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1 Introduction

This study is a continuation of my last work concerning area functions and singularity
theory. The idea of the last piece of work was two fold. Firstly, to introduce some of
the more important concepts involved with singularity theory, such as contact, height
functions and distance-squared functions, using specific examples, and secondly to
define and discuss the significance of area functions, specifically investigating affine
area parallels and symmetry sets. The latter part of that study consisted of a fairly
substantial report regarding equilateral triangles and some important results were
also presented relating to closed plane curves.

This dissertation is an extension of the second part of the mini dissertation. We
can split up the work on closed plane curves into two categories. That of convex
plane curves where the curvature is continually positive, and that of non-convex plane
curves, which have an even number of changes of sign of curvature, and therefore
contain inflections. In the last study convex plane curves were discussed in some
detail, but more results are presented in this report, concerning the classification of
the area function. The discussion of non-convex plane curves is rather extensive,
and so a whole chapter is devoted to this topic.

Looking at non-convex plane curves adds a lot more complications to the subject,
which are discussed in detail. First of all, we find that a chord can cut the curve in
more than two places, and so areas outside of the closed curve can be separated by
the chord, as well as areas inside. This idea brings us on to the discussion of algebraic
area, as opposed to numerical area that was required for convex plane curves, and
opens up possibilities of a zero area, where the area enclosed by the chord outside
of the curve is equal to that inside the curve. With all possibilities of non-convex
curves, the local area parallel, near the inflections, is calculated using power series,
by assigning local variables to the significant parts of the curve. The results are also
presented geometrically, by way of examples, both local and global.

The discussion on equilateral triangles in the previous study was relatively straight
forward for reasons similar to that of convex curves. Clearly, there are no non-convex
possibilities involved with triangles. For this reason, I have included a relatively sig-
nificant chapter discussing quadrilaterals. Similar to the closed plane curves we can
split up the subject into two: convex and non-convex. We can simplify our inves-
tigation by comparing the quadrilaterals with closed plane curves, by rounding off
the vertices. Then the comparison is more acceptable.

Furthermore, we find there are other complications involved, specifically con-
cerning the possibility of affine transformations. We know that any three points in
the plane can be affinely transformed onto any other three points in the plane. For
this reason, any triangle can be affinely transformed onto any other triangle, which
means that a study of equilateral triangles alone is sufficient. With quadrilaterals,
however, we only have a limited number of degrees of freedom concerning affine
transformations, and so there may be more possibilities to consider. In all cases, the
area parallel and symmetry set are discussed.
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This field of mathematics is a rather modern topic of study. Indeed, the pre-
ponderance of documents concerning affine area parallels, symmetry sets and medial
axes have been published within the last five years. A fairly substantial investiga-
tion has taken place recently by Niethammer of the Georgia Institute of Technology,
Betelu of the University of North Texas, Sapiro of the University of Minnesota,
Tannenbaum of the Georgia Institute of Technology and Giblin of the University of
Liverpool, in their paper entitled Area-Based Medial Axis of Planar Curves, where
a new definition of affine invariant medial axis of planar curves is introduced. This
paper was accepted in February last year. Credit must also go to Leandro Estrozi for
his work on this subject, specifically concerning his program that plots area parallels
and symmetry sets, which has become invaluable during this study.

Thanks must go to my family and various members of the department for their
continual support during the last year, and special thanks must go to my tutor Peter
Giblin for all of his help and encouragement, particularly during the research for this
dissertation and the mini-dissertation. My enjoyment of mathematics has developed
more than I thought possible over the last year, largely due to his guidance and
support, and I feel privileged to have had this opportunity to work with him so
closely over the last year.
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2 Closed Plane Curves

2.1 A Review of Convex Curves

Let us begin by recalling some of the information from the Mini-Dissertation con-
cerning convex curves. Using the information that we have already noted, we will be
able to extend the study into a more general form, specifically looking at non-convex
curves, that is, closed curves which contain inflections. So, initially let us consider a
convex closed plane curve which is defined by a polar equation r = r(θ), with r > 0.
The pole X is inside the curve, with a chord at an angle α from this pole, as is shown
in the diagram.

X

α
θ

r

γ

Figure 1: Curve γ with polar equation r = r(θ) relative to the pole X.

2.2 The Area Function

In the Mini-Dissertation, several important results were stated and verified. Partic-
ularly, the area function A in terms of α was confirmed to be of the form

A(α) =
1
2

∫ α+π

α
r2dθ

using some general theory concerning the area of a sector. Moreover, using the rules
of differentiating integrals, with the respective variable contained in the limits rather
than the integrand, the first derivative of the area function was found to be of the
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form

A′(α) =
1
2
r(α + π)2 − 1

2
r(α)2

When this was equated to zero, we saw that r(α + π) = r(α), giving the result that
the pole X is the midpoint of the chord if and only if A′(α) = 0. Furthermore, we
found that differentiating again gives

A′′(α) = r(α + π)r′(α + π) − r(α)r′(α)

and when this was equated to zero, at the same time as the first derivative being
equal to zero, and assuming that r(α) is non-zero, that is it has some positive length,
we saw that r′(α + π) = r′(α).

The general form of the gradients of the tangents that meet the curve at the
endpoints of the chord were also found. In polar coordinates, x = r(θ) cos θ and
y = r(θ) sin θ. We found that the gradient m1, where θ = α was of the form

m1 =
r′(α) sin α + r(α) cos α

r′(α) cos α − r(α) sin α

and that m2, where θ = α + π, referring to the tangent line at the opposite end of
the chord, was of the form

m2 =
−r′(α + π) sin α − r(α + π) cos α

−r′(α + π) cos α + r(α + π) sin α

2.3 Classifying The Area Function

Now that the scene is set, we can go on to describe some further consequences
concerning the second derivative of the area function, specifically, classifying the
area cut off by the chord. In order to simplify the calculations, the value of α is set
at zero, giving

m1 =
r(0)
r′(0)

and m2 =
r(π)
r′(π)

Let’s assume that we have m1 on the right of the pole and m2 on the left, as
shown below in Figure 2.
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X

m1m2

Figure 2: The two tangent lines relative to the pole X.

We are currently assuming that the gradients are not the same. In fact, there
are several cases here, which we will look at in turn in order to try to classify the
behaviour. It is important to point out at this stage, that we are assuming that
A′(α) = 0, which means that the pole X is the midpoint of the chord, as is stated
above. This implies that, when classifying the second derivative, r(0) = r(π), since
this is simply the distance from the pole to the curve. We will look at the cases
where the tangent lines meet above the horizontal.

2.3.1 Case 1: m1 > m2 > 0

If gradient m1 is greater than m2, with both m1 and m2 positive, then the two
tangent lines will meet above the horizontal. If this is the case, then we have

r(0)
r′(0)

>
r(π)
r′(π)

> 0

We can then divide both sides by r(0) = r(π) to get

1
r′(0)

>
1

r′(π)
> 0

and multiply up, keeping in mind that, since m1 and m2 are positive, r′(0) and r′(π)
are positive. We then have

r′(π) > r′(0) > 0

In summary, if r′(π) > r′(0), with both r′(π) and r′(0) positive, then the tangent
lines will meet above the horizontal. This is shown geometrically in Figure 3.
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2.3.2 Case 2: m2 < m1 < 0

If gradient m2 is less than m1, with both m1 and m2 negative, then the two tangent
lines will meet above the horizontal. In this case

1
r′(π)

<
1

r′(0)
< 0

which implies that
r′(0) < r′(π) < 0

In summary, if r′(π) > r′(0), with both r′(π) and r′(0) negative, then the tangent
lines will meet above the horizontal. This is shown geometrically in Figure 4.

2.3.3 Case 3: m1 < 0 < m2

The final case that ensures that the tangent lines will meet above the horizontal is
where m1 is negative and m2 is positive. This implies that

1
r′(0)

< 0 <
1

r′(π)

and so
r′(π) > 0 > r′(0)

In summary, if r′(π) > r′(0), with r′(π) positive and r′(0) negative, then the tangent
lines will meet above the horizontal. This is shown geometrically in Figure 5.

These are the only three cases that ensure that the tangent lines meet above the
horizontal. We can now use this information to classify the second derivative. There
is a minimum of area if and only if A′′(0) > 0. Then

r(α + π)r′(α + π) − r(α)r′(α) > 0

But we set α to be zero, so

r(π)t′(π) − r(0)r′(0) > 0

Rearranging, and cancelling r(0) with r(π), we have

r′(π) > r′(0)

We see that this situation occurs in all 3 cases and so we find that there is a minimum
of area if and only if the tangent lines meet above the horizontal. Otherwise there
is a maximum of area.
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h

m1m2

Figure 3: The first case where the tangent lines meet above the horizontal. We have
m1 and m2 both positive, with m1 > m2.

h

m1

m2

Figure 4: The second case where the tangent lines meet above the horizontal. We
have m1 and m2 both negative, with m1 > m2.

h

m1m2

Figure 5: The third case where the tangent lines meet above the horizontal. We
have m1 negative and m2 positive.

13



2.4 Parallel Tangent Lines

Having found the required conditions that ensure a maximum or minimum of area,
let us now look at the special degenerate case where the second derivative is equated
to zero. As we showed earlier

A′′(α) = r(α)r′(α + π) − r(α)r′(α)

= r(α)
(
r′(α + π) − r′(α)

)
Assuming the radius r(α) is non-zero, that is, it has some positive length, then we
can see quite clearly that r′(α + π) = r′(α) if and only if A′(α) = A′′(α) = 0. Then
substituting this into the gradient formula stated in Section 2.2, we have

m2 =
r′(α) sin α + r(α) cos α

r′(α) cos α − r(α) sin α
= m1

This shows that the gradients of the tangent lines at the two ends of the chord are the
same. So we have proved that the tangents at the two ends of the chord are parallel,
and the pole X is the midpoint of this chord, if and only if A′(α) = A′′(α) = 0. This
is illustrated in Figure 6.

X

γ

α

Figure 6: Curve γ together with the tangent lines at the ends of the chord.
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The diagram shows the specific case in which A′(α) = A′′(α) = 0 and the tangent
lines at each end of the chord are parallel. In addition to this, the pole X is the
midpoint. This is in fact a very important case, as it is where we have an A2 singu-
larity. It is these parts of the area parallel that correspond to the cusps. This will be
discussed in Section 4, where we consider the area parallel of various quadrilaterals
in a fair amount of detail.

We also find that this is completely analogous to the formation of cusps on the
Euclidean parallel, as the distance-squared function has its first two derivatives equal
to zero, but the third derivative non-zero, and therefore has an A2 singularity.
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3 Non-Convex Curves

3.1 Algebraic Area

In the Mini-Dissertation, we restricted our study to that of convex curves, due to the
simple fact that any further material is so much more substantial. So we will now
begin to study some non-convex closed plane curves. These are curves which contain
at least two inflections. Indeed, as we have seen before on numerous occasions,
inflections will always come in pairs.

The difficulty we have with non-convex curves is that it can be far more prob-
lematic when cutting off an area with a chord. If we cut off an area in a continually
convex part of the curve, then we will not encounter problems in finding that part of
the area parallel. However when the chord moves round to any non-convex sections
of the curve, we will encounter complications. Figure 7 illustrates.

γ

A1

A2A3

Figure 7: A non-convex curve, with a chord cutting off a fixed area.

As can be seen in the diagram, with the chord positioned as it is, we are initially
unsure as to what area is being cut off. Are we to take each of A1, A2 and A3 as
positive areas? Or perhaps we are to take A3 as a“negative” area.

Imagine that we were to take two curves y = f(x) and y = g(x), with three
intersections, isolating two areas, one above the line g(x) and one below, as shown
in Figure 8.

The area that we calculate by integration is called the algebraic area. We take
any area that is enclosed above the line y = g(x) as a positive area and any area
below as a negative area. We therefore take A2 as a negative area. It must be noted
here that the algebraic area is purely theoretical, since you can not have, in practice,
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y = f(x)

y = g(x)

A1

A2

x1 x2
x

Figure 8: Intersection of two curves.

a negative area. The integral is given by

A1 − A2 =
∫ x2

x1

(f(x) − g(x))dx

The same principle is used when calculating area parallels. Any area cut off by the
chord which is inside the curve is counted as a positive area, and any area that is
cut off by the chord but is outside the closed curve is treated as a negative area. The
algebraic area illustrated in Figure 7 is therefore given by A1 + A2 − A3.

