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'Introduction

Our interest in this thesls is in Complex Quartic

" gérous quartic polynomial £ in three variables,

b, b v o
alx..f gzy + a32 * oasan 0.

7

Curves {not necessary 1rreduc1b1e) in the Complex pto;ectiVé o

. plane €P%2, Such a curve is the set of zeroes °£~‘5hﬁmogji

i
1

That‘iq, a quaftic curve is given by a nontrivial linear

comblﬁatibn of the 15 b331a monomlals L

L

x
x3y x3z
22 2 2 2
XYy X¥z X z
xy3 xjaz xyzz x23
L 3 3 4
Yy ¥z Y ﬂ ¥z

We then can represent the space of quartic curves as M =

{0} or CPl4 which are manifolds., We shall stick to ¢154{0},

15

Our @aim is to stratify M according to the singularity

types of quartic curves, so that each stratum is 4 manifold

between the strata.

| and there will be nice properties such as Whitney regularity

i We start with a smooth group action on M, corresponding

[ ; to projective equivalence of curves, Actually our strata

-

will be unions of orbits under this group action on M.

} group is GL(S.C). The action is on the left by substitution.

The




s ,}(_;'L(':i.d:) xM + M

(0,£) + 6.f = foo "

Here we regard f € M as a map C. 4-@ and 6 ¢ GL(3 ¢ )
as a l;ngar map-_c3 + ¢ .‘ The substltutlon is in the aénﬂé
?¥ a§{ini§hé3§k&ﬁpié _

: Lo Lot | '_hi‘_(n P

00 1

-.Thé ofbittcontaiﬁing f is the image of - the £ﬁnbﬁi6ﬂ

s.¢f.ngL(3,mﬁ) 4;n‘ : | : ,(*rlg ; 
o » 8,f

Then the-orbit'are cones with vertex 0 under the'above action,

b

We say, two quartic curves are projectively equivalént if

they are in the same orbit,

.The claéaification of quartic curves byranalyfic.type
of singularity was known for a long'time (Hilton 1920 ).
In Chapter 2, the classificatiqn is presented iﬁ‘detail
‘ and normal fdrms are obtained for all. singularity types;k
In some cases we have to try very hard to?obtaln normal
i ‘ forms which will sult our purpose in the later chapters.
‘ : ‘Note tha; qll the singularities involved are simple (in the
| _ sense of;Arndlld) exéept E7; whiﬁh is the singulgrity of

four qoncufranf‘lines,' All our general a:gumeﬁtg pﬂly aﬁply




Etojﬁimple cases.
The actual stratification of M is as fbllow@;' SUpposé §
fthat Cl.is'a curve Wi:h isolated simplelsingﬁlafitiesf' Tyeﬁ‘
rjcz'is in ;he'same s;rﬁtum‘as Cl'if'and’only if (i) the'sin§?7 
;zgularities of Cl‘and 02 co:;espond one-to-one, and,correb“ﬁf:[ 
poﬁding singdlafities'aré énalytically equivalent (i. é
equlvalent by an analytlc change of 10ca1 coordinatea in
¢P2, i.e. right-equivalent), (11) the componentSof 02 have ?'Hf'
the same @egrges ‘as those of Cl' | !
'Supqué that C, has a'non-sihple iéolatedmsingulafify
so that in fapt:Cl iB.4 coﬁgurrent lines (see classificatioﬁ
in Chgptér-z). " Then C, ié in the same stratum as'C1 if apd
on;y if 02_15.4 concurrent lines,  Note that iﬁ this cagse
¢ aﬁd‘C2 havé_analyticallf.eduiValént singuiaritiea.if and
only if cfoss'ratioé of the two sets of 4 linea agree.
Suppose that €, has a non-isolated sﬁngularity:(i.e.
- -repeated component) then the stratum of C1 is ita orbit under

the above group act1on (it w111 turn out that this leads

- to finitely many strata).

Cﬁapter 3, 4 and 5 are devoted fo the proof that the

strata are manifolds, In Chapter 3, we have shown that the
normal_fﬁrms_themselves are manifolds and théy are all “good"
“normal forms. The motion of Transversal is 1ntroduced in

'Cﬁapter 4 and the llﬂt of Transversals for the normal forms

is glven ‘on Table 4.4, In Ghapter 5, we discuss probertles
) - of transversals and use them to prove that: the strata are
i “-¥kmani£olds., In Section 5.3_we ‘deal with the cqae‘ln'which wé ‘

\

"have to. choose very special transversals to suit our purpose

and at the end of the .Chapter we have shown that the stratum




is also ﬁ maﬁlfold. |
In Chapter 6, we prove Whltney (4) and (B) regularltyii'A'
etween the strata 1nv01V1ng simple (or non-isolated) o
;ingularltlea. In fact a stronger local tr1v1a11ty're9u1ﬁi
fg proved\ The only cases left are those cases in whlch |
ithe "gmaller" or flqwer stratum_1a E7. (Recent work of
;quce_and Gibliﬁ (tﬁ appear) shdwa that all‘posaiblelpairs
‘are A-regular'(ség.alsorChapter 8))., Thus the strata géne%'
%féily fif-together-very nicely. In Section 6.2 we have
féshUWn some,e#amples'in which we can aleo prove easy,casesl
ﬁﬂof regulﬁrity_withdut using the.general afgument. - The |
genefal.argument fqr.curves with a single singularity is
given in Section 6.3, The'argumént for the cases fér two
::singularitiés takes up the whole of Sectlon 6 4 and an
example is glven. Sectlon 6, 5 deals with the .cases when -the
 -¢urves have more than twé alngular1t1es.
We are also-1nterested in the problems of specialization:
' .when can a sequénée of‘curves all in one stratum have as
limit a cﬁrve in another stratum? In Chapter‘7, we are
'iable to_establighffigoroﬁsly the specialization diagram for
all curves with isolated sinéularities. But some very tricky
cases arise from the more.degenerate curves ha&iﬁg nonQiaoléted
singularities. Some of thgm are still left unsolved. In
C- 7Section 7;1,‘ﬁe use eleﬁentary.methods to find soﬁerdf the
despecializatiohs. Despeclallzatlon means the "breaklng uP
 of singularitles by looking. at the unfolding.
! f ‘_Flnalllen Chapte: 8 we_ahow, using an‘a;guméﬁt‘of

J.wﬁﬂnfucé, that certain strata are (A) .and (B)'tégglqr‘ovét.

o
.-E;—f‘
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- .CHAPTER 2

'CLASSIFICATION OF QUARTIC CURVES

2.1 The Genus Formula (for irreducible quartics)

Lef r be an algebraic curve in p2, given as pﬁe aef

{ of zeros of a.homogenequs éoiynomial f of degree d say.

We assume that T ha? no repeated component i.e, that f

i square-ffeé; Then the singularities of I are Lsolated,'

L

'f‘and assoc1ated with each 31ngu1ar point P there are various -

'r - number of analytlc branches at P
: 6 = number of double points at P
u = Mllnor number of slngularlty at P

.By the theorem of Milnor (M11nor 1968, p.85) we hEVe

(2.1-1) T 26- ® +r - 1

] . 4

and the genus formula asserts that, if T is 1rreducible,

_then the - genus g of T is given by
(2i1:2) S = d(dm1)(a2) - 1

~to be summed over singular points P of T. (Serre.1959. p.74)
‘  (Milnor-1968' P.85) (also see p.§ ). An 1nd1cat10n of the '
proof is glven at the end of th1a section, . | |

We are of ecourse malnly 1nterested in the case when SN

od - 4, Then the genus formula becomes ﬂ;

i




,
-6
{241.3) 25 = 6 -I(p *z = 1)
( 'In particular, eince_rp‘; 1 and g > O we have, for ady ==
- .gingular point P,
§ 6
uP
; Arnold hae already given the analytic classification
. of singularities up to u s 7. (See Arnmol'd 1972;.Functiona1‘
Anal. Appl. 6 254-292). In fact by an analytic change of o i
]_coordinétes ény.such singularity (with w € 7) can be tutned
into exactly one of the following list: I |
(2.1.4) standard Form r 28=u+r-1 ° Picture o |
. ";' ‘ ‘/ . V :
A, _'x_3' +y2 2 o | ‘4
A4 .7 ."'x'..s + y2 1 4 : 5 /

*



also see'that;:m

P

as in table‘(Z;l.G)

. +
(2.1.5) | u r,

-’1 sﬁ.

(2.1.6)
g ,;"p+rﬁf; “nuﬁber of Singularifies;
0 6 3
Q 6 2
0 6 ’ 1
| 1 4 : 2
1 4 S|
2 2 f i
3 0 0

- If we use the formula (2(;)3) more préciseljifﬁh @qg “ :;

[
L

d‘ Now for D6 in (2.1.4) y + r -~ 1 = 8, therefore it_is rﬁled-g  ;
out, and.cannot occur on ano irreducible quartic._‘Ac;ualyyi;i
we shall seé in §2.3 that bﬁ and also certain other sin= :
gularities with pu 3 7 ecan occur on reduciblelquartics.

Now making use of (2.1.2) again, we can deduce that'
since 6 3 0, 0 £ g & 3. That is, we have only‘four possible
genus 0, 1, 2, 3 in the irreduc}ble quartics. And therefore
we can consider the possible existence of singularities on

the irreducible guartics according to these four genuses

.Types
"3 3 2 2
Ays Ay AjA), AAG

A1A3 A2A3 A1A4 A2A4

A Ag D, Dy Eg
AL AléZ' A3
A, &,

1 4

nonfsingulat‘

o




" In §2.2, it will be shown that all those can be rea=
/- - ‘ o
 lized; ‘i.e. the above is a complete list of singularity

tyﬁes of irreducible plane quartic curves,

‘ Proof of Genus Formula for I' (irreducible)

r is ,T topologlcally a surface with 1solated ﬂlngulari“:'

ties. We want to find the genus of this surface,.

-first, we would look at the genus for non-sihgulaf

.. curve of—&egree d., The set of coefficients which give

" non-singular curves form a (open dense) connected set because
"it is the complement of an algebraic variety, For example;

 ~§6ﬁﬁidéi d = 2, the equation
22 2 o -
ax” + by” 4 ca®™ + 2fyz + 2gxz + 2hxy = O
-

= 0 an algehfaic'
variety.

is singular iff

oo
N Fhg

m o

' Hence, the connectedness of this set implies that the_genué
is constant for every non-singulér curve of degree d. So

_ ifris éhqugh to find the genﬁS‘fbr one curve, namely
- d C L
Tg 32X +y +2z = 0 which is non-singular.
\ -d _d _d, '
(x,¥,2) = (x,7 ,2) .= (&n,p)

'where P 'ia Ehe-line E+n+ p= 0 and hence huﬂebmotph%cf”

tu Sz

with Euler characteristic 'y = 2. Now, if Enp %0,




‘theh'there-ére d choices for each of x,vy,z. Therefore by -

'hohegenéity there_are a? prelmages of each such polnt 1n
rl.‘ This.is true for all p01nts in Iy except (1 0 1),
(0 1, -1), (1,-1 0) where there are only d p01nts 1n the
prermage.: Hence. we have the equatlon of Euler charaétetra*.
t‘?;tlﬁ a‘ Eiﬁ_f;?.'.' o . .. .. | "”_hir-f\;fd:;.ij" R
x(rg) = adx(r)) «3(d?-q)

\ = 3d-d :
' )

‘;?-' o E = d(3-4)

‘ﬂBuE;‘for a connected surface, ‘X = 2-2p where p is the. genui h-l ;:
B of the.surfeee.. Now since the complement of 31nguler set : |
g_;.on a curve is connected (ShafareV1ch 8 ), 15e.; non& ;f:, : o
'slngular curve 1s.connected, the genus po for_faria o o j
Py = 4(d=1)(d-2). | | |
- Now let hs'retﬁrn to our‘eingular cUrve . Suppoae
it is irreduc1ble and it has Euler characterlstlc X(P)
~For each s1ngular point P of r, we have the local p;cture

.(nOt as embedded in ch)

r cones; r w ﬁo. of branches
at P. C

The curve han_he-deformed in two ways:

{ .
(1) Pull apart the vertxcea of theae cones at eauh eingular

point P..




' becomes. ¢ . R i

10

In doing thia_we get a non-singular surface (conﬁectedi?iﬁl

 see above) whose genus is (byadefini;iph) the gqnuﬁuﬁf R

'.the'Cufve,fQ_ The equation of Euler ¢harattetiéﬁiét

‘_k(r).+_;(r{;). = 2-2p oW

'ﬁhere P is the genus of T and the summation is dﬁet.ﬁhe .
‘singulat points of I,

_ k | | |
Arbit:éry close to I, there exist non-singular curves
.of degree d., So def@fm I' by making small changes in
the coefficients so .that f becomes 2 non-singular curve
r! of degree d, Choosing small discs around the singular

points of Iy and provided TI' is close enough to I, the .

part of fi;inside the discs is diffeomorphic to the
Miinorffibre‘of the singularities., Outside the discs
“the curvéz T' ig diffeomorphic to I, so'x(T) can be -
caLculafed ffom rt by reméving cones‘and_éddiﬁg Milnot .
fibre;.in;the'discs. Hence the.Euler_cha;aétgtiéti¢ |

‘equation becomes .

,

XM = 1+ 2(l-p) = 3d-a? (i)

’Again.the;aummation is over the singular pointﬁ of Iy

§

i




1L

fgubttactlng equatlon (11) from (i), we have'

- Hence = p = §(d=1)(d-2) - }I(u+r-1) Q.E.D.

~ Note that we don't in general have a genus formula for
 reducible curves. But if we defined the genus for a
" reducible curve as fhe sum of the genera of the non-singular
surfaces obtéined‘by pulling apart the singularities, we

can also get a genus formula, for reducible curves. Let

- us proceed_ad followiug. If T is reducible and has ¢ algebf&id

. components, then removing'the-singularities by deforming

- the curve would leave us with ¢ disjoint surfaces, (since

!

7'ga11'points‘of intersections of compouents will be singular) ..

-  Let us go through the proéesa of deforming the curve again.

,ﬂ(l)' Separatlng the vertlces of the cones as in (1), we get
c dlBJOLHt non- 51ngu1ar surfaces (each of them connected).

 Let pl, 5@;_pc be the genera of the ¢ surfaceas‘ Then

I

the Euler characteristic equation becomes

N "f &(P) + z(r-r)'.= z (2~ zp

B . \ L : .
-Define the genus p of T (reducible) as

it




12

P ® P1+ vean ¥ PC‘

 ,then x(r) + E(r 1) = 2c=2p : , : (iiij-z' o

‘where I is over. singular p01nts of T.

T(Z)f!Thé process is the same as (2). And the Euler.Ch&Facd
”f teristic equation is unchanged as (ii) . Subtracting

‘”fthe équatibn (iii) from (ii), we have

2p = (d-1)(d-2) + 2(e-1) = B(utt=1)
_ ‘ L et

‘

L " where I is over singular pbints of T.

H.HEncé: lﬁ_*_id(d-B) + ¢ = }E(urr-1)

This is:the genus formula for any reducible curve of; ‘

. degree di

v ,l

. : |
l

|

In this section, we shall find the normal fo:m’uf each
of the pOssible singularity type mentioned in taﬁie (2.1.6})
ﬁe atart‘frﬁﬁ!Ag. | |

Suppose the three nodes are at the vertices X, Y, 2Z
of the triangle of reference, Then the curve T pgoes through
-X,Y,Z of the homogeneous
coordinate. Considering the-
fifteenbasis momomials, then

xau'ya; 2 must be absent from




13

2‘..23‘35 xjﬁ 2 ' . the equation of'the_'curve.

xy3xy xyz xz2 - Also since X is singular on

L _ _
I:'i_y"“z Y z yﬁj z o the curve I, near (1,0,0) in

 the non-homogeneous coordinatés
.:he_linear terms ¥ and Z‘must be absent, i.e, x3y and sz

13tefms in the homogeneoué cése must be absent. S1m1lar1y,

for Blngularlty 'Y and Z, we have respectively xya, ¥ z“and

'x,3; y23 terms d1sappear1pg too. - Hence the remazniﬁg eqﬁaéf

ey e

BRI o ¢
ax’y? v bx?a? 4 ey?e? m oxyz (ax bey 4 £2)

- To ensure that the curve is 1rreduc1b1e, we»should have a i U,

Jb # 0 ¢ % 0I Then chooalng U (un;t po1nt) by the trann“

 ;fbmetionﬂ
|
: X + AX |
l f y+uy ' t
zZ + ve \
we can make," : ‘f 4a=wbwes= L.

The equation becomes

kzyz +‘x222 + yzzz = xyz (ox+By+yz)
Let us’ now look at the point (1,0,0) more carefully.‘ We

can see that in the non—homogeneous coordlnate, the lowest

. : N
"terms are aYZ-+ Y2 + Zz, whlch is two lines (tangenta). It 5

115 knde that when these two tangents are d1at1nct, the sins. |
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-gularity'at X is a nodé and when they coincide the aingu«
1arity,bec0mes‘a cusp. And the condition for the two -

2

'engeﬁtﬁ to.coincide is o~ 4 =0 or o= 2, S1milar

’tesulﬁs occur if we COﬂBldEr (0,1,0) and (0,0,1) loei

©0 U cusp at (0,0,1) for y2 = 4 = 0 or = 2.

Therefore ‘Wwe ‘can now write down the normal form not only

25 A A2 and A3 | ' '-3'-”

r_ﬁfor A but also for Al 29 ALA, 5 b

'_(2.2}1) 

'.x y.#}lx -4 4 Yy =z = xji (GR+BY+YZ) ’
: N ‘ - ' a#rz,ﬁﬂﬁiz,,yfrz ;

x Yﬂ}* X z ,+.y z° = Xyz (ux+8y+YZ) R
BErfD, BPi2, yfi2

]

X"y ;.x z° + y z .= xyz (2x+2y+vyz) '
. - . yh:2

Cx%y% ¢ x z° + y 2" m xyz (2x+2y+22)

K o / N & s

If‘caﬁ be.shown that the.above formulae give_curvee Uf; 
. the types indicated for all values of the parameters not
.‘excluded.by the conditions stated; -
Now we consider the values of the parameters which are | !;5

!

1 'ﬂﬁ.‘axcluded. In the case A A 'when‘B‘Y = 0 we have

X v° o+ x z° + y323 - kyz.(21+6yfaz)a'
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.I
 '“2(Y+2)2.;‘Bsz (y+z) + yZzz = 0,

Regardlng x(y+z) = A and yz - B. then we have the quartzc -

equation

fheiéﬁtﬁai factorization is
- [.A_‘iﬁilf-:i B ] ['A #,“Elfngz B J .0,

when B # #2,
f'Tﬁat i$i " - . _
‘-.‘.\‘ | ".-_ : [;.yq. Xy - -BL.g_-a. vz J [xy + XZ i:.._.___ ‘g_l’ya - 0,

-which are two”genuine conics. It is easy to check that the
j conlcs touch at X and lntersect transvarsally at Y and Z

" Bo we have A1A3 (see classlflcatlon of reducibie quartlca)

Therefore for AfA2 B~ vy # 0, Slmllarly B + vy # 0.

| Note that, in the above formula we can replace the

pDBltlve slgn before any coefficients by a negatlve one.

