we then require the A_{5} singularity to be versally unfolded by F. The condition for an unfolding to be versal was described in
§4.1. For the A_{5} transition we require that the 6 -multi-jets of

$$
\begin{aligned}
& \frac{\partial F}{\partial t}, \frac{\partial F}{\partial a}, \frac{\partial F}{\partial b}, \frac{\partial F}{\partial c} \text { (all evaluated at } t=a=b=0, c=1 / \kappa_{1} \text {) } \\
& \text { should span } \frac{\mathcal{E}(2)}{J_{F_{0}}} \text { (ignoring constant terms), }
\end{aligned}
$$

where $J_{F_{0}}$ is the Jacobian ideal of F_{0}, and so is spanned by $\partial F_{0} / \partial x, \partial F_{0} / \partial y$. We need only consider the 6 -multi-jets since the A_{5} singularity is 6 -determined. Strictly speaking we should have $\partial F / \partial\left(c-1 / \kappa_{1}\right)$, since we allow small changes in $\left(c-1 / \kappa_{1}\right)$ in order to obtain all singularities near to A_{5}. However, this does not make any difference to the formulae. We obtain $\mathcal{E}(2) / J_{F_{0}}$ by taking polynomial multiples of $\partial F_{0} / \partial x, \partial F_{0} / \partial y$ to remove monomials in x, y contained in $\mathcal{E}(2)$. If we take $f(x, y, t)=f_{0}(x, y)+t x^{4}$ in (4.6) it can be shown that F versally unfolds the A_{5} singularity if

$$
\left(\begin{array}{ccc}
\kappa_{1} & 0 & 0 \\
0 & 2 b_{1}\left(\kappa_{1}-\kappa_{2}\right) & -2 b_{1}^{2} \\
b_{1} & 2 b_{2} & c_{1} \\
0 & \kappa_{1}-\kappa_{2} & -b_{1}
\end{array}\right) \text { has maximal rank. }
$$

Hence the condition for F to be a versal unfolding of an A_{5} singularity is that

$$
\begin{equation*}
c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2} \neq 0 . \tag{4.8}
\end{equation*}
$$

4.2.5 Conditions for Generic Sections

We will now connect the unfolding F given by (4.6), (4.7) and $f(x, y, t)=$ $f_{0}(x, y)+t x^{4}$ with the standard unfolding G, from (4.1), of the A_{5} singularity. Given that F has the property that F_{0} has type A_{5} at $x=y=0$ and that it versally unfolds the A_{5} singularity (which happens when (4.8) is satisfied), we can say that F and G are isomorphic as unfoldings (from [BGG85]) and so G can be induced from F by

$$
\begin{equation*}
G(X, Y, \mathbf{u})=F(A(X, Y, \mathbf{u}), B(\mathbf{u}))+C(\mathbf{u}) \tag{4.9}
\end{equation*}
$$

where $A:\left(\mathbb{R}^{2} \times \mathbb{R}^{4},(\mathbf{0}, \mathbf{0})\right) \rightarrow \mathbb{R}^{2}$ is a germ with $A(-, \mathbf{0})$ invertible, $B:$ $\left(\mathbb{R}^{4}, \mathbf{0}\right) \rightarrow\left(\mathbb{R}^{4},\left(0, \mathbf{p}_{0}\right)\right)$ is an invertible germ and $C:\left(\mathbb{R}^{4}, \mathbf{0}\right) \rightarrow\left(\mathbb{R},-1 / \kappa_{1}^{2}\right)$ is a germ.

Now the big bifurcation set $\left(\operatorname{Bif}_{F}\right)$ of F is a three-dimensional object in \mathbb{R}^{4}, corresponding to (t, a, b, c)-space. Sections of this give the symmetry set and focal set of the surface $z=f(x, y, t)$ at values of t. We require these sections to be generic, which imposes restrictions on the family F, obtained from the following:

\[

\]

Using this commutative diagram we can get the condition for avoiding bad sections of Bif_{F} by using the condition for a bad 3 -space in the standard case. The tangent space to Bif_{G} is given by the kernel of h :

$$
\text { ker } d h: \mathbb{R}^{4} \rightarrow \mathbb{R}, \text { which has matrix }\left.\left(\frac{\partial h}{\partial u_{1}}, \frac{\partial h}{\partial u_{2}}, \frac{\partial h}{\partial u_{3}}, \frac{\partial h}{\partial u_{4}}\right)\right|_{\mathbf{u}=\mathbf{0}}
$$

Hence, from (4.5), we see that the generic functions h are those for which $\partial h / \partial u_{1} \neq 0$ at $\mathbf{u}=\mathbf{0}$, with possibly other functions given by considering tangent spaces to the two- and three-dimensional strata (see Remark 4.2.1.1). From the commutative diagram we see that $h=\pi \circ B$, where $\pi:(t, a, b, c) \mapsto t$ and so some generic sections of Bif_{F} are given by

$$
\begin{aligned}
& \left.\frac{\partial B_{1}}{\partial u_{1}}\right|_{\mathbf{u}=\mathbf{0}} u_{1}+\left.\frac{\partial B_{1}}{\partial u_{2}}\right|_{\mathbf{u}=\mathbf{0}} u_{2}+\left.\frac{\partial B_{1}}{\partial u_{3}}\right|_{\mathbf{u}=\mathbf{0}} u_{3}+\left.\frac{\partial B_{1}}{\partial u_{4}}\right|_{\mathbf{u}=\mathbf{0}} u_{4}=0, \\
& \text { for which }\left.\frac{\partial B_{1}}{\partial u_{1}}\right|_{\mathbf{u}=\mathbf{0}} \neq 0 \text {, where } B_{1} \text { is the first component of } B .
\end{aligned}
$$

The remaining task is to link this condition with the unfolding F, which is
done by using the relationship (4.9) between F and G. We get

$$
\begin{aligned}
& \left.\left(\begin{array}{llll}
\frac{\partial G}{\partial u_{1}} & \frac{\partial G}{\partial u_{2}} & \frac{\partial G}{\partial u_{3}} & \frac{\partial G}{\partial u_{4}}
\end{array}\right)\right|_{(X, Y, \mathbf{0})}=\left(\begin{array}{ccc}
X^{4} & X^{3} & X^{2}
\end{array} \quad X\right) \\
& =\left.\left(\frac{\partial F}{\partial x} \frac{\partial F}{\partial y}\right)\right|_{(A(X, Y, Y), B(0)} \times\left.\left(\begin{array}{cccc}
\frac{\partial A_{1}}{\partial u_{1}} & \frac{\partial A_{t}}{\partial u_{2}} & \frac{\partial A_{x}}{\partial u_{3}} & \frac{\partial A_{x}}{\partial u_{4}} \\
\frac{\partial A_{u}}{\partial u_{1}} & \frac{\partial A A_{u}}{\partial u_{2}} & \frac{\partial A_{y}}{\partial u_{3}} & \frac{\partial A_{u}}{\partial u_{u}}
\end{array}\right)\right|_{(X, Y, 0)}
\end{aligned}
$$

$$
\begin{aligned}
& +\left.\left(\begin{array}{cccc}
\frac{\partial C}{\partial u_{1}} & \frac{\partial C}{\partial u_{2}} & \frac{\partial C}{\partial u_{3}} & \frac{\partial C}{\partial u_{4}}
\end{array}\right)\right|_{\mathbf{u}=\mathbf{0}} .
\end{aligned}
$$

Consider the Taylor expansions at $X=Y=0$ of the components of both sides of the above; the left-hand side evaluated at $(X, Y, \mathbf{0})$, the right-hand side evaluated at $(A(X, Y, \mathbf{0}), B(\mathbf{0}))$. In particular we want the coefficients of X, X^{2}, X^{3}, X^{4} of these Taylor expansions. Using the relation (4.9) at $\mathbf{u}=\mathbf{0}$:

$$
Y^{2}+X^{6}=F\left(A(X, Y, \mathbf{0}),\left(0,0,0, \frac{1}{\kappa_{1}}\right)\right)+C(\mathbf{0}) \text { for all } X, Y
$$

it can be shown that the coefficients of X, X^{2}, X^{3}, X^{4} in the Taylor expansions at $X=Y=0$ of $\partial F / \partial x$, and of $\partial F / \partial y$, evaluated at $(A(X, Y, \mathbf{0}), B(\mathbf{0}))$ are all
zero. Hence we get the following:

$$
\begin{aligned}
I_{4} & =M \times J B, \text { where } \\
J B & =\left.\left(\begin{array}{llll}
\frac{\partial B_{1}}{\partial u_{1}} & \frac{\partial B_{1}}{\partial u_{2}} & \frac{\partial B_{1}}{\partial u_{3}} & \frac{\partial B_{1}}{\partial u_{4}} \\
\frac{\partial B_{2}}{\partial u_{1}} & \frac{\partial B_{2}}{\partial u_{2}} & \frac{\partial B_{2}}{\partial u_{3}} & \frac{\partial B_{2}}{\partial u_{4}} \\
\frac{\partial B_{3}}{\partial u_{1}} & \frac{\partial B_{3}}{\partial u_{2}} & \frac{\partial B_{3}}{\partial u_{3}} & \frac{\partial B_{3}}{\partial u_{4}} \\
\frac{\partial B_{4}}{\partial u_{1}} & \frac{\partial B_{4}}{\partial u_{2}} & \frac{\partial B_{4}}{\partial u_{3}} & \frac{\partial B_{4}}{\partial u_{4}}
\end{array}\right)\right|_{\mathbf{u}=\mathbf{0}} \\
M & =\left.\left(\begin{array}{l}
\text { coeff. of } X^{4} \text { in Taylor exp. of } \frac{\partial F}{\partial t}, \frac{\partial F}{\partial a}, \frac{\partial F}{\partial b}, \frac{\partial F}{\partial c} \\
\operatorname{coeff.~of~} X^{3} \text { in } \ldots \\
\operatorname{coeff.~of~} X^{2} \text { in } \ldots \\
\operatorname{coeff.~of~} X \text { in } \ldots
\end{array}\right)\right|_{A(X, Y, \mathbf{0}), B(\mathbf{0})}
\end{aligned}
$$

and I_{4} is the (4×4) identity matrix. Since we have assumed the condition (4.8) for F to be a versal unfolding is satisfied, we can say that the determinant of $J B$ is non-zero and so $J B=M^{-1}$. We can calculate the matrix M^{-1} in the terms that appear in the of the family F using the relation (4.9). Then we find that

$$
\frac{\partial B_{1}}{\partial u_{1}}(\mathbf{0}) \neq 0 \quad \Longleftrightarrow \quad c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2} \neq 0
$$

which we know is true, since we assumed (4.8) holds. Hence, provided there are no additional normal forms for generic functions other than the h with $\partial h / \partial u_{1} \neq 0$ at $\mathbf{u}=\mathbf{0}$, if F is a versal unfolding of the A_{5} singularity, the sections of Bif_{F} are generic.