3.2 Defining Local Coordinates

In order to find the area parallel of the general case of non-convex curves we will
start by looking at the local area that contains the inflections. Let us take a curve
y = f(x) on Cartesian axes given by x and y. We will have a zero at x = a, with
a negative, and a double zero at the origin. Let us also initially enclose an area
between the curve and the x-axis, so that the line y = 0 is our chord. We will
call this y = L(x). As usual, we may move this chord around the curve as long
as we always enclose the same area between y = L(x) and y = f(x), but we must
remember that if the chord goes past the inflection point, then it will cut off both a
positive area and a negative area, and, as discussed in the previous section, we must
use the algebraic area.

We will only be moving the chord in this local region, so it is a good idea to
introduce some local variables. In the local region of the origin, where the x-axis
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is tangent to the curve y = f(x) we will use the variable s. The one endpoint of
the chord will be restricted to this section of the curve, and will have coordinates
(s, f(s)). In the local region of the curves intersection with the x-axis at the point
x = a, we will use the variable t. We can also redefine the curve in this area as
y = g(x−a). The opposite endpoint of the chord will be restricted to this section of
the curve, and will have coordinates (t+a, g(t)). Figure 9 illustrates this information.

0
x

y

x=a

y=g(x−a)

y=L(x)

y = f(x)

(t+a,g(t))

(s,f(s))

A

Figure 9: A section of the non-convex curve.

Here we can see the local regions are clearly marked by bold lines. Our task is
now to observe how the endpoint of the chord near x = a moves as we move the
endpoint near the origin along its corresponding local region of the curve.

3.3 The Relationship Between the Two Endpoints of the Chord

Figure 10 shows us the algebraic area that we must find once the chord L(x) has
moved beyond the origin. It is important to remember that the algebraic area cut off
will always be the same as the initial area that was cut off before the chord started
to move.

Using this diagram, and comparing it with Figure 8 we can see that we must
position our chord L(x) so that the area between the x-axis and the curve y = f(x)
between a and 0 is the same as the difference of the two areas A1 and A2, since this
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0
x

y

a

x=t+a

x=s

y = L(x)

y = f(x)

A1 A2

Figure 10: The area under the curve y = f(x) between a and 0 is the same as the
difference of areas A1 and A2.

is the algebraic area. That is to say

A1 − A2 =
∫ x=s

x=t+a
(f(x) − L(x))dx =

∫ x=0

x=a
f(x)dx

Hence, rearranging gives

∫ s

t+a
L(x)dx =

∫ s

t+a
f(x)dx −

∫ 0

a
f(x)dx

Now, let’s consider the right hand side. In words, the first integral gives us the area
between the curve y = f(x) and the x-axis, from x = t + a up to x = s. As can
be seen from Figure 10, most of this area is above the x-axis, but the small area
between x = t + a and x = a is below the axis. We can split the integral up into
the sum of three integrals to make up the given area. We must use the fact that the
area between x = t + a and x = a is locally modelled by y = g(x − a), as is shown
in Figure 9, giving us

∫ s

t+a
f(x)dx =

∫ a

t+a
g(x − a)dx +

∫ 0

a
f(x)dx +

∫ s

0
f(x)dx
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We therefore have

∫ s

t+a
L(x)dx =

∫ a

t+a
g(x − a)dx +

∫ 0

a
f(x)dx +

∫ s

0
f(x)dx −

∫ 0

a
f(x)dx

and we can not only simplify this by cancelling, but also use the substitution u =
x − a, giving us ∫ s

t+a
L(x)dx =

∫ 0

t
g(u)du +

∫ s

0
f(x)dx

This has given us a rather important relationship. We shall now use this crucial
equation to find the connection between s and t.

In order to evaluate the left hand side, we must find an expression for L(x).
We know that L(x) is a straight line that connects the coordinates (t + a, g(t)) and
(s, f(s)). (Verification of this is trivial from Figure 9). We can therefore right down
the equation of the line.

y − f(s)
x − s

=
f(s) − g(t)
s − (t + a)

This can be rearranged to give

y = L(x) =
(

x − s

s − t − a

)(
f(s) − g(t)

)
+ f(s)

∫ s

t+a
L(x)dx =

∫ s

t+a

(
x − s

s − t − a

)(
f(s) − g(t)

)
dx +

∫ s

t+a
f(s)dx

=
∫ s

t+a

x(f(s) − g(t))
s − t − a

dx −
∫ s

t+a

s(f(s) − g(t))
s − t − a

dx +
∫ s

t+a
f(s)dx

=
x2(f(s) − g(t))

2(s − t − a)

∣∣∣∣
s

t+a

− xs(f(s) − g(t))
s − t − a

∣∣∣∣
s

t+a

+ xf(s)
∣∣∣∣
s

t+a

=
s2(f(s) − g(t))
2(s − t − a)

− (t + a)2(f(s) − g(t))
2(s − t − a)

− s2(f(s) − g(t))
s − t − a

+
s(t + a)(f(s) − g(t))

s − t − a
+ sf(s)− (t + a)f(s) +

This can be greatly simplified, giving

∫ s

t+a
L(x)dx =

(s − t − a)(f(s) + g(t)
2
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Since the part of the curve y = f(x) that corresponds to the variable s is locally
quadratic, we shall define f(s) so that it models a quadratic curve. That is, we shall
define f(s) as a Taylor series beginning with a quadratic term as following.

f(s) = f2s
2 + f3s

3 + f4s
4 + . . .

Here, all of the fi are constants. Similarly, the part of the curve that corresponds to
the variable t is locally linear, so we will define g(t) so that it models a straight line.
g(t) will therefore be a Taylor series beginning with a linear term. Hence, we have

g(t) = g1t + g2t
2 + g3t

3 + . . .

where all of the gj are constants.
We must now look at the right hand side of the relationship. Clearly

∫ s

0
f(x)dx =

∫ s

0
f2x

2 + f3x
3 + f4x

4 + . . . dx

=
[
f2

x3

3
+ f3

x4

4
+ f4

x5

5
+ . . .

]s

0

= f2
s3

3
+ f3

s4

4
+ f4

s5

5
+ . . . − 0

=
∞∑

n=2

fn
sn+1

n + 1

A similar argument shows that

∫ 0

t
g(u)du = −

∞∑
n=1

gn
tn+1

n + 1

Now, in order to find the relationship between s and t, we must expand out both
sides of the equation. When expanding the left we have

(s − t − a)(f(s) + g(t))
2

=
sf(s)

2
− tf(s)

2
− af(s)

2
+

sg(t)
2

− tgt

2
− ag(t)

2

= f2
s3

2
+ f3

s4

2
+ f4

s5

2
− f2

ts2

2
− f3

ts3

2
− f4

ts4

2
− f2

as2

2

− f3
as3

2
− f4

as4

2
+ g1

st

2
+ g2

st2

2
+ g3

st3

2
− g1

t2

2

− g2
t3

2
− g3

t4

2
− g1

at

2
− g2

at2

2
− g3

at3

2
+ · · ·
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Looking at the right, we have

f2
s3

3
+ f3

s4

4
+ f4

s5

5
− g1

t2

2
− g2

t3

3
− g3

t4

4
+ · · ·

Now, we will also define t as a power series of s, so that

t = t1s + t2s
2 + t3s

3 + . . .

where t1, t2 and t3 are expressions to be determined in terms of fi and gj . We want
to find the relationship between s and t, but we will initially only use terms of degree
three or less for reasons that will become apparent. (Indeed, as we are working with
power series, we have to stop somewhere!) With this in mind, we can now express
the equation as follows.

f2
s3

2
− f2

ts2

2
− f2

as2

2
− f3

as3

2
+ g1

st

2
+ g2

st2

2

− g1
t2

2
− g2

t3

2
− g1

at

2
− g2

at2

2
− g3

at3

2

= f2
s3

3
− g1

t2

2
− g2

t3

3

We will now use the power series form of t in the equation. Here we have to remember
that (t1s+t2s

2+t3s
3)2, or indeed (t1s+t2s

2+t3s
3)3 contains terms of degree greater

than three, so we must only use the relevant terms. We have

f2
s3

2
− f2

t1s
3

2
− f2

as2

2
− f3

as3

2
+ g1

t1s
2

2
+ g1

t2s
3

2
+ g2

t21s
3

2

− g1
t21s

2

2
− g1

2t1t2s3

2
− g2

t31s
3

2
− g1

at1s

2
− g1

at2s
2

2
− g1

at3s
3

2

− g2
at21s

2

2
− g2

2at1t2s
3

2
− g3

at31s
3

2

= f2
s3

3
− g1

t21s
2

2
− g1

2t1t2s3

2
− g2

t31s
3

3

We can now arrange this so that we may compare coefficients of the different powers
of s. This will then enable us to find some expressions for t1, t2 and t3.

g1at1
2

s +
(

g1t1
2

− af2

2
− g1t

2
1

2
− ag1t2

2
− ag2t

2
1

2

)
s2

+
(

f2

2
− f2t1

2
− af3

2
+

g2t
2
1

2
− g1t1t2 − g2t

3
1

2
− ag1t3

2
− ag2t1t2 − ag3t

3
1

2

)
s3

=
(
−g1t

2
1

2

)
s2 +

(
f2

3
− g1t1t2 − g2t

3
1

3

)
s3
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By comparing coefficients, we can now find out some very interesting information.
Since there is no degree one s term on the right hand side, we can see that ag1t1 = 0.
So at least one of a, g1 and t1 is zero. If a were zero, this would mean that this part
of the curve f(x) would be at the origin, but, by our definition of f(x), this is a local
part of the curve that is somewhere away from the origin, since the other part of the
curve, where s is the variable, is at the origin. So a �= 0.

Meanwhile, if g1 was zero then the power series g(t) would begin with the term
g2t

2 which is a quadratic term, and would, in the same way as f(s), model a quadratic
curve rather than a straight line. So g1 �= 0, which means that t1 = 0. This is in
fact rather convenient, as we can now remove many of the terms from the equation.
Comparing coefficients of s2 now gives us

−af2

2
− ag1t2

2
= 0

⇒ f2 + g1t2 = 0

Hence t2 = −f2

g1

This is, of course, always possible, as we have said that g1 is never zero, so we will
always avoid any zero denominators here. Let us now compare coefficients of s3 to
find an expression for t3. Remembering that t1 = 0, we have

f2

2
− af3

2
+

g1t2
2

− ag1t3
2

=
f2

3

and substituting in for t2 we have

f2

2
− af3

2
− f2

2
− ag1t3

2
=

f2

3

Rearranging gives us

ag1t3
2

= −af3

2
− f2

3

⇒ t3 = −f3

g1
− 2f2

3ag1

Finally, this gives us

t = −f2

g1
s2 +

(
−f3

g1
− 2f2

3ag1

)
s3 + · · ·

So we may express t in terms of constant terms α and β. We have

t = −αs2 − βs3 + . . .
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where α = f2

g1
and β =

(
f3

g1
+ 2f2

3ag1

)
.

Taking t in this form provides us with a useful piece of information. Clearly, t

begins with a quadratic term, and so behaves locally (near x = a) in a quadratic way.
It also has a negative coefficient, which means that the path it draws will always
be negative, since the first term is quadratic. That is, any value that is given to
s will be squared so that it becomes positive, and then negated by the minus sign.
Geometrically, this indicates that as the one endpoint of the chord moves along the
curve y = f(x) and passes through the origin, the other endpoint, the behaviour of
which is defined by our expression for t, will go along f(x) up to the x-axis at x = a

and then back down along the same path. The following term is cubic, and so will
have a lot less effect on the path that this endpoint takes.

3.4 The Area Parallel

Now we understand more about how the chord behaves, our next task is to find
the area parallel. As usual, we must consider the midpoints of the chord, as it is
these midpoints that trace out the area parallel. The midpoints will be denoted by
the general expression (mx,my). The coordinates of the endpoints are (t + a, g(t))
and (s, f(s)). In order to find the midpoint we will take the average of the x-
coordinates and the average of the y-coordinates of the endpoints. So starting with
the x-coordinate, we have

mx =
t + a + s

2

We know t = −αs2 − βs3 + . . ., which when substituted in, gives us

mx =
1
2
(a + s − αs2 − βs3 + . . .)

For the y-coordinate we will again take the average of the endpoints, so that

my =
1
2
(f(s) + g(t))

Using the power series in the same way as in Section 3.3, we can then expand out
the expression for the y-coordinate.
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my =
1
2
(f2s

2 + f3s
3 + . . . + g1t + g2t

2 + . . .)

=
1
2

(
f2s

2 + f3s
3 + . . . + g1(−αs2 − βs3) + . . .

)
=

1
2

(
(f2 − αg1)s2 + (f3 − βg1)s3 + . . .