ThlB is because by a transformation of the f0110w1ng type

'we can: always change ‘the sxgns of the eoeff1c1ents B

t
x > X X e =X X + x o -';;_f'_ ) : !
Yy o yey y +y | R |

2 + z 1 -z-+z" s Z 7 -z

This shows that the two different Blgns of the coeff1c1ents-

are prc;ect;vely equivalent. We can have either ofithé aigns
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' in the noxmal form.

Suppose Al at X and A3 at Z

Take 2 = 0 be a tangent to the node
at X

x = 0 be the tangent to the tacnode

‘x4, 24 terms absent (because cut¥e

pass through X,Z)

- ) |
Y / 1 X singular xay and x3y absent
Z singular x23 and x23 absent
Z is A3 xyzz. yzzz. ysz absent

(The technique in calculating u is described in the Appendix).

1f we consider non-homogeneous coordinates at X(1,0,0),
the lowest terms are‘ky2.+ Eyz + mz2 = Q0 - two tangent lines.
Since z = 0 is chosen to be the tangent to the node at X,

2

we fust have y~ term absent. Hence the remaining equation

is

ay4 + bx222 + cxzyz + dxyzz‘¥ exy3 = 0

If a = 0, x a factor. Hence a # 0.
If b = 0, y a factor. Hence b ¥ 0.
We want c¢c ¥ 0, to ensure a node at X,

Then we can choose the unit point to obtain the normal form

1A3 y4 + xzzz + xzyz + dxyzz + Bxy3 = 0

o  afz, of-2, 82-aBrlF0 o

A
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pserve that to ensure Ag at Z, o should not be equal to
t2. For in non-homogeneous coordinates at (0,0,1) the
leading terms ' ’ o o 2

y4 * 2xy2 * X2

‘will then be a perfect square. This implies the Milnor number
of the singularity at Z will be higher than 3. Actually
when o = %2, the curve will become A1A4.

Now, let us also check other conditions on a,B8 such

that the curve will remain to be A1A3. Consider the normal

form f(x,y,z) = y4'+ xzzz + xzyz + uxyzz + Bxy3 - 0,

[+%]
Fh

-'sz2 + 2xyz +‘uyzz + By3 = 0 (i)

I

a»
H

(=]
H

3 2

+ x%z + 20xyz + 3pxy% = 0 | (ii)

-4)’

Q¥
-

>

5% = 2xzz + xzy + axyz = 0 (iidi)

By (iii), we know the singularities must be on x = 0 or

2xz + xy + ay2 = 0. 1In the cage x = 0, we have by (ii) y = 0,
and x =y = 0 satisfying (i) too. Hence one of the singu-
larities is at (0,0,1) as we expect. On the other hand, in
case 2xy + xy + c:y2=0, (eq.(iv)) and x#0 note that (1,0,0) is
obviously a solution which also satisfies (i) and (ii).

Hence (1,0,0) is the other singularity #s exbecﬁed.

Now if y = 0, by (i) or (ii) Xx =90 0or z =90, i,e, singu-

larity at (0,0,1) or (1,0,0)

if z = 0, by (i) or (ii) y ~0 i.e, singularity at (1,0,0).
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This results in singularities which we‘have‘alréady
_ known. Therefore, we can assume y # 0, z ¢ 0 to fiid othet
'.qingularities that is not &t X or Z.,

Muleiply (iv) by 2

ngz +‘sz + uyzz - 0 ' e T (V)
Then, (i)=(¥) we have

Xyz +'ey3 = 0

cd.e. xz + ﬁyz - 0 A i)
Substitute (vi) inte (iv)

Xy = ﬁzs-a)yz
T i.e. x -,(ZB-a)j; Hence ZB#d (for,2¥0)
Let y = 1, bj.(vi), we have z = T%E%E)'

8o hhe_dtth'aingularity is at

[(23‘0)2. (28-a), -8

We want this to satisfy all (i), (ii)and (iii) equations.
But we have already made use of equation (i) and (iii).
Thé condition for thie to satisfy (ii) is
ias (3 N 2 |
4(28=a)” + (28=a) "(~8) + 2a(2p-a)” (28-0)(~B)
+ 38(2B=a)2 (2B-a)? « o0,

(Zﬁﬁd)\*-o, aincé'we asaume”y ¢ 0,




19

' Hence .
4 + (2B-a) (-B) + 2a(=8) + 3B(2B8=a) = 0.

2

4 - 2B° + 0B ~ 2aB + 68% - 348 = O,

482 = 408 + 4 = 0,

. {
i.e. B? - af.+ 1 = 0,

This is the dqndition on d,B such that the curve have singu=

larity otheét than X and Z., Therefore for Alaa,‘wé.hth have

and, conversely, granted this condition the curve has no
other singularities.
It iq‘wdrth.femarking that actually when

Bz - g + 1 = 9
afd o ¢ 12.;i;ég B # tl, the curve becomes two conics

(y2 + Bxz + Bxy)(y2 +.%xz)-= 0
. P » 2 @ . . P | o.-.
with the singularity type A1A3 (see reducible classifi=
cation) i.e. the condition g2 -~ 0B + 1 = 0, o #t2 is for
another node added to the curve. Also, when‘Bzﬁuﬁ + 1‘ﬁ.0

and o= +2 ji,e, B = 1, the curve becomas

(yz £ xz irxy)(yz t xz) -0,

b,
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Thxa is A1A5 (EZD (see reducible classification).

Note. Fufther &p80181123t10n8 can be: obtained by conszderlnggc§'

;,

equatxon

ay4 + bx222-+ cxzyz + dxy;z + ekysf;uﬁi

Fdf'ﬁkample;if we‘lét‘aff‘o, the equation becomes |

x(bxz2 + cxyz + dyzz + ey3) w0

The vertlce z st111 remains an A3, X an"Al, but the line

x = 0 will cut the cublc at y (dz + ey) = 0, i.e., at (O'U 1)

“tW1ce, and (Og—d)E) once, Hence curve becomea A A3 ﬁﬂiﬁ

if we let e = e = 0, the equation is

v

S e mxa) (y2 nxz) -0

which is. two genu1ne conics with two points contact éga Az

If Ve lat a - = e =0, we have
L 2
xz(bxz + dy”) = 0

which is two‘téngent to a econic, hence Ké> AlAg

..Alsqy a®"b=d=e=20ig ?4' I

‘aﬁcﬂrd.-_eao

i e iy
— - "

qtc .

&
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We would expect corresponding result by con91der1ng {‘}.‘

general formula for each singularity type. Therefore foq
the rest of the cases, we would only give less obvidus
'specialiZationa.. Nofice that these are just sﬁmg:of the %'J'
specializations, not all., And also all we have achieved ;
ﬁere is just ; sequence of curves of a particular tyﬁe of
~singularity spécializing into another type, It does not
mneceesary show that the whole of the other 51ngu1ar1ty type
is it the closure of the one we start with. We shall deai

| wich'specializatibﬁs;specifically in Chapter 7.

Similar to AjA,, except with cusp at
X and z = 0 be tangent to the cusp at X;

- This implies the two tangent lines

formed by the lowest terms at (1,0,0)

in{ﬁhe non-homogeneous coordinates mus t

coincide; But we want the t#ngent gﬂ
be z = 0, Therefore the‘fz ﬁnd Y?.é
-term in the lowest terms must be absent. That is,.xzyz ; |
and xzy?.ﬁerms'arg absent, |

Hence the éqqation.ia ay4"+ bxzz2 + dxyzz + exfa‘- 0.
'-_Tolensure cusp at.x,:h and e must not be zero, -And i”f'OQ B
-since cﬁbid'will.nﬁt cut x = 0 agaln. Therefdté,by:cﬂoQﬁiﬁg.
unit . polnt we have normal form. | B |

I
1
|
\

A2A3. y4‘+ ﬁ222‘+ axyzz + xy3‘= 0 X

aft2 Nes |
- o E :

When am=+2, the cutve becomes AQAh' We can also check that
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ihe n6;ﬁﬁ11forﬁ gives AzAszfor.ail other values of 4.

v ' T

Let the‘node‘énd the ramphoid cusp be at X ahd_zsrés—.

'J-'pectiVeLy, Theﬁ the curve passes‘through‘x, i“* xa; ia

E;” " terms disappear; also being singular at those points H‘iayff'
I Sl 3 . )

. .x.?'z. Xy~ 'y_z3 vénj.sh too, - .

iJGthsing x;=_0_be_;he tangent to.the ramphoid cuap ét '/

yzéz_térm disapﬁears.. -

. - For the singularity at Z to be a ramphoid cusp, we should

"have yzz?,lyaz, iyzz.terms disappeared and also the leading

- terms in.tﬁe:ndn-hgmoganequs ﬁoofdinate éﬁ‘z.mﬁd£ f3fm a
sfﬁlpﬁrfEthéﬁuére.‘ (éée appendix) . | |

‘:_iﬁék we have .the equation . ' )

ax?z% . hszz-+‘cyg-= dx2y2.+;ex2fz_+‘fxy3

« where b’-bac =0, a# 0, c 40 for irreducibility and.

b-# 0 because if b = 0 we have an Ag. it
'quftaké thé transformation :
i

\
y +y

Tz ozt Ay
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Swhibh;jus;“amounts'to chooging the tangent line to node 4t X

Vaxzzzg¥ bxyzz-+ éya,- (d-g12f+gk)k2j2 +;(é—aA)x2yi;ff

e (Esbh)ayd
‘gﬂﬁwbdhﬁdﬁe-fx‘f‘g,-we have equation

4

axzzzzi'bxyzz'+ICy - d;zyz + (f = %?)_iya

EL " Let £ = P& o,

;’~fBEiéquéﬁi°“'59¢°m°’

 §#2£23+ bky2z +¥cy4 - ax2y? + kxy> -
= | ad0, 540, 640
| o 'b2—4ac‘? 0
' .We now claim that k # 0 for A, at z. :
1 ;Cph§idét‘honthﬁogeneoua.cobrdinate at (0;0;1); %§ hévé ,

2

3

ax? + bxy? s ox? = ax?v? + kxy

2

2

) 3

i.e. (x:4'§%_v -,dsz? +'kXY_

_:-1?@';#1cﬂla£eﬁp;.we'cgn use the following traﬁsquﬂﬁtion

2

.x-‘-rx z—a-Y

Y+ Y
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o

E R -
B
Y

" Hence équation. becomes

. 2

— oy

. The Laading torns are

x2 4 kb ¢S

Za e =0
o Now if k # 0

if K #;0__ Cwo= (6-1)(2-1) = 5

f'Hence for Aa at Z. we must haVe k # 0.

.u = (5%1)(2;1).= 4 (see;appendixi

'3] fWe nan now choose unit p01nt. and the normal form ld

5kaifif exyzz + y4‘= axzyz 4+

i.e. .(xz + y2)2 = ax“y° + xy

3

xy

]

Observe also that ] # 0, because at X the- non homogeneous

1eading tarms are z? dY vees = 0,

_.\ 'nwj[‘ -

Cwom (2e1)(2-1) = 1

and‘,'

. If a = 0, the leading terms will then be z?’}-t? +oavsi ™ b,

-1
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fﬁénég.égfﬁ&I ;,;mg-
,Aé_i  txzf.y2)2|;:u*2y?.+:#y?.l - dt*;c
  -A2A£.;} F¥2}+ §2?? é xy._.._ i ;, : _.l .r(E$::; }_

Lo Bemee;  a>0, AA, > AA,

.EIt 15 checked that for all other values of a, the nofmal é
; - form for AlA4 still glves the slngularlty type indicated.
“ﬁ7fNote that We can also derive some other Spec1allzat10na ._f: i' -
}yf‘  f:from the procesa of claaalflcatmoﬂ. For example in the !

ffabove caseg cona1der the equatxon before chOOslng the unit

‘
HE

'“pbxﬂt ?f;k,ﬂ“q“ﬁ o

-"ffhéf'ﬁf?fﬁfikfi-o,.the'curVE'comes.two.prdper conics
a2 e 2 . |
(zx + y° + Vdxy). (zx + y° - Vdxy)

We can eaéil}_check that it has only two singularities,
-7one at (l 0 0) and the other at (0 0 L. Since d # O we
:if 7 know that at (1 0,0) there is st111 a node, (z+/"y)(z-/_y) i 0

aE : ,,:_dlstlnct tangents}, whereas at (0 0 1), ‘the nbn-hompgqneuda-

 1ead1ng terms are (see p; 24)




wpfwa geveral spQC1al1zat10ns

: 'AIZAZ‘,;:;':

 the upper.
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7 _xz_ 4 4b y-6 ... =0 E T ]
: - 2 : : ‘
ba

| “?ﬂﬁé‘ W= (6-1)(2-1) =5 Ay

o In pther words, the two conics has a node and a 3épbint
np‘contact ice. gn_AlAs‘ (EZ?
Jp_Therefore,.we can say AlA4 Bpec1allze51nto A1A5

;f Up till now. our knowledge enable us to. draw a- small piuturh

i,
!

As we have said before, the arrows only indicate- there'

- is a-sequence. of curves of the upper slngularlty type

Sp60131121ng into the IOWEI slngularlty type. We.have n&ﬁ“*

_yet shown that 1ower type ie actually in the clonufe of

SR
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R

'Jngyﬁbde,,. _fA5 ta¢n0de cusp

'Suppose A5 be at Z, then 24, x£3, yzs'
 terms disappear. ' _ A
- Choose x = 0 to be the .tangent to the

osﬁode at'Z yzzz absent, For Bln-‘

L.gularlty at z to be an. osnode we. Bhdﬁldﬁ

j“:; - ﬁﬁvfa q1t \ have at leaan the followxng twu cbﬂ-

dltionsz

5 . (1) yzzzg y3z, xyz2 terms absent.
{ﬁ:;(11> leadlng terms in the non homogeneous cootdlnata at Z muﬂﬁ

L form a perfect square (see A1A4)‘-'

' Hen¢e then we have equation B |
ak??z-fgbxfzz i ,cyl",'r'.“I axy? + ex¥y 4 £xy? +-3x€'

| A R POy B
.: Tak;ns,Fhe=tfapﬂformatidn_ o ‘ o
ST i at .

Yy ry + A.x

1

2.4z 4+ 4, +_l3y

= aﬂd:choosihg_hi,ﬂxz_and_A3, we can reduce the equation to

2 2

22 . .3 boa aix2y? 4 gigyd 4 e'xdy

ax’z” + bxy’z + oy

. Claim t.:_ig't_ff*]i_b;"for Ay at Z (see pi 24 )y "r&'kéf ‘transfors




N

)2

- X" = -d (x 5g ¥

2 i b o2i o3 L
LIS Frhrgg YO) Y7 4

.iff@fii 0 leading terms are X° # E% Y 4.,_i€'-1d;‘ﬂ:§fﬁw;*"

CiE £ a0, dt 400

‘*g? f{1éading tetms ﬂfézkz'f-

‘fJHPﬂce'” a*h ﬁ,(6—1)(é-1) -5 AR

~ Purthermore, if £ = 0, d' =0, e # 0 leading terms are

Y7.+.::ioii- - 0 '

. Hence i = (7-1)(2-1) = 6 A

i

. Choosing uhiit point, we can write down the normal forms

+ for AS “anﬂ;‘AG

22 ¥ y4 -Ik2y2‘+-ax3y

Cdves (xz #yH? = 2Py axy)  ad0 (see p.25)

Y

1E om0 Ag*hyhs

N : N 2 3 I B
Aﬁ o (KZ + Y ) s x y‘-. L N ks. ]




Let the triple point be at Z, Then

3 3 2 209
4, x2°, yz » Xyz, xy°

.,thE‘terms z
and &222 must be absent (condition
for tripig‘f°bt): So the gdﬁaﬁfﬁnzis.ffb
2C(x,y) = ?A(“;f) whereic a#d:A &f5 F :

polynomials of degrees 3 and 4 respecd

tively. : _ : L o "

‘fff(i);Eirst'coﬁaider_D4. We can see that the.faﬁgents at théfg]
-‘f fttip1é:pdiﬁ; i;é@ at Z are distinct; Thie implies thaE,G  fﬂ |

'f@cﬁ;sfﬁiﬁﬁiﬂﬁﬁfFQEtbfs} Wefﬁan_aéshme,thatléangentéfﬁféf; ﬂigf‘;:
G L ke S S | R P

3fhéféf¢ié?§ﬁéfequation becomes

xyz(x + y) = A(x)y),i'ak& + bidy +ex’y?

é_‘Néwi;Edke thé tfan§fdrmatidn

I‘::‘ S

gu+ zZ ¥+ AX + uy




‘We Have the equation

- 'tyz(x*y) + Axly(x+y) + uxy 2 (x4y)

- ax” + bx3y + cxzyz + dxy3 + eya

i.e, xyz(x+y) = ax* + (b-}) x3y + (e-A-u)x2y2+(d-u)k3?*evé
Choosing A = b, u = d, we can reduce the equation to
xyz(x+y) = ax4+(c—b-d) x2y2+ey4

or xyz(x+y) = ax® + x2y2 + ey4 where & = (¢-b-d)

To stop the curve from being reducible, we must have a, e $ 0,

Now, taking unit point, we camn have the normal form

e s o A R R AR A

4

D, xyz(x+y) = x  + axzyz + By4

gfo, 8¢ ;“fl‘ﬂi;;'fi;%af
Obgerve that when B = -1l-a, we have
xyz<x+y) - x4 + uxzyz - yll - Gy4

- (x4 -‘yk) + (ux2y2 - ay“)

= (x+y) (x=-y) (x2+y2) + uyz(x+y) (x~=y).

It becomes a reducible quartic. Therefore ﬁ £ i-d

‘3e'vw.1{ ;iﬁcumgégy'wg\get this condition by considering the :
mormal form oot - g

' 2
£(x,y,z) = xyz'(x+v)-x4-ux yz-BY4
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of 2 2.

7 - 2xyz + yTz - 4x3 - 2axy“ = 0 (i)
%é = xzz + 2xyz = Zuxzy - 4By3-* 0 (ii)
%§ -'xzy + xyz = 0 ' (iii)

By (iii), singularities lies on x = 0 or Yy = 0 or x+y = 0,
If x = 0 by (i), y =0 or z = Q,
i If x = 0 = y, (ii) holds =» (0,0,1) is a singularity as
expected;
If X = 0=z, (ii) holds if B = 0.
,é' This means that (0,1,0) is a singularity if g = 0,
If B 4 0, (ii) ig;y = 0 contradiction., Hence (0,1,0)

o : not singular,

If y = 0,by (ii) x = 0 or 2 = 0, If x = y =0, (0,0,1) known,

i

5;.- - If y ® z =0 by (i)=> x = 0 contradiction.

brs.