So we have the following.
Proposition 4.2.5.1 The necessary conditions for the one-parameter family of symmetry sets of the family of surfaces $z=f_{0}(x, y)+t x^{4}$, where $f_{0}(x, y)$ is
given by (4.6), to exhibit an A_{5} transition are that

$$
\begin{aligned}
0= & b_{0}, \\
0= & \frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}}, \\
0= & -\frac{2 b_{1}\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+b_{1} b_{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}}-\frac{2 d_{0}}{\kappa_{1}}, \\
0 \neq & \frac{\kappa_{1}^{4}}{8}-\frac{\left(2 b_{1} d_{1}+c_{1}^{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}+\frac{b_{1}\left(b_{1} \kappa_{1}^{3}-4 b_{1} c_{2}-8 b_{2} c_{1}\right)}{2 \kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}} \\
& -\frac{2 b_{1}^{2}\left(b_{1} b_{3}+2 b_{2}^{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{3}}-\frac{2 e_{0}}{\kappa_{1}}, \\
0 \neq & c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2} .
\end{aligned}
$$

Moreover if the sign of the right-hand side of the fourth condition is the same as the sign of $\left(\kappa_{1}-\kappa_{2}\right) / \kappa_{1}$ then the transition occurs on the medial axis. The first four conditions ensure that the origin is an A_{5} point at the moment of transition and the last condition means the A_{5} singularity is versally unfolded by F (given by (4.6), (4.7)) and that the plane sections of the big bifurcation set are generic, provided there are no additional normal forms for generic functions given by considering the limits of tangent spaces to two- and three-dimensional strata (see Remark 4.2.1.1).

4.2.6 Interpretation of the A_{5} Condition

There are several interpretations of the last condition of Proposition 4.2.5.1. From [HGYGM99, pp.144, 162], the local equation of the ridge corresponding to κ_{1} at the origin is

$$
\begin{aligned}
3\left(\left(\kappa_{1}-\kappa_{2}\right)\left(8 c_{0}-\kappa_{1}^{3}\right)+4 b_{1}^{2}\right) x+6\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}\right) y+\cdots & =0 \\
\Longleftrightarrow(0) x+6\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}\right) y+\cdots & =0
\end{aligned}
$$

since the origin is an A_{5} point and so the first four conditions of Proposition 4.2.5.1 hold. Then the last condition of Proposition 4.2.5.1 is that $0 \neq c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}$, which is the same as the ridge curve corresponding to κ_{1} being non-singular at the origin.

Another interpretation is given by considering the line of curvature corresponding to κ_{1}. When the first four conditions of Proposition 4.2.5.1 are satisfied, this line of curvature is given by $z=f_{0}(x, y(x))$ where

$$
\begin{aligned}
y(x)= & \left(\frac{b_{1}}{\kappa_{1}-\kappa_{2}}\right) x^{2}+\left(\frac{c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}}{\left(\kappa_{1}-\kappa_{2}\right)^{2}}\right) x^{3}+\cdots, \\
\text { giving } f_{0}(x, y(x))= & \frac{\kappa_{1}}{2} x^{2}+\frac{\kappa_{1}\left(\kappa_{1}^{2}\left(\kappa_{1}-\kappa_{2}\right)^{2}+4 b_{1}^{2}\right)}{8\left(\kappa_{1}-\kappa_{2}\right)^{2}} x^{4} \\
& +\frac{\kappa_{1} b_{1}\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}\right)}{\left(\kappa_{1}-\kappa_{2}\right)^{2}} x^{5}+\cdots
\end{aligned}
$$

Then the torsion τ of this curve is zero at $x=0$ if and only if $c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2}=$ 0 . Hence the condition $c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2} \neq 0$ means that the torsion of the line of curvature corresponding to κ_{1} is non-zero. Alternatively, the condition $c_{1}\left(\kappa_{1}-\kappa_{2}\right)+2 b_{1} b_{2} \neq 0$ means that the projection of the line of curvature corresponding to κ_{1} to the (x, y)-plane does not have an inflexion when $b_{1} \neq 0$.

Secondly, choose $\kappa_{1}>\kappa_{2}$ without loss of generality, since $\left(\kappa_{1}-\kappa_{2}\right) \neq 0$. Then we want $\operatorname{sign}\left(\kappa_{1}\right)=$ the sign of the right-hand side of the fourth condition of Proposition 4.2.5.1 for the transition to be on the medial axis. Given this, it can be shown that the expansion of κ_{1} along the line of curvature corresponding to κ_{1} is

$$
\kappa_{1}(x)=\kappa_{1}(0)-(\text { positive const. }) x^{4}+\cdots
$$

and so κ_{1} has a maximum at $x=0$.

4.2.7 Example

Take numerical values for the coefficients of $f_{0}(x, y)$ so that the conditions of Proposition 4.2.5.1 are satisfied. Let

$$
\begin{aligned}
f_{0}(x, y)= & \frac{1}{2}\left(x^{2}+\frac{1}{4} y^{2}\right)+\left(\frac{1}{2} x^{2} y+\frac{3}{10} x y^{2}-\frac{1}{5} y^{3}\right) \\
& +\left(-\frac{1}{24} x^{4}\right)+\left(-\frac{2}{15} x^{5}\right)+\left(\frac{1363}{10800}-\frac{1}{10}\right) x^{6}, \\
\text { that is } \quad & \kappa_{1}=1, \kappa_{2}=\frac{1}{4}, \\
& b_{0}=0, b_{1}=\frac{1}{2}, b_{2}=\frac{3}{10}, b_{3}=-\frac{1}{5}, \\
& c_{0}=-\frac{1}{24}, d_{0}=-\frac{2}{15}, e_{0}=\frac{1363}{10800}-\frac{1}{10}
\end{aligned}
$$

and all the other coefficients are zero in the formula (4.6) for $f_{0}(x, y)$. All of the conditions of Proposition 4.2.5.1 are satisfied for these values. Hence the necessary conditions are satisfied for a generic A_{5} transition to occur on the family of distance-squared functions F given by (4.7) for $f_{0}(x, y)$ with the numerical values for the coefficients taken as above. It can be shown that the right-hand side of the fourth condition of Proposition 4.2.5.1 is positive. Then, since $\left(\kappa_{1}-\kappa_{2}\right)>0$ and $\kappa_{1}>0$, the transition takes place on the medial axis of the surface $z=f(x, y, t)$ at values of t moving from positive to negative.

As an A_{5} transition occurs on the medial axis, certain events happen on the surface $z=f(x, y, t)$ at various values of t. See Figures 4.13, 4.14 for an example of what happens to ridge curves during an A_{5} transition.

Figure 4.13: An example of the surface $z=f(x, y, t)$ at values of t; on the left $t=0.03$, on the right $t=0$. Drawn on each surface are the principal direction field and the ridge curves corresponding to the larger principal curvature. (The ridge should be a continuous curve, but owing to numerical errors it sometimes 'dives' underneath the surface and so cannot be seen.) The ridge curves on the right of the surfaces are of interest: as the medial axis goes through the A_{5} transition, the ridge curve loses two A_{4} points, that is points at which the ridge has a turning point and is tangent to the corresponding principal direction. Left: the A_{4} points are still on the ridge curve on the right of the surface. Right: at $t=0$ the ridge has degenerate tangency with the principal direction at $x=y=0$ - this corresponds to the A_{5} point.

Figure 4.14: The continued example of the surface $z=f(x, y, t)$; this picture is at $t=-0.1$. This is after the A_{5} transition and the ridge curve has lost two A_{4} points, since there are no points on the ridge at which the ridge has a turning point and is tangent to the corresponding principal direction.

4.3 The $A_{1}^{2} A_{3}$ Transitions

Now we shall use the same methods for the $A_{1}^{2} A_{3}$ cases as employed for the A_{5} transition. The standard multi-versal unfolding of an $A_{1}^{2} A_{3}$ singularity is

$$
\left.\begin{array}{l}
G: \mathbb{R}^{2} \times \mathbb{R}^{4} \rightarrow \mathbb{R}, \text { given by the three unfoldings } \tag{4.10}\\
G_{1}:\left(X_{1}, Y_{1}, u_{1}, u_{2}, u_{3}, u_{4}\right) \mapsto Y_{1}^{2}+X_{1}^{4}+u_{1} X_{1}^{2}+u_{2} X_{1}, \\
G_{2}:\left(X_{2}, Y_{2}, u_{1}, u_{2}, u_{3}, u_{4}\right) \mapsto Y_{2}^{2}+X_{2}^{2}+u_{3}, \\
G_{3}:\left(X_{3}, Y_{3}, u_{1}, u_{2}, u_{3}, u_{4}\right) \mapsto Y_{3}^{2}+X_{3}^{2}+u_{4} .
\end{array}\right\}
$$

4.3.1 The Bad 3-spaces

We need to calculate the bad 3 -spaces, in other words those spaces in $\mathbb{R}_{\mathrm{u}}^{4}$ given by (4.4) which contain any of the limiting tangent vectors to the strata of the big bifurcation set of G given by (4.10). For (4.10), the one-dimensional strata are

$$
\begin{aligned}
A_{1}^{4}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-2 X^{2}, 0,-X^{4},-X^{4}\right)\right\}, \\
A_{1}^{2} A_{2}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-6 X^{2}, 8 X^{3}, 3 X^{4}, 3 X^{4}\right)\right\}, \\
A_{1} A_{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(0,0, u_{3}, 0\right)\right\} \\
\cup\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(0,0,0, u_{4}\right)\right\}, \\
A_{1}^{2} / A_{1}^{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-2 X^{2}, 0,0,0\right)\right\}, \\
A_{2} / A_{1}^{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-6 X^{2}, 8 X^{3},-24 X^{4},-24 X^{4}\right)\right\}, \\
A_{1}^{2} / A_{1} A_{2}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-6 X^{2}, 8 X^{3}, 3 X^{4},-24 X^{4}\right)\right\} \\
\cup\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(-6 X^{2}, 8 X^{3},-24 X^{4}, 3 X^{4}\right)\right\}, \\
A_{1}^{2} / A_{3}:\left\{\left(u_{1}, u_{2}, u_{3}, u_{4}\right)\right. & \left.=\left(0,0, u_{3}, u_{3}\right)\right\} .
\end{aligned}
$$

We can see that the limits of tangent vectors to these one-dimensional strata are $(1,0,0,0),(0,0,1,0),(0,0,0,1)$ and $(0,0,1,1)$. Hence the bad 3-spaces are (4.4) where $\lambda_{1}=0$ or $\lambda_{3}=0$ or $\lambda_{4}=0$ or $\lambda_{3}+\lambda_{4}=0$, with other possible bad 3 -spaces given by considering limits of tangent spaces to two- and threedimensional strata (see Remark 4.2.1.1).