)
=

1
2

((
f2 − f2

g1
g1

)
s2 +

(
f3 − f3

g1
g1 − 2f2

3ag1
g1

)
s3 + · · ·

)

=
1
2

(
−2f2

3a

)
s3 + · · ·

= − f2

3a
s3 + · · ·

So we now have the general coordinates of the midpoint

(mx,my) =
(

1
2
a +

1
2
s + · · · ,− f2

3a
s3 + · · ·

)

=
(

1
2
a, 0

)
+

(
1
2
s + · · · ,− f2

3a
s3 + · · ·

)

We are assuming here, for now, that α �= 0, which of course implies that f2 �= 0. If
we were to write (mx,my) as

(mx,my) =
(

1
2
s + s2u(s),− f2

3a
s3 + s4v(s)

)

where u(s) and v(s) are power series of s, then we can define s̄ as

s̄ =
1
2
s(1 + su(s))

Here, the map s → s̄ is a local diffeomorphism since

ds̄

ds

∣∣∣∣
s=0

=
1
2
�= 0

and therefore the inverse exists. Hence, s = 2s̄ + . . .. Using this reparametrisation,
we have

(mx,my) =
(

s̄,− f2

3a
(2s̄)3 + · · ·

)

=
(

s̄,−8f2

3a
s̄3 + · · ·

)
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which is the parametric equation for

y = −8f2

3a
x3 + · · ·

It is important to point out that a < 0, as this was originally how we decided the
curve y = f(x) should behave, and f2 > 0, since the local parabola at the origin is
above (or on) the x-axis, and curves anti-clockwise. This ensures that the coefficient
of x3 in the Cartesian equation is positive. Hence, the area parallel is locally defined
by a cubic curve, sloping from bottom left, to top right. This also proves that the
inflection point is at (1

2a, 0), which is of course expected as the characteristic points
of the area parallel are at the midpoint of the chords, and this is indeed the midpoint
of the chord that lies on the x-axis, with endpoints at x = a and x = 0. Figure 11
illustrates.

0
x

y

(a,0) ( 1
2
a,0)

y = f(x)

Figure 11: The area parallel is locally a cubic curve.

3.5 A Particular Case: f(x) = x2(1 + x)

We will now illustrate these details in the form of an example. Let us take a function
that has a zero at −1, so a = −1, and a double zero at the origin. The function
f(x) = x2(1+x) satisfies these conditions. Multiplying out, we have f(x) = x2 +x3,
which gives us coefficients f2 = 1 = f3, and all other fi are zero.
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We use the local variable t near x = a = −1, with t = x − a = x + 1, and so
the curve in this area is defined by y = g(t) = g(x + 1). Then x = t − 1 and so
y = t(t − 1)2. Hence, g(t) = t3 − 2t2 + t, and so the coefficients are g1 = 1 = g3 and
g2 = −2, and all other gj are zero.

To find the relationship between the local coordinates s and t, we will substitute
in these coefficients. From Section 3.3, we have

t = −f2

g1
s2 +

(
−f3

g1
− 2f2

3ag1

)
s3 + · · ·

and it can be easily checked that substituting in these values gives

t = −s2 − 5
3
s3 + · · ·

This of course shows how t behaves when s changes, and so we see how the endpoint
of the chord near x = −1 behaves as the endpoint near the origin moves. Using this
formation, we can plot some chords on the graph of y = x2(x + 1). With enough
chords we can create an envelope which may give us some idea as to the shape of
the local area parallel.

The general formula for the chord is

y = L(x) =
(

x − s

s − t − a

)(
f(s) − g(t)

)
+ f(s)

as was discussed in Section 3.3. Clearly, a = −1, f(s) = s2(1+s) and g(t) = t(t−1)2,
so these can be inserted in the formula to get

y =
(x − s)(s2(1 + s) − t(t − 1)2)

s − t + 1
+ s2(1 + s)

We also have t = −s2 − 5
3s3 + · · · , which can also be inserted to give

y =
(x − s)(s2(1 + s) − (−s2 − 5

3s3)(−s2 − 5
3s3 − 1)2)

s − (−s2 − 5
3s3) + 1

+ s2(1 + s)

and then using Maple to simplify this, we have

y = −(25s5 + 30s4 − 25xs4 + 6s3 − 30xs3 + 6s2 + 6xs2 + 9s − 6xs − 18s − 9)s2

9

This is now an equation involving x, y and s, and so we can substitute in any value
for s, and we will be left with a linear equation involving x and y. Recall that s is
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the local variable around the origin, so we will be taking values in this region, that
is, taking a range something like −0.3 ≤ s ≤ 0.3.

We can then use Maple to draw a substantial amount of these chords within this
range, which will give us an idea of the local behaviour of the area parallel. This is
shown in Figure 13, over leaf.

We can now confirm that this is indeed the shape that the local area parallel will
take by using the general formula for the locus of midpoints. From Section 3.4 we
have

(mx,my) =
(

1
2
a, 0

)
+

(
1
2
s + . . . ,− f2

3a
s3 + . . .

)

and substituting in the appropriate values gives

(mx,my) =
(
−1

2
+

1
2
s,

1
3
s3

)

which gives us the parametric form of a cubic passing through the x-axis at x = −1
2 ,

as wanted. This is illustrated in Figure 12.

1

1

0.5

0.5
0

-0.5

0

-1

-1.5

-0.5

-2

-1-1.5-2

Figure 12: The curve plotted with a small section of the area parallel.
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0.1

0

-0.3

-0.2

0-0.8

0.2

-0.1

0.4-0.4-1.2

x

0.3

Figure 13: An envelope of chords tracing out the local area parallel.
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3.6 Taking Coefficient f2 = 0

With f2 �= 0, we have t1 = 0, t2 = − f2

g1
and t3 = − f3

g1
− 2f2

ag1
as our coefficients of the

series
t = t1s + t2s

2 + t3s
3 + . . .

If we were to set f2 = 0, then we have t1 = 0 = t2 and t3 = − f3

g1
, and so there is

only one non-zero coefficient. Therefore we must consider the coefficient t4 which
requires taking the fourth power of s into account in our calculations.

There will, however, only be a few extra terms involved, but we will see that
this will change the shape of the area parallel. First of all we must find the new
relationship between s and t. Recall from Section 3.3 that on the left we have

(s − t − a)(f(s) + g(t))
2

=
sf(s)

2
− tf(s)

2
− af(s)

2
+

sg(t)
2

− tgt

2
− ag(t)

2

and so the terms of degree four are

f3
s4

2
,−f3

ts3

2
,−f4

as4

2
, g3

st3

2
and − g4

t4

2

Looking at the right hand side, we have

∞∑
n=2

fn
sn+1

n + 1
−

∞∑
n=1

gn
tn+1

n + 1

and so the terms of degree four are

f3
s4

4
and − g3

t4

4

We can then rewrite the required equation connecting s and t in the same way as in
Section 3.3, but with the extra terms of degree four.

f2
s3

2
+ f3

s4

2
− f2

ts2

2
− f3

ts3

2
− f2

as2

2
− f3

as3

2
− f4

as4

2
+ g1

st

2

+ g2
st2

2
+ g3

st3

2
− g1

t2

2
− g2

t3

2
− g1

at

2
− g2

at2

2
− g3

at3

2
− g4

t4

2

= f2
s3

3
+ f3

s4

4
− g1

t2

2
− g2

t3

3
− g3

t4

4

Now we can use the power series t = t1s + t2s
2 + t3s

3 + t4s
4 in the equation. Also,

it is useful to remember that t1 = 0, so that we can remove many of the terms. We
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get

f2
s3

2
+ f3

s4

2
− f2

t2s
4

2
− f2

as2

2
− f3

as3

2
− f4

as4

2
+ g1

t2s
3

2

+ g1
t3s

4

2
− g1

t22s
2

2
− g1

at2s
2

2
− g1

at3s
3

2
− g1

at4s
4

2
− g2

at22s
4

2

= f2
s3

3
+ f3

s4

4
− g1

t22s
4

2

We know from above that t2 = 0 since we are setting f2 = 0, and that t3 = − f3

g1
, for

the same reason. We can now substitute these values into the equation, giving

f3
s4

2
− f3

as3

2
− f4

as4

2
− f3

s4

2
+ f3

as3

2
− g1

at4s
4

2
= f3

s4

4

Now, comparing coefficients of s4 we have

−af4

2
− ag1t4

2
=

f3

4

and rearranging gives the result

t4 = − f3

2ag1
− f4

g1

Finally, this gives us the connection between s and t to be

t = −f3

g1
s3 −

(
f3

2ag1
+

f4

g1

)
s4 + · · ·

So we may express t in terms of constant terms γ and δ.

t = −γs3 − δs4 + . . .

where γ = f3

g1
and δ =

(
f3

2ag1
+ f4

g1

)
.

Now in order to find an expression for the area parallel, we will use the same
methods as in Section 3.4. The x-coordinate of the midpoint will be given by

mx =
t + a + s

2

=
1
2
(a + s − γs3 − δs4 + . . .)
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and the y-coordinate takes the form

my =
1
2
(f(s) + g(t))

=
1
2
(f3s

3 + f4s
4 + . . . + g1t + g2t

2 + . . .)

=
1
2

(
f3s

3 + f4s
4 + . . . + g1(−γs3 − δs4) + . . .

)
=

1
2

(
(f3 − γg1)s3 + (f4 − δg1)s4 + . . .

)
=

1
2

((
f3 − f3

g1
g1

)
s3 +

(
f4 − f3

2ag1
g1 − f4

g1
g1

)
s4 + · · ·

)

=
1
2

(
− f3

2a

)
s4 + · · ·

= − f3

4a
s4 + · · ·

This gives us the general coordinates of the midpoint.

(mx,my) =
(

1
2
a +

1
2
s + · · · ,− f3

4a
s4 + · · ·

)

=
(

1
2
a, 0

)
+

(
1
2
s + · · · ,− f3

4a
s4 + · · ·

)

We can then define s̄, and use the same local diffeomorphism as in Section 3.4, so
that s = 2s̄ + . . ., giving

(mx,my) =
(

s̄,− f3

4a
(2s̄)4 + · · ·

)

=
(

s̄,−4f3

a
s̄4 + · · ·

)

which clearly indicates that the Cartesian equation of the local area parallel is

y = −4f3

a
x4 + · · ·

Clearly, a Cartesian equation of this form defines a quartic graph. Unlike the
case where f2 is non-zero, the sign of the coefficient of the principal term in the
Cartesian equation is negative due to the fact that the constant a is negative, as we
know, and f3 is also negative. This is because the part of the curve y = f(x) near
the origin, where s is the local variable is locally a cubic, but sloping from top-left
to bottom-right. That is, it follows the path of a cubic with negative coefficient.
We therefore find that the local area parallel approximates the graph of a negative
quartic. This is illustrated in Figure 14.
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0
x

y

(a,0)

( 1
2
a,0)

y = f(x)

Figure 14: The area parallel locally approximates a quartic curve.

3.7 A particular Case: f(x) = −x3(1 + x)

Let us now look at an example of the case where the coefficient f2 = 0. We will
once again set a at −1, but this time have a triple zero at the origin. This can be
modelled by the function f(x) = −x3(1 + x) = −x3 − x4, so that f3 = −1 = f4, and
all other fi are zero. It can be easily checked that the curve near x = −1 is given
by y = g(t) = t(t − 1)3 = −t + 3t2 − 3t3 + t4 so that g1 = −1, g2 = 3, g3 = −3 and
g4 = 1, and all other gj are zero.

The connection between local variables s and t is then given by

t = −f3

g1
s3 −

(
f3

2ag1
+

f4

g1

)
s4 + · · ·

from Section 3.6, and so substituting all the appropriate coefficients in, we have

t = −s3 − 1
2
s4 + · · ·

Once again, we have the information that describes how then endpoint near
x = −1 behaves as its equivalent endpoint moves along the curve through the origin.
So we can calculate the general expression for the chord, and use Maple to create an
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envelope. Using a = −1, f(s) = −s3(s + 1) and g(t) = −t(t − 1)3, we have

y = L(x) =
(

x − s

s − t − a

)(
f(s) − g(t)

)
+ f(s)

=
(x − s)(−s3(1 + s) + t(t − 1)3)

s − t + 1
− s3(1 + s)

=
(x − s)(−s3(1 + s) − (−s3 − 1

2s4)(−s3 − 1
2s4 − 1)2)

s − (−s3 − 1
2s4) + 1

− s3(1 + s)

which can again be simplified to give a linear equation involving x, y and s. Then,
substituting in values of s in a range something similar to −0.3 ≤ s ≤ 0.3 will
give an envelope of chords, tracing out the local area parallel. This is illustrated in
Figure 16, over leaf.

We can once again confirm that the envelope shown in Figure 16 is indeed the
accurate shape for the local area parallel by substituting the appropriate values into
our general expression for the midpoint discussed in Section 3.6. We have

(mx,my) =
(
−1

2
+ s,−3

2
s4

)

which is the parametric form the quartic illustrated in Figure 15.