—>» (1,0,0) non=-singular,

If x+y = 0, we have ¥y = ~-x
Let x = 1, by (i) we have z = =(2a+4)..
Therefore singularity is at (1,.-1, *(2&+4)).\

Substitute this into (ii) we have

’ | _ ba + QB + 4 = 0

i.e. a + 8 + 1 =90,

% - This is the tondition for a further singular at (1,=1,-(2a+4)),
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We can easily see that for specialization, when B=0, the

curve becomes A1D44ti6f(seé reducible cases). Szmilarly,

when B+a+l = O, B#0 the curve is also A1D4 _kﬂ%w

But 1f both B+o+l = O, 3-0 i.e., a+l = 0, then the curVe
2

becomes A1D4 .

gAlsoi we can get a further specialization by coﬂuidetius th!
equatlon of D4 before taking the unit point,
4 - |

i.e.  xyz(x+y) - 334 +4532Y2 + ey

1f allla;Aagand e = 0, then the curve becomes

Therefore, we have the specialigzations

(ii) For Dg, it has a.repeated tangent. Then‘c must have
a tepeated factor., We can assume C to be xzy.'aﬂa equatibn
is
2 .
x yez = A(x,y)

L

- oaxt e hx3y + nxzyz * dxy3 + ey




" fake transformation

for m,
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z + z + Ax + uy and let Aw b
Hese
Eqﬁatiﬁn'teduééa to
4 3

xzyz = ax +'dxy + ey4

a, e ¥ 0 for irreducible case.

' Chabsé‘uﬁitfpbiﬂt by taking transformation x + mx

y = ny

z > Z
1 ﬁe haVe
'mZn x2Yz 5 amaxa + dmnsxya + enﬁyﬁ
2 2
j xlye = BL b 4 800 43 e
2 end

then 'amz‘ - n; Ena - m2 - %

Therefote n> = L i.e, n =% /—1-
ae [ ae

“and mow ‘i /% ‘i.e, m = _-i;"/ / ;—1; x.:_,ozzfi[/ .ale. X %i ,

Thie méans that there are two choices for n aqd‘foﬁt choicées
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‘ 2 .
TLa&'uui ££~ s we have the normal form

Dg xzyz - x . axy> + y4 (no restriction on a)

NbS.
where we can replaee @ by -, ie or -ia. But we have observed.
that the replacement_of ¢ by =a, ia or -ig in the ndtmal ”_f

,2',fdrm;ia”équivaient‘to.taking the tranaformatlona

X +ex x > -ix | X + #ix
- : . ‘{ .

Y+ oy y > <y y o+ -y

2+ 2 ) z -+ z 7 z + z

respectively., That is ia, tiq all give the same curve up '
to projectiVe equivalence.
- -.We ean elsd ¢heck that this slngularlty at 72(0,0, 1) dOeB

2 have u = 5.' The nonhomogeneous leading terms ate
X%y -y

Hence u ﬁ'(2-1)4 + 1 =5 (sece eppendix). Also the sine
gularity is a triple point, 'so must be Ds from the list on
P 29 , Further; it 13 easy to check that the curve has no

other singularities,

(iii).EG,.-thefthrEe tangents cogncide, Then.ﬁ.iq §§eﬁBé{

say C = x3, ' The equation is

xsz-? A(x,y)

3y ey

.- @xa + bxsy + ex?y? 4 ﬂ#y
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‘If_e_yﬁo; cutve_reducibie. Hence e ¥ O,

Apply tramsformation

‘x > X
.y >y + Alx

we can get rid of xy3, x* and x?y terms, Thejéqu&tiaﬁ,'f
“becomes |

13z75 cxzy2 + ey
or .kaz - kxzyz + y4 -where k -.% ; since e ¥ 0,

_'Now let us consider the condition for = 6. At Z(0,0.l)ﬁ

"the leading terms in the non-homogeneous coordinate areé

Y

f

x7+¥"

'

o

!

Hence u = 6

Y
A

[

Therefore, we can see that even when k = 0, the equation can

still have an E,. But then the question is whether this is

projectively equivalent to the case when k # O, The answet

to this is no. These two cases are actually projectively

‘distinct, When k # 0 the curve has two inflexions whereas

when k = 0, it has only one. This is uhowﬁ.aé;félibwingl

2.2_ 4

The'curvefiﬁ xsz-kx y'=y = 0.

The tangent at (x 0 ¥

x(3x§£

o

o’.zo) is

- TR S SR N IIPRE: FOr
- 2kx y0) # y(-2kxly, - 47g) +2(x)) =0
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gmetrized by (1, t, t2+t4), the tangent equation becomes

x [3(!:2‘“:4) = ZktzJ + Y['Zkt-4t3] + z = |

uppose this tangent meets the curve again at u(l,u,kﬁ2+u4);

hen

2 4

kt™ + 3t 4+ u [kat—4c3J + (ku2+u4) = 0 '

2+2ut+31:2) = 0,

This factorize (u-t)2 (k+u
The condition for u = t to be a triple root is

6t2 + k = 0O

which has two solutions for k ¥ O and one solution for k # O,
Each solution gives an inflexion. Hence the two cases
are projective distinct.

Now for the case, when k #.O, we can choose uﬂit point
to have normal form

and when k = 0 x3z =y
. Thie implies that we have two orbits in'E6, corresponding

tOk*O’kEO.

OF X

=N

Let the two nodes bhe at vertices X and

Y of the triangle of reference. Then

x4, Y4- KSYs‘KBZ, xy3, y3z terms muat

W,
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e absént. We are left with the equation

akzy; 4.5k222 + cyzzz + dza + exzyz + fxyzz_+_gﬁYzz

+ hxz3 + kyia_i*o !

Consider the lowest degree terms at (1,0,0) in the non=

: homugéﬁebud_ebéfdinate
aY? + bzz + eYZ = 0

If we choose the linery - //g i z to be the tangent ﬁo the
node at X, we can have xzyz term vanished, :Simiiarlyg
:QhOOEQ ling.x-- ¢/§ i z to be the_tangeﬁt to the node at
'Y, we can have iyzz tefm ﬁisappearéd'too. |
'-Tﬁéh.equatiﬁﬁ becémeé |

ax2y2 ; bxzz2 + cy2z2 + dZA + gxyzz‘+ hx23_4 ky23 w 0.
To ensure nodes at X and Y.a.# 0, b # 0, c ¢ 0.
' ,Alsd net all d; h and k gq;al to zero to keep Z non-singular
i.e. td_ensure no other singular point. |
Now,.éhéosing‘uﬁit point, we can reduce the equation to

! . A% ' x2y23+ xzzz + yzéz +|}za + uxyzz + sza + yyza.a 0.

", (not all A,B8,y = 0).

\'\

#zyz ¥ k222.+ y2z2'+.éé'+ axfzz + me3g+ yyl§'+ 624 = 0

i.t (xzﬁiz)(yé+z;) + uxyzz ¥x(Bx+yy+ﬁz) za'-.a

N
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éNote:‘It is not always easy to check the conditions on
:'the moduli so that the normal form will remain as the sin-
,gularity‘type indicated, espcially when there is more than
2 moduli., We shall omit this and produce only.rhasbﬁibly

3

obvious restrictions.

X

A,
Similarly to Ai. except now we have
a cusp at X and taking y = 0 to be
the tangent to thg cusp: This implies
. | the terms xzzz and xzyz are'abaenta‘
Y 2\

Thetefore the equation is

ax2y2 + byzz2 + dz4 + gxyzz + hxz3 + ky53 =0,

The leading terms in the non-hmegeneous'coordinate at X are

z

a¥Y® + hZ a ¥ 0 (irreducible)

¢ | b= (3-1)(2-1) = 2, if b # O.

Therefore, for AjA, bk £ 0, Then we can choose unit point

and obtain the normal form

AlAz Xy *_3222 + uxyzz + xy3 + YY!3-+'@m4j. o
| _ AN
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If the singular points at X and Y

are both cusps, then we have-xzz%,

2 2 2 2

y'z", x.yz and xy“z terms disappearing

as well, We are left with the-eﬁuatiﬁﬁ

. ':?'- S ; 3

. ax2y+dz4+gxyzz+hx23+kvz =0 i i
, | a$0 (irreduciblé)

. To ensure cusp-at X;'Y, we must have h#0, k40, Hente,

chooding unit point, we have mormal form

' Consider the normal form of Ag

4

3, 62._-:03ﬂ;.

£ = xzyz + uxyzﬁ‘+ xz3A+ yz

!
'

%% -.nyz + .yz2'+ ;3 e 0 :'. 31- ; (1)

a2
N

Fﬂ 2k2y'+ gxz2;+ 23 = 0 P e (1i5

Q
~

[+ ¥
-‘—‘-‘*:. .

-=:2uxyz + 3xz2 + Byzz 4623-,i 0 R ‘_‘iiiij

1

e
N

By fiii),_we haVe singularities on z = O .

- or . . 2qx§J¥'3xz + 3Jyz + 482% a0 B DR .(iv) '

If 2 = 0, by (i) x » O or y = 0,
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,If x =z =0, (ii) satisfied =3 (0,1,0) s;ngular

z & y N (11) also Batleled:ﬁ; (1, 0, 0) eihgull;.kf

This is what we would expect,

But what is the condition for other singularities?
© This ie“feund_by solving equation (i), (ii) and (iv),

-assuming X f O, y # 0 and z # 0, In doing so, very iengthy

.be very complicated. Hence this will be of little use to
us. Therefore we might as well omit this calculation, Same’
situdtidﬁ would happen to eny normal form with more than two

A, A3

Let the tacnode be at Z. Then z4

xza, yz3, xyzz, y2z2 and y32 terms

b

- are absent. Let the curve pass

through X, Hence x4 is absent,

Consider the lowest terms in non=

" homogeneous coordinate at (1,0,0). The tangent is

WY + yZ . = 0 uyY arbitrary constant,

Chéose y = 0 to be the tangent to the curve at X, then we
. must have kSziterm absent,
Therefote, théjremainipg equation is

2 2.2

ay ﬁéebi:iz'+ecx3yz'+‘dx3y'+ exyzz +efxy3&gx y &0

calculation is needed And the condition found will probably’




Ya & trdansformation

S

| gy
.z w_z;+ xy'_
Tﬁé éqﬁ4Ei6n bécdmed

'gay4+bx2(z2+zayz+azy2) + cxly(z+dy) + ax’y
L+ exyz(ZTAY) +'fo3‘+ SKZYZ" 0
- ay4+bxzzz-+ (Zhb%c)_xzyz + (b12+¢¥+3) *2Y2
3

+:dx?yif'gxy2z + (Ae+f) iy = 0,

C

fdhb&aé.h:i - iﬁ:, we can ‘get rid of.xzyz term -

4. .22

‘ay + bx z 2,2

+,d’x3y + e‘xyzz + f'q:y3 + g'x"y" = 0

1-;0bsefve that‘é'= 0, the curve has a factor X Hence & # 0.

. Also a 4 0 to ensure non=-singularity at X.
At 'Z, the mon homogeneous leading terms are

Y
2 2

—k T Yt 4 etxy? 4 obx

If‘e!;§4ah # 0, W = (4-1)(2-1) = 3.

'Then, ¢hoose unit point.ﬁe can make a=b=l=d, i.e., et ht2, the .

normal form is

Aq _,i?ﬁzf+_y4f+.x3y +‘axyzz +-Bﬁ2y2,+'yxy;‘é70'

N, o o 2

e LT
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 Similar to Age Consider the normal form ofiA3§ .Aea2g  é'

ﬁ”fheaﬁbn—hOmOgeneous coordinate, the equation Bééﬁﬁéﬁff B

x2 vaxv? + ¥4 +x%y s pxP? s xyd0 o )

ff w42, then

a0

3% » px%y? + yxy

(X + Y?)?C+=X

Take ttansformation X -+ x-v2

- Y + Y
 then

12 v xvH3 « serH W+ yxevhHy? w0
Theféfﬁréi iéhding terms are R o o ' :

Xz - YYS

[ . . . ,

Henée_if v f 0;u = (5=-1)(2-1) - 4,

. o AP ; oA |
i .ﬁf' ;A&.- ix?zz_f.nyzz + y4 + x3y + szyz + ?xya i_o f
; - or (xz +,yz)2+&3y +'BIZY2 *AYKYS.“'O v 4.0 -
|
|

. The tiotmal fdfm is

B2 4 4y (see pidé)

Considetr the mormal form of A,

[l

' '57‘5*z¢2f4 nyzg +\y4 *fx3y + szvz + ?*ia Y
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a»
H

2

|

Q;sz '+_2y2z %-szy * ZBxy2_+ yy?fi 0 - (1)

o
"

~xyz + 4y v x0 4 gmaly wodyay? w o WD)

i

[

Q2
o

-

2 oaaxs b2y a0 N € T ) I

By equation. (iii), we know that singulavities must’ Lie on x%0
AR W that si | |

'dt f; o ké_# yz - 0 - _ . (iv) .

CIf x;é 0, by (ii) y = o, satisfyiﬁg (i) =¥ (0,0,1) singular
.:38 éx#eétéa; - - ..L . : - | : | o i 1
. Lf %z + y" % 0; assuming x'# 0, y # 0, muleiply 22 t6 (iv)
| . . | | [ |
. :. T ] . & - . 2 ':7 2 ' : 2 . . "

- that is' -~ . 2xz” # 2y"z =0 L (¥)

LRk axPy w 28xy? 4 yy? w0

:iqe.,.3x2 + 2Bxy '+ yyz =0 . (vi)

- Mu1t¢p1y.43«;6;(iv), ive. bxyz + 4y = 0 L (i)

..(ii)F(Vii)?a ;.- o 33 + Zszy {-Bnyz:u d

- - _"Tigq; 'x2 + 253y,¥'37Y2 = Q o :_ : _(v1iij
(vi)=(viii) . . = -4Bxy = 8yy? = 0

.i:a; I‘BK -'ZTy f 0o : A x.*‘;%x'?
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flet y = 1, then x = - EBI and by (iv) = = 'ZB_Y ‘
4

F rherefore the singularities are at (-4Y2, 298, 8%) where

y ¥ 0, since assuming x # 0, y # 0.
| ‘ 2

" Substituting into (vi) we have the condition 1y = E—-for

4

another 51hgular1ty.- Hence for A, we should have Bz‘¥’ayw
And we can eagily see that when gl 4y,

the curve actually becomes A 4" - The extra singularxty added;

is a node.

'Note that we can replace +2 by =2 in the normal form sitice

.they are equlvalent (take the transformation z -+ -z)

‘Let the node be at X. Then x4, xsy,

xaz terms are absent. Suppose the

curve [ passes through Z. Then 24

is absent.,  Consider the lowest non=

/y Z}\' homogeneous terms at Z, The equation

of the tangent is uX % yY = 0, If we choose y = 0 to be thé

tarigent to the curve at Z (possible because the cubic has

" class 4), then xz3 term is absent too.

Similarly consider the lowest non-homogeneous terms at
' 2

X, The equation of the two tangent is £Zz f.mZY ¢ nY“ = @,
If we take z = 0 to be the tangent to the node at X, then

 g2y%\i3 absent. Now, we have the equation

-ax?zz *fby23'+ nxzyz + dy“ + exys * fy3z.+ gXy z

nys? + kxye? « 0




 ”g0ons1def the non-homogeneous leading terms at x.

a(x2f+ 2 0y +‘12y2izz + byz3 +;¢(x2+zAxy+12y?)yz

' '41dyefe(x%ky)y3+fy3z+g(x+ly)Y2z+hY222+k(xf1Y7Y?2 “ 6£ﬁ  

-_ai?zz + (_2Aa+k)Xyzz+(aA2+h+kA)yzzz+byz3
h-.+Cx2y2+(2Ac+g)xy2z+(¢A2+f+lg)y3£+(d+ex)y4+éxy3+hyzzz & 0
‘.Let A= —f%% ,fwe'can_eliminate_xyz

'_fWé have the equatlon

::axzzz+byz3+cx yz+d'y4+exy3+f'y3z+g xyzz+h yzzz “« 0

~I1f la = 0, the equation'hés a factor y. Hence a ¥ O.

'}iIf b = 0, .the curve r has a gingular point at Z. _Henté‘b 4 0.

L

aZz + cYZ +er3 5 if ¢ o 0) el ,

1f e = 0, u = (3-1)(2-1) = 2, Therefore c ¥ O.

Then we can ,choose unit point to obtain normal form

'_kzzghffyia’+x;yz+ay4+ﬁxyzzfyy3z#ﬁxyzzﬂgygbz_*_0

i .




Let the cusp be at X, Then x4
x3y, xzyz, xzyz terms dare absent.

Suppose the curve T passes through

, /y-"

Choose y = 0 to be the tangent to the curve at Z. (This is

Z]\ are absent.

gents are abeorbed at the cusp). nThen we must have x3= tetm

ITabsent too.

'{ghqn-WE-have the equation 7
-akZz2+by53+exy3+fy32+gxy2z+hy2z2+kxyzz “ 0
?‘:If a = 0, the equation has”a factor y. Hence a f;OQI

I

1”f00n31der the non-homogeneous leadlng terms at X;

-az? +Va$§ + gv?z

e $0  u=2
e #ﬁ0  TR 3 _ o Hence e # 0 for A2

3§ Thef§fofe,_choosing unit point, we have normal forﬁ_

g 52  .izzzfyz;+xy3+qy32+ﬂxy2z+szzz+6xyzz = 0 .

Note that there are alwqes various ways of writlng down

’i: - the nurmal form for a singularity type.‘ The abovagliet of

3 .
s X Yy

both Y and Z, Then y4 and 34 terms

poBBlble 91nce the class of the cublc ise 3 and only two tan~

rf“If b = 0. the curves has a 91ngu1ar p01nt at Z. Hence b # 0.

T
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2 3 Enumeratlon for Reduc1ble Quartics .
Although we also have a genus formula for redu01bla
curves, it 19 not easy to make use of the formula au WE.

have done in the 1rreduc1ble case.

ffdﬁ the;#iew[pdint_of.gedmetry. We shall then ﬁrﬁceedﬁﬁﬁﬁﬁ
thia difeétiﬁn;- - »
| :Geometrlcally, a quart1c can only reduée.1nto the -
If§110w1ng four ‘kinds. of comblnatlons. (L) a cubic and a
'fllne (I1) tWO CORlCS (III) a conic and two 11nes, (IV)
3ifqur;11ngs. We ahall discuss each of these four caseb in61~

Ifﬁi&ualif.

IE(I)‘A'cubic and a line

If the eubic is reducible, the quartic-ﬁill be included

"fﬁouraelves to 1rreducible cublcs in this case. From the

'ff:claasiflcatlon of cublcs we know that there are only three

'.:_types‘of 1rredUc;b1e cubics e.non-slngular, nodal and ¢ugpidal,

_are three posgibilities.

"IAi Epn%ainéularicubicjand‘a general chord

and z = 0 as the inflexional tangent.
Now consider the'ten'bﬁsih'monomialﬁ

for cubics. The term. x> 15 absent

_f.The easiest way to list the;reducible cases is proﬁhbiﬁI;h

-fﬁin the cases (II), (III)Qor (IV). Therefore we shall restriet

(i) We shall beginv‘withrﬂOn4singu1ar cubic and a line: Theré

Choose the chord to be thé line x = 0.