As we did for the A_{5} transition, we need to determine the number of regions in $\mathbb{R} P^{3}-\Delta$, where Δ is the set of bad 3 -spaces. From this we can decide the number of types of transition and obtain criteria for realizing each one. Since λ_{2} is not mentioned in Δ, we need only consider $\left(\lambda_{1}: \lambda_{3}: \lambda_{4}\right)$ as a point in $\mathbb{R} P^{2}$.

Figure 4.15: The $A_{1}^{2} A_{3}$ case: the non-shaded region gives one type of transition, the lightly shaded region gives another type, and the darkly shaded region gives the last type of transition.

Given that there are no additional bad 3 -spaces, it can be shown that there are three possible types of $A_{1}^{2} A_{3}$ transition, according to the region in which $\left(\lambda_{1}: \lambda_{3}: \lambda_{4}\right)$ lies in Figure 4.15; the non-shaded region gives one type, the lightly shaded region gives another type, and the darkly shaded region gives the last type of transition. From Proposition 4.3.5.1 below, we get that one of these types of transition cannot be realized by a family of distance-squared functions. We get the following.

Proposition 4.3.1.1 Provided the bad 3-spaces are (4.4) where $\lambda_{1}=0$ or $\lambda_{3}=$ 0 or $\lambda_{4}=0$ or $\lambda_{3}+\lambda_{4}=0$, then the sections $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}+\lambda_{4} u_{4}=$ const. of the big bifurcation set of the standard unfolding G from (4.10) give one of three possible transitions, distinguished by the following:

- $\lambda_{3} \lambda_{4}<0$ corresponds to $A_{1}^{2} A_{3}-\mathrm{I}$;
- $\operatorname{sign}\left(\lambda_{1}\right)=-\operatorname{sign}\left(\lambda_{3}\right)=-\operatorname{sign}\left(\lambda_{4}\right)$ corresponds to $A_{1}^{2} A_{3}-\mathrm{II}$;
- $\operatorname{sign}\left(\lambda_{1}\right)=\operatorname{sign}\left(\lambda_{3}\right)=\operatorname{sign}\left(\lambda_{4}\right)$ corresponds to the other possible type of $A_{1}^{2} A_{3}$ transition.

4.3.2 Representations of the $A_{1}^{2} A_{3}$ Transition

The pictures of the sections of the big bifurcation set of the standard unfolding G from (4.10) can be obtained in the same way as for the A_{5} singularity (see §4.2.2). Hence, when considering the list of bad 3 -spaces in Proposition 4.3.1.1, the three possible cases are illustrated in Figures 4.16 to 4.18 . In this case a oneparameter family of symmetry sets must look like one of the three transitions in these figures (in fact it will be shown in Proposition 4.3.5.1 below that one of the cases cannot occur for a one-parameter family of symmetry sets). Pictures of the medial axis in the two occurring cases can be deduced from Figures 4.16 to 4.18 and are drawn in Figure 4.19.

4.3.3 A Family of Surfaces

Now we shall connect these calculations for the standard unfolding of an $A_{1}^{2} A_{3}$ singularity with a family of distance-squared functions on a one-parameter family of surfaces in three dimensions. We consider the unfolding

$$
\begin{align*}
& F: \mathbb{R}^{2} \times \mathbb{R}^{4},\left(0,0,0,0,0,1 / \kappa_{1}\right) \rightarrow \mathbb{R}, \text { given by the three unfoldings } \\
& F_{1}\left(x_{1}, y_{1}, t, a, b, c\right)=\left(x_{1}-a\right)^{2}+\left(y_{1}-b\right)^{2} \\
& \quad+\left(f_{0}(x, y)+t g_{1}\left(x_{1}, y_{1}\right)-c\right)^{2}, \tag{4.11}\\
& F_{2}\left(x_{2}, y_{2}, t, a, b, c\right)=\left\|\gamma_{2}\left(x_{2}, y_{2}, t\right)-(a, b, c)\right\|^{2} \\
& F_{3}\left(x_{3}, y_{3}, t, a, b, c\right)=\left\|\gamma_{3}\left(x_{3}, y_{3}, t\right)-(a, b, c)\right\|^{2}
\end{align*}
$$

where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6) and $F_{0,1}$ has type A_{3} at $x_{1}=y_{1}=0$, where $F_{0, i}\left(x_{i}, y_{i}\right)=F_{i}\left(x_{i}, y_{i}, 0,0,0,1 / \kappa_{1}\right)$. This means that $b_{0}=0$ and

$$
\frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}} \neq 0 .
$$

Figure 4.16: Sections of the big bifurcation set of the standard unfolding G from (4.10) in the case $A_{1}^{2} A_{3}$-I of Proposition 4.3.1.1. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. The blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves. This is one of the possibilities for a one-parameter family of symmetry sets (See Figure 4.19 for pictures of the medial axis in this case).

Figure 4.17: Sections of the big bifurcation set of the standard unfolding G from (4.10) in the case $A_{1}^{2} A_{3}$-II of Proposition 4.3.1.1. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. The blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves. This is the second possibility for a one-parameter family of symmetry sets (See Figure 4.19 for pictures of the medial axis in this case).

Figure 4.18: The third type of transition as listed in Proposition 4.3.1.1 of sections of the big bifurcation set of the standard unfolding G from (4.10). This does not occur for a one-parameter family of symmetry sets. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. The blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves.

Figure 4.19: The medial axis corresponding to two possible types of $A_{1}^{2} A_{3}$ transition on a one-parameter family of symmetry sets from Figures 4.16, 4.17 and 4.18. The third case does not occur. The blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves.

We also want $F_{0,2}$ and $F_{0,3}$ to have type A_{1} at $x_{2}=y_{2}=0$ and at $x_{3}=y_{3}=0$ respectively. This corresponds to the sphere of centre $\left(0,0,1 / \kappa_{1}\right)$, radius $1 / \kappa_{1}$ having A_{1} contact at two points on the two families γ_{2}, γ_{3} of surfaces at $t=0$.

Consider F_{2}. Let the point of contact with the sphere and the surface given by $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ at $x_{2}=y_{2}=0$ be

$$
\begin{equation*}
\mathbf{x}_{0,2}=\left(p_{0,2}, q_{0,2}, w_{0,2}\right)=\frac{1}{\kappa_{1}}\left(\cos \phi_{2} \cos \lambda_{2}, \cos \phi_{2} \sin \lambda_{2}, \sin \phi_{2}+1\right), \tag{4.12}
\end{equation*}
$$

where ϕ_{2}, λ_{2} are constants. Then the tangent plane to this surface is given by

$$
\left((x, y, z)-\left(p_{0,2}, q_{0,2}, w_{0,2}\right)\right) \cdot\left(\kappa_{1}\left(p_{0,2}, q_{0,2}, w_{0,2}\right)-(0,0,1)\right)=0 .
$$

Depending on the parametrization of the surface, we consider three forms of $F_{2}\left(x_{2}, y_{2}, t, a, b, c\right)$ as follows:

$$
\begin{align*}
F_{2} \equiv & \left(f_{2,1}\left(x_{2}, y_{2}\right)+t g_{2,1}\left(x_{2}, y_{2}\right)-a\right)^{2} \\
& +\left(y_{2}+q_{0,2}-b\right)^{2}+\left(x_{2}+w_{0,2}-c\right)^{2} \tag{4.13}
\end{align*}
$$

where $f_{2,1}\left(x_{2}, y_{2}\right)=p_{0,2}+y_{2}\left(-\frac{q_{0,2}}{p_{0,2}}\right)+x_{2}\left(\frac{1-\kappa_{1} w_{0,2}}{\kappa_{1} p_{0,2}}\right)+\cdots$

$$
\text { or } \begin{align*}
F_{2} \equiv & \left(x_{2}+p_{0,2}-a\right)^{2}+\left(f_{2,2}\left(x_{2}, y_{2}\right)+t g_{2,2}\left(x_{2}, y_{2}\right)-b\right)^{2} \\
& +\left(y_{2}+w_{0,2}-c\right)^{2} \tag{4.14}
\end{align*}
$$

where $f_{2,2}\left(x_{2}, y_{2}\right)=q_{0,2}+x_{2}\left(-\frac{p_{0,2}}{q_{0,2}}\right)+y_{2}\left(\frac{1-\kappa_{1} w_{0,2}}{\kappa_{1} q_{0,2}}\right)+\cdots$

$$
\text { or } \begin{align*}
F_{2} \equiv & \left(x_{2}+p_{0,2}-a\right)^{2}+\left(y_{2}+q_{0,2}-b\right)^{2} \\
& +\left(f_{2,3}\left(x_{2}, y_{2}\right)+t g_{2,3}\left(x_{2}, y_{2}\right)-c\right)^{2} \tag{4.15}
\end{align*}
$$

where $f_{2,3}\left(x_{2}, y_{2}\right)=w_{0,2}+x_{2}\left(\frac{\kappa_{1} p_{0,2}}{1-\kappa_{1} w_{0,2}}\right)+y_{2}\left(\frac{\kappa_{1} q_{0,2}}{1-\kappa_{1} w_{0,2}}\right)+\cdots$.
We can choose at least one of these since not all of $p_{0,2}, q_{0,2},\left(1-\kappa_{1} w_{0,2}\right)$ are zero. We assume $F_{0,2}$ has type A_{1} at $x_{2}=y_{2}=0$, which means the second order terms of $f_{2,1}, f_{2,2}, f_{2,3}$ satisfy certain conditions. We have similar expressions in the case of F_{3}, given by one of (4.13), (4.14), (4.15), with $x_{2}, y_{2},(-)_{*, 2}$ replaced respectively by $x_{3}, y_{3},(-)_{*, 3}$.