0-0.5-1-1.5

0.1

0

-0.1

-0.2

x

-0.3

-0.4

10.5

Figure 15: The curve plotted with a small section of the area parallel.
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Figure 16: An envelope of chords tracing out the local area parallel.
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3.8 The Zero Area Parallel

3.8.1 Zero Algebraic Area

As was discussed in Section 3.1, it is possible to have a negative algebraic area, if this
area is below the relevant line. Subsequently, it is also possible to have a positive
area and a negative area exactly the same, one above this line and one below, thus
cancelling each other out. This is known as zero algebraic area, or in its shorter
form, the zero area. Our task in this Section is to consider how the area parallel in
such a situation will behave. This is known as the zero area parallel. See Figure 17
for further illustration.

0 x

y

(s,f(s))

(t,f(t))

y=f(x)

x=s
x=t

y=L(x)

A1

A2

Figure 17: An example of zero area. The two areas cut off by the chord, one below
(A1) and one above (A2) are equal.

As usual, the curve is y = f(x) and the chord cutting off fixed area is y = L(x).
Clearly the fixed area is zero. We also have local variables s and t, between which
we will be finding the connection, that is, the way one behaves as the other changes.
In this situation, however, there is no need for any local redefinition of the curve, as
there has been in previous cases, since the curve only has a zero at the origin. The
important feature here is that A1 = A2.
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3.8.2 The Relationship Between the Two Endpoints of the Chord

Any curve of this type will always contain an inflection, and takes the shape of a
cubic. So when expressing the formula as a power series, it will start with a cubic
term. It will therefore be of the form

f(x) = f3x
3 + f4x

4 + . . .

Since the area cut off by the chord is now zero, we will have∫ x=s

x=t
(f(x) − L(x)) dx = 0

and so ∫ s

t
f(x)dx =

∫ s

t
L(x)dx

giving us our connection between s and t. Similar to previous calculations, the line
y = L(x) will be of the form

y =
(

x − s

s − t

) (
f(s) − f(t)

)
+ f(s)

and it is relatively simple to show that

∫ s

t
L(x)dx =

(s − t)(f(s) + f(t))
2

We must then consider the left hand side of the equation.∫ s

t
f(x)dx =

∫ s

t
f3x

3 + f4x
4 + . . . dx

=
[
f3x

4

4
+

f4x
5

5
+ · · ·

]s

t

=
f3s

4

4
+

f4s
5

5
+ · · · − f3t

4

4
− f4t

5

5
− · · ·

=
f3(s4 − t4)

4
+

f4(s5 − t5)
5

+ · · ·

=
∞∑

n=3

fn
(sn+1 − tn+1)

n + 1

The relationship can then be given in the form

f3(s4 − t4)
2

+
2f4(s5 − t5)

5
+ · · · = (s − t)(f(s) + f(t))
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Let us now consider the right hand side of this equation, using our power series
approximations.

(s − t)(f(s) + f(t)) = (s − t)(f3s
3 + f4s

4 + . . . + f3t
3 + f4t

4 + . . .)

= f3s
4 + f4s

5 + . . . + f3st
3 + f4st

4 + . . .

− f3s
3t − f4s

4t − . . . − f3t
4 − f4t

5 − . . .

Now, as we have done in previous calculations, we will express t in terms of a power
series, so that we may state our relationship between s and t in terms of increasing
powers of s, where it is our task to find the coefficients thereof. As in Section 3.3,
we have

t = t1s + t2s
3 + t3s

3 + . . .

We can now substitute this power series into the equation. We first of all want to
compare coefficients of s4, so to avoid the risk of getting too confused we will express
only the terms from this equation that will be required. We have

f3s
4

2
− f3t

4
1s

4

2
= f3s

4 + f3t
3
1s

4 − f3t1s
4 − f3t

4
1s

4

We can divide through by f3 since this coefficient is clearly non-zero, and then
comparing coefficients of s4 we have

1 − t41 = 2 − 2t1 + 2t31 − 2t41

⇒ 0 = t41 − 2t31 + 2t1 − 1

⇒ 0 = (t1 − 1)3(t1 + 1)

giving t1 = 1 or t1 = −1. If t1 = 1 then the power series of t will start off t = s, and
so this seems to suggest that the places at where the chord cuts the curve are in fact
the same point. This in fact describes the trivial case where the chord is tangent
to the curve at some particular point, and so the chord only meets the curve at one
point. This is shown in Figure 18, over leaf.

The diagram shows that the chord is tangent to the curve. Strictly speaking, this
chord does cut off zero area, but we are only interested in the case where a positive
area is cancelled out by a negative area, and so we may assume that t1 �= 1. The
other value, however, t1 = −1 is of interest to us. This case implies that the power
series starts of t = −s, and so the set up is originally symmetrical. This is a lot more
valid, and so our discussion will be solely centred around this value for t1.

Using the fact that t1 = −1 we will now consider the coefficients of s5 in order to
devise an expression for t2. Again, we will only use the relevant terms of the equation,
so that we may simplify matters as much as possible. So the terms involving s5 only
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0 x

y

(s,f(s))=(t,f(t))

Figure 18: The chord is now tangent to the curve, and so only meets the curve in
one place.

are now given. We have

2f4s
5

5
− 2f4t

5
1s

5

5
− 2f3t

3
1t2s

5 = f4s
5 + 3f3t

2
1t2s

5 + f4t
4
1s

5 − f3t2s
5

− f4t1s
5 − 4f3t

3
1t2s

5 − f4t
5
1s

5

Taking t1 = −1, this relationship can be simplified. Then, taking the coefficients of
s5 we have

4f4

5
+ 2f3t2 = f4 + 3f3t2 + f4 − f3t2 + f4 + 4f3t2 + f4

Collecting up similar terms leaves us with

4f4

5
= 4f4 + 4f3t2

⇒ 4f3t2 =
−16f4

5

⇒ t2 =
−4f4

5f3

This will always exist since f3 is non-zero. We can go on in a similar way to find t3.
As would be expected, this will involve the coefficients of s6. We now have

f5s
6

3
− f5t

6
1s

6

3
− 2f4t

4
1t2s

6 − 3f3t
2
1t

2
2s

6 − 2f3t
3
1t3s

6

= f5s
6 + 3f3t1t

2
2s

6 + 3f3t
2
1t3s

6 + 4f4t
3
1t2s

6 + f5t
5
1s

6 − f3t3s
6

− f4t2s
6 − f5t1s

6 − 6f3t
2
1t2s

6 − 4f3t
3
1t3s

6 − 5f4t
4
1t2s

6 − f5t1s
6
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Using the fact that t1 = −1 and t2 = −4f4

5f3
, we can express the relationship in terms

of t3 only. We have

f5

3
− f5t

6
1

3
+

8f2
4

5f3
− 48f2

4

25f3
+ 2f3t3 = f5 − 48f2

4

25f3
+ 3f3t3 +

16f2
4

5f3
− f5 − f3t3

+
4f2

4

5f3
+ f5 − 96f2

4

25f3
+ 4f3t3 +

f2
4

f3
− f5

This can be greatly simplified by collecting up similar terms. We get

2f3t3 − 8f2
4

25f3
= 6f3t3 +

56f2
4

25f3

⇒ 4f3t3 = −64f2
4

25f3

⇒ t3 = −16f2
4

25f2
3

We can see here that t3 = t22, which means that if the s2 term in the power series
disappears, then so does the s3 term. We can now express our power series as

t = −s − αs2 − α2s3 + . . .

where α = 4f4

5f3
. This describes how the endpoint of the chord referring to the local

part of the curve at which t is the local variable behaves as the endpoint at which s
is the local variable changes.

3.8.3 The Locus of Midpoints of Such Chords

We will first of all recall the diagram from the start of the section, in order to
familiarise ourselves with the way this model works. See Figure 19.

The diagram shows that the endpoints of the chord are given by (s, f(s)) and
(t, f(t)). It is therefore quite clear that the general expression for the midpoint will
be given by the average of these two coordinates, that is

(mx,my) =
(

s + t

2
,
f(s) + f(t)

2

)

Now, f(s) and f(t) can be expressed as power series, so we have

(mx,my) =
(

s + t

2
,
f3s

3 + f4s
4 + . . . + f3t

3 + f4t
4 + . . .

2

)
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y

(s,f(s))

(t,f(t))

Figure 19: Recalling the diagram. The chord cuts the curve leaving zero algebraic
area.

and we know that t = −s − αs2 − α2s3 + . . . where α = 4f4

5f3
, giving

(mx,my) =
(

s − s − αs2 + . . .

2
,
f3s

3 + f4s
4 − f3s

3 − 3αf3s
4 + f4s

4 + . . .

2

)

=
(−αs2 + . . .

2
, f4s

4 − 3αf3

2
s4 + · · ·

)

=
(
−2f4

5f3
s2 + · · · ,

(
f4 − 12f3f4

10f3

)
s4 + · · ·

)

=
(
−2f4

5f3
s2 + · · · ,−f4

5
s4 + · · ·

)

This calculation shows us that we have a cusp at the inflection point on the curve.
We can improve the accuracy by calculating the coefficient of s5 in the coordinate
my. When fifth powers are included we have

my =
f3s

3 + f4s
4 + f5s

5 + . . . + f3t
3 + f4t

4 + f5t
5 + . . .

2

=
f3s

3 + f4s
4 + f5s

5 − f3s
3 − 3αf3s

4 − gα2f3s
5 + f4s

4 + 4αf4s
5 − f5s

5 + . . .

2

=
(

f4 − 3
2
αf3

)
s4 + (2αf4 − 3α2f3)s5 + . . .

= −f4

5
s4 − 8f2

4

25f3
s5 + . . .
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which can be easily checked. This then gives us the extra term, and so we can now
express a more accurate form of the general formula of the midpoint. We have

(mx,my) =
(
−2f4

5f3
s2 + · · · ,−f4

5
s4 − 8f2

4

25f3
s5 + · · ·

)

We find that the coefficient of s5 disappears if and only if f4 = 0, which is very
interesting because if this was the case, then the coefficient of s4 would also be zero.
So, assuming f4 is not zero, then we have, highly locally, a rhamphoid cusp. That
is, for small values of s, we find there are two branches of a cusp curving in the same
direction, meeting at the inflection point on the curve y = f(x). In fact, the one
branch is a slight deformation of the other, due to the high powers involved. This
is illustrated in Figure 20, in order to give some idea of the shape of the local area
parallel.

0
x

y

Figure 20: An example of how a local area parallel may look in this case. We have
two branches meeting at the inflection point to form a rhamphoid cusp.

3.8.4 A Particular Case: f(x) = x3 + x4 + x5

Let us now consider an example. We will take the function f(x) = x3 + x4 + x5, so
that f3 = f4 = f5 = 1 and all other fi are zero. Let us go straight on to look at the
locus of midpoints of the chords. The previous section tells us that

(mx,my) =
(
−2f4

5f3
s2 + · · · ,−f4

5
s4 − 8f2

4

25f3
s5 + · · ·

)

42



If we substitute the coefficients fi into this expression, then we have

(mx,my) =
(
−2

5
s2 + · · · ,−1

5
s4 − 8

25
s5 + · · ·

)

and using maple, we can plot the local area parallel for a suitable range of s, such
as −0.6 ≤ s ≤ 0.5. Maple returns the diagram shown in Figure 21.

0.02

0.2

0.01

0.1
0

-0.01

0

-0.02

-0.1-0.2

Figure 21: The curve plotted with a small section of the area parallel.

We can see in this diagram that it is only really within close proximity to the
origin that the two branches of the rhamphoid cusp are curving in the same direction.
Therefore, whilst our range of s shows the local behaviour, the more relevant parts
of the curve will be described inside a smaller range such as −0.3 ≤ s ≤ 0.25. It is
within this range that we observe a true rhamphoid cusp.

It is, according to an earlier part of this study, no surprise that we encounter a
cusp in this particular case. As we have proven in Chapter 2, cuspidal formation
corresponds with parallel tangent lines, and there are indeed limitless possibilities of
parallel tangent lines in these types of curves.

3.9 Some Local Examples

In this final section, we will look at some examples of non-convex closed plane curves
sketched with their global area parallels (with different areas cut off), and take
a closer look at some of the local parts of these area parallels that have similar
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characteristics to those described in the preceding sections of this chapter. This will
help us to understand not only the local behaviour, but how each of these local parts
of the curves in question relate to the global area parallel, and how they all connect
up.

3.9.1 Examples of a Fixed Area Parallel

The curves we will analyse are shown in Figure 22. As can be seen, the left hand
diagram contains four inflections, but the right hand diagram contains only two.
The area parallels shown are non-zero area parallels, that is, they display the locus
of midpoints of chords that cut off particular areas, each with some positive value.