Choose X as an inflexion of the cubic
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-ldiﬁéedéu?vé passés‘tﬁIOUgH X. Local equafion af X‘is
iff¥é¥l..}};.-_0;. ‘But we have already chosen z = 0 as the'.
"tangent to curve at X. Hence the term. xzy must be abaent.
Alao alnce z =0 is an 1nf1ex10nal tangent,‘the cutve
jﬁhoﬁl@;pdt_cp; the 11ne z = O'agaxn. This 1mp11é§'x§2,tétﬁ ;u'
Eéﬁégjgﬁﬁg” Thq euﬁiﬁ has_fhé fofﬁ | .
hxzz+bxz?+cxy;fdy3+eyzz+fyzz+g23 - 0;

.;We st111 have the freedom of.chooslng Zon x = 0.-¢Thereforé
fftake transformatlon X+ X, y + y+Az, z + z, we can get rid
g?of the ‘term . 23 and obtain | - 'f ;/  

;E(*fz

'7gfxzz+B'k22+é'xyz+d'y3+e'j2z+f'yz2 = 0

F?Z'Note that a’' # 0, since if a‘ = 0, X will be singular...Aiié ‘.
ﬂ‘d' ¥ 0 in order to keep the cublc irreducible. If_f' Q'O,
‘L?g.thgn x--:O;cuta the cublc.at y2 (d'y+e'z) = 0. Hence to
}'keép Eﬁe ﬁhfee points of intersection distinct wé muéc.hﬁvé

Q'f # 0 and also e'2 Fo4drEr, Now choose unit pbihfﬂby takiﬁg

'“'f x + mx, y K ny, z + kz, We.can make a'= 1, a’ i'i:éhdlf' Wy,
' Then nha,gquatmoﬁ of the quartic has the form
: Al.r.‘ x(ﬁzz_+ dxzz + Bxyz + y3 * yyzz + yz?) Q5bf'i ‘
o o g . 2
" Notes
(i) There aré_still other conditions on o, B‘and_y in ordet

"~ to keep the cubic non-singular. 'But as we have mentioned

g bhfdréfinfbhéuinreducible-clasaificatibn; these conditiona
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_1o-berof-eny use to.us. Therefore, from here on whenevér _ |
his sitUHtlon ar1ses. we shall omlt the ealculetion of thesé]’ﬁ

”further condltlona.

:(ii) Note that in this normal form the three nodes on x ¥ 0%111 ]

are not a11~f1xed; We shall now descrlbe another normal oo
i

tform for Ai. It;hasve’certaln epec1a1.pr0perty whfch we
ishell méntion in later chpaters. In thls new normal form
ii:eWant all the three nodes on x =0 flxed eay,'et Y, Z
| “and P(O L,-1). That is, the oﬁbic
o passes through'the points (0,1.0),

(0,1,-1) and (0, 0:1) on x = -0, ‘Let7.”

— ' us consider the oublc basig monomidlhy'
}ASane (0 0 l) and (0 1 0) are solutxons, y and z° terms
fifmust be absent, Also beoauae of the peint {0, 1-;1),.the- -
“Wgooefficiente of yzz and’yzzjmust be eoual. Now 1f we 1et

" the cubic pass through'X, the x3 term goes too. But now we

.%ﬁfcannot‘in‘geﬁeral choose X fo,be‘en infle#ion,:eo welchoosé‘;

”f.a = O'to‘Be Eengent to the cubic at X. This is possible “ _'5 |

' because it 19 well known that for any non- 51ngu1ar cublc

“ecurve, four tangente.can be drawn to the cublc from a pblntLﬁz B
of:tﬂe curve. Hence at least‘three lines thrOugﬁfY are
Utangeﬁf'to-the.eubic at a p01nt other than Y (even 1f Y is
an infiexionj;f'Tﬁen we have the term xzy absent tdo. We

bt 'renult in the ‘cubic equation

.|; _l.ro ‘:f~~fL Jﬁxfgfbizzfexzz+dy?:fd&zz+ekyz - a “ :
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:W-if_d = 0, then x is a factor. Hence d # 0
. 1f£ b = 0, X is a singular point. Hence b #0, '

If a = 0, then z is a factor. Hence a ¥ 0;}#;[

1. by éhobeing'nnit point,.we een make d ﬂﬁa‘iiiéh we
L_ﬁtﬁénnbrmel form.for the quartic as : - i 'ffi
"x(kyz+yzz+yzz+q£%¢+8xzz+yxyz),- 0

o ' o ¥ 0
There are preSumablv other condltlons for the cublc
f:tq_Be.nen-51ngnlar. These are omltted hecause of reasons
"mentioned befere.
Also for a reason which will be ment:l.onedlnm.faptéP 5,
we need nelther of the. tangents at P and Z to pass through x.
.. The - tangent at Z passes through X iff B= 0. , '
" The tangent at P passes through X iff the line y+z - 0 is

b tangent td cubzc at P, Now the line 2z o =y meetu the cubie

"fewhere:

2 . _ 2 -
xy© & (L+B-y) = ax“y = 0,
* This has double root x = O iff 1+B-y =0,

'1_Therefore for the spe¢1a1 purpose, we also want B * 0 and -

f,AlAj Non 31ngular cubic and a tangent line

' ﬁ¢X‘ .~ . . This is just the case: when X = 0

cuts the cubic at two]p01nts, one
_tepeated that is the case when £'=0

 This time e' should notzbe_equal to

- , Zero or ‘else x @ 0 ivq'uld‘_éi.tt cubié




lthree times at (0 0,1) We could make e' - 1 by chooting iétﬁ_if
_un1t poznt and have the normal form ‘ S

:ﬁikst,: 'x(x?z.+ qxz2 +_Bxyz_+fy3 +'y2z),ﬁ.d; o
| - awdo0o -
| | | | SNBSS
'Npté uf% bﬁimplies Z is a-hingulér point, indeedvhthode‘ o |

_bfaéided-sz # 4. We obrain epecializations A

B
143 > AjAg

17273 - | I EREE L
’“5 '“:Q/— > p,,zn_, -P}— T A -P/—“"" Y REAPS

ijy 1ett1ng o + D

,Jaﬂd A A + A AZA

In the case A1A3 above it is a Blmple matter to determlne
thhe preclae condltlons for the cuhlc to be nonhslngular, and L

;lhence for the quartlc to be of the type A A Tha tondltiduu

Lo a # 0 i i
8%-308%4208%-88%+3608-270 + 16 oo ;
|

Hﬂthhlh llluatrates the remark made above that the cbhdltioﬁu i_T

‘mjfaré usuﬂlly tochmpllcated to be of use!

,:1;A5t;#oﬁf9inéular.¢ﬁbic_and iqﬁleiional tangent

| R i If e' does equal zero tqﬁ igfthe
.above'diécussin, we'théh have the
19@937A5' That is, in thé‘equétion
e't= f"ﬂ.dtz Also bt o Ug

8o that Z Wlll remain. nun~31ngu1ar

.iqr‘qhelcybic‘ Ghoosing uﬂit point,
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liave the rnormal form

L2 2 . 3
A £(x"z + xp° + Bxyz + y°) = 0
5 o Z 8342740

N&sS

;Let x = 1, Then, ifB&Q7=0, the cubic has a singularity at

3(1,1,1). We can easily check that it is a node,
‘ 3 : :

for A;,8°# =27, And when 8 + -3 A; > AJA, .7_4%

~Actually, up till now, welhave already achieved the

Therefore,

folibwing specializations
Pt ~> Ak AL > fs F7—Z — H|H5.7,¢E

(I) (ii) Nodal cubic and a line

X

There are five possibilities.

Let x = 0 to be the lide. This

is the case when the node of the
cubic is not on x = 0 and the cubic

cuts the line in three distinct pointa,

LMY | 2\

-3
80 that x

Position the node of the cubic at X

‘ 2 )
» X ¥, X z absent, Choose y = 0 to be the tangent.

to the node there, xz2 absent., Also allow the cubic to go

. 3 .
through the point Y, ¥y term gone. Then comnsider the ten

basis monemials of the cubic curves. The equation remained

az” + bxyz + cyzz + dyz2 + exyz = O,
If a = 0, vy is a factor,contradiction to irreducibility.

Hence a ¢ 0,

If b = 0, z is a factor. Hence b ¥ 0.

If ¢ = 0, x = 0 will cut the curve at zz(az+dy) =0
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'“f:twofpoints,'one repeated at (0,1 6)' Thi‘

' contradlct our proposltlon to have- three

dlstlnct 1ntersect10ns.; Hence & f 0.

fﬁlﬁ;:then there W1ll be a cuap at x insteed of i ﬂbde.

_Hence e #% 0, i
Chooslng unlt p01nt, we can make awb &g - 1. Théﬂ I
‘e have normal form for . the quartzc as E

i.Al :[[ktz?ﬁ#tiy?.w-uyzz + By¢2 + Xyz) = 0

'=f¥321 e where o ¢ 0, and B # 4a 1+a-B # g
Note" the 11ne X = 0 also cuts -the cublc at two po1nte,'f -
one repeated when B. *4& = 0, - This is because x = 0 meets

-,the‘cublc where z" + By z + ay .z = 0, _ R

" Now let us check whether there is any other condltlona

: on o and in the normal form for A4 such that the curve.
- P 1
i‘ it is eneugh to check the conditidh

fur the cubic to remaln nodal.

Let g( x,y,z) = z3 e_xy2'+fcy2£,+f8y22'+ xje_ﬁ,ﬁ

 ﬂW111 rema1n~to*be A

‘w[m o
» [0 _

“y2+yzeao0 W

Qax
]

= 2xy + 2ayz +paf ¥ xzm0 (CESI

ar
]

el R T A T TTT I

TN GG ]
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;hy;(i); éingularities‘are“either.on Y. = 0 or y+z = 0. “.7fffﬁ f |

If on y = 0, .(iii) implies z = 0. And y=z=0 satisfies |

"vﬂ*?2k25972u227+ Bzzl+ xz = 0 _  ;¥51   i ¥;§; ’f

D sxz 4 (B-20)22 = 0
((e-20)2-x] =0 o iw

;N&w z - 0 1mp11es by (11) X =0o0ry =0,
l”*ff If zﬁx-o, by (111), 51nce Q. # 0 implies Y-;‘°-~ Cbntra;
: | | dlctlon._ |

_  if z-yno, we have alngularﬁty ve. expeét Hence we caﬂ

assume z # 0 to f1nd other 51ngu1éritiea.

Theré-by (iv) we have
ﬂi - (352u53 o  .Lf:}; .;, :(v);
 ;;??5€ﬁif§ﬁ§Qy[1 ?i.iqto (iii) we have
 .352 + 522 ;'2822 -xz-- 6”_:..k  :

- and since 2 /4 0, we have

”;;x 5?(3*#-%_235 2. (v

-
\ .
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(¥) and (vi), we have |

(8-20) & (3+a-28)

ie. 1+ q-p wo.

' -  ThlB 15 the cond1t1on for the cub1c to heve an extra

 singu1ar1ty.f Hence the cublc hecome reduc1b1ea Actuallyw:'
ie conlc and a chord.‘ And 1f we let z e 1, tha 51ngu1ir1ty
C((8-2m), =1, 1)
We .can eellly check that thls i8 a node, by tak1ng 1t
.afto x through a transfofmatlon.__Thetefore_fo: Aa;_ye must_5‘:
: haVe 1+a-B # 0. Qf
For the spec1ali¢at10n 1n thla case, 1t is best shown
by draw1ng a p1cture _‘;f:
ey 2 R —
L T R
S 1f a0, 8 + 0, Ay > A1‘“3’ @ %0, 820, A > AR

"vfif-BZRtI4q{;A2 + AiAS

CLE 1+ a=B = 0, A

R VIt 4 e =0 and as0, B # 0, ;1_
T - - o
51.e, =0, 8 =1, A AiAa

| . | ‘ o 3 N
3 I?i L. a< B 0, and ’B’: 4K h.o= i, B=2 thon #%— A hs
- Note: In the normal form: for A: on p.54 the three nodes on

ex - 0 are agaln not f1xed We shell oW gﬂve enother normal

_ form for A: which has a certaLn property that we shall nedd

'”.h in later proofa. We want the nodes on x = 0 fixéd 1n the
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}ew normal form, Let them be at Y, Z and P(0,1,-1).

1 . And the node of the cubic is taken

‘to X, but the tangent direction is

not fixed, Then by cénsidering the

basis monomials, we have.(aee Ai

case) the cubic¢ equation

axy + bxz '+ cyzz + cyz2 + dxyz = 0
If ¢ = 0, x ia a factor. Hence ¢ # O
If a = 0, z is a factor. Hence a # 0

If b = 0, vy is a factor. Hence-b # 0

By choosing the unit point, we have the quartic equation

-

x(x_yz + yzz + yzz + .a»xzz + BxYZ) ™ 0
o $0

-B+1 0
¢ 0 NS

Note, 62 # 4 for the nodal tangents to be distinct,
Also, it is easily checked that a-g+ 1 ¥ 0 is also needed

so that the cubic will remain irreducible.

Let o = 0 in the normal form for A: en p. 54,
We can have the normal form for AiA3 as (using ol

.as the only parameter)

x(z” + xyz + ayzz'+ xyz) = 0
o ot 0
LA ‘ '  ef 1 Np§.

Here we use o instead of B as the only parameter,
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B _ _ 5 ‘:;
'u f 0 thla becomes Al 5, 1f a H 1l it becomes A1A3 QZ§

> Y "

""when the node is actually on the 11ne component of
the quartic. ;-”:““”J'”
' Agéin,éhoose X = 0 to be the line

‘the node of the cubic is at Y and iﬁ

is posltloned such that z = 0 is

tangent to thé node tﬁere. Alsu
let the cubic pass through Z.and
éy -.0 tangeut t§ the cublc there (the line x = 0 will meet
ithe cubmc bnce away from Y) Then by conalderlng the ba§1!

imenomlals, We have the follow;ng equation for the cubie

. hk3:+'bx22'+ eyg?%; dgyz*iHo

-

fifreducibilxty. Hence a ¥ 0.

If c - 0, X i- i factor‘  He¢Ee-é]f 0r 7

= The above are the three cases when the node of the éubid f"

is not on the 11ne.  Now we shall conslder the other two,,]ﬁﬁz

component of the quartica,35upposé"‘:

[We can see that if ‘a = 0 "z is a factor¢ Thié §dﬁtfadiEt bdE




. : )

Now we chdose ‘the unit p01nt. iTHe équéti6ﬁ5fEﬁ@tﬁ‘_

It is enough to check the constion on u

_he cublc to remaxn nodal.
et 80y = x? s aaly 4 p2 o

LB n? g g Pyreoo gy

g.ﬂlkii) . |

”fig_-"axz'+_ZYZ_+_xy -‘0 - | _ ;fiii)

By (il); nlngularltlea must lie on z = 0 or 2¥x‘='0.

jlf z = 0 by (i), 1mp11es X = 0, Then X®m 3z =9 also satlsfleﬂ:

£ z+x - 0 1.e. x - -z, aubstLtute into (i), We haVe

*322 - Zaz2 * yz - 0

[(3-2.;): + y] “ 0




;Since z£ 0 we have f(=d-3 L R
SubthLute K==32 1nto (1i1), we Have
: ' ZCd )= 0 .

Hence y - (-a)z

;fﬁﬁ§§£§f§i$ffﬁﬁdff§), we-haia7 ;'

20-3 = -

30 = 3

ﬁThét i§. when o = 1, we have an extra singularity‘h-éuﬁic
{Bécdmes reducihlé;'a conic and a chord. If we let z - 1
‘tﬁé:sihéularity'is"ét (-1, =1, 1) . Mov1ng this to one Of thé

orlglns, Wecan eaally check that it is a node. Therefore

'forAD u#l.‘Andwhena-rl 'P—»-AZ'P @

This is the case when.fhé node of |

the cubic is mot only on the line

‘ffl /- y . component but alsé has'if-dﬁ;oﬁé of the
f§7?'. | :. Z\. -tahgeﬁts. |

'Still chose x = O to be the line component. ‘Let the node

'}df_the cubiE_be at Y and x = 0 be one of ite tangénts. _Ala@_‘
;choose'z_; O.to.bé'the other tangent to the node. SinCe.thE.'
;x =0 cuts the cublc three times at Y,'it :éﬁ ﬁéﬁf?uﬁ thé_¥ ,f7
ghublc agaln. .Goﬂsxderlng.tha ba§1s-monumiaid;'wé_Eﬁﬁ'héﬁé;fﬁ

."::::(‘.hé{‘ _equ.ati_.'on. el

_ Taking the traneformation

IR A



el

-wE:can get rld of the terme xzz and Xz;;

+ exyz = 0

o
;-

e

_Alao e # 0 becauae 1f e = 0,_there will be more degenerate
eingularxty po1nt at v 1nstead of a node. Therefore, thoodiﬂg

'-the unxt p01nt, ve have the normal form fot D6

JETEE R R

(1) (iii)'Cueoidallcobic and a line,. Similar to hodal'cubfé-h
_ond-auliﬁe;”thete'are aleo five posaibilities. The first e

ﬁithree deal w1th the cases when the cusp is not on the 1ine.

_AJA, Cuspidal cubic snd a chord
U ' | This is the case when the cubic cute-

o the 11ne in three distinet po1nts.

'1 -_t of the quartlc. Let the cusp of thef -
fcubxc be at X and y =0 be the cuspidal tangenta” Also let

fthe eublc cut the 11ne at Y and ‘two other d1st1nct po1nts.‘fl

iThen by consider1ng the basls monomlals we havz the equat{d“h

e wobay? s ey?a v dye?

“-. 0

Ne1ther a nor b can equal Zero because of 1rreduc1b111ty‘-

Choose X = 0 be the 11ne component R




Ifza =0, v is a factor.  Hence a # 0 for irreducibility

:Afhﬁof the cublc. S ': “hhf . h
i % is a factor. Hemce b # 0 for.ifreducibility
h-:;Of ﬁhe cubic, | et
5, x =0 is tangent to the cubic at fgfhfhii
heohtradicts eur'assumﬁtion that.hhef1iné *&
vf, cuts. the cub1c at three d1st1nct pointu.,

. Hence c # 0.

;w2 e xy? v ya baye?) e o0 PR
R R e S T a # £2.
s
~ Note that when a’-4 = 0, the line x .= 0 Will éut tha
w6 bapn s b o,

i T ) o
B . ’:l

ie. z (z + y)z - 0

A, o #-tzb

;two‘pointe, one:repeated;- Hence for A 2

H

.

,ht° check the cond1t10n for ‘the cublc to remain cuspldal.

e cdn ERSLly eheck that (L, 0, 0) 19 the only slngular1ty

he'eubic to remain cuspldala.