4.3.4 Condition for Versal Unfolding

Using the end of $\S 4.1$ we get that F is versal if

$$
\begin{aligned}
& \left(\frac{\partial F_{1}}{\partial t}, \frac{\partial F_{2}}{\partial t}, \frac{\partial F_{3}}{\partial t}\right),\left(\frac{\partial F_{1}}{\partial a}, \frac{\partial F_{2}}{\partial a}, \frac{\partial F_{3}}{\partial a}\right),\left(\frac{\partial F_{1}}{\partial b}, \frac{\partial F_{2}}{\partial b}, \frac{\partial F_{3}}{\partial b}\right), \\
& \left(\frac{\partial F_{1}}{\partial c}, \frac{\partial F_{2}}{\partial c}, \frac{\partial F_{3}}{\partial c}\right)\left(\text { all evaluated at } t=a=b=0, c=1 / \kappa_{1}\right) \\
& \text { and }(1,1,1) \operatorname{span} \frac{\mathcal{E}(2)}{J_{F_{0,1}}} \oplus \operatorname{sp}\{1\} \oplus \operatorname{sp}\{1\},
\end{aligned}
$$

where we only consider terms of degree ≤ 4 for F_{1}, terms of degree ≤ 2 for F_{2} and terms of degree ≤ 2 for F_{3}. If we let $g_{1}\left(x_{1}, y_{1}\right)=\eta_{0}+\eta_{1} x_{1}+\eta_{2} y_{1}+\eta_{3} x_{1}^{2}+\cdots$ then F is versal if

$$
\left|\begin{array}{cccccc}
\eta_{0} & \eta_{1} & \eta_{2} & \left(\eta_{3}-\frac{\eta_{0} \kappa_{1}^{2}}{2}\right) & -\frac{\kappa_{1}}{2} \delta_{2} & -\frac{\kappa_{1}}{2} \delta_{3} \tag{4.16}\\
0 & 1 & 0 & 0 & \frac{\cos \phi_{2} \cos \lambda_{2}}{\kappa_{1}} & \frac{\cos \phi_{3} \cos \lambda_{3}}{\kappa_{1}} \\
0 & 0 & 1 & 0 & \frac{\cos 2_{1} \sin \lambda_{2}}{\kappa_{1}} & \frac{\cos \phi_{3} \sin \lambda_{3}}{\kappa_{1}} \\
1 & 0 & 0 & -\frac{\kappa_{1}^{2}}{2} & -\sin \phi_{2} & -\sin \phi_{3} \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & \kappa_{1}-\kappa_{2} & -b_{1} & 0 & 0
\end{array}\right| \neq 0
$$

where

$$
\delta_{2}=\left\{\begin{array}{l}
2 g_{2,1}(0,0) \frac{\cos \phi_{2} \cos \lambda_{2}}{\kappa_{1}} \text { if } F_{2} \text { is of form (4.13) } \\
2 g_{2,2}(0,0) \frac{\cos \phi_{2} \sin \lambda_{2}}{\kappa_{1}} \text { if } F_{2} \text { is of form (4.14) } \\
2 g_{2,3}(0,0) \frac{\sin \phi_{2}}{\kappa_{1}} \text { if } F_{2} \text { is of form (4.15) }
\end{array}\right.
$$

and δ_{3} is similarly defined (replace $g_{2, *}$ by $g_{3, *}$, etc.).

4.3.5 Conditions for Generic Sections

We found that the list of bad 3 -spaces included (4.4) where $\lambda_{1}=0$ or $\lambda_{3}=0$ or $\lambda_{4}=0$ or $\lambda_{3}+\lambda_{4}=0$. Then, given that these hold, Proposition 4.3.1.1 gave criteria for the type of $A_{1}^{2} A_{3}$ transition. As in the case of an A_{5} transition we have the relation

$$
G_{i}\left(X_{i}, Y_{i}, \mathbf{u}\right)=F\left(A_{i}\left(X_{i}, Y_{i}, \mathbf{u}\right), B(\mathbf{u})\right)+C(\mathbf{u})
$$

where each $A_{i}:\left(\mathbb{R}^{2} \times \mathbb{R}^{4},(\mathbf{0}, \mathbf{0})\right) \rightarrow \mathbb{R}^{2}$ is a germ with $A_{i}(-, \mathbf{0})$ invertible, $B:\left(\mathbb{R}^{4}, \mathbf{0}\right) \rightarrow\left(\mathbb{R}^{4},\left(0, \mathbf{p}_{0}\right)\right)$ is an invertible germ and $C:\left(\mathbb{R}^{4}, \mathbf{0}\right) \rightarrow\left(\mathbb{R},-1 / \kappa_{1}^{2}\right)$ is a germ. Using this relation in the same way as for the A_{5} transition we obtain the geometrical interpretation of the conditions for generic sections and for the criterion for the type of $A_{1}^{2} A_{3}$ transition, as follows.

Proposition 4.3.5.1 The necessary conditions for the one-parameter family of symmetry sets of the families of surfaces $z=f_{0}\left(x_{1}, y_{1}\right)+g_{1}\left(x_{1}, y_{1}\right)$, where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6), and those given by $\gamma_{2}\left(x_{2}, y_{2}, t\right), \gamma_{3}\left(x_{3}, y_{3}, t\right)$ (see (4.11)) to exhibit an $A_{1}^{2} A_{3}$ transition are that

$$
\begin{aligned}
b_{0} & =0 \\
\frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}} & \neq 0
\end{aligned}
$$

that $F_{0,2}, F_{0,3}$ have type A_{1} respectively at $x_{2}=y_{2}=0, x_{3}=y_{3}=0$, that the versality condition (4.16) holds, and that the following necessary conditions for generic sections hold

$$
\left.\begin{array}{r}
\cos \phi_{2} \sin \lambda_{2}\left(1+\sin \phi_{3}\right)-\cos \phi_{3} \sin \lambda_{3}\left(1+\sin \phi_{2}\right) \neq 0, \\
2 b_{1}\left(1+\sin \phi_{2}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{2} \sin \lambda_{2} \neq 0, \\
2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3} \neq 0, \tag{4.17}\\
2 b_{1}\left(\sin \phi_{3}-\sin \phi_{2}\right)+\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)\left(\cos \phi_{2} \sin \lambda_{2}-\cos \phi_{3} \sin \lambda_{3}\right) \neq 0 .
\end{array}\right\}
$$

Moreover, the transition is of type $A_{1}^{2} A_{3}$-I, $A_{1}^{2} A_{3}$-II when

$$
\begin{array}{r}
\left(2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3}\right) \tag{4.18}\\
\times\left(-2 b_{1}\left(1+\sin \phi_{2}\right)+\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{2} \sin \lambda_{2}\right)
\end{array}
$$

is respectively negative, positive, provided there are no additional normal forms for generic functions given by considering the limits of tangent spaces to twoand three-dimensional strata (see Remark 4.2.1.1). The third type of transition as described in Proposition 4.3.1.1 cannot be realized by a one-parameter family of distance-squared functions.

4.3.6 Interpretation of the $A_{1}^{2} A_{3}$ Conditions

The condition (4.16) for versality of the geometric family F is difficult to understand, so we consider firstly the necessary conditions (4.17) for generic sections and the sign of (4.18), which determines the type of transition, provided there are no further conditions for generic sections. Using [HGYGM99, p.142] we get the following. Let \mathbf{t}, \mathbf{n}, be respectively the unit tangent, principal normal to the line of curvature corresponding to κ_{1} on the surface $z=f_{0}(x, y)$, given by (4.6). Note that the tangent to the line of curvature corresponding to κ_{1} at a point is the same as the principal direction corresponding to κ_{1} at the point. Then, for $\mathbf{x}_{0,2}$ as a vector as in (4.12) (and similarly for $\mathbf{x}_{0,3}$), we have

$$
\begin{aligned}
\qquad \mathbf{t}(0)=(1,0,0) & , \quad \mathbf{n}(0) \|\left(0, \frac{2 b_{1}}{\kappa_{1}-\kappa_{2}}, \kappa_{1}\right), \\
\text { the first condition of }(4.17) & \Longleftrightarrow \mathbf{t}(0) \cdot\left(\mathbf{x}_{0,2} \times \mathbf{x}_{0,3}\right) \neq 0, \\
\text { the second condition of }(4.17) & \Longleftrightarrow \mathbf{x}_{0,2} \cdot(\mathbf{t}(0) \times \mathbf{n}(0)) \neq 0, \\
\text { the third condition of }(4.17) & \Longleftrightarrow \mathbf{x}_{0,3} \cdot(\mathbf{t}(0) \times \mathbf{n}(0)) \neq 0, \\
\text { the fourth condition of }(4.17) & \Longleftrightarrow\left(\mathbf{x}_{0,2}-\mathbf{x}_{0,3}\right) \cdot(\mathbf{t}(0) \times \mathbf{n}(0)) \neq 0 .
\end{aligned}
$$

Hence, the first condition of (4.17) is the same as stating that the tangent to the line of curvature corresponding to κ_{1} must not lie in the plane containing the origin and the points $\mathbf{x}_{0,2}, \mathbf{x}_{0,3}$. In other words, the first condition of (4.17) is the same as stating that the principal direction corresponding to κ_{1} must not lie in the plane containing the origin and the points $\mathbf{x}_{0,2}, \mathbf{x}_{0,3}$. Let Ω be the osculating plane of the line of curvature corresponding to κ_{1} at the origin. Then the second condition of (4.17) is the same as stating that the line through the origin and the point $\mathbf{x}_{0,2}$ must not lie in Ω. Similarly for the third condition of (4.17) and the point $\mathbf{x}_{0,3}$. Finally, the fourth condition of (4.17) is the same as stating that the line through $\mathbf{x}_{0,2}$ and $\mathbf{x}_{0,3}$ must not be parallel to Ω.