Figure 22: Two examples of non-convex closed plane curves with non-zero area
parallels.

In the left hand diagram, we shall take one of the extreme points, and observe
how the area parallel behaves locally. In order to clarify the shape of the local area
parallel that refers to these parts of the curve, it will help us to zoom in somewhat to
the local sections in question. This is discussed and illustrated over-leaf, in Figure 23.
In this diagram, the local part of the curve near the extreme point behaves like a
quadratic curve.

In the right hand diagram, the curve is similar, but we will see that the local part
of the curve near the extreme point is more comparable with a cubic. This refers to
the discussion in Section 3.6, where the coefficient of the quadratic term concerned is
zero. This is discussed in Figure 24. These diagrams show us how seemingly similar
curves can have area parallels with different characteristics.
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Figure 23: We have four interesting diagrams here. The top left diagram shows
the local area that we are analysing. The other three show the chord in slightly
different positions. The endpoint of the chord that is between the two inflections,
which we will call e1, moves along the curve, allowing the other endpoint, e2, to
move accordingly. We can see that there is a slight change in the direction in which
the locus of such midpoints turn as the endpoint e1 moves past the local extreme
point. Indeed, we can see that these midpoints trace out a local inflection, and is
therefore analogous to a cubic curve. Further analysis shows that the endpoint e2

moves in one direction, and when e2 moves past the local extreme point, it starts
moving in the other direction along the same path. This curve corresponds to the
discussion in Section 3.4.
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Figure 24: We now have four more interesting diagrams. The top left diagram once
again shows the local area that we are analysing, and the other three show the chord
in slightly different positions. In this instance, the area parallel is drawn, so that
our corresponding chord has three point contact with the curve at the local extreme
point. This means that the endpoint e1 goes through an inflection point rather than
a local minimum or maximum. This is shown in the bottom left diagram. If the
chord were to continue beyond its intersection with the curve, then it would have
three point contact at the inflection point. We can see that, in this case, there is no
change in the direction in which the locus of the midpoints of the chords are turning
indicating, as expected, that the local area parallel is analogous to a quartic curve.
Indeed, the way the curve is drawn corresponds to the discussion in Section 3.6.
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We find that, in all cases, the points of interest are at the non-convex parts of
the curve. The area parallel at the convex parts of the curve behave as is expected,
and therefore do not require any further discussion.

3.9.2 Examples of a Zero Area Parallel

The next example shows a zero area parallel. In fact, due to complications when
drawing zero area parallels, we cannot be as accurate as we would like, so instead,
we shall draw area parallels where the chord cuts off a tiny area, so we can get the
gist of the general behaviour. We find that these pictures are good enough to show
us what is required. For simplicity, we will continue to describe these area parallels
as zero area parallels, as it is the local behaviour around the inflection points of the
curve that are of interest in this study.

Figure 25 shows an example of a curve plotted with its zero area parallel. We
find that there are indeed cusps near the local extrema.

Figure 25: The curve here is the same as the curve in the left hand diagram in
Figure 22. The zero area parallel is also shown.

We shall now zoom in to the lower of the two extrema. Figure 26, over leaf,
shows the local behaviour of the area parallel near this extreme point.

This enlargement confirms much of the theory in Section 3.8. We find that there
are indeed rhamphoid cusps which seem to exist near the inflection points. Obviously,
this diagram shows the area parallel with chords cutting off a tiny area, but if we
had a precise diagram of the zero area parallel, the two branches of each rhamphoid
cusp would meet at the inflection points. We can also see from the diagram that the
more extreme inflection point corresponds to a smaller rhamphoid cusp, with less of
a deformation between the two branches.
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Figure 26: The curve and area parallel, having enlarged one of the areas of interest.
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4 Quadrilaterals

4.1 An Affine Transformation

We know, from the discussion in the Mini-Dissertation, that any three points in the
plane can be affinely transformed onto any other three points in the plane. It is due
to this feature that, when discussing triangles in the Mini-Dissertation, we had the
convenience of being able to affinely transform any arbitrary triangle onto any other
triangle. After all, a triangle is made up of three points in the plane. This allowed
us to constrict our study to that of equilateral triangles, and still produce general
results involving the area parallel and the symmetry set.

In this section of the Dissertation, I would like to study the area parallels and sym-
metry sets of quadrilaterals. We have several more difficulties to consider. Firstly,
unlike the case of triangles, we cannot affinely transform any arbitrary quadrilateral
into one single quadrilateral. This is due to the fact that there are so many more
considerations to be taken into account when specifying an arbitrary quadrilateral.
We do, however, have some degrees of freedom that may help us specify parts of a
quadrilateral that can be affinely transformed.

Using the same statement that three points in the plane can be affinely trans-
formed onto any other three points, we may assume that two of the sides of the
quadrilateral are the same length and perpendicular to each other. The other two
sides are, however, completely arbitrary. Figure 27 shows some examples of the
quadrilaterals we will be studying.

Figure 27: Some possible quadrilaterals. The dense lines show the affine levels of
freedom.

Figure 27 leads us on to another difficulty that we did not encounter when look-
ing at triangles. The two diagrams on the lower level are both non-convex. It
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would be interesting to understand how the area parallel behaves with non-convex
quadrilaterals, as we have done with non-convex curves.

4.2 Convex Quadrilaterals

We will begin with a discussion on convex quadrilaterals. In this section we will
discuss how the area parallel behaves, giving numerous specific examples. The dis-
cussion will be connected with parallel tangent lines and cuspidal formation, and the
self intersection points will be analysed in order to devise some details concerning
the symmetry set. We find, in all cases, that it is helpful to imagine that the quadri-
laterals in question have very slightly rounded vertices as well as slightly rounded
sides, as this clarifies the existence of parallel tangents at the relevant parts of the
figure. After all, finding tangent lines at corners can be rather problematic.

4.2.1 The Area Parallel

We will begin by taking some examples of quadrilaterals, and presenting them graph-
ically with their area parallels. From these we will single out the points of interest,
and discuss them in detail. First of all, however, it is worth mentioning something
about the shape of the area parallel. Let us recall the definition of the area parallel.
The area parallel is the locus of midpoints of chords which enclose a fixed area within
a closed structure.

When discussing triangles in the Mini-Dissertation, we found that the area par-
allel was made up of six different branches of hyperbolae. In fact, it is no surprise
that the area parallel of a quadrilateral is also made up of different branches of hy-
perbolae, for the simple reason that any quadrilateral can be turned into a triangle
by simply extending the sides! This rather curious phenomenon is illustrated in
Figure 28.

Figure 28: Any quadrilateral can be turned into a triangle by simply extending the
sides.
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The diagram shows two examples of how a quadrilateral can be compared to a
triangle. It is then no surprise that the area parallel of a quadrilateral is formed in
the same way as that of a triangle. The number of branches in the area parallel of
a quadrilateral, however, will vary, unlike the case of a triangle, as we will come to
realise shortly.

Let us now, as promised, take a look at a quadrilateral illustrated with its area
parallel. Figure 29 shows a quadrilateral, with two different area parallels. That is,
a different area is cut off by the envelope of chords in each diagram.

Figure 29: A quadrilateral with two different area parallels.

We can see clearly that the left hand diagram refers to chords cutting off a smaller
area than in the right hand diagram. We also notice that, unlike the triangle, there
appears to be a higher number of cusps when a larger area is cut off. Indeed, in the
left hand diagram there are four cusps, but in the right hand diagram there are six,
and so there is some value of fixed area at which we experience cuspidal formation.
(As we know by now, cusps always appear in pairs.)

This opens up several points of interest. We can ask ourselves three questions.
Firstly, at what value of area do the two new cusps first appear? Secondly, how does
the existence of parallel tangent lines, as was described in the chapter discussing
convex plane curves, correspond to the number of cusps present in a given area
parallel? Finally, can we perhaps find area parallels with eight cusps?

Before addressing the question of cuspidal formation, let us try to understand
more about the cusps. We know already that the cusps are the endpoints of branches
of hyperbolae, but we don’t really know, at this point, how they relate to the chord
moving around the quadrilateral. In order to understand more, the reader is referred
to Figure 30, which shows the different stages in order of the chord moving anti-
clockwise around the quadrilateral.
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Figure 30: The chord moves around the quadrilateral. We can see how the area
parallel is formed.
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For referral purposes, let us define the coordinates of the vertices of the quadri-
lateral to be (0, 0), (1, 0), (0, 1) and (a, b). We can see from Figure 30 that when
an endpoint of the chord passes through the vertices (1, 0), (0, 1) or (a, b), a cusp is
formed on the area parallel. However, when either endpoint passes through (0, 0),
we do not observe a cusp on the area parallel, but a continually (although locally)
smooth curve.

The reason for this is that the area cut off by the chord in this particular example
is small enough that one endpoint can be on the vertical side of the quadrilateral at
the same time as the other endpoint being on the horizontal side. This is shown in
diagram G of Figure 30. It is the fact that the endpoints continually exist on the
two adjacent sides passing through the origin in this section of the quadrilateral that
allows a smooth curve to be drawn.

This part of the area parallel, however, is no different to the rest. It still consists
of three different branches of hyperbolae joined together, but they are joined with
continuously turning tangents. That is, we find that at this part of the area parallel,
the branches at the connection point curve in the same direction, whereas branches
that join together to form cusps experience a change in direction of curvature at the
connection. This is illustrated in Figure 31.

Figure 31: The branches of hyperbolae may join together to form a continuous curve,
or a cusp.

In the left hand diagram we can see that it is possible to draw tangent lines at
the connection points (clearly marked), but it is not possible to draw a tangent line
at the connection point in the left hand diagram, as this is a cusp. This information
must be considered in response to the second of our questions.

Meanwhile, however, let us take a look at an example of an area parallel with six
cusps, similar to the right hand diagram of Figure 29.
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Figure 32: An area parallel with six cusps.

We can see in Figure 32 that there are two new cusps. Obviously, the cusps refer
to the endpoints of the chord going past vertices, but the important feature here is
the fact that, as can be seen in the middle diagram particularly, the endpoints of
the chord are on the two diagonal sides of the quadrilateral at the same time. That
is, they are on adjacent sides of the quadrilateral passing through the vertex (a, b),
not the origin.

So what has changed? We know that the area cut off by the chord has increased,
and we also know that the cusps appear when the endpoints can no longer be on
the vertical and the horizontal sides of the quadrilateral simultaneously. This pretty
much answers our first question. From this information, it is relatively clear that
the cusps form when the area enclosed by the chord is the same as the area of the
triangle with vertices (0, 0), (1, 0) and (0, 1). This is illustrated in Figure 33.

Figure 33: An area parallel at the point of cuspidal formation.
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In this diagram, we can see that the area cut off by the chord is the same as the
area of the triangle mentioned above. The midpoint of this chord is therefore at the
exact point of cuspidal formation on the area parallel.

Let us now move on to discuss the second of our three questions, concerning
parallel tangent lines. In the chapter on convex plane curves we proved that if the
first and second derivatives of an area function are both zero, but the third derivative
is non-zero, then we have an A2 singularity, and we therefore observe cusps in the
plane. This refers to the parts of the curves where the tangent lines at the two
endpoints of the chord have the same gradient, and are therefore parallel.

As has been mentioned, once the vertices of a quadrilateral have been rounded,
and we imagine that the sides are slightly bulging, we are suddenly dealing with a
smooth closed plane curve.

We find that none of the cusps actually corresponds with the origin. As is
stated above, the two new cusps form due to the fact that the endpoints of the
chord exist on the two sides of the quadrilateral that meet at the point (a, b), and
therefore correspond to the vertex (a, b). This is supported by the fact that there
are no possible tangent lines at the origin that are parallel to any of the sides of
the quadrilateral. The point (a, b), however, has two possible tangent lines that are
parallel to the other sides. Also, the vertices (1, 0) and (0, 1) each have one tangent
line parallel to one of the sides. This is shown in the diagram in Figure 34.

0

(a, b)

(1, 0)

(0, 1)

Figure 34: The dense black lines show the tangent lines that can be parallel to a
side of the quadrilateral. It is best to imagine that the vertices of the quadrilateral
are very slightly rounded, and that the sides are slightly bulging.
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We can see in the diagram that the each of the dense black lines is parallel to
one of the four sides of the quadrilateral, which helps explain why certain vertices
correspond with the existence of cusps. As is mentioned above, the origin has no
proper tangent lines parallel to any of the sides, and so does not correspond to the
existence of any of the cusps.

In order to answer the third of our questions, referring to whether or not there
exist area parallels containing eight cusps, let us first of all study the most degenerate
case possible, that of the square, as there is a possibility that the area parallel may
have eight cusps, due to its symmetry. Figure 35 shows the square with two different
area parallels. That is, the envelope of chords separates a different area in each
diagram.