In order for the quart1c to remaln to be A3A2, 1t'is enough }f-“

near the Orlgin.f Hence there is nﬁ uther cdndiﬁioﬁ on d fbfﬁ'_;“'



Cu5p1da1 cublc and a tn_gent

' xljj?s,af This case is when thc cuapldal cublc

.*g'cuta the line x = O at only tw0 point

-,one.repeated. That 1s, the cage whéﬁ

¢ =0 in the equatlon (*) in A;AZ
\

Y' '['c: ‘Z' _l Now conslder the coefficient d. ,If}

:-JO thcnfx = 0 W111 make a three- point contact with the

Ebub c-——an 1nflex1on at. Y.;

chcc for A1A2A3)

4 ’ o..-,_
"hawnormal fcrm

x=0 cuts the cusp1dal cublc at a

fthree -point contact,~i.e; ;ha case

when c = d =« Q 1n (*) of.A~Aﬁ'

: have the normal form‘fffc

?n(zsl+;xy2).lﬁ_ 0

"< This is just the case when‘the'liné;ﬁ 

aNotc: Again in thc nurmnl form for A3A2, thc'thfeécnédccfdﬁﬁﬁT;f




ra tor A,

if:ﬂb aréfﬁot'f1xed?f We would like to have another normal

Thia-normal form W111 also have certa1n pfoperties which wii i

eeded later Oﬂu

in Whlch the three colllnear nodes are leEd

Let us now fix the thfee”collineéf”

the cusp of the cublc to X, but without

ey

Hence by

ChaUSLﬁg un‘t

The twa_tangents at x to the CUblC must ‘be ofﬂthélﬁiﬁé-ﬂiféﬁ?;f

.15._,,

jﬂ;ffﬁcQaéqfiﬁ:the cubic equation, x is a factof;'.Heﬁﬁe;é‘# OQ

If b = 0.in the cubic equation, y is a factor. Hence b # 0,

a-%,

'f_’f1x1ng the cuapldal tangent directlon-=

w+_bx§2 ¥ éy?z +-cy;2 + dxysz ;éf 0{;&5

i
R T
fl

tidn be auae of a. cusp. ;Hence tangents at x;

2

S A '. )
o+ dyz + bz" = 0 implies d2 = hab

S
BN

inlﬁhé cubic equation, z is a fﬁ¢¢5r;'-ﬁéﬁdéiﬁ-?;b;~

- 4ab. a # 0, b # o 1mp11es d i 0(5‘

nodes at Y, Z and P(O 1.-1) and take L
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cug; -‘1, cuc2'~-1 and‘bhcz - 1.

These give = u =7 = 1/c /s and A = ¢ @Ib. LT e

xﬂente the equation becomes

% xy + xzz + yzz + yz2 t 5 XYz = 0.
- - 2 | a?
But we have the relationship  d” = 4ab or a = T -

Let d - f%-,_we have the normal form of the quartic as

. S
2z_+ yzz + 2axyz) = 0

' : ,f : o 0 o ¢ 1
Jb o | NBS.

Note that this. is the first non-linear normal form we

AjA, 'i(uzxyz + x#z + i

have encountered.
- Now ‘let us investigate whem. there is definitely a cuep

at ‘X, Let‘xji-l, leading terms are
'9'22‘+ 2 yz + dzyz
2. ' ..
.= (z *+ ay) perfect square

Henge take the transformation z -+ z-oy., That is, replace

z by z = ﬁy in the normal form. It becomes




z2_+.y2(z-ay)-+y(z4ay)?_i 0

1f uz-u - 0 there is an- A Hence o f 0, a # 1 ‘for A A

"'of the cubid'be at y and z‘i.O'Béf'

Bfthe Cublc there. Cons1der1ng thé basis monomialé uf the
ax3_+ bxzz * éyzz - 0

treduc1b111ty.- Now by chonslng unlt p01nt we can make

-

qna~£6n fat thé quartit ap f:;%f : ‘_”,;1;a ‘if“ P

~;;e; z° + (uzhd)y3‘+ (1-2a)yzz + yi?fﬁ_O:

Now if (a -a) # 0, then there is certalnly a cusp at X

rther 1f u # 0 _a # 1 then the cuhic, having a cusp; mustlt

- Agaln we choose x = 0 to be 11ne t:(:\m-":"i

ponent of thE quartlc. Letxthg cugp t:JV”

the cuspidal tangent. Also we can"m
~ sllow the cubie to cut the line x'= o

agaln at Z and y = 0 be the tangent ;;ftf

~we tesult in the equatlon AR 3:'f?"zwfnﬁ

Note that a and e will not be equal to zero for the'itj ;&;3p(F

LI B 1 and 1f b # 0, b= 1 as well. Hence wethavéﬂthe,:f'




Cowad *'Qing*~?zz)e -

 vwhere o = 0 or 1

ow the queetlon ig whether theee two orbits are pro;ectively
.istlnct or. not. Th1s .case is qulte gimilar to Eﬁ, and the

answer here 15 also “Yee Let ‘us consider the‘sltuatlon--

o = 1 we . can see that the line y & 0 cute thé

cubxc at x’ (x+uz) = 0-—-two p01nts, one repeated “This’ impliel

that y Lk 0 is an ordlnary tangent ‘to the cubic at Z or Z 1§
_an ordlnary p01nt of the cub1c. But if a:-'o. we ‘can see
‘y’i 0 cuts the cub1c at x3 = 0-—~a three p01nt contact.
tThuo y - 0 13 actually an 1nf1ex10nal tangent to. the cublc
‘at Z._ Thattlsnln caae o ® 0 A is an 1nf1exlon of the cub10¢
‘{ﬁote that cuspldal cublc has an unlque 1nflex10n) . Then‘::

fln oons1der1ng the . quartic.'i.e. the cub1c together with the‘r
line component x = 0, we can ‘see that ttie two caéeu are ectuhlly

ggeometr1cally d1st1nct.,

ﬂ;Cuspldal cublc and cuspldal tangent

'nent of the quartic is actually the

cuap1da1 tangent. Let x = O-be.the

//7\ EY: “be at Y and x; = 0 be the cu8p1dal
T tangent We can allow the cublc to pass through X and choosé

y = 0 be' the tEngent to -the, CUblc there. Gonslderlng basio
b S
o nonomials of the cublc. ve'. can reduce the equation to

AR

This is ‘the case when the 11ne compb“ ff?r

1ine component, the'cusP"of”theIcobicﬁff

t Thlﬂ result seems to 1mp1y ‘that A1D5 has two orblts.“Bﬁtafff
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ai?l$:Bx2y +'ckz2 w0

:”Lthat nezther a nor b is zero for 1rreduc1b111ty.
lfnot zero - 1f we assune ‘the 1n£lex10n of ‘the’ cub1c 15 not:

f(or we can also take x to- be the unlque 1n£1ex10n);.”h

”lng unlt p01nt we can Make a g b ﬁ 6w 1. Heﬂc!"thé;

fNow, We haVé flnlshed the enumeration’ of the comb1natidﬁ'
£ a.cubxc nnd a l1ne. We shall go on to the second typa ~:= -

jtwo uonics.-7”'

1fore We shall dlscuss the posazbllltles accﬁrdxﬁg to tha

qnumber'uf lnteraect1ons.

H_ip-Two:cOnlcsgwlth_4;1ntersect10ns

Let both of the conics go3thfough Eﬁéf-
veftices-x.'Y, Z of the trlangle of
referencei Then the oonlds can Be

written as

Cayz + bxe + cxy = O  whete abc $0

Yo xly axzhy =0

Z(II) Two conLcs ‘can have at most four Lntersectlonss Tﬁéfé?‘f 

'ﬁibygq};ﬁe,canlWrite;the tonléé.aﬁaf?”-;fi"'_y-fV




' :aB # 0 (1rreduc1b1e conics), o f 1y B ¥ 1 end & ﬁ B;QGJ

If ¢ = 1, at ¥ the 11ne ‘x+z = .0 would be tangent to

th of the con1cs.ﬁ Hence the two conics have only 3 interﬂ.s*'

Thxs contredlcts our aesumptlons. Therefore o $ 1’“5

iect;ons.

Slmilar reasons apply tOrB e 1, because then at x, theil

‘imhe y+z =0 would be tangent to both conlcs. Hence 6 # 1 ﬁffi-’

If o = B, then at.Z, the line x+y =0 would be tengent

to both conlcs.} Hence a # B

f“nEIt ‘is-. obvzous that for a11 non-excluded valueé bf dgﬁ.
'the EurVe w111 1ndeed be A (tj)

Two conics. w1th three 1ntersect10ns

As we have d1scussed in A? (za) Ty whéﬁ.‘f

N

'u = 1, B = 1 or o = B, the two conlci

w111 have only three Lntersectlonﬂ. i

We shall choose the case when B - 1 jﬂﬂ B

. to he_ou:'normal form., That ingfj"7“'

0 (ayr ¥ xz 4 xy)(yz b xz. b xy) =0
a $0; 091
 Note: If o -f 1, the two conics are exactly the same;
f;féﬁEetede ;;3"*' - o } el :
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Now, before we go on to the next,6 case, we want to go
Eback and discuss the case.AiCé> again, Notice that in the
'?given normal form the four nodes are not all fixed. This is

a disadvantageous property.for us in our future settings. So we .

ghall now develop another normal form which will have all the

four qbdes fixed. Let them be fixed at X, Y, Z and P(L.-1,%%),
says This is 'that we want both of the coniecs to go through .
not only X, Y, Z but also:E(I,—1,+1). Then the conics havé

the form‘a§z f_(a+1)-xz45xyw-o(this conic is proper if and

on;y if a ¢ 0, a ¥:1). The quaftic equation can therefore

be written as

' Ai@ {ayz + (a+l)sxz+xy) (Byz + (B+1)exz+ xy) = O

@« #0, 8¢%0
« ¥ -1, B4 ~1, af8
. Nas
ﬁote: If o = B, the conics are repeated. This is the secotid
© non=-linear normal form we have encountered. |
There are two cases‘whén the two conics have 2 inter-
sections, One is when the_multiplicity is three and one,

the other is when the multiplicity is two and two.

Alﬁs Two conics with 2 intersections, multiplication thrge
| and one

Let the three point contact be at X,

and choose y = 0 to be tlie tangent

to both of the conics at X. ’ Let the

\ 3 .
other intersection be at Y and chovse



"’;fi_

- e

‘to be the tangent to one conic at Y, This eonic Haw

”]dﬁﬁﬁf;ﬁbﬂiﬁzhas;the‘équﬁﬁidﬁ'
20 e
z 4+ byz + cxy = 0

wﬁete b i 0 51nce the conlcs do - not touch at Y. Also we want15
aoo u td avold further po1nts of intersect;on.' Thus choosing.'fi'

ij?we c““ ‘make b S ¢ = & = 1. -And we have the ﬁotmh:

CE eyt ey e = 0

Let the two 1ntersect10ns be at Y and

A, Th1s means that both of the conlci

Vpasa-;hrough Y and Z, and they t0uch
 1 ea§h.dthéf theré; Also chooae vy = 0
_ .'f;and z = 0 to be the tangents to botﬁ
Eof the cOn;ca at z and. ¥ reapactlvely. Then the eonics ﬁf621 ‘. 5f

¥ ayz = 0 where a ¢ 0i

;And the quartlc is (x + ayﬁe(x # byz) - 0 ﬁ # D b i b?i?;iﬁflc

“;If & - b we then have repeated con;cs._ Hence a # ba-




ftfﬁ L

ar Ghodsing énit point, we tan make a.® 1., The mormal

A3 R L R R

twé cpme[to,thé.nasg

Two conlcs w1th one 1ntersect1un

,',.

/z b

.. Let the four-point- contact be at

:and take y = 0 to be the tangent to

:'Aboth of the conics at Z Let onelf3-' B
.;of the cOnlcs pass through Y and

:take z. - 0 to be the tangént tu tha.

”:The conlc is of the form

"ﬁ_ﬁ;*t-gyz .;. O.t: @ *:o.;:ixt.;jkt.}ntCii

_ﬁéhétﬁeriiaﬁlé is Of thé.fnrm
bx” + ey” + exy + fyz = 0 b .# 0 (ii)

fWe_can Bee;by substltutzng (1) 1nto (11).that for fouf*pu;ntﬂna

ﬁntact we must have
Hénce the quartic is of the form
g




L x? % ayz) (x® + ay? h aye) = 0, whers d 4 2o

“ehoosing A in z + Az, ve have

The general collineation taking %> + yz = 0 to itseslf and X

o teset s

'llj?x‘+ +nkx F-mky- 

R WA o I LI T JUET O
s * n2z.- my + 2nmx. R T I AT L

This is just multiplying x> + yz by n k . So the other eonle

BEEBHE&-jH

A S S T 2 ST e
X +yz +——7gky .= 0 T AR P T
o Y .k RO SN N

" Hence ﬁe‘céﬁféhbose'k‘and n such that 2&?‘“ 1( '§ﬁd EHE fﬁ{f f37

bqugtion éf‘théfquartic bgcbmeé 7 : :
,: | N |
7 xﬁ,+ yz)(x, + yz +y ) =0 ;
Lastly; we have the case of two exactly the. same conlc!** : ?

_two repeated éonics. Let the conlcs pass through X and Y, T'f J.".g _

and y =0 and x = 0 be the tangents

'- to the canlcs at x and Y teapectively.-

We have the normal form

N\ g2 A
< (27 xy) 0 _‘!’.
ﬂf Noflce thnt the °1ngulglLtles im fhlu'. ..
Toas 6 ‘u:uﬁ Tonger 1“01 +Ld X




JII) A Con1c and two llnes '

No doubt that two dlstlnct llnes will ecut each other}f

1at ex&ctly one p01nt, and each of them can have at most two

1nteraect10ns w1th the conlc. ‘Hence agaln ve. w111 dlscuss .

thh poaslbxlit1ea of alngularlty type accordlng to the ﬂu

of intersectlon these two 11nes make with the COhIC..

This is. the case whén fhé:tﬁo lineé
‘cut the conic at four d13t1nCt p01ntd-'

: “_and their own umeraectlon is off the

CDanr_ Choose y = 0 and z = 0 to-fr fﬂf

bé the tWO 11nes. Let the canlc'”

pdss thrdugh Y and 2. Then it is represented bY the equi ot

N

”f“éx? + byﬁ + cxz + dxy = 0

0& €§¢§f§hat_a # O, siﬁcé x.ié not on the coniﬁ’f
‘”Wffaﬁd b;f.O,‘sinée the conlc should be irreduc1ble,

'Eﬂglaﬁd-c #i0,'sinée y -0 is not tangent tu conxc at 2; ‘-

:Hence ChOOBlng ﬂnlt point, we cén make a & g . d - 1- QWQIT'Z
;have the normal form of
A':;,_ ﬁ yz(x .pi.‘uy'z + Xz + xy) -0 S " * 0’ . * 1

'Nut1ce that if a - 1, the conic beeomes WO 1ines

fﬁﬁdfd'# 0, since z =0 15 ‘not’ tangent tb ﬁonic at Yt-7-

i
t
b
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1"e nbde§ here ‘are all fxxed at Xj Y. z P(l,

g "'1) q

Coﬁic;-é~¢hofdﬁéhd a tangent .
The two'lines cut the éonié bne,atg

'two d13t1nct p01nts and the other

at two co1ncldent points.f The 1néetu :

sectlon of the 11nea LB st111 off

the cunlce

.k"As dlscuseed 1n equation (*) 1n Ai(f? case, but thid

:Still.keeping the‘intersectibﬁ'of l:l‘l"éz'-'=
'liﬁes off the conid, this tlme we have

fboth of the lines cuttlng the conlc_ﬂ

. at two coxnc1dent p01nts._ Thi! ia
”fthe case. when we let ¢ = d - 0 ih
ﬁuétiohf{#).in Ai' ...‘;We.hava the normal_fprmr-:

-

;1”§2(32-¥ yi) ‘#‘ ¢

Now, 1f the 1nterse¢t10ﬂ nf the two lined i8 . actualiy oﬁ the“f"

;tonie, then wa have two mora\casan.": j;-‘”':"ff"af"'”



'Let“the conic pass through k'and'z'fj?"

'"_-at X. Also let y =.0 be. the chord

) of the c0n1c cutting it at x and Z..."

" = - Choose X = 0 to'be the tangent to tHQi-

toﬁic tt'z ThlB sltuatlon is qulte slmilar to A1A3

éxcépt that thlB time the 11ne components are the chbrd and

Cye(y? +ixz) w 0

Thé fOllOWlng twc cases are when the two lines are c01n*.

c1dent._ Note that the 31ngu1ar1t1es are no longer isolateds

JCpﬁic and tepéétéd,thorﬁn;

“ Let the conicfpass thrbugh:x,.Y*and,
.- fZ§‘and 1 =0 be the repeated chdfd

cuttzng the conic at Y and Z. o

Y

T and z. = 0 be the tangent to the coﬂic L




ve the equation

cxl(yz 4xz b ay) 4 O

and repeated tangent

'»Letfthé'cbnié'pass'thrOugh Y and 2;]“
. and x % 0; z = 0 be tangent to coni

Also let z'- O be the'

N/ and x

We know that every n dlﬂtlnct 11nes w111 havé at most

-h“)_ 1nterge¢t10ng.. If the 11ne5 are a11 dlstlnut, then.' .

forur lines can have at most s:.x 1ntersect1ons. " R T

A Four general lines
‘This is the case when the'fourllin99 ﬂ M ; [
‘are distinct and no three of them Are

concurrent. Choose x =*o;'y ='O,

T L/Y  ;f 2\:. z = 0 to be three of the 11nes. :Ahd””.

a general 11ne not p8851n5 through Xy Y) Z can be written ab Sl

. ax 4 by + ez =0  1¢5¥%6 }Eyﬂﬂd  E”ij&fff _



;?ﬁ j8E'!

iﬁg”ghiifﬁéiﬂﬁi we can write the quartic s
o myE(x+y +2) & 0

ot LT

ﬁiihfeé'coﬁcuffénfflines and one other
"Again choose x =0, y = 0 and z -
" to be three of the 1ines which &té.

| ﬁdt concurrent. A general line .T‘Tu

‘  pa931ng'through Y but nat x of z

dan be wﬂitten aa ax cz = 0,‘ a # Oylc * 0. ‘; 7;‘

R Do ,”f‘ .
“Four ‘concutrent  lines

X

Choose x = 0 and z = 0 be two of
‘the concurrent lines. A-génefél'iiﬁe=-; 

‘passlng through Y but nbt X or Z 19

We - want two dlstlnct general 11nes of thia form.- Theh after

chooslng unlt puznt. the quartie 1a of the form

l

of the form ax + cz = 0, a ﬁ 0 c # d,.fﬁ

xg(Ey) 5*% . xz(x f z)(x ¥ az) 7 = 0 Jé;# ; ;. . "y 0 } ['l.‘

NbS

a # 1 since we. want - the lxnes to be dlstincta

We uan alao haVe another normal form thhout chuoling x i

‘:z - b td bu_two of tha 11nesu_




Z can be wrxtten as'

{‘gkf;ifbkgz?a+i¢z4fi q ﬁhere1b?f#‘haé, #_%lo;-ﬂf¥7bs,

hopgihé;uniﬁ7ébiﬁt;”we_cﬁq,makeia_i_e,éfli “Henee the ag¥mal .

and 1et g

‘g = 0, y = 0 and z - 0

'be the*r@pea:ed one. We hava thé 5f “ _ W

. equation’

one repeated

”‘Choose x = 0 and z = 0 be two of the-

cmncurrent lines, and ax. s cz = 0 be .

‘the general 11ne pasnmng through X,

'but nnt x or Z. Let z - 0 be repﬂﬂﬁeﬂ.

, '!‘ -

'hubning hniu point; we-haVe the equatxan ; f,¥



' ~,‘_,0, The quartzc equatiun is.