In a similar way we can get an interpretation of the sign of (4.18):

$$
\operatorname{sign} \text { of }(4.18)=\operatorname{sign} \text { of }\left(\mathbf{x}_{0,3} \cdot(\mathbf{t}(0) \times \mathbf{n}(0))\right)\left(-\mathbf{x}_{0,2} \cdot(\mathbf{t}(0) \times \mathbf{n}(0))\right) .
$$

Hence the symmetry set of the families of surfaces as in Proposition 4.3.5.1 exhibits respectively an $A_{1}^{2} A_{3}-\mathrm{I}, A_{1}^{2} A_{3}$-II transition if $\mathbf{x}_{0,2}, \mathbf{x}_{0,3}$ are on the same
side, opposite sides of Ω, provided there are no conditions for generic sections other than (4.17).

Consider the condition (4.16) in a simplified situation. Assume the families γ_{1}, γ_{3} given by (4.11) do not change with t, which means that $\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}$ and δ_{3} are all zero in (4.16). Then, (4.16) becomes

$$
\delta_{2}\left(2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3}\right) \neq 0,
$$

where δ_{2} is defined immediately after (4.16). Hence the simplified version of (4.16) becomes

$$
\begin{aligned}
& g_{2,1}(0,0) \cos \phi_{2} \cos \lambda_{2}\left(2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3}\right) \neq 0 \\
& \text { when } F_{2} \text { is of form }(4.13), \\
& g_{2,2}(0,0) \cos \phi_{2} \sin \lambda_{2}\left(2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3}\right) \neq 0 \\
& \text { when } F_{2} \text { is of form }(4.14), \\
& g_{2,3}(0,0) \sin \phi_{2}\left(2 b_{1}\left(1+\sin \phi_{3}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{3} \sin \lambda_{3}\right) \neq 0 \\
& \text { when } F_{2} \text { is of form }(4.15) .
\end{aligned}
$$

Take each of $g_{2,1}(0,0), g_{2,2}(0,0), g_{2,3}(0,0)$ to be non-zero. Using the fact that the unit surface normal $\mathbf{n}_{0,2}$ to γ_{2} at $t=0$ is

$$
\mathbf{n}_{0,2}=\mathbf{x}_{0,2}-\left(0,0, \frac{1}{\kappa_{1}}\right)=\left(\cos \phi_{2} \cos \lambda_{2}, \cos \phi_{2} \sin \lambda_{2}, \sin \phi_{2}\right),
$$

we can obtain an interpretation of the simplified version of (4.16), which is that the line from the origin to the point $\mathbf{x}_{0,3}$ must not lie in Ω and either $\mathbf{n}_{0,2}$ must not lie in the (y, z) plane (when F_{2} is of form (4.13)), or $\mathbf{n}_{0,2}$ must not lie in the (x, z) plane (when F_{2} is of form (4.14)), or $\mathbf{n}_{0,2}$ must not lie in the (x, y) plane (when F_{2} is of form (4.15)). These last three interpretations can be summarized by stating that $\mathbf{n}_{0,2}$ must not lie in the plane perpendicular to the coordinate direction corresponding to change with the family parameter t. For example, if the family of surfaces $\gamma_{2}\left(x_{2}, y_{2}, t\right)$ corresponds to translating the surface $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ in any direction, then for versality we require the direction of translation not to lie in the tangent plane to $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ at the point of contact $\mathbf{x}_{0,2}$.

4.3.7 Example

Consider the example from $\S 3.6$ of the parabolic gutter with a flat end, but with slightly changed notation to agree with this chapter. Take the three unfoldings from (4.11) to be

$$
\begin{aligned}
& F_{1}\left(x_{1}, y_{1}, t, a, b, c\right)=\left\|\left(x_{1}, y_{1}, \frac{\kappa_{1} x_{1}^{2}}{2}\right)-(a, b, c)\right\|^{2} \\
& F_{2}\left(x_{2}, y_{2}, t, a, b, c\right)=\left\|\left(x_{2}, \frac{1}{\kappa_{1}}+t, y_{2}\right)-(a, b, c)\right\|^{2}, \\
& F_{3}\left(x_{3}, y_{3}, t, a, b, c\right)=\left\|\left(x_{3}, y_{3}, d y_{2}+\frac{1+\sqrt{1+d^{2}}}{\kappa_{1}}\right)-(a, b, c)\right\|^{2},
\end{aligned}
$$

for d a positive constant. So F_{2} is of form (4.14) and F_{3} is of form (4.15) (with x_{2}, y_{2} replaced by x_{3}, y_{3} and so on). Hence we take the parabolic gutter $z=\kappa_{1} x^{2} / 2$ with a roof $z=d y+\left(1+\sqrt{1+d^{2}}\right) / \kappa_{1}$ and the flat end $y=1 / \kappa_{1}+t$ as the three local pieces of boundary and consider the medial axis of these surfaces at values of t close to zero. The effect of changing t is that the end $y=1 / \kappa_{1}+t$ moves away from the origin along the y-axis and the other two surfaces remain unaltered. Hence $g_{1} \equiv 0$ (and so $\eta_{i}=0$ for each i), $g_{2,2} \equiv 1$, $g_{3,3} \equiv 0$.

The medial axis corresponding to the local boundary surfaces $z=\kappa_{1} x^{2} / 2$, $z=d y+\left(1+\sqrt{1+d^{2}}\right) / \kappa_{1}$ and $y=1 / \kappa_{1}+t$ at values of t can be calculated explicitly. However, these calculations are very similar to those done for the example in $\S 3.6$ of the constraints on the medial axis in three dimensions, where local boundary was a parabolic gutter $z=b y^{2}$ with a flat end $x=p$, and so the calculations are omitted. The points of contact on the flat end and on the roof given by (4.12) are

$$
\mathbf{x}_{0,2}=\frac{(0,1,1)}{\kappa_{1}}, \mathbf{x}_{0,3}=\frac{\left(0,-d, 1+\sqrt{1+d^{2}}\right)}{\kappa_{1} \sqrt{1+d^{2}}}
$$

so we can obtain $\phi_{2}, \lambda_{2}, \phi_{3}, \lambda_{3}$. Using these we can check that (4.16) and each of the conditions given by (4.17) hold. For this example

$$
(4.18)=\left(-\kappa_{1}^{2}\left(-\frac{d}{\sqrt{1+d^{2}}}\right)\right)\left(\kappa_{1}^{2}\right)>0
$$

Figure 4.20: Figures 4.20 to 4.22 are of an example of the $A_{1}^{2} A_{3}$-II transition. This figure is for $t=-0.2$, that is before the transition. Top left: the boundary surface; top centre, top right: the corresponding medial axis from two points of view; bottom: the medial axis from another point of view. The red curve is an A_{1}^{3} curve.
and so the symmetry set exhibits an $A_{1}^{2} A_{3}$-II transition, provided there are no conditions for generic sections other than (4.17).

The interpretations of the $A_{1}^{2} A_{3}$ conditions given immediately before this example can be easily verified in this example, as follows. In this example, the plane containing $\mathbf{0}, \mathbf{x}_{0,2}$ and $\mathbf{x}_{0,3}$ is $x=0$; and Ω, the osculating plane of the line of curvature corresponding to κ_{1} at the origin, is $y=0$. It is easy to show that the tangent $(1,0,0)$ to the line of curvature corresponding to κ_{1} does not lie in the plane $x=0$, that $\mathbf{x}_{0,2}$ and $\mathbf{x}_{0,3}$ do not lie in the plane $y=0$ and that the line through $\mathbf{x}_{0,2}, \mathbf{x}_{0,3}$ does not lie in the plane $y=0$. Hence all of the interpretations of the conditions (4.16) hold for this example. Finally, we see that the y-coordinates of $\mathbf{x}_{0,2}$ and $\mathbf{x}_{0,3}$ have opposite signs and so $\mathbf{0}, \mathbf{x}_{0,2}$ and $\mathrm{x}_{0,3}$ lie on opposite sides of $y=0$ and so we have an $A_{1}^{2} A_{3}$-II transition on the medial axis.

Figures 4.20, 4.21 and 4.22 show the transition on the medial axis where $d=1, \kappa_{1}=2$.

Figure 4.21: The moment of transition $(t=0)$: these pictures are different views of the medial axis, which has acquired an $A_{1}^{2} A_{3}$ point.

Figure 4.22: These are all different views of the medial axis for $t=0.5$, so the $A_{1}^{2} A_{3}$-II transition has taken place. An extra medial sheet with an edge curve (the blue curve) has been created. This curve has two endpoints ($A_{1} A_{3}$ points) which lie on two created A_{1}^{3} curves lying on the new medial sheet. So we now have four (red) A_{1}^{3} curves which meet at an A_{1}^{4} point created by the transition.

4.4 The $A_{1} A_{4}$ Transition

For this transition, we follow the method as used in $\S 4.2$, but omit the details. This transition is different from the others considered in this chapter in that it does not occur on a one-parameter family of medial axes, but only on a oneparameter family of symmetry sets. The family of symmetry sets looks locally like the pictures in Figures 4.23, 4.24 as it goes through an $A_{1} A_{4}$ transition. As in the transitions considered previously there might be other cases of $A_{1} A_{4}$ transitions - see Remark 4.2.1.1.

Take a family of distance-squared functions on a one-parameter family of surfaces in three dimensions. Consider the unfolding

$$
\begin{gather*}
F: \mathbb{R}^{2} \times \mathbb{R}^{4},\left(0,0,0,0,0,1 / \kappa_{1}\right) \rightarrow \mathbb{R}, \text { given by the two unfoldings } \\
F_{1}\left(x_{1}, y_{1}, t, a, b, c\right)=\left(x_{1}-a\right)^{2}+\left(y_{1}-b\right)^{2} \tag{4.19}\\
\\
\quad+\left(f_{0}(x, y)+t g_{1}\left(x_{1}, y_{1}\right)-c\right)^{2}, \\
F_{2}\left(x_{2}, y_{2}, t, a, b, c\right)=\left\|\gamma_{2}\left(x_{2}, y_{2}, t\right)-(a, b, c)\right\|^{2},
\end{gather*}
$$

where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6) and $F_{0,1}$ has type A_{4} at $x_{1}=y_{1}=0$, where $F_{0, i}\left(x_{i}, y_{i}\right)=F_{i}\left(x_{i}, y_{i}, 0,0,0,1 / \kappa_{1}\right)$. This means that

$$
\begin{gathered}
b_{0}=\frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}}=0, \\
-\frac{2 b_{1}\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+b_{1} b_{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}}-\frac{2 d_{0}}{\kappa_{1}} \neq 0 .
\end{gathered}
$$

We assume $F_{0,2}$ has type A_{1} at $x_{2}=y_{2}=0$ and that F_{2} has one of the forms (4.13), (4.14) or (4.15). Then we get the following.