Figure 35: The most degenerate example of the quadrilateral is the square.

It is clear that the left hand diagram displays the envelope of chords cutting off
a much smaller area than the right hand diagram. It is also clear that as this area
increases, there seem to be four parts of the area parallel that become more and more
angular. These parts of the curve are on the brink of turning into cusps, but never
quite get there. They exist when the chord, which is moving around the square, goes
through a vertex. In fact, the one end of the chord goes through one vertex, and the
midpoint of this chord stays at its corresponding point on the area parallel, until
the other end of the chord goes through its adjacent vertex. The midpoint actually
stays at the angular part of the area parallel.

Alternatively, this can be explained by referring to the sides of the square. If the
endpoints of the chord are on opposite sides of the square, then this refers to the
angular parts of the area parallel. However, as they move along perpendicular sides
of the square, the curved part of the area parallel is traced out. This is expressed in
the diagrams in Figure 36.
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Figure 36: Two of the chords cutting off the same area.

In Figure 36, the chord is moving anti clockwise around the square. In the left
hand diagram, we can see that the endpoints are on opposite sides of the square.
We will call the left hand endpoint e1 and the right hand endpoint e2. As the chord
moves around the square, the midpoint will stay at the same point, until e1 moves
through a vertex. The point where the midpoint is stationary is the angular part of
the area parallel. Once e1 has moved past the vertex, the two endpoints will then
be present on two sides of the square that are perpendicular to each other. This is
shown in the right hand diagram. The midpoint of the chord will then be in motion,
tracing out one of the four curved sections of the area parallel, until e2 goes through
the next vertex. When this happens, the two endpoints are once again on opposite
sides of the square, which means the midpoint of the chord will be stationary once
more at the next angular part of the area parallel, and the whole process continues.

An important feature of this situation is that when the endpoints are on opposite
sides of the square the midpoint stays at exactly the same point, even though the
chord is still in motion. This shows that, despite the fact that the area parallel
appears angular at this point, it does not quite turn into a pair of cusps. In fact, the
area parallel of the square does not have eight cusps, but strictly speaking it does
not have any!

So having looked at the most likely example, we can possibly assume that there
are no area parallels of this type with eight cusps. But using the theory we have
concerning parallel tangent lines, let us attempt to prove this.

In order to prove this, we shall look at a general quadrilateral, with angles α, β,
γ and δ, as shown in the diagram in Figure 37. Clearly, α + β + γ + δ = 2π. For
purposes of reference, we will call the vertex with angle α vertex A, angle β vertex
B, and so on.
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α β

γ

δ

β

δ

A
B

C

D

Figure 37: A general quadrilateral. Interior angles add up to 2π.

We will primarily look at vertex A. It is quite clear that this vertex will have
two tangent lines that are each parallel to one of the sides of the quadrilateral. One
will be parallel to side BC and the other parallel to side CD. We can also see from
Figure 37 that since there is a parallel tangent line with line BC, then the angles
at vertices A and B must add up to something less than π. That is to say that two
cusps exist if and only if α+β < π, due to the fact stated above that parallel tangent
lines imply cusps.

By contrast, we can see that there are no possible tangent lines at vertex C that
will be parallel to any of the sides. This is due to the fact that β + γ > π and
γ + δ > π.

So, in order for there to be eight cusps, we require the sum of any two adjacent
angles to be less than π. That is α + β < π, α + δ < π, β + γ < π and γ + δ < π.
Adding these together, this implies that

2(α + β + γ + δ) < 4π

⇒ α + β + γ + δ < 2π

But we know that with any quadrilateral α+β+γ+δ = 2π, which is a contradiction.
Hence, there does not exist an area parallel of a quadrilateral with eight cusps. We
therefore come to the conclusion that the only cuspidal formation occurs from four
cusps to six.
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4.2.2 The Symmetry Set

Let us first recall the definition of the symmetry set. The symmetry set is the locus
of self intersections of the area parallel. In order to observe how the symmetry set
behaves we will set up a general quadrilateral on a set of Cartesian axes. The two
fixed sides of the quadrilateral will remain where they are, and for simplicity we will
give them each length one along their respective axes, meeting at the origin. The
fourth vertex of the quadrilateral will have coordinates (a, b) with a > b. Figure 38
illustrates.

0 x

y

(a, b)

(1, 0)

(0, 1)

Figure 38: A general quadrilateral.

When finding the symmetry set of the equilateral triangle in the Mini-Dissertation,
we used different sized rectangles within the triangle. We have seen that the char-
acteristic points of the area parallel are always at the midpoint of the chord cutting
off fixed area. So, in the case of the equilateral triangle, when two chords cutting off
the same area meet at the midpoints, we have the two diagonals of a rectangle. So
the symmetry set is traced out by the centres of all the rectangles that will fit into
the triangle.

The reason why the symmetry set of a triangle is traced out by the centres
of rectangles is simply down to the symmetry of the triangle. When considering
quadrilaterals, however, the symmetry set will be traced out by the centres of par-
allelograms. Indeed, rectangles are rather degenerate examples of parallelograms.

So let us now add to Figure 38, by incorporating a parallelogram inside the
quadrilateral. There is, in fact more than one way of doing this. In all cases there
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will be one vertex of the parallelogram on each of the two diagonal sides of the
quadrilateral. For the first case that we will consider, we will also have one vertex
on each of the fixed sides as well. As these vertices are both on the axes, we will call
them (0, p) and (q, 0). Clearly, 0 < p < 1 and similarly, 0 < q < 1. For now, we will
call the other two vertices (u1, v1) and (u2, v2). Figure 39 illustrates further.

0 x

y

(a, b)

(1, 0)

(0, 1)

(0, p)

(q, 0)

(u1, v1)

(u2, v2)

Figure 39: A general quadrilateral, with a parallelogram incorporated.

Let us now define two scalars λ and µ. We will restrict them so that 0 < λ < 1
and 0 < µ < 1, with λ �= µ, for reasons that will become apparent. We will use
these scalars to find the coordinates of (u1, v1) and (u2, v2), in terms of a and b.
For (u1, v1), this point will have an x-coordinate greater than 1 but a y-coordinate
between 0 and b. It will therefore take the form

(1, 0) + µ(a − 1, b)

On the other hand, (u2, v2) has an x-coordinate between 0 and a and a y-coordinate
greater than 1, and so will be of the form

(0, 1) + λ(a, b − 1)

We can see now that λ �= µ, since we are avoiding the degenerate case where a = b.
As we have said, the idea of drawing in this parallelogram is due to the fact

that its two diagonals cut off the same area, but with respect to different vertices.
It is therefore important to point out that the quadrilateral enclosed by the points
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(0, 0), (1, 0), (u1, v1) and (0, p) has the same area as the quadrilateral enclosed by
the points (0, 0), (0, 1), (u2, v2) and (q, 0).

We would like to see how the midpoint of the diagonals of the parallelogram
changes as the parallelogram changes position. We will call the midpoint (mx,my).
First of all, however, we can see from Figure 39 that the two areas mentioned above
have some area in common which we can eliminate. The area in common is the
quadrilateral enclosed by coordinates (0, 0), (0, p), (u1, v1) and (q, 0), which is the
same area as the quadrilateral enclosed by (0, 0), (0, p), (u2, v2) and (q, 0). The
reader is referred once again to Figure 39 for clarity. This leaves us with two areas,
A1 and A2, as shown in the diagram in Figure 40. Clearly, A1 = A2.

0 x

y

(a, b)

(1, 0)

(0, 1)

(0, p)

(q, 0)

(1, 0) + µ(a − 1, b)

(0, 1) + λ(a, b − 1)

A1

A2

Figure 40: The areas enclosed by the dense black lines are equal.

So we have three conditions that must be met. Firstly, the midpoints must be
the same, giving us two conditions (one for each of the chords), and in addition, the
areas must be the same, that is A1 = A2.

Let us now find the coordinates of the midpoint. As usual, the midpoint is the
average of the endpoints of the chord. So from one chord we have

(mx,my) =
1
2
(1 + µ(a − 1), p + µb)

and from the other chord

(mx,my) =
1
2
(q + λa, 1 + λ(b − 1))
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Hence, we have

1 + µ(a − 1) = q + λa
p + µb = 1 + λ(b − 1)

⇒
{

1 − q = λa − µ(a − 1)
1 − p = µb − λ(b − 1)

Now we can use the fact that the areas are the same.

A1 = 1
2(1 − p)λa

A2 = 1
2 (1 − q)µb

⇒ a(1 − p)λ = b(1 − q)µ

We can now substitute in for (1 − p) and (1 − q). We have

a(µb − λ(b − 1))λ = b(λa − µ(a − 1))µ

a(µb − λb + λ)λ = b(λa − µa + µ)µ

λµab − λ2ab + λ2a = λµab − µ2ab + µ2b

λ2a(1 − b) = µ2b(1 − a)

λ2

µ2
=

b(a − 1)
a(b − 1)

Hence
λ

µ
=

√
b(a − 1)
a(b − 1)

Since λ and µ are always positive, then the right hand side will be the positive square
root. Also, since a and b are constants, for simplicity we will redefine this right hand
side as follows.

c =

√
b(a − 1)
a(b − 1)

So λ = µc. We can substitute this back in to the expressions for p and q, giving

p = 1 + µc(b − 1) − µb

= 1 + µbc − µc − µb

= 1 + µ(bc − b − c)

q = 1 + µ(a − 1) − µca

= 1 + µa − µ − µac

= 1 + µ(a − ac − 1)

Since a, b and c are constants, we now have p and q as functions of µ. As p and q
move between 0 and 1 along their corresponding axes, the midpoint of the diagonals
of the parallelogram moves. So we can now use these expressions for p and q to find
the coordinates of the midpoint. We have

(mx,my) =
1
2
(1 + µ(a − 1), 1 + µ(bc − b − c) + µb)
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Hence

mx(µ) =
1
2
(1 + µ(a − 1))

my(µ) =
1
2
(1 + µ(bc − c))

Here, we can see that when µ = 0 we have (mx,my) = (1
2 , 1

2), proving that the

endpoint of this section of the symmetry set is at (1
2 , 1

2). Now, if we differentiate
these expressions, we get

m′
x(µ) =

1
2
(a − 1)

m′
y(µ) =

1
2
(bc − c)

both of which are constants. So the midpoint moves both horizontally and vertically
with a constant rate of change, which proves that the midpoint traces a straight line.
Hence, this section of the symmetry set is a straight line.

We can quite easily calculate where this straight line begins, by substituting
µ = 0 into the coordinates of the midpoint. Clearly, we have (mx,my) = (1

2 , 1
2),

meaning that this branch of the symmetry set starts on the diagonal of the triangle
with vertices (0, 0), (1, 0) and (0, 1). This is expected, as we proved in the last section
that the area parallel starts to experience cuspidal formation when the area cut off
by the chord is equal to the area of this triangle.

This is only a valid proof for the case where there is one vertex of the paral-
lelogram on each of the axes as shown in Figure 39. Obviously, we may have a
different situation once the vertex of the parallelogram, which is currently given by
(q, 0) moves around clockwise past the origin. So we must now look at a second case,
where both of these vertices are on the y-axis. This case is illustrated in Figure 41.
The vertices of the parallelogram remain the same as in the previous diagrams.

Once again, the diagonals of the parallelogram cut off the same area with respect
to different vertices. But as before there is a segment of this area common to both
which can be eliminated. The diagram in Figure 42 illustrates the two areas that
are equal, once the area common to both has been eliminated. As before A1 = A2,
and the same conditions must be met. That is, the midpoints of the diagonals of the
parallelogram must be the same.

As before, we will find the general coordinates of the midpoint, in order to see
how the symmetry set behaves once the vertices of the parallelogram have moved
around clockwise. But first we need to calculate the areas A1 and A2 in terms of
their respective variables. It is simple enough to find the area A1. We have

A1 =
1
2
(1 − q)λa
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0 x

y

(a, b)

(1, 0)

(0, 1)

(0, p)

(0, q)

(u1, v1)

(u2, v2)

Figure 41: A general quadrilateral, with a parallelogram incorporated. Now the
vertices of the parallelogram have moved around clockwise.