‘This finishes odr

 Choose z H 0 be the three foided llne““'

N and x - 0 be the othet.. The

Chbose.; §L0_be.the foﬁtfﬁiﬂ

The ‘equation is

elassification.of quarticd.

L

equati

liney -




There are a total ¢

f 21 types in the

jrreducible quartid curves.

4 74 The Lish of Classified Singularity Types —di-
TRREDUCTBLE QUARTIC CURVES |
. 1
'5‘1
” [ ‘ dimension ‘&
ities | Singularity types No. of Moduli of the Stratum lw
_ L
?%
Non-Singular 6 15 i
e - - I
Aq 5 14 i
iy
Aoy L 13 ‘ﬁk
- ‘|‘\‘|
A 3 12 !1‘!\
Ay 3 1 fl
- i:"l“
_ i
K ; . i
A 1 10 i
5 u|}|
LI ° ’ |
Bg (two orbits) 0 9 i
. :51!
0 8 :
D 1 10 ‘\l
A1 A1 b 13 i
. ‘ A
Ay Ao 3 12 :
Ag Bo 2 u j
A1 A3 2 11° 4
Ag Ay 1 10 )
By Ay 1 10 "
Ag Ay 0 9
1}
A} 3 12 ;
P
AT Ay 2 11
Ay AB 1 10
A% 0 9
o [
The Codimension of ;the orbits of these !
strata are all 6. i
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e

v REDUCIBLE QUARTIC CURVES _ ‘;

Singularity Picture Codimension Number of  :
Type of Orbits ' "Moduli :

A5 6 1

Dg

ISR s I

1
Ay s @ -
A2 As r Ef 6 )
A% Aj @ 6 0
A% Dy a;z 6
Ay Ag 45 AL 6 0
AL A <] 7 0
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REDUCIBLE QUARTIé CURVES {CONT)

Singularity Picture Codimension . Number of

Type ‘ of Orbits Moduli

At ! 6 : o
I

A 6 2

3
A Ay

A2 D,

a3

6
Aq

10 0

10 o 0

AE
£
Ak
e
2
<

Not isolated | *:=€§§%=_ 7 .0

| 5
AN
e
O
L
7

12 : 0

A total number of %% types in the Reducible
quartic,

The number of singularity types altogether
in the quartic classification is therefore 55.. .
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Pe 28
p.107
P.¥11
p.115

p.116

p.118

.119

hilielal

p.120

T.l122

p.l23
p.l24
p.l32

p.133

P.l3h
P.lLb
P.150
p.156
p-159
Pel60

jo.
D.1E3

pe164
D167

P« 170

Corrections
The volty 0 Yempyod . .
Bottor third line ™ f22 + 2%y

. g 1 o 2 z Z—r
Seventh lins "x“z“+ 2xy +....... } gw.rﬁrA mz y X_‘ai)#g_ x%a-

Twelfth Iime WE(r)
lj«%

Fourth line "quru;ent”

2

+......-"

Fifth linc “reprssent=d" : I

Bottom second lime"g ef(m) -

Bottom third line "L eE(n)M"

First line "(versal= k-transversal )}V R

Bottom fifth linme ".... im Mg the singularity £' = £+ terms..
Bottom lime ",... Bxyz M g

i i t ; ryde 1 ' ’
Third line "....+ Sxy &;nc ”éiy;)
Sixth lime Y....+ 3xyé .
Bleverth Lime "..,..., xy% form aadase ....."

Temth lime " y, y%, ¥v%, zy¥ form = base...."

Nineth lime Y2x + 23% -2xy3e(@% By Ly

Bottom lime .., 3&yz¥+ 2%y%z =0 "

Third lins " yzé;ﬁ_ +md. ..., "

Bottom third line "...., Ik, (y- J)(v+1? n

Bottom lime ", +r1(z+l)” + o5 (y-1% (zr1)

Third line " g[é~ ¥ oiersns

Fourth line " +(-4by + ....."

Fifth lime " ..... +as->z] L

Eleventh lime " -4b; U

Eleventh lime "......t (g(4 +1) +ci(ﬁ +1) 1ulp Yzt
Tourth line "Procf : We can write ( MM, 0 Yean. M :
Forutk lime " ...mpwjf(xa,u,v);F R -orvit of B M
Fifteenth lime U ,...iff J ©

Third line M {=f=f=3%=Q "

Bottom third lize ".....+ F"XBZ where M

Fourtzonth line "p,llq, vien J i

Bottom second lime, omit " Let NxUxV < g , and "
put in " Working withim Felghho“kCD&.?, let
: _ q': Nx 0 —= C
First linc"m: (Fxﬁxv o)y C
Bottom fifth line "8: (Txv...... " ,
Bottom third Iline " (u,v,w) Sqﬂﬂ) 1;fé§(U¢?......-..... ES%(F) "

Fourth line " As a versal...,."

‘Eleventh lime " + (xyl+ ey +35% n




R e ltmi T sl s b el e ses ma s et b b e

Corrections (cont,)

1

e b Jineth line " - pid .
p. 175 n;ne h e T => } where xeX

DA
p.17L Bottom fourtk iipe, omit "(Cross Cap)
pPel?8 Bottdm Fourth 1ine " ceeeilly= W, = 0 "
P.179 Eightk line M"argument on p. 166, we have "
P.180 First Jime "¢, (U2 Upk Mi...o™ |

Second line " e, ¢+ ( Uyx Upx M ......"
p.18% Bottom third lime " Or p. 167 in Sectiom 6.3
pPe188 Sixth lime ".u.. ot 3 yé M
P«195 Seventh lime " (see p.166)

" Pp.198%& p.199 Wrong order, {(Binding mistake)

r.201 Fourth line "fixed " Al
p.205 Diagram ' . H2 —» Ag Az "
I

- ﬁ;ﬂj Rf l 4 ’
P« 207 Thirteenth line "(**)-LX3 —i(“ :B f S |

Eleventh line " _ﬁé&ga+ Y-+ §x =0
P.213 Third line " This implies § big, a contradiction ( § smal1)"m
pP«223 Bottom secomd line " Consider 4, case first "
F-225 Third lime " ({,: U;v ng Mx WX wz,-a I

Fourth line" B,z e B empay, = "

Fleventh line ™ (;x Q@—: Uyx Upx Mx Wx Wy —>acacaen

Bottom third lime ",.... Hence a submersiom at

p.238 Thirteenth 1Mime " (iv).....~3dyf -Ley3"

, Z
p+251 Eightlh line " So the conditior for Ay is [:5(———E-}- Ji“_]

, 4p%
P.259 Fourtk lime " Similarly ng -320 and ...." ¢ F
P.260 Bottom second lime M...... A?A3, Af’D¢ s Ay M

r.x_'.on
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CHAPTER 3

3.1 Orbits
Let us start by recalling‘the definition of projective

equivalence. Consider the group action

6L(3,0) x C2-{o} » € 7-{o}

(6,£) + 6.£ = foo *

. The a;tion is on ﬁhe left 5y substitution; We can regard
£ £_$15—{o} as.a map ¢3+Q;and.y e G as a linear map @3 -> £3.
Then 8.f 1s the map foe_l. Orbits are cones.

Note also that we can regard the space of quartics
as CP14 and the group acting as PGL(3,C). Then the orbits
of the former action can be regarded as cones on orbits

of this latter\zziion.

In our clagsification, in Chapter 2, we can divide the

strata into three kinds, according to the number of orbits

they have. First, if the normal form of the stratum has

no modulus, then it consists of only one orbit. For example,
6

Ags Al,'étc. (full 1ist see 424 ). Second, if the normal

form has moduli, then the stratum is composed of infinite
number of orbits. For examplé Af, A1A3, ete (see 4224 ),
.Thirdly, there afe cases when the modulus is only allowed

to have a finite (but more than one) number of values. 1In
fact, we found only two cases in whlch this 51tuat10n happens.

They are Eg and A DS'{?C and they have precisely two orbits

corresponding to the two allowed modulus value of 0 and 1.



The main interest in this section is t6 set up some
ffoundation fdr proving in general that the Strata“we have
éichosen are manifolds. The exact proof will be given in
4ichapter 5.

Now, let us consider the case of single-orbit strata.
The following well-known theorem (Maftin Golubitsky and
Victor Guiliemiﬁ 1973) and the Algebraic nature of our
action enable us to show directly that strata of this type

are manifolds.

Theorem.B.l.l.‘

| Léﬁ'G bé a Lie group acting on. smooth mﬁnifold M such
that G x M~ ﬁ is smooth. Then thelorbits are immersed submanifolds

And since both the group GL(3,f) and M are semi—

algebraic sets, étd GL(;G) a Lie group and M a smooth mani-
fold, we can be sure that the induced topology on the orbit
:frOm M ﬁnder-thg\?mooth action is the same as the induced
manifold topology on the orbit. Then the immersed submanifoi&
would actually be a submanifold oflM.

Hence in our cases all single;orbit strata are mgnifolds
and n0 moreis mneeded to say about these cases. Thc real
probleﬁ comes up with the second and third cases whén there
are morelfhan one orbit. The strata now are. wnions of orbits.
"Although each orbit is a manifold, we still don't know
whether the whole stratum is also a manifold or not. It
is obvious in order to‘show the stratum is a manifold,
further properties are.needed‘(see Section 3.4). From now
on when we refer to stfatum, we refer to those having moduli

in their normal forms, i.e. they have more than one orbits.
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The following picture shows how the orbits of a stratum

:;might cut the normal form:

For illustrative purpose, we assume a 2-dimensional

gpace, say (# f)— space, Of modull of the normal form.

The conditions or the moduli would be some excluded -
curves on this space of moduli.

Note that the orbits might cut the normal form in more
than one value of\?he\moduli. But this number of inter-
sections is finite. ?his is based on the fact that in our
process of finding the normal torms we had already made use
of all the degrees of freedom of the group GL(3,£) in each
case, 8o, if two valués on the space of moddli of the normal
_form are om the same orbit, then any transformation thking
one to another must be of the form (A, y,z) + (Ax,uy, vz) where
CASU,v € {; and since we demand the same form again, on
equating the coeff1C1ents we can see that A,U,v can only
be allowed finite - number of valueg. For example, look at

A (irr.).

1 3
Suppose y4 + x2y2 + xzyz'+ axyzz + Bxy3 = 0 , (1)7.
o ¥ 2
o ¥ -2

Bz—uB+1 #.0
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4 9
' and y4 + xzz + xzyz + a'xyzz + B'xy3 =0 - (2)

ﬁ.are projective‘equivalent. The transformation taking one
to the other must be of the form (x,y2z)>(Ax,uy,vz) making
(1) into
4 2 22 2 2 ) :
7l4y + A v X zZ ,+7h2uvx yz + qluzvxy z + BkuaxyS =0
(3)

Equating coefficient of (3) with (2), we have

A4 =1, lzvz =1, lzuv =1
> A o= 1, v = %i, u o= %1
So a' = xa, B' = B.

~ And the transformations are (x,y,z)+(ik,iy,ti). Therefore
there are only f1n1te number of transformations which can

take (a,8) to som&\§a1ues (e',B') on the normal form again.

If the normal form is in some way symmetric, the transformation

may be accompanied by a permutation as well, The number
of permutation is of course finite,
For example, let us lonk at the trinodal irreducible

case.

Suppose y2z2+x222+xzy2 - xyz(a#f6§+yz) = 0, az,BZ,YZ # 4
N o (1)

and - Yzzz+x2;2+x2y2 _ xyz(a,xfs,y+7,z)= 0, a,z,s,z,y,z
(2)

are projectively equivalent.
Since both of them are trinodal and with nodes at X;Y,Z, any

‘transformation taking one to the other must take



X, Y,2} to {X,Y,Z}, Hence the transformation is a composite
faf (x.y,z)»(xx,py,vz) with a permutation., The transformation
f(x.y.z)*(lx,uy,v@) takes (1) into

pzvzyzzz +.l2vzggg2 + lguzxzyz =ruvxyz(aix+Buy+yvz) = 0

(3)

I1f we equate the ¢eoefficientsof (3) with (2), we have

Taking A = 1, we have p = %1, v o= 1,

TS

Hence the transfermation is (x,y,z)+(§;y,iz).

Therefore o' = za, B' = =8, f"= ty.
Sinice the number'of permutation also finite, the number
of intersection ef‘tﬁe orbité with the normal form must
be finite, Therefore in_all cases the number of transforma-
tion that can serve our purpose is.finite. fhis impliés
the number of igt@rségtion of the orbit with the normal

form is finite. _

3.2 Normal Forms are Manifol@s

From the classification in Chapter 2, we notice that
all except two cases the spaces formed by the moduli of the
normal forms are limear. The two non-linear cases are Af 455
and A3A fQF . Now we ﬁant to shoﬁ that all these spaces

. 12 ' T T .
are submanifolds of @15%{0}. For the linear ones, since
an open subset of an affine space is a submanifold, this is

obvious. But for the mnon-linear cases, this takes up more
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;work- The following is a commonly-kﬁown theorem and we

F hall omit the proof. (Golubitsky amd Guillemin 1973)

;,Theorem 3.2.1.
Let X, Y be manifolds and ¢:X>Y be a 1:1 proper immersion.
Then ¢(X) is a submanifold of Y. -
Note (i) ¢ is proper if for everj compact subset K in Y,
¢—1(K) is a compact sﬁbsét of X

(ii) it is easy to see that if ¢-1 is continuous, then
o $ is proper;
- Wg shall start with A: ng. It is fixed-nodes case we are

discussing. It has thé normal form
. (kyz-(A+1)xz +xy) (Byz-(B+L)xz + xy) = O.

That is

292 + (atp)xylz + (aB)yZz? + (a+l) (B+L)x"z’

—_(a+B+ZgEi%yzz - (a+B+2)x2yz =0

with the resfriétion @ # 0, B # 0, «a # -1, B # —l_and o # B.
The space formed by the normal form can be identified with
the subset (a+B, aB, (1+u)(l+8); ;48+2a8, 2+q+B) of CS. Now
let us consider the funétion |

F‘ : Cz\

E' 5 - _
22 C ; (Because of symmetry of the normal

form Z, is used to identify (o, B)

with (B,a) in the set GZ\E')




- 90 -
(a,8) > (a+B, aB; (l+a)(l+B), a+B+2af, 2+a+B)

where E' = {(a’B) . a = os. B =0, o = 1, B = -1 or o = B}.
Wé can easily see that €?\E/22 is a manifold and F is injec-
tive. Let us check whether F is an immersion. The Jacobian

matrix 1is

1 1

. B &
; (B+1) (a+1f
(1+28) (1+42)

1 1

Since we have o # B, (1, 1) and (F,&) is linearly independent;

‘Hence F is an immersion.

Fl: (A,2,6,D,E) & (

A+7YAZ=4B A-VA2-4B
2

: oL

It is also easy to check that F_1 is econtinucus. Hence
F is proper. This implies that the space formed by the modulil
of the normal fofg\fs a submanifold of 65, and hence of

1:
C ﬁ-{o}.
For A;Az%%F" the normal form is
2

xyzz_+ xyz? + xzzz + Zaxzyz + uzxzy =0

with restriction o # 0, o # 1.

: : . . . 2
The spaces formed can be identified with the points (Za,a )
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Fin Cz with the exclusion o # 0, 1.
;ﬁonsidef function \F" + Gz

- (2a ) )

where E" = {a = 0,1}.

.. . e s s . . -1
This is obviously an injective immersicn and also G

"is continuous. Hence the Space‘(2u,a2) forms a submanifold

in @2 as well.
,/
-1 . A AT
G E {(A,B) » 0] where - B.

3.3 Tangent Space of orbits of strata

Since orbits are manifolds (seeP.82) we could also
consider their tangenﬁ spaces. The theurem in this section
enable; us to find the generators for these tangent spaces
explicitly. This will give us more convenience in consi-
dering local properties in our later contexc.

Let M = @15—{0} and G = GL(3 €Y. Also let £ e M and Gf
be the orbit of f under the given group action. We know that
Gf is a manifold. Eﬁw we want a set of vectors in M Wthh
‘span the tangent sﬁace te Gf at f. First consider the
differentiable map ¢f . g > Gf _

mv mef

We can easily see that the tangeﬁt map

H]
[

T¢f(e) . TeG =+ T:G.f, e 3

is a surjection,
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E?Therefore to obtain the generators for this tangent space
;3chf of the orbit Gf at f we can take the images of the
;‘generators of TeG under T¢f(e).

Now let us consider maps C1 : C »~ @G

1+t 0 ©
t - 0 10
‘ 0 01
c, : O+ 6 veeer € -G R : C+ €
1to 1 .0 O - f1l 0 0
t > |010 - ot~ [0 1+t O t-+ |0 1 O

001 o 0 1 0 0 1+

defined near 0.
These define tangent vectors to G at I,.

Consider the composition

Gi ¢.f:..° .
¢ —> 6 —» GE

¢, (1+t 0 0] beq 7
tb—>f 45 1 o|+— f(l+t)x,y,2)
.0 0 1]
Czrl-:_o oe 7
0 | ——=» f(x+ty,y,z)
1

o =

( 0
Cq d\ LF3
t—>| 01310 [r—> £(x,y,(1+t)2)
L 00 1+t -

where ¢fi = ¢f

image Ci‘

The above curves, give tangent vectors to Gf at f which are

exactly the images of the tangents to G under T¢f(e).
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frec v, - bgg 0 Ci(e) x L~ Gf |
p.(o0) = £
1

E‘The image of unit tangent vector to { at 0 under dwi is

dy
dt t =0
Using the chain rule, we get, for example when i = 1.
af  2(r)x _ 3E
j ox ot T oo9x T

Correspondingly, we can also get

'%i y when i = 2
of 1 . ’ .
Y z when i = 9, as tangent vectors to Gf at f.
1+ 0 O _
Now .since t—=| 0 1 O etc, are basis vectors for TeG,
o 01
of af
3= ... 23 Span Tf(Gf)

S0 we have the theorem
Theorem 3.3.,1Xhe tangent space of the orbit of £ at £ is spanned

by vectors

af _.of .

d 9f _3f _B3f _3f _3
*ox’ Yox’ =

of
za_}zs Xg‘;s YT: 25—, X5 Y'a_':
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4 "Good" Normal Forms

For the purpose of pfoving the strata are manifolds,

%we should also realize amnother property of the nprmal forms.

i
f

!

Any normal form /V’of a strétum which is a Qubmanifold of
cls—{o} and has:the following properties is called a "good"
normal fdrm .0f the stratum.

(i)/N/infersepté every orbit of the stratum finite number

of times. - |
(ii) Let f e A7 . Then Tf(G.f)an(}/) = {o}.

(Tangent space to the orbit at any point of intersection) {]

- (tangent épace to;A/ at the same point of intersection)

= {o}——4{zéro vector).
We e¢laim that all the normal forms we get from our classi-
fication of quartics in Gnapte¥ 2 .are actually '"good normal
forms" of each of their strétﬁ:' This result is checked to
be tfue-by going through every case using the.following
method.