Proposition 4.4.1 The necessary conditions for the one-parameter family of symmetry sets of the families of surfaces $z=f_{0}\left(x_{1}, y_{1}\right)+g_{1}\left(x_{1}, y_{1}\right)$, where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6), $g_{1}\left(x_{1}, y_{1}\right)=\eta_{0}+\eta_{1} x_{1}+\eta_{2} y_{1}+\eta_{3} x_{1}^{2}+\eta_{4} x_{1} y_{1}+(*) y_{1}^{2}+$ $\eta_{5} x_{1}^{3}+\cdots$ and the one given by $\gamma_{2}\left(x_{2}, y_{2}, t\right)$ to exhibit an $A_{1} A_{4}$ transition are that

$$
\begin{gathered}
b_{0}=\frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}}=0 \\
-\frac{2 b_{1}\left(c_{1}\left(\kappa_{1}-\kappa_{2}\right)+b_{1} b_{2}\right)}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)^{2}}-\frac{2 d_{0}}{\kappa_{1}} \neq 0
\end{gathered}
$$

that $F_{0,2}$ has type A_{1} at $x_{2}=y_{2}=0$, that the versality condition holds:
$\left|\begin{array}{ccccccc}\eta_{0} & \eta_{1} & \eta_{2} & \left(\eta_{3}-\frac{\eta_{0} \kappa_{1}^{2}}{2}\right) & \eta_{4} & \left(\eta_{5}-\frac{\eta_{1} \kappa_{1}^{2}}{2}\right) & -\frac{\kappa_{1}}{2} \delta_{2} \\ 0 & 1 & 0 & 0 & 0 & 0 & \frac{\cos \phi_{2} \cos \lambda_{2}}{\kappa_{1}} \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{\cos \phi_{2} \sin \lambda_{2}}{\kappa_{1}} \\ 1 & 0 & 0 & -\frac{\kappa_{1}^{2}}{2} & 0 & 0 & -\sin \phi_{2} \\ 0 & 0 & \kappa_{1}-\kappa_{2} & -b_{1} & -2 b_{2} & -c_{1} & 0 \\ 0 & 0 & & 0 & \kappa_{1}-\kappa_{2} & -b_{1} & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right| \neq 0,(4.20)$
where

$$
\delta_{2}=\left\{\begin{array}{ll}
2 g_{2,1}(0,0) \frac{\cos \phi_{2} \cos \lambda_{2}}{\kappa_{1}} & \text { if } F_{2} \text { is of form }(4.13), \\
2 g_{2,2}(0,0) \frac{\cos \phi_{2} \sin \lambda_{2}}{\kappa_{1}} & \text { if } F_{2} \text { is of form }(4.14), \\
2 g_{2,3}(0,0) \frac{\sin \phi_{2}}{\kappa_{1}} & \text { if } F_{2}
\end{array} \text { is of form }(4.15), ~ \$, ~\right.
$$

and that the following necessary conditions for generic sections hold.

$$
\left.\begin{array}{r}
2 b_{1} b_{2}+c_{1}\left(\kappa_{1}-\kappa_{2}\right) \neq 0 \tag{4.21}\\
2 b_{1}\left(1+\sin \phi_{2}\right)-\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{2} \sin \lambda_{2} \neq 0
\end{array}\right\}
$$

There is only one type of $A_{1} A_{4}$ transition, provided no others arise when considering the limits of tangent spaces to two- and three-dimensional strata (see Remark 4.2.1.1).

Interpretation of the $A_{1} A_{4}$ Conditions

The condition (4.20) for the unfolding F to be versal is complicated, as in the $A_{1}^{2} A_{3}$ case. Hence, we consider again a simpler situation, where the family γ_{1} given by (4.19) does not change with t, which means that $g_{1}\left(x_{1}, y_{1}\right) \equiv 0$, and so $\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}$ are all zero in (4.20), which becomes

$$
\delta_{2}\left(2 b_{1} b_{2}+c_{1}\left(\kappa_{1}-\kappa_{2}\right)\right) \neq 0,
$$

where δ_{2} is defined immediately after (4.20). Using the interpretations in $\S 4.2 .6$, $\S 4.3 .6$ and assuming $g_{2,1}(0,0), g_{2,2}(0,0), g_{2,3}(0,0)$ are all non-zero, we get that
this simplified version of the versality condition (4.20) is the same as stating that the ridge curve corresponding to κ_{1} must be non-singular and that the unit normal to γ_{2} at $t=0$ must not lie in the plane perpendicular to the coordinate direction corresponding to change with the family parameter t. For example, if the family of surfaces $\gamma_{2}\left(x_{2}, y_{2}, t\right)$ corresponds to translating the surface $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ in any direction, then for versality we require the direction of translation not to lie in the tangent plane to $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ at the point of contact $\mathbf{x}_{0,2}$.

Now consider the necessary conditions for generic sections. The first condition of (4.21) is that of the non-singularity of the ridge curve corresponding to κ_{1}. Using §4.3.6, the second condition of (4.21) is the same as stating that the line from the origin to the point $\mathbf{x}_{0,2}$ must not lie in the osculating plane of the line of curvature corresponding to κ_{1} at the origin.

Figure 4.23: A one-parameter family of symmetry sets looks locally like the pictures in this figure and Figure 4.24 as it goes through an $A_{1} A_{4}$ transition. It is possible that there are other cases of $A_{1} A_{4}$ transitions (see Remark 4.2.1.1). None of these surfaces is part of the medial axis. In Figures 4.23, 4.24 the green and yellow curves are $A_{1} A_{2}$ curves, the red curves are A_{1}^{3} curves and the blue curves are A_{3} curves. Top: before the transition. Here there is a swallowtail surface and a surface with a cusp edge. Top right: just the curves are drawn, not the surfaces. Bottom: the moment of transition. The swallowtail surface intersects with the other surface in a point, the $A_{1} A_{4}$ point. Bottom right: the curves all meet at the $A_{1} A_{4}$ point.

\qquad

Figure 4.24: After the transition. The swallowtail surface now intersects with the other surface in a curve. There is now an A_{1}^{3} curve (red) which meets the (blue) A_{3} at $A_{1} A_{3}$ points, where the A_{1}^{3} curve ends - these endpoints coincide with the cusps of the (green) $A_{1} A_{2}$ curve. The red curve has two cusps which coincide with the intersections of the two $A_{1} A_{2}$ curves (yellow, green). The yellow curve only meets another curve at the cusps of the A_{3} (blue) curve. The pictures at the bottom show just the green and red curves, but these do not self-intersect, which is shown by the picture on the right.

4.5 The $A_{1} A_{3}$ Transitions

The $A_{1} A_{3}$ transitions are different from the previous transitions - the big bifurcation sets of the standard multi-versal unfolding are products. There are at least four possible types of transitions for the standard multi-versal unfolding of an $A_{1} A_{3}$ singularity, but it is stated below in Proposition 4.5.1 that two of the four identified are not possible for a one-parameter family of symmetry sets in \mathbb{R}^{3}. Hence a family of symmetry sets looks locally like the pictures in one of Figures 4.25, 4.26 as it goes through the an $A_{1} A_{3}$ transition, allowing for other possible cases of $A_{1} A_{4}$ transitions (see Remark 4.2.1.1). We take a family of distance-squared functions on a one-parameter family of surfaces in three dimensions. Then we consider the unfolding given by (4.19) where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6) and $F_{0,1}$, where $F_{0, i}\left(x_{i}, y_{i}\right)=F_{i}\left(x_{i}, y_{i}, 0,0,0,1 / \kappa_{1}\right)$, has type A_{3} at $x_{1}=y_{1}=0$. We assume $F_{0,2}$ has type A_{1} at $x_{2}=y_{2}=0$ and that F_{2} has one of the forms (4.13), (4.14) or (4.15).

The method is as follows. We require that when the family parameter t is fixed, then a, b, c do not versally unfold the $A_{1} A_{3}$ singularity, but that t, a, b, c do. To realize the various types of transition we consider the three-dimensional space with coordinates $\left(u_{1}, u_{2}, u_{3}\right)$ of the standard bifurcation set of the standard multi-versal unfolding of an $A_{1} A_{3}$ singularity (so we ignore the u_{4} component in the four-dimensional space with coordinates $\left.\left(u_{1}, u_{2}, u_{3} u_{4}\right)\right)$. Then we obtain generic linear functions h on this set and use projections $h\left(u_{1}, u_{2}, u_{3}\right) \pm u_{4}^{2}$ to realize the various types of transition. We get the following.