0 x

y

(a, b)

(1, 0)

(0, 1)

(0, p)

(0, q)

(u1, v1)

(u2, v2)

A1

A2

Figure 42: We can see the equal areas once the parallelogram has moved beyond the
vertex.
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But A2 is a little more tricky, as we are dealing with the area of a quadrilateral,
rather than a triangle. In fact, it can be split into two triangles, one with base p and
height λa and the other with base 1 and height µb. We then have

A2 =
1
2
(λap + µb)

Hence, this tells us that

(1 − q)λa = λap + µb

⇒ 1 − q = p +
µb

λa

From the diagrams, we can see that the midpoint is given by

(mx,my) =
1
2
(1 + µ(a − 1), q + µb)

=
1
2
(λa, 1 + p + λ(b − 1))

then, we can equate both the x-coordinates and the y-coordinates of these two ex-
pressions. Firstly, from the x-coordinates we have

λa = 1 + µ(a − 1)

⇒ λ =
1 + µ(a − 1)

a

and from the y-coordinates we have

q + µb = 1 + p + λ(b − 1)

⇒ 1 − q = µb − p − λ(b − 1)

Now we can use our expression for λ and substitute in, so that we get an equation
involving just µ. We have

1 − q = µb − p − (b − 1)
(

1 + µ(a − 1)
a

)

and using the fact above that A1 = A2, we can substitute in for 1 − q, giving

µb − p − (b − 1)
(

1 + µ(a − 1)
a

)
= p +

µb

λa

and so, using our expression for λ once again, we have, having simplified the right
hand side

µb − (b − 1)
(

1 + µ(a − 1)
a

)
= 2p +

µb

1 + µ(a − 1)
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and after some more simplification, we can express p in terms of parameter µ and
constants a and b. We have

p(µ) = µb

(
1
2
− 1

2 + 2µ(a − 1)

)
− (b − 1)

(
1 + µ(a − 1)

2a

)

We now have our expression for p in terms of µ. We must then find an expression
for the midpoint of the diagonals of the parallelogram, which we find is a lot more
complicated than in the previous calculation, where one of the the vertices is on
the x-axis. The x-coordinate of the midpoint is fairly straightforward, but the y-
coordinate requires some rather tricky algebra. We have for the x-coordinate

mx =
λa

2
=

1 + µ(a − 1)
2

and for the y-coordinate

my = 1 + p + λ(b − 1)

= 1 + µb

(
1
2
− 1

2 + 2µ(a − 1)

)
− (b − 1)

(
1 + µ(a − 1)

2a

)

+(b − 1)
(

1 + µ(a − 1)
a

)

= 1 + µb

(
1
2
− 1

2 + 2µ(a − 1)

)
+ (b − 1)

(
1 + µ(a − 1)

2a

)

It can then be checked in Maple that multiplying out gives

my =
2a + b − 1 + (2 − 2b − 4a + 2ab + 2a2)µ + (2a + b − 1 + 2a2b − 3ab − a2)µ2

4a(1 + µa − µ)

We can now assign x, say to the x-coordinate of the midpoint, giving, once rearranged

µ =
2x − 1
a − 1

and using maple to substitute this expression for µ into the y-coordinate of the
midpoint, we have

my =
ab + (4a2 − 4a − 4ab)x + (4 − 4a − 4b + 8ab)x2

8a(a − 1)x

Looking at the numerator of this expression, we have no y2 term, which is interesting,
since we know that, in general ax2+bxy+cy2+ lower order terms = 0 is a hyperbola
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if and only if b2−4ac > 0. Since there is no y2 term, then c is 0 and so this expression
models a hyperbola due to the simple fact that b2 is always positive for real numbers.

It would be useful, now that we know that this part of the symmetry set takes
the form of a hyperbola, to find the endpoints of this hyperbola, so that we can show
that the two parts of the symmetry set are connected smoothly to one another. To
do this, we will take our expressions for p, mx and my, and substitute in the value
p = 0 for the one endpoint, and µ = 1 for the other.

It is clear from the diagrams that precede that as µ increases, one of the vertices
of the parallelogram moves from (1, 0) up to (a, b), we can see that at (1, 0), µ = 0
and at (a, b), µ = 1. So let us first of all concentrate on the endpoint that corresponds
with the vertex of the parallelogram coinciding with the vertex (a, b). That is, where
µ = 1. If µ = 1 then

mx =
a

2
and

my =
2a + b − 1 + 2 − 2b − 4a + 2ab + 2a2 + 2a + b − 1 + 2a2b − 3ab − a2

4a(1 + a − 1)

=
2a2 + 2a2b − ab

4a2

=
2a + 2ab − b

4

This tells us that the complete endpoint of this branch of the symmetry set is at the
point (

a

2
,
2a + 2ab − b

4

)

Now let’s take a look at the other endpoint. This occurs where p = 0. Using Maple
it can be shown that the value for µ when p = 0 is

µ =
(a − 1)(b − 1) +

√
ab(a − 1)(b − 1)

(a − 1)(a + b − 1)

This must take the positive square root, since both (a − 1) and (b − 1) are positive,
and (a + b − 1) is certainly positive. Let us concentrate on the coordinates of this
endpoint. Further calculations in Maple show that the x-coordinate is given by

mx =
ab +

√
ab(a − 1)(b − 1)

2(a + b − 1)

and the y-coordinate takes the form

my =
a2b − 2ab2 + 2ab3 − b3 + 2b2 − b + (2b2 + a − b − 1)

√
ab(a − 1)(b − 1)

2(a + b − 1)(ab +
√

ab(a − 1)(b − 1)
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It would be a good idea now to check that these coordinates are the same as the
coordinates of the endpoint of the section of the symmetry set that corresponds to
our previous calculations, where one of the vertices of the parallelogram was on the
x-axis. This will prove that, although this branch of the symmetry set is made up
of two sections, it is still continuous. So let us recall the general coordinates of the
midpoint for this case. We have

mx(µ) =
1
2
(1 + µ(a − 1))

my(µ) =
1
2
(1 + µ(bc − c))

The vertex of the parallelogram that was on the x-axis had coordinates (q, 0), so we
also need to recall our expression for q. We have

q = 1 + µ(a − ac − 1) where c =

√
b(a − 1)
a(b − 1)

The endpoint of this section of the symmetry set is clearly where q = 0, so we have

0 = 1 + µ (a − ac − 1)

If we then solve for µ and substitute into the x-coordinate of the midpoint, we have,
after some simplification,

2mx =
a
√

b(a − 1)
a
√

b(a − 1) − (a − 1)
√

a(b − 1)

=
a
√

b(a − 1)
a
√

b(a − 1) − (a − 1)
√

a(b − 1)
× a

√
b(a − 1) + (a − 1)

√
a(b − 1)

a
√

b(a − 1) + (a − 1)
√

a(b − 1)

=
a(ab(a − 1) + (a − 1)

√
ab(a − 1)(b − 1)

a(a − 1)(a + b − 1)

=
ab +

√
ab(a − 1)(b − 1)
a + b − 1

and so we finally have

mx =
ab +

√
ab(a − 1)(b − 1)

2(a + b − 1)

as wanted. This proves that the x-coordinates of the endpoints are the same. The
interested reader may wish to do the same check for the y-coordinates, by using
similar methods.

In summary, we find that this branch of the symmetry set starts of in a straight
line, but then turns into a branch of a hyperbola. We have also shown that the
endpoints of this branch are at (1

2 , 1
2) and

(
a
2 , 2a+2ab−b

4

)
.
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4.3 Non-Convex Quadrilaterals

Now that we understand the general behaviour of both the area parallel and the
symmetry set of convex quadrilaterals, it should come of no surprise to the reader
that a study of non-convex quadrilaterals is imminent. Indeed, having looked in
detail at the subject of closed plane curves, we know that there are certain features
connected with non-convex shapes that are not accessible with convex shapes. The
area of interest that comes to mind most readily is that of the zero area parallel, so
the bulk of this section will be concerned with this.

In the same way as convex quadrilaterals, we have certain degrees of freedom
connected with affine transformations. Once again, any three points in the plane
can be affinely transformed onto any other three points in the plane, meaning that
two of the sides of the quadrilaterals under investigation in this section will be the
same as with the convex quadrilaterals. These two sides are the two perpendicular
sides of unit length that meet at the origin. Hence, the quadrilaterals shown in
Figure 43 will have similar features to one another.

Figure 43: One quadrilateral can be affinely transformed onto the other.

Let us consider a quadrilateral with vertices (0, 0), (1, 0), (0, 1) and (a, b). Since
we are now discussing non-convex quadrilaterals, we require a and b to be less than a
half, and to avoid generality, we will set a �= b. There are three possibilities available
to us when considering the zero area parallel. These are illustrated in Figure 44.

A1

A2

A3

A4

A5

A6

A7

Figure 44: Three possibilities for the zero area parallel.
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The Ai are the various areas cut off by the chords in each of the diagrams.
Clearly, A1 = A2, A3 + A5 = A4 and A6 = A7, so that we have zero algebraic area
in each case. The chord can move around the quadrilateral as long as the area cut
off remains zero. We will look at each of the left hand, and the centre diagrams
only, since the right hand diagram is very similar to the left hand diagram, and will
produce the same results.

So let’s consider the first case. The chord has endpoints on the side joining (0, 0)
with (0, 1) which we will call P , and on the side joining (1, 0) with (a, b), which we
will call Q. The chord also cuts the line connecting (0, 1) with (a, b), and we shall
call this point R. This is displayed in the diagram in Figure 45.

A1

A2

P

Q

R

(0, 0)
(1, 0)

(0, 1)

(a, b)

Figure 45: Case one: The chord cuts just one side of the quadrilateral.

Let us consider the points P , Q and R. Clearly P is on the y-axis, and so
can be given coordinates (0, p), where p is a constant between 0 and 1. Q and R

are more complicated, and we require some more information about the sides of
the quadrilateral, so for now we will assign them coordinates (q1, q2) and (r1, r2),
respectively.

The side that connects (0, 1) with (a, b) has gradient b−1
a and cuts the y-axis at
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(0, 1). It therefore has equation

y =
b − 1

a
x + 1

For reasons that will become apparent very shortly, we can rearrange this to the
form

a = ay + (1 − b)x

The side connecting (1, 0) with (a, b) has gradient b
a−1 and cuts the y-axis at (0, b

1−a),

and so has equation

y =
b

a − 1
x +

b

1 − a

In order to model the movement of the chord, we will once again take parameters λ
and µ, with 0 < λ,µ < 1. The coordinates of Q are then given by

λ(a, b) + (1 − λ)(1, 0)

Hence
(q1, q2) = (λa + (1 − λ), λb)

Now, using the other parameter, we can derive the coordinates of R. We have

(r1, r2) = µ(q1, q2) + (1 − µ)(0, p)

= (µq1, µq2 + (1 − µ)p)

We can now use our rearrangement of the equation of the side that R rests on, and
substitute in the coordinates (r1, r2) for x and y. We have

a = a(µq2 + (1 − µ)p) + (1 − b)µq1

and after some more rearranging, we have

a(1 − p) = µ(aq2 − ap + (1 − b)q1))

= µ(abλ − ap + (1 − b)(aλ + 1 − λ))

= µ(abλ − ap + aλ + 1 − λ − abλ − b(1 − λ))

= µ(λ(a + b − 1) + 1 − ap − b)

We can then express µ in terms of λ and p. We get

µ =
a(1 − p)

λ(a + b − 1) + 1 − ap − b

Let us now discuss the area conditions. Obviously, for the zero area parallel, we
require that A1 = A2. The area A1 is quite simple to work out. It has base p and

71



A2

(r1, q2) (a, q2) (q1, q2)

(r1, b)
(a, b)

(r1, r2)

Aα

AβAγ

Figure 46: Method of calculating area A2.

height r1. Hence A1 = 1
2(1 − p)r1. The area A2 is a little more tricky. We have

to take a triangle, the hypotenuse of which is the line QR, and delete the relevant
areas. This is shown in Figure 46.