Since we have glready shown that the moduli spaées of
all_the normal forms are actually manifolds in Section 3.2,
the only thing left behind for us fo check is the condition
(ii) . The.method ﬁsed is best shown by example. Let us

take

2 3.2 2 2

X ' 2 2
Ai(lrr) f(x,yz2) = x2y + x72z° +y 2z - ax yz - Bxyzz - YXyZ
\‘ . - ‘ - 2
\~ ) ’ uzsﬂsz #4
Let us choose the intersection point to be at (ao,Bo,yo)'= v

then

_ 2. 2 2 2
(fJx = ny +2xz —Zaoxyz Boy'z‘yoyz
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2x2y + 2yzz - aoxzz - 2B XYz ~ Y XZ

———
Fh
<
Al

2 2 2 2
2x z +2yz - e Xy~ B,Xy" - 2y Xy

—
oy
K-
™
1l

The tangent space of the orbit G.fv atfv is as in the table
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The tangent space to the normal form at (uo,Bo,Yo),= v is
spanned by xzyz, xyzz and Xyz

Therefore if we surpose

2
Ax yz + uxyzz + Exyzz

-
M
[as}
+
e
o
N
H’
i}

We must show that » = 4 = &£ = 0.

Now refer back to the table
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f similarly
] 3
xz” § 2M53 = Y A = O
z7 ! -y A, + 2x, =0 A, = XA, =0 7.2#4
y 03 6 3 6 ’ )
x 3 2A, - B A, =0
¥ 2 o8
z . —8 A, + 2%, = 0O X, = A =0, B2 # 4
y 2z g = "2 2 8 * Fo
Hence we have
2 2 =
x“y -211+2X5—0
x222 : 2A1 + 219 =0
2,2 2x. + 20, =0 = XAy = Ao = Ag =0
y 2 3 fig 9 1 '5 9
Thus we have A= u o=k ='O{

Thevefore only the zero-véctor is-in the intersection. Hence
‘the normal form is a "Good" oné . All the other normal forms
has this property, though some might be more diffiCulf to

show than the othe:r, for example tﬁe case of non-linear normal
forﬁs, Ai (ﬁ}. We shall exclu&e the rest of the calculations

from this context.
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CHAPTER 4

TRANSVERSALS

4.1. Transversal (Slice)

In order to prove all the Strata I's are manifolds, we
also need mechanisms called "transversals" (slice). They
have properties which are useful to use even in proving

regularities.

Definition., A transversal (slice).:7 at a point £ € M = @15—(0}

is a submanifold of M with f ¢ J where the tangent space
to J at f is complementary to the tangent space of the

‘orbit of f at £. That is,

fl
=
=

Tf7® T (e.f) p (*)

It follows from (%) that the map
15
¢f : G > M= C _(OJ
m > m,f

1 toCT. Also, if we choose f'e¢ S

is transverse at e

close to £, then )

¢f,‘: G + M -

is still transverse at e =1 to 3’. (Since transversality
is an open condition).. Hence, we have the orbit through f!

also meets U’transveékggly at £f'. Furthermore, comnsider -

the mapping
G X ?' > M

(n,g) * m-g
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;@he tangent map of this takes
TeG x (0) > Tp(G.£)

and {oy x .7 ~ T%J

And since Tf(G.f) ® Tfy' TfM, the mapping is a submersion
at (e,f). This shows that given f" ¢é M near f, I m € G

close to e and £' e such that

.f m.£" = £

or in words, G.J "fills up a meighbourhood of f in M"

éof

{(Local: picture)

So :7 intercepts all ﬁearby orbit§ transversally.

Finally, note that in our examples, :7 will be semi—.
algebraic, and it follows that [J NG.f is a fianite collection
of points. Thus if [J is sufficiently small, JNhc.f = {f}.
Next, we are going to show how such a transversal imn
general can be found explicitly. lThe homogeneity property
for orbits shows us‘that it is enough to look at only one

point of the orbit G.f, namely the point fk on the normal

A
form f where X e space‘of moduli ﬁ‘of f. Now we want to find
a lingfr complementary space to the téngent spacé of the
orbit é'fl at fA in M." Because of the linearity this space
is-of course a subméﬁi{old and the tangent space is itself

at any point. Hence we can choose this linear complementary

space to be the transversal at fl' S5ince from Section 3-3
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K- L

3

ééf Chapter 3 we 'know how to find the tangent space of the
éorbit at fA’ it is a basic linear algebra calculation to

t find such a complementary space, In fact, we have found:

such transversals for all the normal forms and the genera-

tors of each of them are given in Table 4.2.1lin Section 2.
Note that in case when the mormal form f is linear

(in fact, all theé normal forms are linear except two, Ai(%%
3

and A1A27Qf19, from the fact that all the normal forms.are

"s00d", we can see that the space spanned by the moduli terms
|

is "perpendicular" to tﬁe orbit G.f,. Thgrefore a comple-
mentary space can be found by "extending" this "perpendicular”
5pacé. More precisely, We‘can‘regardrthe moduli terms of

the normal form f as part of the set of generators for the
éomplementary space but when the moduli terms are not
siﬁgle‘mqnomials, werwill héve to use the general method

2 . .. . '
e.g. A For a reason which we will mention later, the cases

3
Ai 4}), AiAZ%k;" Aif%f—, A3A3 ;Zﬁ, Ai ¢§ s Af-ﬂ# are treated
separately in Section 5.3.

We can easily check that the result given in Table 4,2.1,
are truly transversals. This amounts to checking transver-
sality, fhat is‘to show transversals are transverse to the
orbits in the strata. We do this by showing that‘the téngent-
vectors of the orbits_together with'ﬁhe generatiﬁg vectors of -
the tangent épace_of the‘transversairwill span the whole_of M.
Actually what we have checked here is a étronger result, ?

(6. )0 (D)= {o]
This is just a further step after checking the property of

"Good" normal forms, The following are three examples:
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H'ABV £(x,7,2)= xizb+ P+ x3y+axy?z +hx2yt X xy> IEY A
fo = 2xz8+ 3xty+ d,yzz+2{5°xy2+ Ly 3
Af,’ = Ly3+ x?’.‘+2doxyz+ Zp,xzy +. 5rgxy2 |
. = 2x%z +o{,j(yz
tangent space of the orbit G.f at f is as-in the table
-3 : . - - - . . r
g 0y APy x| g | 9B R | g | R XF o
13 A 2!60! 2
A5 NN % T (R N 2 - B
REARANEERE % |
S 7y B s £ I 2
e | 2% |
B [ 4 1B, 3L 24 |
I N S
7S O U 2

by xy%z, x?y* and xy3.

Therefore if we»éupposc

Nxf, + ....l.+ /\qu = A X3z '+‘Exzyz’+ Yﬁya'
We must show that A = ﬁ: = 0.

 Now let us refer back to the table
Ao

Xz ¢ Aa=0 =% M= 0

yiz%: «, A= 0

'xyﬁz: 2Ay+ 24,0 =0 _
ydz r Ay * LN = O e A2‘£ M = O since
% M ui =0 = A=-=0
X3y 1 3 + M= 0 — M= 0
x%z22: 2N+ 2X9=0 = M=0
x>z ¢ )‘_~Q,+2)\7=0*-——> A= 0 .

x%yz: 2!6,,%;, +2M=0 M=0

XA Lo

The tangent space to the normal form ati(o(” fos LY is 5panned
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LHﬂmewehme. .N;X=&=M=k=aéﬁ=%=&=0
f.(Note that this means the codimension of the orbit is 6.)
Thus o == ¥= O. This implies that this.lis a “"good" normal
b form. _ | o

By finding the compleﬁentary space, we can put the
transversal {7J¢ ir the following form

Jf = x¥2+ y4 + X3y + &xyiz +/§,ﬁczyz +3,xy3’
| j-ﬂ(xyzz +ﬁxzy2' + Yxy? + Az +/tft3,rz3 + £y 2t
The property _
T4(@.£) 0 Te(R) = {0]

caﬁ be checked; Now suppose

Nxfx + ._....+)\727f2 = Axylz + ﬁxzyz +¥xy’ + Az%

: + /(}yz5 + ¢ y¥z?®

We can use the same equations agaim, ornly that this time we
have Wy A3 = £ , but from xz® : 2M;= 0, we still

hapve Aj: 0 N hence £ = 0.

So we can easily see that

0(=‘B=I=/\.=/M.=E=0 | : _ 1

BExamples 4.l1l.2.
2
| Ag @ F(x,¥,2)

( x4+ yz) (x¥+ woyz) Aot ! HA#0.

cx¥ 4 (ot 1D)xlyz + Ko yz&

fx = 4x3 + 2( Ko + 1)xyz
tg = ( %o+ 1)x%z + 2 kyy2? !
'fé = { Lo+ 1)x ¥ + 2w y%z

The tangent space tc the normal fofg at (o) is spanned
by xiyz+ y2z%. Therefore if we'suppgse
NEEx + evneeot Mgzl = DC(XZ’YZ. + yia*) i
We must show that « = O;

Now let us refer . to the table,



ziThe tangent space of the orblt G.f is as in the table

—— E —r p
_‘L‘__ff_ﬁ %:13 X*s x3 55 43 «33 4y xag P 5 53

- S )
4 o ) ]
3he T A ) A
o T T W S S B
sby e e
F D o W)
e | N |
b e
ML 33, . S Gor) L Zi(_eli
lx“‘ :4)\, QO = A=0 .
y’z:aoto}\g:o-_é_»)\g--o |
x2yt: (do+ L)Ag= 0
4 yz3 1 2do Ny = 0 == A= 0 |
| x2zls (( Ko+ 1IN = |
By ¢ 4 A+ (DL°+1)/\7= 0
xylzi 2(do+ 1) Ay + 2o Ay = 0 = Ay=Mp= O since ol £ 1
Similarly, N

3z ¢ b+ (Lotl)Ag =
oxytr 2(®+ DA 24 A= 0 => N=Nh=0
x%yz: (ol 1IA5 + (%ot 1)A1=gk - (i)

yzzz: 2do Ag+ 24N = K . (i1)

Eq.(11)-(1), we have (% ;1))\5+ (%o-1)Aq= 0.
' Therefore ﬁ51-kq_ O ,since oo £ 1.
(We are left with one relaﬁlon. This implies the
codimension of the orbit iS“'.) |
| Hence of = V.

Thus this is a “good" normal forme.
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By finding the complementary space We can put the
transversal in the form

\7:‘" =xT+ x¢yz + o{o(xzyz + y4z%)

3

4 Axlyz + ﬁ'y‘* « Y2% + Axy? HUXZ
+3xbz?
For checking the property

Tf(G.f) N Tf_(U}:‘J" {0} | )

we suppose
)\,qu + -----""\?Zfz = dxtyz +Fy4 + Yzt +Axy® +/,1xz + g %72
' : +j5xz z
Agaln we can use the same equaticns as above, only that this
time we have xzyz i ( oo+ 11/\3-_-8 . xtz% (A, + l)x\gzj ’
buts from y3z : 2_0(9/\3 = 0 and yz.3 i 2% kg = 0, we still
have Ag, N = O.Hence § =%=0.

.So we canm easily check that Dﬁ:ﬁ: I:A#P:E:‘S: U.

Examples 4.1.3.

ATC@D £{x,¥,2) = ( yz +upxz + (1+d)xy)( ¥z +F:XZ + {1 +F0)X.‘)f)

do’-‘".[: Foié'la dp)éF;,, 05,,:&0, FB#,D

+ (o(0+‘39+ ZMDFE)XZYZ + (2 +o(u+F,,)xy32.

£y = (a(,+p,)yzz + aoéf,xz?' + 2(1+o<.7)(1+,59)xy2' + 2(o<,+fof-.2o€nf.,)xyz.

+( 2 +a(+F.,)vzz
'1;3 = 2yz? + (M+Fp)xz2 + 2(1+o¢)(1+/3)x3y + (a(+f+a2¢a'3)x Z
+ 2(2+o(,,+ﬁ)xyz

fz

The tangent space of the orbit GIT at f is as in the table

Yozl + (%t fo)xyz? + & fxizVe (1) (Lep)Ry

2y%z + 2(a(+(,)xyz + axoﬁx z + (o(,,+F+2at¢ ,) vRy + (2+a(,+‘5’)1-'y3
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1

MTjjrf_ti3l B3 | %3 | 3 53]"“33 ’*35‘*33 Xaﬂ X3 :15

" ‘___{r_ﬁ'k !2( % | - :.(awf)(z:;; au]e), ]/ QF"F *L
Al - JIE% d (zwfv) o e Ty 244 R
| EA SR E T ) ’ifi}‘f; féiz,,é; )
R T o N s 2 |
EIT - IS T G +zf)2w Wf)jg% 2|
o5 o lep 2 1153,2‘5 ___._ﬁj_(f".fﬁt J_'i;f;,)___{.
E NS, ) o B BNCC I L S B
b n e g
ETY R R N B 7L+ e

The tangent space to the normal form 'at (ole , ?n,) spanned by
xyzd + szzz’ + (1+]5,,)x + (1+2J80)x yz + xyl=
xyz% + &x%z% + (1+4) 2y % + (1+2¢)xyz + xylz
Therefore if we suppose .
- NXEx +eveens + )\quz - K (xyzl+ foxzzz’_ + (_1+ﬁo)x2';."?’ + (1+2f,)x2’yzh
+xylz) |
+ P(xyzz’f_wo(,x_zzz’ + (1+0’w)xzyz‘ + (1+2dp)'xzyz
| +xy4z) j , . B
We must show that &= ﬁ: 0 N
Now let us refer ﬁack to thé table
By 21 (L M+ Gorfir2dpd Ay =
x 3z K (0(0+F+20(9F0))\4.+ 20(F)\rr 0 => M= ,\7_ !
snzceo(,;é(;and o<,,£0/3£0 |

Slimilax;ly, .

xy3 2(1+9(o)(1+fp)/\2,+ (2+o(,,+[;,))\g =0
Yz ov (@Hpd Mg+ 2Ag= 0 — Az Xg=0
xz® 240Nyt (GHIN = O o |
yzo 1 (+f) N+ 2MN=0 = ‘/\3=_.)q,=‘ o

Hence we have &:-/\f)\ls)g‘?:)g:xé: o |

Let us now consider the following equations

yial: 2 A5+ 2N =0 _ ' (1)
x¥z% s EKF Xﬁ- EK‘B )\1— GLF Pﬂ‘( _ _ (ii)



p 2(1H) (L4p) Ay + 2(1+0) (B4f)As =& (14f) + g2+ (111)
;20 pr2p) M+ (og+i;,,+zac.,/;,) A5+ (tfit 2RI |
- o((1+a';,,) + pLe2u) (iv)

: (.2+.;{,+F,) A+ 2(2+u(3+15,))x5 * (2+o_(o+F,)/\q = & +{5 (v)
] M+ @A ¢ 2WrpINg = K Hp | (wi)
Eq.cV)—Eq.(vi),' we have 2A; + (I;+a(a+‘Bo) A5+ (E—pﬂ,—Fe)X? =0 (vii)

Eg. (i{r)- Eq.{(iii),we have
3 (2 -2) N + (U2 M5 + (st fir2apI NG = Ay e (viii)
4 Eg.(viii)-Eq.(i1), we have -2 A - (2+0¢+F0),\5- + ("4'*/50)/\'7:_0 (1x)

Eq..(ix)d-Eq.(Vii), A5 + A9 -0 : (x)

Eg.(iii)-Eq.(¥), we have (o(,+l§,+2bfa)/\, + (Kj/;,*'ZﬂGFc) A5=tf]6,+‘g"<o (xi)
Pq.{xi)-Eq.(ii), using Eq.(x), we have
(ol o +fe) )Q - (5(.,+,9+' o) A = O | (xi1)
B, (111)-Ba. (vi), ve get (2rsprasupd N + (2¥34#3fr20p) A5
= o(F Fda (#iii)
Eq.(x1ii)-Eq.(ii), using Eq.(x),
| (2+ag+/g,,) A - (2+30<p+3/go+t+atp)g,) Aq =0 | \ ’ {xiv)
Eq.(xiv)-Eq.(xii), = Ay - (1+olo+}B,)/\9 =0 (xv)
Eq.{xv) into Eq.(xii), we have X, = M= 0 , since o<.,£‘3.,
By Eq.(x) again we get Ay = As= A9= 0.

( The codimension of the orbit is 6)

This means -that o :I‘Bz 0, since o(‘B,,-plgo(o: Q and o(+‘B =0 and/ﬁ;éo(o.

Hence this is a "good" normal form.
The Transversal Uf for this stratum at f is found to. be
(see Example 5.3.1.)
ff_fr - yzzz + ( +‘8,)xyz ” n(gf; w¥% 4+ (»a./o(o)(l-lf Yx y3+ ( +F+2.a(fp)x ¥z
+ (2+k§+‘8 Yxy¥z
+ x(xyzz+{gxz 7%+ (1+F9)x2’y?’ + (1+ E‘B)x yz + xyzz)

P(X”Zz* Lxiz¥+ (1+d)xly? + (1+ 2¢)x%yz + xy?z)




+ T(3y% + 2y3z - 2xy3 + x%2%)
+ A( z# + 2xz3 + x%%)

+ p(x# o+ 2x3z +‘xzzz)

+ g( x%z2)

Tor checking the property

Tf(G.f) n T§( Q}) = fO} s

we Suppose
Nxfx + TEEE + Mzfy = o((xyz*z+‘30xzzz‘+ (1+{£)X”y3¥ (l+2f,)xzfyz+xyzz)
p(kyzz+caxzzz+ (L+d)x2y%+ (1+2%0)x 2yz+xy?z)
]’(33{4 + 2y3z - 2xy3 + x%z%)
+ N 2%+ 2xz> + x%Z%)
+ P x4+ 2%z + xz’zi)
+ £( x%z%) |
Again we can }se the samt equations as above; only that this
time we han;re5 :20(.,‘&&}\,4-”20(0‘8,,“:&.]804 o+ € 5 but from J2z%2 Apv2Mg= 0,
we'still have ,X5+ kq: O. By going through the Ealculation again
adding the followimng equations: y#:3Y=0, 2% : A =0,and '
x4 M= 0, we can eésily see that

K=P=¥=A=p=s:o.
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CHAPTER 5

STRATA ARE MANIFOQLDS

-

é.l Unfolding. Theory

In order to study a singularity, we need to know

omething about the unfolding theory of singularities.

iThe following is just a general statement of the theory in

J%the complex analytic case. Most of the definitions amnd

theorems we adopt- here are formulated in the real case

(translated by Lander in 1975) Chapter l4. We will not

include any proofs in this context, since they will be

quite similar to the omes in the real case as presented
If reference is needed for the proofs in the

ger to Bruce (Lrverrooe PLD. Thesis, 1978) .

in the book.

complex analytic case, we Te

Let f be a singularity in E(n) = the ring of complex

analytic germs: ( @n,o) -+ (our case is n = 2). Hence

f ¢ m(n)z, where m{n) is the maximal ideal {feé(n)lf(o) = 0}.

Also let C© C:€n+r be the subspace where the last T coordlk\

. N ' + .
nate vanish, A point of ¢n T ;- then denoted by (x,u)

(xl,...xn, ul,..,ur), xe@n, ue.q:‘r.

5.1.1. Def. An (r—parameter) unfoldingror deformation of

f is a germ F e E(n+r) such that F/ @ = £. This unfolding

will then be denoted by (r,F).

n+r r - . .
Let 7_: (€ + ¢ be the projection. We can construct

a category of unfoldings of a singularity, the objects being

unfoldings and the morphisms=being defined as follows.