Proposition 4.5.1 The necessary conditions for the one-parameter family of symmetry sets of the families of surfaces $z=f_{0}\left(x_{1}, y_{1}\right)+\operatorname{tg}_{1}\left(x_{1}, y_{1}\right)$, where $f_{0}\left(x_{1}, y_{1}\right)$ is given by (4.6), $g_{1}\left(x_{1}, y_{1}\right)=\eta_{0}+\eta_{1} x_{1}+\eta_{2} y_{1}+\eta_{3} x_{1}^{2}+\cdots$ and the one given by $\gamma_{2}\left(x_{2}, y_{2}, t\right)$ to exhibit an $A_{1} A_{3}$ transition are that

$$
b_{0}=0, \frac{\kappa_{1}^{2}}{4}-\frac{b_{1}^{2}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)}-\frac{2 c_{0}}{\kappa_{1}} \neq 0
$$

that $F_{0,2}$ has type A_{1} at $x_{2}=y_{2}=0$, that the versality conditions hold:

$$
\left.\begin{array}{rl}
b_{1}= & \frac{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right) \cos \phi_{2} \sin \lambda_{2}}{2\left(1+\sin \phi_{2}\right)}, \\
0 \neq & \delta_{2} \kappa_{1}^{3}-2 \eta_{0} \kappa_{1}^{2} \sin \phi_{2}+2 \eta_{1} \kappa_{1} \cos \phi_{2} \cos \lambda_{2} \tag{4.23}\\
& +2 \eta_{2} \kappa_{1} \cos \phi_{2} \sin \lambda_{2}+4 \eta_{3}\left(1+\sin \phi_{2}\right)
\end{array}\right\}
$$

where

$$
\delta_{2}=\left\{\begin{array}{l}
2 g_{2,1}(0,0) \frac{\cos \phi_{2} \cos \lambda_{2}}{\kappa_{1}} \quad \text { if } F_{2} \text { is of form (4.13) }, \\
2 g_{2,2}(0,0) \frac{\cos \phi_{2} \sin \lambda_{2}}{\kappa_{1}} \text { if } F_{2} \text { is of form (4.14), } \\
2 g_{2,3}(0,0) \frac{\sin \alpha_{2}}{\kappa_{1}} \text { if } F_{2} \text { is of form (4.15). }
\end{array}\right.
$$

Generic sections are automatic, provided no other conditions for generic sections arise arise when considering the limits of tangent spaces to two- and three-dimensional strata (see Remark 4.2.1.1). Moreover, the transitions of Figures 4.27, 4.28 do not occur on a one-parameter family of symmetry sets. The additional criterion for realizing either $A_{1} A_{3}-\mathrm{I}$ or $A_{1} A_{3}-\mathrm{II}$ is not yet known.

Remark 4.5.2 We require an expression for $\partial^{2} B_{1} / \partial u_{4}^{2}(\mathbf{0})$ in order to decide the type of $A_{1} A_{3}$, since

$$
h\left(u_{1}, u_{2}, u_{3}\right) \pm u_{4}^{4}=\pi(B(\mathbf{u}))=B_{1}(\mathbf{u}) .
$$

This has proved very difficult owing to the very complicated expressions. Hence we consider a geometric reason to distinguish the two cases. From Figures 4.25, 4.26 we see that in the $A_{1} A_{3}$-II case there is an A_{1}^{3} curve through the $A_{1} A_{3}$ point at the moment of transition, but in the $A_{1} A_{3}$-I case there is no A_{1}^{3} curve through the $A_{1} A_{3}$ point at the moment of transition. Hence we can examine the condition for there to be an A_{1}^{3} curve on the symmetry set at points near to those corresponding to A_{1}, A_{3} points of contact.

Consider the case where the A_{1} surface $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ is a plane. It can be shown that the parameters x_{1}, y_{1} on the A_{3} surface $z=f_{0}\left(x_{1}, y_{1}\right)$ can be used as parameters for the pre-symmetry set, given certain open conditions on the A_{1} point. Hence we have a parametrization of the pre-symmetry set given by

$$
\left(x_{1}, y_{1}\right) \xrightarrow{\psi}\left(x_{2}, y_{2}\right) .
$$

Then it can be shown that the critical set Σ of ψ is singular if and only if (4.22) holds. Furthermore, the condition for Σ to be an isolated point or not can be calculated, but even in this case it is very complicated and involves the degree 4 terms on the surface $\gamma_{1}\left(x_{1}, y_{1}, 0\right)$. Hence the condition for an A_{1}^{3} curve to exist can be calculated, but it is too complicated to be understood.

Interpretation of the $A_{1} A_{3}$ Conditions

Using $\S 4.3 .6$, the condition (4.22) is the same as stating that the line through the origin and the point of contact $\mathbf{x}_{0,2}$ on the A_{1} surface must lie in the osculating plane of the line of curvature corresponding to κ_{1} at the origin. The condition (4.23) for the unfolding F to be versal is complicated, as in the $A_{1}^{2} A_{3}$ and $A_{1} A_{4}$ cases. Hence, we consider again a simpler situation, where the family γ_{1} given by (4.19) does not change with t, which means that $g_{1}\left(x_{1}, y_{1}\right) \equiv 0$, and so η_{0}, η_{1}, η_{2}, η_{3} are all zero in (4.23), which becomes $\delta_{2} \neq 0$. Using the interpretations in $\S 4.3 .6$ and assuming $g_{2,1}(0,0), g_{2,2}(0,0), g_{2,3}(0,0)$ are all non-zero, we get that in the case of the family of surfaces $\gamma_{2}\left(x_{2}, y_{2}, t\right)$ corresponding to translating the surface $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ in any direction, then for versality we require the direction of translation not to lie in the tangent plane to $\gamma_{2}\left(x_{2}, y_{2}, 0\right)$ at the point of contact $\mathbf{x}_{0,2}$.

Figure 4.25: A one-parameter family of symmetry sets looks locally like these pictures, as it goes through an $A_{1} A_{3}$-I transition. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. In Figures 4.25 to 4.28 , the blue, red curves correspond respectively to A_{3}, A_{1}^{3} curves. After the transition an A_{1}^{3} curve has been created.

Figure 4.26: The $A_{1} A_{3}$-II transition on a one-parameter family of symmetry sets. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. At the moment of transition the A_{1}^{3} and A_{3} curves are tangent.

Figure 4.27: The third type of $A_{1} A_{3}$ transition - this cannot occur for a oneparameter family of symmetry sets. This type is possible for the standard multiversal unfolding. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. At the moment of transition the A_{1}^{3}, A_{3} curves are tangent and after the transition there are two A_{1}^{3} curves which end at the ($A_{1} A_{3}$) points of intersection with the A_{3} curve.

Figure 4.28: The fourth type of $A_{1} A_{3}$ transition - this also cannot occur for a one-parameter family of symmetry sets. This type is possible for the standard multiversal unfolding. Top: two views before the transition, middle: two views at the moment of transition, bottom: two views after the transition. At the moment of transition the A_{1}^{3}, A_{3} curves are tangent and after the transition there are two A_{1}^{3} curves which end at the $\left(A_{1} A_{3}\right)$ points of intersection with the A_{3} curve.

4.6 The A_{1}^{4} Transitions

The A_{1}^{4} transitions are similar to the $A_{1} A_{3}$ transitions in that the big bifurcation sets of the standard multi-versal unfolding are products. Hence the method for the following is omitted. In [GK02] there are three types of transitions listed which are possible for the standard multi-versal unfolding of an A_{1}^{4} singularity, but [GK02] states that only one of these types is possible for a one-parameter family of medial axes in \mathbb{R}^{3}.

We consider four families of surface $\gamma_{i}\left(x_{i}, y_{i}, t\right)$ for $i=1, \ldots, 4$ and four corresponding distance-squared functions F_{i} when $\gamma_{i}\left(x_{i}, y_{i}, t\right)$ is one of three forms:

$$
\begin{align*}
F_{i} \equiv & \left(f_{i, 1}\left(x_{i}, y_{i}\right)+t g_{i, 1}\left(x_{i}, y_{i}\right)-a\right)^{2} \\
& +\left(y_{i}+q_{0, i}-b\right)^{2}+\left(x_{i}+w_{0, i}-c\right)^{2} \tag{4.24}\\
\text { where } f_{i, 1}\left(x_{i}, y_{i}\right)= & p_{0, i}+y_{i}\left(-\frac{q_{0, i}}{p_{0, i}}\right)+x_{i}\left(\frac{r_{0}-w_{0, i}}{p_{0, i}}\right)+\cdots \\
\text { or } F_{i} \equiv & \left(x_{i}+p_{0, i}-a\right)^{2}+\left(f_{i, 2}\left(x_{i}, y_{i}\right)+t g_{i, 2}\left(x_{i}, y_{i}\right)-b\right)^{2} \\
& +\left(y_{i}+w_{0, i}-c\right)^{2} \tag{4.25}\\
\text { where } f_{i, 2}\left(x_{i}, y_{i}\right)= & q_{0, i}+x_{i}\left(-\frac{p_{0, i}}{q_{0, i}}\right)+y_{i}\left(\frac{r_{0}-w_{0, i}}{q_{0, i}}\right)+\cdots \\
\text { or } F_{i} \equiv & \left(x_{i}+p_{0, i}-a\right)^{2}+\left(y_{i}+q_{0, i}-b\right)^{2} \\
& +\left(f_{i, 3}\left(x_{i}, y_{i}\right)+t g_{i, 3}\left(x_{i}, y_{i}\right)-c\right)^{2} \tag{4.26}
\end{align*}
$$

where $f_{i, 3}\left(x_{i}, y_{i}\right)=w_{0, i}+x_{i}\left(\frac{p_{0, i}}{r_{0}-w_{0, i}}\right)+y_{i}\left(\frac{q_{0, i}}{r_{0}-w_{0, i}}\right)+\cdots$
where the point of contact on the surface $\gamma_{i}\left(x_{i}, y_{i}, 0\right)$ at $x_{i}=y_{i}=0$ is

$$
\mathbf{x}_{0, i}=\left(p_{0, i}, q_{0, i}, w_{0, i}\right)=r_{0}\left(\cos \phi_{i} \cos \lambda_{i}, \cos \phi_{i} \sin \lambda_{i}, \sin \phi_{i}+1\right)
$$

where ϕ_{i}, λ_{i} are constants. Also, r_{0} (const.) is the radius of the sphere of contact with the surfaces $\gamma_{i}\left(x_{i}, y_{i}, 0\right)$ at $x_{i}=y_{i}=0$. We get the following.