Using this diagram we can work out A2. If we call the area of the whole triangle
Aτ , we can see that A2 = Aτ − Aα − Aβ − Aγ . We will then consider each section
separately. We have

Aτ =
1
2
(q1 − r1)(r2 − q2)

Aα =
1
2
(a − r1)(r2 − b)

Aβ =
1
2
(q1 − a)(b − q2)

Aγ = (a − r1)(b − q2)

and since A1 = A2, we have

(1− p)r1 = (q1 − r1)(r2 − q2)− (a− r1)(r2 − b)− (q1 − a)(b − q2)− 2(a− r1)(b − q2)

We now use Maple to substitute in the following expressions.

q1 = λa + (1 − λ)

q2 = λb

r1 = µq1

r2 = µq2 + (1 − µ)p
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where

µ =
a(1 − p)

λ(a + b − 1) + 1 − ap − b

We find that the left hand side of this equation simplifies down to give

A1 =
(1 − p)2a(λa + 1 − λ)

2(λ(a + b − 1) + 1 − ap − b)

and the right hand side simplifies to

A2 =
(λ − 1)2(a + b − 1)(b + ap − p)

2(λa + λb − λ + 1 − ap − b)

The left hand side is then equated to the right hand side, and following some sim-
plification and rearrangement, we have

0 = λb + λap − pλ − a − b + p

It is then fairly easy to derive an expression for p in terms of λ. We have

p(λ) =
b(λ − 1) − a

λ(1 − a) − 1

We can then derive an expression for the general midpoint of the chord, giving us the
parametric form of this branch of the area parallel. Following some simplification in
the y-coordinate, we have

(mx,my) =
(

q1

2
,
p + q2

2

)

=
(

λa + (1 − λ)
2

,
a + b + λ2b(a − 1)
2(λ(a − 1) + 1)

)

We must now find out how this branch of the area parallel behaves. We would
expect, as has always been the case, that this models a hyperbola. In order to prove
this, we will redefine the parametric expression in a more general form, as this will
make things a little easier. We can express the midpoint as

(mx,my) =
(

αλ + β,
γλ2 + δ

ζλ + η

)

Then, the x-coordinate has the form

x = αλ + β ⇒ λ =
x − β

α
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and y can be expressed as

y =
γ

(
x−β

α

)2
+ δ

ζ
(

x−β
α

)
+ η

which has the general form
Ax2 + Bx + C

Dx + E

and so
Dxy + Ey = Ax2 + Bx + C

We can see that this does not contain any y2 terms. Now that we have the general
form, we can use Maple to convert our specific example. We find that the Cartesian
form of our parametric equation is

0 = 4bx2 + 4(1 − a)xy − 4bx + a2 + ab − a

⇒ 0 = 4x(bx + (1 − a)y) − 4bx + a2 + ab − a

We can see that the quadratic part of this clearly has real factors, and so we have
proven that this branch of the area parallel is hyperbolic.

Let us now discuss the endpoints of the branch. In order to do that, we need
to know more about the endpoints of the chord, specifically, the point P . We need
to know how this point moves along the y-axis, and whether or not there are any
changes of direction. To do this, we will take our expression for p and differentiate
with respect to λ. Firstly, however, it is important to point out that if λ = 0 then
p = −b−a

−1 = a + b, and if λ = 1 then p = −a
−a = 1, which means that P moves up

from p = a + b to p = 1. Now, differentiating we have

∂p

∂λ
=

(λ(1 − a) − 1)b − (b(λ − 1) − a)(1 − a)
(λ(1 − a) − 1)2

=
λb − λab − b − λb + b + a + λab − ab − a2

(λ(1 − a) − 1)2

=
a(1 − b − a)

(λ(1 − a) − 1)2

which contains only constants in the numerator. Furthermore, looking at the numer-
ator, a < 1

2 and b < 1
2 , which means 1 − b − a > 0, and so the numerator is always

positive. The denominator is also always positive, which makes the derivative posi-
tive. This proves there are no changes of direction in the movement of the endpoint
P , and therefore it moves steadily up the y-axis from p = a + b up to p = 1 as the
chord moves around the quadrilateral.
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We can now discuss the endpoints of the first branch of the area parallel. As we
have said, when λ = 0, p = a + b, and when λ = 1, p = 1. Where λ = 0, we will call
the endpoint e1, and at λ = 1, we will use e2 to denote the corresponding endpoint.
We have

e1 = (mx,my) =
(

1
2
,
a + b

2

)

e2 = (mx,my) =
(

a

2
,
a + b + b(a − 1)

2a

)

=
(

a

2
,
b + 1

2

)

It is relatively clear that the endpoint e2 is the midpoint of the line connecting
the vertices (0, 1) and (a, b). This is expected, as a trivial zero area will occur when
the chord comes into coincidence with this side of the quadrilateral. In fact, once
the chord has moved onto this side of the quadrilateral, it can not go any further
around the quadrilateral and still cut off zero area, so it goes back down, meaning
that the midpoints will trace out the same path. This implies that the endpoint e2

is a real endpoint, and does not join onto any other branches.
We will see however that the endpoint e1 does join onto another branch. Once

the endpoint of the chord Q goes through the vertex (1, 0), the situation then turns
into something more remenissant of the centre diagram in Figure 44. So let us now
take a look at this diagram in detail.

A1

A2

A3

(0, p)

(q, 0)(0, 0)
(1, 0)

(0, 1)

(a, b)

Figure 47: Case two: The chord now cuts two sides of the quadrilateral.
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As can be seen from Figure 47, the point P still has coordinates (0, p), but since
Q is now on the x-axis, it makes sense to assign coordinates (q, 0) to the point.

For zero area we now require A1 + A3 = A2. For this case, however, we shall
take a slightly different route to find our conditions required for equal area. Whilst
it is true that the sum of the three (algebraic) areas has to equal zero, it is also
true that the area of the quadrilateral has to equal the area of the triangle enclosed
by vertices (0, 0), (q, 0) and (0, p). It should be clear from the diagram that this
condition implies that the sum of the areas cut off by the chord is zero.

Now that we know this, the algebra is very simple. The triangle has base q and
height p and so the area is given by 1

2pq. The quadrilateral is a trapezium plus a
triangle. The trapezium has parallel sides length 1 and b, and height a, and so the

area is a(b+1)
2 . The triangle has base 1 − a and height b, giving area b(1−a)

2 . Hence
the quadrilateral has area

a(b + 1)
2

+
b(1 − a)

2
=

a + b

2

So our area condition is simply
a + b = pq

It is also clear from the diagram that the midpoint of the chord is given by

(mx,my) =
(q

2
,
p

2

)

=
(

a + b

2p
,
p

2

)

If we then say y = p
2 and x = a+b

2p , then quite clearly x = a+b
4y and so 4xy = a + b,

which defines a hyperbola since the quadratic part once again has real factors. In
this expression, there is no x2 term or y2 term. So our second branch also models a
hyperbola.

Let us now look at the endpoints of our second branch. Obviously, when Q is at
the vertex (1, 0), then q = 1, and therefore we have p = a + b at the endpoint of the
branch, which we will call e3. Hence the midpoint at e3 is given by

(mx,my) =
(

1
2
,
a + b

2

)

This is the same as e1, proving that the two branches of hyperbolae are connected
at this point. This is of no surprise. After all, the endpoint of the chord Q moves
around continuously, so we expect that the locus of midpoints will also move from
one branch to the next without any discontinuity.
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With regards the other endpoint of this second branch, e4, the chord intersects
two of the sides of the quadrilateral, until the point P reaches the vertex (0, 1). At
this point, p = 1 and so q = a + b. Then the midpoint at e4 takes the form

(mx,my) =
(

a + b

2
,
1
2

)

which is a reflection in the line y = x of the endpoint e3.
Having found that the endpoints of the two branches coincide, that is e1 = e3,

we would now like to find out whether the connection is smooth or is by means of a
cusp. The way we will do this is by finding out whether the tangent vectors of the
two branches are parallel or not. To do this we must differentiate, and then find the
value of the first derivative at the endpoint.

It is clear from the diagram and the theory that precedes that the endpoint e1

is where the first branch starts, and so λ = 0. Now, differentiating the parametric
form of the hyperbola with respect to λ gives

(m′
x,m′

y) =
(

a − 1
2

,
(a − 1)(λ2ab − λ2b + 2λb − a − b)

2(λa − λ + 1)

)

and then substituting in the value λ = 0 gives

(m′
x,m′

y) =
(

a − 1
2

,−(a + b)(a − 1)
2

)

We can now divide the x and y coordinates by a−1
2 to find a parallel tangent vector,

but we must remember that since a < 1
2 , then a−1

2 < 0, and so the direction of the
tangent vector reverses. We have

(m′
x,m′

y) || (1,−(a + b))

Meanwhile, let us consider the second branch. Here the parameter is p, and we
can check that the second branch begins with p = a + b. If we differentiate the
parametric form of the second branch with respect to p, we have

(m′
x,m′

y) =
(
−a + b

2p2
,
1
2

)

and substituting in our value of p, we have

(m′
x,m′

y) =
(
− a + b

2(a + b)2,
,
1
2

)

=
(
− 1

2(a + b)
,
1
2

)
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Hence (m′
x,m′

y) || (−1, a + b).
We can see that the tangent vector for the first branch is the negative of the

tangent vector for the second branch. This means they meet at the common endpoint
with a cusp, but the two branches of hyperbolae are curving in opposite directions.
The third branch, as we said acts like the first due to the symmetry of the figure.
The area parallel will therefore look something like the diagram in Figure 48.

e1

e4

Figure 48: The bold lines trace the three branches of the area parallel.

So, we now have the area parallel, which, for the first time in this study, has
proper endpoints. These are at the midpoints of two of the sides of the quadrilateral.
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5 Concluding Remarks

In this final section we shall summarise the results that we have found through the
course of this study. We began with a continuation from the mini-dissertation on
the subject of closed convex plane curves, where an area function was defined. This
area function found the area cut off by a chord, and depended on the angle that the
chord made with the horizontal pole. We found that this pole is the midpoint of the
chord, if and only if the first derivative of the area function is zero.

When classifying this area function, we considered the tangent lines at the two
endpoints of the chord. We proved that there is a minimum of area if and only
if these tangent lines meet above the horizontal, by considering the various cases
separately. We also found that these two tangent lines are parallel if and only if the
first and second derivatives of the area function are simultaneously zero, and that
this is analogous to an A2 singularity.

Having finished the section of convex curves, we moved onto non-convex curves,
which encompassed extra complications connected with negative algebraic areas. A
curve, which contained an inflection was defined, and local coordinates were defined
near the zeros. As with the convex curves, a chord was also defined, and moved
around the curve cutting of a fixed area. Using power series approximations, we
found the relationship between the two endpoints of the chord, and also the locus of
midpoints, which defines, as we know from the mini-dissertation, the area parallel.

We found that, for a cubic curve with a double zero at the origin and another
zero elsewhere, the area parallel locally follows the path of a cubic curve with its
inflection point half way between the zero points. In terms of power series, this curve
begins with a cubic term, and may also involve higher powers, which will have lesser
an effect the higher these powers get. Meanwhile, for a curve with a triple zero at
the origin and another zero elsewhere, we found that the power series of the area
parallel starts with a quartic term, and so, locally, modelled a quartic curve, with
its maximum point half way between the zero points.

The non-convex case includes a rather important area of study that does not
exist with convex curves. That is the zero area parallel, where the sum of the areas
above a chord is equal to the sum of those below. That is, the algebraic area is zero.
When discussing this possibility, we redefined our curve so that it only had a zero at
the origin. It therefore began with a cubic term and included higher order powers.
Similar methods were used to find the relationship between the two endpoints of a
chord cutting off zero area, and an expression for the area parallel was found. This
took the form of a rhamphoid cusp that coincided with the inflection point of the
curve.

We then moved onto a discussion of quadrilaterals both convex and non-convex.
With regards affine transformations, in both cases we found that we had fewer levels
of freedom than we had with the case of a triangle. This is due to the fact that any
three points in the plane can be affinely transformed onto any other three points. We
therefore noted in the mini-dissertation that any triangle can be affinely transformed
onto an equilateral triangle, but this is obviously not the case with quadrilaterals.
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Nevertheless, with the convex case we managed to find some general results
concerning the area parallel and symmetry set. We discovered that the area parallel
can have four cusps or six cusps, depending on size of the area cut of by the chord. In
fact this cusp appeared when the chord passed through two opposite vertices of the
quadrilateral simultaneously. We also found that, as with the convex curves, parallel
tangent lines imply the existence of cusps. We then proved that no quadrilateral can
have any area parallel containing eight cusps, although the square comes the closest
(and yet the furthest!).

For the symmetry set, we managed to prove that there are two sections to one of
the branches, the first following a straight line, and then continuing onto the second
which takes the form of a hyperbola. We did this by noting that the diagonals of a
parallelogram incorporated inside the quadrilateral cut off the same area but with
respect to different vertices of the quadrilateral. This is analogous to the case of the
equilateral triangle in the mini-dissertation, which incorporated a rectangle. In both
cases, the meeting point of the diagonals trace the self intersection points of the area
parallel, and so define the symmetry set.

The final section dealt with the case of non-convex quadrilaterals. In this section
we looked at the zero area parallel of the quadrilateral, and found that the area
parallel had three branches that all took a hyperbolic form. We calculated the
endpoints and proved that the branches were connected to one another. We also
found that the zero area parallel had proper endpoints, which is the only time in
this study that we encounter such a situation.

A lot more cases can be discussed with regards quadrilaterals, particularly the
non-convex case. Further study may include a report into the fixed area parallel,
both for a positive fixed area and a negative fixed algebraic area, as this would
contain some fairly substantial material. An investigation concerning the symmetry
set would also be of interest for future work, not only with the quadrilateral case,
but with non-convex curves. Finally, it would be interesting to see how this kind
of geometry works in three dimensions, and I’m sure many detailed reports on that
particular subject will be composed in the future.
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