Proposition 4.6.1 Consider the one-parameter family of symmetry sets of the families of surfaces $\gamma_{i}\left(x_{i}, y_{i}, t\right)$ given by one of the forms (4.24), (4.25), (4.26). Let the point of contact $\mathbf{x}_{0,1}$ be the origin, so $\phi_{1}=3 \pi / 2$ and then we have F_{1} is
of form (4.26) for $i=1$. The family of symmetry sets exhibits an A_{1}^{4} transition if each $F_{0, i}$ has type A_{1} at $x_{i}=y_{i}=0$, for $i=2,3,4$; if the versality conditions hold:

$$
\left.\begin{array}{l}
0=p_{0,2}\left(q_{0,3} w_{0,4}-q_{0,4} w_{0,3}\right)+p_{0,3}\left(q_{0,4} w_{0,2}-q_{0,2} w_{0,4}\right) \\
+p_{0,4}\left(q_{0,2} w_{0,3}-q_{0,3} w_{0,2}\right) \\
0 \neq \delta_{1}\left(p_{0,2}\left(w_{0,4}-w_{0,3}\right)+p_{0,3}\left(w_{0,2}-w_{0,3}\right)+p_{0,4}\left(w_{0,3}-w_{0,2}\right)\right) \tag{4.28}\\
+\delta_{2}\left(p_{0,3} w_{0,4}-p_{0,4} w_{0,3}\right)+\delta_{3}\left(p_{0,4} w_{0,2}-p_{0,2} w_{0,4}\right) \\
+\delta_{4}\left(p_{0,2} w_{0,3}-p_{0,3} w_{0,2}\right)
\end{array}\right\}
$$

where

$$
\delta_{i}=\left\{\begin{array}{l}
2 g_{i, 1}(0,0) r_{0} \cos \phi_{i} \cos \lambda_{i} \text { if } F_{i} \text { is of form (4.24), } \\
2 g_{i, 2}(0,0) r_{0} \cos \phi_{i} \sin \lambda_{i} \text { if } F_{i} \text { is of form (4.25), } \\
2 g_{i, 3}(0,0) r_{0} \sin \phi_{i} \text { if } F_{i} \text { is of form }(4.26),
\end{array}\right.
$$

and that the sections of the big bifurcation set of the unfoldings F_{i} are generic. Since $\mathbf{x}_{0,1}$ is chosen to be the origin we have that F_{1} is of the form (4.26) for $i=1$ and so $\delta_{1}=-2 g_{i, 3}(0,0) r_{0}$.

The above only contains the conditions for versality; the conditions for generic sections have yet to be calculated. See $\S 4.7$ and [GK02] for more detail on the A_{1}^{4} transition.

Interpretation of the A_{1}^{4} Conditions

The first condition for versality (4.27) is the same as requiring the four points of tangency $\mathbf{x}_{0, i}=\left(p_{0, i}, q_{0, i}, w_{0, i}\right)$ on $\gamma_{i}\left(x_{i}, y_{i}, 0\right)$ for $i=1, \ldots, 4$ are coplanar. Again consider a simplified version of the second condition for versality (4.28), where families $\gamma_{1}, \gamma_{3}, \gamma_{4}$ do not change with t, so that $\delta_{1}=\delta_{3}=\delta_{4}=0$. Then (4.28) becomes $\delta_{2}\left(p_{0,3} w_{0,4}-p_{0,4} w_{0,3}\right) \neq 0$. Using the interpretations in §4.3.6 and assuming $g_{2,1}(0,0), g_{2,2}(0,0), g_{2,3}(0,0)$ are all non-zero, we get that the simplified version of (4.28) is the same as stating that the unit normal to γ_{2} at $t=0$ must not lie in the plane perpendicular to the coordinate direction corresponding to change with the family parameter t and that $\mathbf{x}_{0,3} \times \mathbf{x}_{0,4}$ must not lie in the (x, z)-plane.

4.7 Further Research

The above contains the necessary conditions for realizing the $A_{5}, A_{1} A_{3}-\mathrm{I}$, $A_{1} A_{3}$-II, $A_{1}^{2} A_{3}$-I, $A_{1}^{2} A_{3}$-II and $A_{1} A_{4}$ transitions on a one-parameter family of symmetry sets in \mathbb{R}^{3}. Also, there is some work done towards the conditions for realizing the A_{1}^{4} transition. This remains to be completed, along with the remaining transition on a one-parameter family of symmetry sets which also occurs on a one-parameter family of medial axes, the A_{1}^{5} transition. There are other transitions besides $A_{1} A_{4}$ that are expected on a generic one-parameter family of symmetry sets, which do not occur on the medial axis. The same methods as used in this chapter can be used to obtain the conditions for realizing these.

For each of the transitions considered in this chapter we did not consider the limits of tangent spaces to strata of dimension greater than one, since we assumed all of these contain a limit of tangent spaces to a one-dimensional stratum (see Remark 4.2.1.1). Since this does not necessarily follow from [BG86] a general proof of this is required. Failing that it will be necessary to check for each transition that the limits of tangent spaces to strata of dimension greater than one do not produce additional normal forms for generic functions.

As mentioned at the start of this chapter, a paper summarizing the methods used in this chapter and the conditions obtained, together with any further research, would be a natural completion of this area of research.

Bibliography

[A74] V. I. Arnol'd, 'Normal forms of functions in neighbourhoods of degenerate critical points', Russian Mathematical Surveys, 29 (1974), 10-50.
[Blu02] H. Blum, 'Biological shape and visual science I', Journal of Theoretical Biology, 38 (1978), 1-28.
[Bog90] I. A. Bogaevsky, 'Metamorphoses of singularities of minimum functions and bifurcations of shock waves of the Burgers equation with vanishing viscosity', St. Petersburg (Leningrad) Math. J., 1 (1990), 807-823.
[Bog02a] I. A. Bogaevsky, 'Perestroikas of shocks and singularities of minimum functions', Physica D: Nonlinear Phenomena, 173 (2002), 1-28.
[Bog02b] I. A. Bogaevsky, 'Perestroikas of symmetry sets in 3D space', private communication with I. A. Bogaevsky.
[BG86] J. W. Bruce \& P. J. Giblin, 'Growth, motion and one-parameter families of symmetry sets', Proceedings of the Royal Society of Edinburgh, 104A (1986), 179-204.
[BG92] J. W. Bruce \& P. J. Giblin, Curves and Singularities, Cambridge University Press (1992).
[BGG85] J. W. Bruce, P. J. Giblin \& C. G. Gibson 'Symmetry sets', Proceedings of the Royal Society of Edinburgh, 101A (1985), 163-186.
[CP89] S. Chen \& R. E. Parent, 'Shape averaging and its applications to industrial design', CGA, 9(1) (1989), 47-54.
[D03] J. Damon, 'On the smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness', Annales Inst. Fourier, 53 (2003), 1941-1985.
[D04] J. Damon, 'On the smoothness and geometry of boundaries associated to skeletal structures II: geometry in the Blum case', Compositio Mathematica, 140 (2004), 1657-1674.
[D05] J. Damon, 'Determining the geometry of boundaries of objects from medial data', International Journal of Computer Vision, 63 (2005), 4564.
[GB85] P. J. Giblin \& S. A. Brassett, 'Local symmetry of plane curves', American Mathematical Monthly, 92 (1985), 689-707.
[GK99] P. J. Giblin \& B. Kimia, 'On the local form and transitions of symmetry sets, medial axes, and shocks', Proceedings of the IEEE International Conference on Computer Vision, (1999), 385-391.
[GK02] P. J. Giblin \& B. B. Kimia, 'Transitions of the 3D medial axis under a one-parameter family of deformations', Proceedings of the European Conference on Computer Vision 2002, Lecture Notes in Computer Science, 2351 (2002), 718-734.
[GK03] P. J. Giblin \& B. B. Kimia, 'On the intrinsic reconstruction of shape from its symmetries', IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 895-911.
[GK04] P. J. Giblin \& B. Kimia, 'A formal classification of 3D medial axis points and their local geometry' IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 238-251.
[GKP05] P. J. Giblin, B. Kimia \& A. J. Pollitt, 'Transitions of the 3D medial axis under a one-parameter family of deformations, preprint (27 pages).
[GS98] P. J. Giblin \& G. Sapiro, 'Affine-invariant distances, envelopes and symmetry sets', Geometriae Dedicata, 71 (1998), 237-261.
[GS00] P. J. Giblin \& G. Sapiro, 'Affine versions of the symmetry set', Research Notes in Mathematics 412, Real and complex singularities, eds: J. W. Bruce, F. Tari, Chapman and Hall/CRC (2000), 173-187.
[Gibs98] C. G. Gibson, Elementary Geometry of Algebraic Curves, Cambridge University Press (1998), 137-138.
[GreMil98] U. Grenander \& M. Miller, 'Computational anatomy: an emerging discipline', Quarterly of Applied Mathematics, LVI(4) (1998), 617-694.
[HGYGM99] P. L. Hallinan, G. G. Gordon, A. L. Yuille, P. J. Giblin \& D. Mumford, Two- and Three-Dimensional Patterns of the Face, A K Peters, Ltd. (1999).
[IS98] S. Izumiya \& T. Sano, 'Generic affine differential geometry of plane curves', Proceedings of the Royal Society of Edinburgh, 41 (1998), 315324.
[LSMP] Liverpool Surface Modelling Package (LSMP), written by Richard Morris for Silicon Graphics and X Windows. See R.J.Morris, 'The use of computer graphics for solving problems in singularity theory', in Visualization in Mathematics, H.-C.Hege \& K.Polthier, Heidelburg: SpringerVerlag (1997), 173-187.
[MAPLE] Maple, Computer algebra \& graphics package, distributed by Waterloo Maple Software, Waterloo, Ontario, Canada.
[M03] D. Mumford, 'The shape of objects in two and three dimensions', Gibbs Lecture 2003, to appear in Notices of the American Mathematical Society.
[PGK04] A. J. Pollitt, P. J. Giblin, \& B. Kimia 'Consistency conditions on the medial axis', Proceedings of the European Conference on Computer Vision

2004, ed. T. Pajdla \& J. Matas, Lecture Notes in Computer Science, 3022 (2004), 530-541.
[PGK05] A. J. Pollitt, P. J. Giblin, \& B. Kimia ‘Consistency conditions on the medial axis', preprint (31 pages).
[S99] D. Siersma, 'Properties of conflict sets in the plane', Geometry and Topology of Caustics, ed. S. Janeczko and V. M. Zakalyukin, Banach Center Publications, 50, Warsaw (1999), 267-276.
[SSG99] J. Sotomayor, D. Siersma \& R. Garcia, ‘Curvatures of conflict surfaces in Euclidean 3-space', Geometry and Topology of Caustics, ed. S. Janeczko \& V. M. Zakalyukin, Banach Center Publications, 50, Warsaw (1999), 277285.
[Su83] Su B., Affine Differential Geometry, Science Press, Beijing/ Gordon and Breach, New York (1983).