- n
by BROCKER in his book "Differentiable germs and Catastrophes"
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fié a mapping
(¢,C): (II:F) -+ (SaF')

;5as follows:
(1) The germ ¢: ¢ c"tT,0) ( e*5,0) with ¢/ ¢ xi0f = id,
(I1) The germ c: ( Cr,o) + (¢ ,0) such that

F = F'a¢ + Gom_
“i.e. F(x,u) = F'($(x,u)) + c(u)

e

(1II) There exists a germ §: ( @r,O) + ( @S,O) such that

i.e. wé¢(x,u) = &(u)

That is, the following diagram commutes

o) ¢ (¢ o)
ﬁ ¥ | + w.

T s

(€, o) ('a:f,o)

ye

Now, for a representative of ¢, we may assign a transla-
- r ‘ V - L4 i
tiom a to each u g ({ mnear the origin. Suppose a, : C~C

is given by

au(t).= t+g(u)

3.1,2, Def. 1If (r,F) and (s,F') are unfoldings of £, a morphism




Ehen by (II), F and F' are related by

F(x,u) F'o¢tx,u) + cowr(x,u)

~F'(¢(x,u)) + c(uw

au(F' (c{)(X,U‘-)))

aqu'oﬁx,u)

Suppose (¢,¢) is a morphism between (r F) and (s,F'")
and (¢,c ') is a morphism between (s, F' ) and (¢, F"), then

the composite

(¥,e")(d,e) = (Jo¢, ctc'od)

where @: mr - @t comes from w‘as in IIi, is a morphism
between (r,F) and tt,F"). If b is a translation associated
‘with c¢' for each v;eqf as described above for ¢, then

c(u) + ctod(u), =€ @ describes the compositioﬁ of transla-
tions, namely b@(u) o au. Also, we call a morph1sm (6,c)
invertible if and only if there exists a morphism (¥,c’)
such thét

pod = id, and ctc'od = 0

Observe that ypo¢ = id.implies Qrig alsolinve€:ible and hence
we can always solve cte'od = 0 for c'. Therefore a morﬁhism
(¢p,c) is invertible (an isomorphism) exact1§ when ¢ 1is inverti-
ble.

Now, suppose we have an unfalding (s;F') of £ and there
are germs ¢, c and & satisfying Def, 5.1.2., then-by equation

II, the unfolding (r,Fy is determined.




;11;3. Def. An unfolding (E,F) determined in this way as .
descriﬁed above i§ called the unfolding of f induced by |
f(4,0) from (s,¥0).

;; . Let us look at a simple example. Suppose we have two
‘Funfoldings (r,F),'(s,G)-of f having the following relation-

ship: s ='rf1 and

F(_x,u1 .o ur) = G(x,ul .o urfl) +u
We claim that F can be induced from G by a suitable morphism.

According to the definitions, all we need to do is to choose

¢ and c. Let us take

br | nel o
$ = n:: @n s an v the projection and

Then, we have

_ T ' T
F(x,ul,...,ur) = G(ﬂs(x,ul,...,ur))+ﬂl§ul...ur)
|
and this is exactly equation II. ‘Hence F iS'induceé\ifom G

r
by (ﬂ , ﬁl).

5.1.4. Def, An unfoldlng (r,F) of £ ois called vetsal if every

unfoldlng of £ is induced from (r,F) by a sultable morphism.

Note that a vefbal unfolding of £ may be characterized

by a transversality condition as follows:
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Let (t,F) be an unfolding of £f. Suppose F is a repre-

a;ntative of F. Consider the following diagram

3 ﬂ '
t(n+r) —3‘——" ﬁ('“% N

e
¢ “mins r)“'

AL ; =
'%r) t

The image jk(Eﬁ of F ef(n+r) is called the k-jet of F, denoted

~ . (n+r) . .
. “—“‘ETT - .
by F Qhe guotient A (ntr) is the.space of k-jets. Any

k-jet 1is represtned by a polyﬁomial of degree $k. Let

m(n)

k+l
m(n) k n+r
(or constant) term vanishes. Consider a germ le: (¢ ,0)

be the space of k-jets whose zero-th

1) =
Jo(n,l) whose representatlve jiE‘ is the map defined as
(x,u)ha'k-jet of (yl44F(x+y,u)— F(x,u))

Thus, E is the part1a1 Taylor expansion of T at the

point (x,u) with respect to the flrst variables.

5.1.5 Def. F is called k-transveréal if ji F is transversal

at the origin to the orbit f.B,(n) of £ .(f is the k-jet of

~

i, &k(n) = group of 1nverh1b1e k-jets) under right equivalence. k

Obviously, j1 F(O) = ] f(O) = fsf Bk(n) o ' %

I ' |
s i

5.1.6, Def. A germ £ (n) is_called k-determined if every ]

germ g (n) with the samé k-jet as £, is right equivalent toO

f.

Then, we have the theoren
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;&1.7.-Theoremr (versal = K—-transversal). If f is k-deter-

| ind, then an unfolding F of £ is versal if and only if it

big k-transversal.

115,1.8. Def. A versal unfolding (r,F) with minimal r is called

5.1.9. Def. The codimension of a singularity f is defined as

codim £ = dim c (mg?) )

Bx.
:J

>

where <ii > is the ideal generated by the partial derivatives

of f.witthespect to variables x. This is equal to u-1,
where p is the Milnof aumber of the singularity.

The main theorem on unfolding theory 1s the following.

5.1.10. Theorem (Mathet) -

(I) A singularity fém(n) has a versal unfoldiné iff codimen-
siﬁn.f is finite. -

(11) Any two r—parameter versal unfoldings are isomorphic.

(Uniqueqéss of_unfoldings). |

(II1) Every versal unfolding is isomorphiec to (r,F) + constant

then the

where (r,F)Iis universal.
/£351s of

(Iv) If {bl,...br}-\ m(n) is‘a Y ,

unfolding F of f defined by - j
F(x,u) = £(x) + b (Xu; + ... b_(x)u,

is universal.




fFor proofs of 5.1.7 and 5.1.10 in the real case, refer to

BROCKER,_Chapter 16] .
[For compleXx analytic proofs, refer to [rwue (Lwawﬂ PLD.

ﬂﬁaan, IQ7821

”75.2 Special properties of Transversals

The transversals we got in Chapter 4 are all global
eqﬁatioqs describing a submanifold of M = @154{0}. They are
formed gy adding the "complementary space" (to the tangent
spéce of the orbit) to the normél forms, that is, adding

the set of generators of the "complementary spaced' to the
normal forms in the following way. Let the ﬁormal form be
T(x) and bl(x), ..;,‘bn(x) be the set of generators, then

the transversal {T-is_tha set of quartic pilynomials
' ) %
To(x) + ulbl(x) + ... unbn(x) . : (%)

where u U, ¢  are parameters and To is the normal

13 e
form with fixed values o moduli (see examples) .

It is a general préctice that if we want to discuss
é particular singularity.of the nprmal form, we would have
to move it (by transformation) to ome of the vertices of the
triangle of reference aﬁd look at'the'loéal equation there.
In our classification, we have tried our best to choosc
normal forms for the stréta such that they will have the
singularities at the'verfices. In fact, most of éur normal

forms have this property. There are only a few exceptions.

We will deal with them inp Section 5.3. Also in what follows
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~
exclude the singularity E7.

NowWw if we take the local equation of a transversal
¢ a singularity £ of the normal form which is at one of
&3 ' : . :
'rhe vertices, we can easily see that the Transversal !J becomes

* un unfolding of the singularity f (by definition of unfolding).

We claim that the Transversal we got in Chapter 4 have

' the folilowing properties:

(1) Let us denote the space with coordinates Uys eers Uy as

in (*) by W . If we consider one of-the.singularities of T,

which is assumed to be at X, Y or Z, putting x, y or z

equal to 1 in r s we obtain a singularity £ in 2 variables

and putting x, y or z = 1 in 7 , we obtain am unfolding £

of £ and the space W is the direct sum of four subspace.

That is

U =udU G% A éw (disjoint)

where M correspond:z to the parametérs of the moduli téerms of T.

Uf corrésponds to the parameters of the universal unfolding

terms of the singularity £

'Vf'corre3ponds to the parameters of the universal unfol-

ding'terms of other singularities.
We corresponds to the constant term (for £).

To explain this more precisely, in fact, we have for any

point (m,v) close to (Q,Q) in Mfo the function f£' = f + terms

given by (m,v) is R—equivalenf‘to £. Also f + terms given

by U, is a universal unfolding of £. The term given by W

appears simply as an additive constant,f * terms given by Uf+w.

where we NS’ _
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LiI) For different singularities of the normal form, the
f 's and Wy's are disjoint. For example, for singularities

i; and g on the normal form

(U @ W) N (Ug @ Wg) = {0}.

 In other words, the aniversal unfolding parameters corresponding

to one singularity do not correspond to another. Notice that

this property is the crucial point which we need for the

proof of strata being manifolds. It emables us +o show

Transversal str#%um = Normal form

on 5.4.

'“he formal proof of this will be shown in Secti

- Theorem 411 the transversals 1isted in Tables

have the properties I and II mentioned above.

Wé have gone through the checking of the properties I

and II with each of the transversals in Table 4ﬁ2"’. Since

it would be too lengthy to include all the calculations here,

we choose three examples to show the technique.

Example 5.2.2 As(irr)

2 2

' 22
r=x12z * 2xy2z +y - XYy - axay

The singularity is at Z.
' 2 2 2 2.2
The transversal U'= x"2z° + 2xy =z *+ yh -xy - oX ¥y

: 2 2 4
+ axsy + Bzh + yyz3 + 8y zz +‘E.ysz + 3y
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ﬁét us look at Z locally. Putting z = 1

22 3
y % %y

JZ x2 + 2xy2_+ y4 -‘x

+ axsy + B + vy + Syz + £y3 + 3y4

. MI: (a), U}Z_'=\\Y,-6,£,"‘3)', VZ = (0), W_. = (B)

Z
Let jéf= iz + 2xy2 + y4 - x2§2 —-a°x3y.
ﬁ £ axdy + Yy * 6y2.+ £y° AI+3Y4
: ihen consider f1= %i + 2xy2 + y4 - nyZ - aox3y + ax3y = 0,

£

ZE m(2) and has singularity A5 at the origin.

Now we want to show :T% is a universal unfolding of fZ' Using

, ' ' . . 2
Theorem 5.1.10, part IV, we can do this by shewing {y,y ,y3,
YA} form a base for e%%gl
“a3x 7z Jf
j . *a
J = <f , £ > where
fZ Z.X Z.¥
(¢ ). =2 s 292 = 2xy% - 3 20 4 3ax%y =0
\Egty = 2% ¥ Xy qox y 0x ¥y =

4xy + 4?3 - 2x2y - a0x3 + ax3 =0

~

h
™ g
g™
Py

i .

Let A=<x', xy, Xy , xy >. We start by showing
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A« J + mA

& 3, -
x & Jfr + mA s;nce X @Z))\ ¢ sz

x3y € sz + mA since xzsz)K € sz ‘  ' . }

. 2,
x2y2 e sz + mA since Xy (fZ)z'“ € J.
. Z

3 . 2
algo x" ¢ J; *+ mA slnce.x(fax. € J,

Z . Z

Now consider

. 3 3 22 22
Yfqu = 2xy + 2y~ -2xy - 3a xy + 3ax"y" € Jg

Z
o 3 2 3 3 |
fZ—Y = 4xy + 4y~ - 2x y\— a X+ 0X ¢ sz
, . 03 2 2 2 2 2 3 .3 : |
2yfz_x fz-y = 4xy + 2x7y 6a0x y + bax y o+ ax o -ax LEYJ£Z' ‘
, 3 2 .
Hence - 4xy” + 2xy £J. % mA (1)
Z
By xyif = 2x2y +-2xy3 - 2x2y3 - 3o x3y2 + 3dx3y2 e J
ZOK o fz
2 3 : . .
we have 2x"y + Zxy € J; # mA ; (ii)
: ‘ : z i

Let (i)-(ii); we have =y~ ¢ J, + mA
' Z

Therefore " Ac J_ + mA

By Nakayama's Lemma A = J and x3 ¢ J. .
iz £z



~
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. 3 2 3
Ji1s0, since yzfz.y‘= dxy~ + 4y5 - 2x v
- y5 € Jf
Z
f
{Then we have m(2)5—c:Jf
3 Z
;Similarly, we can show
x2y eJ by xyf e J |
fZ o Z-X fZ
2 4 o o2
A}so, _ 2xy° + 2y € sz by v fZ-x
: : 1
3
b
4xy + 4y~ € sz y fZ-x ‘
2x? + 2xy° & b |
. Z - ‘
2x + 2y2 ¢ J. by £ ' -
f Z+x
Z : |
:
i
Therefore, y, yz, y3, y4 form a base for ?(2) . That is, |
£ _ ‘
|

Jé is a universal unfolding of £,. Hence,zwe have the

property that there exist a neighbourhood N of 0 of the

(a,B,v,8,c,%)-space such that if B =y = 8§ = € = T =0,
:T has A5 at Z.
Example 5.2.3. A2A3 (irr)
T =.Y4 v x22% 4 axyzz + xyB =0 o # f2

The singularities A2 and A3 are at X and Z respectively. The

transversal



3 2
3'= y + x7z + xy + a Xy 2

+ axyzz + Bx4 + YXBY + 8z4 + eyz3 + jyzzz

_iet us look at X locally. Putting x =1 = ‘ E

g, = 4., 2 .3+ 2
X 24 ? y 'oy z
- 3 N - 2 -
+ ayzz + B + yy + 624 + 8yz3 + Eyzz

/M = (a), Uy = (v), V# = (ﬁ,é,?) ( €3 with coordinates

8,€,3), Wy = (B).

Let ifi = y4 + z2 + y3 + aofzz |
+kayzz + yy + 624 + Eyz3 +'5y222 | h

Then consider fK = y4 + z2 + y3 + aoyzz + ayzz + 624 + €yz [
| +5y72" = o, ((a, + o) # %2) S

we have fX ¢ m(2) and has singularity A2 at the origin. Now |

we want to show CT%Iis a universal unfolding of fy- That is, L

‘ i
to show {y} form a base for —%%%l— . : |
' < >=J
axj A fx

H-l
n
o

w
(]
o

+ 3y2 + 20 yz ¥ 20yz + ez +_25yzz

Hh
]
il
o

2z + aojz + ayz + 4823 + 3 y22 + 2§y22



fje want to show m(Z)Z‘C I

I

yz J + m”~ since yf

+. .
Hence, ¥ E. J’f m~ by fX_y £ Jf . ‘

Therefore, m(2)2 = Jf + m(2)3.

By Nakayama's Lemma m(2)2¢: Je
X

, we have z £ Jf .

Also by fX- £ J .
X X , |

Z f

m(25
J ) .
£x L c

Therefore {y} form a base for

That is, ;7% is a universal unfolding of fX'

Hence we have a neighbourhood N of QO of the space (2y,B,vs8,8:5)-

space such that when B = y = 0, rhen 77 has A, at X.

Similarly look at Z locally. Putting z =1

4 2 3 2
J, =y +x" +xy + axy

2 4
-+ axy +Bx4+7x3y+6+3y + 32

=
]
Pain Y
e .
g’
a
™

#

(5,5),‘vz = (Bav); Wy = (8)

Let J! = y4 + x% 4 xy3 + aoxyz



+ axyz +B <t 4 Yx3y + €y + 3y2 %“

3 3 2 4
hh en consider fz =.y4 + x2 + xy + uoxyz + axy + Bx + Yx3y = 0,

;e have £, & m(2) and has singularity A5 at the origin.

3 ' . 2
We now want to show (y,yzj form a basis for ?( ),

Cfy

2
2x + y3 -Ir-c:r.ar2 + uyz + 48x3 + 3yx y =0

Hi
1

= 4y3.+ xy2 + 2aoxy + 2axy + Yx3 =0 i
. I

:' . B 4 .
Let us show m(2)3 c,Jf + m(2) i
_ : . .

x3 [ sz + m(2)4 since xzfz.x € sz

. 2 4 '
x“y g Jf + m(2) since xny.x 3 Jf -ﬂ
: -7 . Z . “

xy2 e J. * m(2)4 since'yzf . e J
. fz Z-x £, “

Hence, x2 ¢ J,. + m(2)4 since xf_ _ € J _
fz Z'Xx fZ ‘

2 2
= 2xy +“y4 + (a0+u) y3 + 48x3y + 3yx y E-Jf !

Now_con51der yfz.x .

Hence 2y + (ao+a)y3 2 Jf * m(2)4‘ ' (i)
Z .

3 2 3
Also,,fz_y = 4y~ + 3xy + 2(a°+g)xy + yYx ‘e Jf

7

Hence 4y3 + 2(ao+u)xy Fa Jf + m(2)4 | (ii)
Z




] . .. ' ‘ 2
|u 4#(1)‘(00"'@)!(11), 8xy - 2(ao+02) Xy € sz

.

£z

brhat is, 2[4-(uo+a')2]xy ¢ 3, +m(2)"

cince o va # 2, xy €J. +m(2)°
4 0 fz

fmhen by £ £ J ,'y3 e J_ m(2)4'
3 Z-y fZ fz

i Therefore n(2)3 < I +_m(2)4
[ A

I

~

By Nakayama's Lemma m(2)3 = J_ also x“ e J

when § = ¢ = 3 =0, has A, at Z.

Note that (U, & W) n (v, ® W,) = {03.

2

Example 5.2.4 A3

.
no

(x2 + yz)(x2 + ayz) = 0

2

4 2 ' 2 -2
X + x yz + oxXx yz + ay Z

The singularities are at Y and Z.

+ m(2)4

Va#l,

fz . fz £
By fz-x € sz,'we can olso sge that
. : 2
2x + (o _+a)y” € J
o f
‘ . . Z
Therefore {y,yz} form a basis for ?(2)
fZ
That is, jré is a universal unfolding of f,. Hence we have

a neighbourhocod N of 0 of the (¢,B,Y,8,%,%)-space such that

a#0




M e transversal is

J ='x4 + xzyz +'dox2yz + uoyzzz

2 2 2
+ a(xzyz+y222) + By4 + yxya + dx y + Ez4 + “5sz + Nx z2

(codimension 7)

3 Locally' at Y, the transversal becomes

4

J ? ? ? :
= X + x z + a4 x z + 0 2z
Y o o

. + AKX + Az
|

+ B.+ Yx + ze + gz4 + ‘5xz3 + nx_zzz' = 0

M= (o), Uy = (v,8), Vy = (£,3,n), Wy = (B)

Y.
Let 'jw} = xl' + xzz + aoxz'z v 2% ¥ &Kz + 472
" 9
+ yx -+ 6¥7 + 224 +'5sz + nx222 =0
Then consider fY.‘= xll + xzz + uoxzz + o‘.oz2 + ANz +a:’Zz'

+ ‘Zz4 +3x23 + nx222 = 0.

we have fg ‘¢ m(2) and has singularity A, at the origin (a_o%o).

We want to show (x,xz} form a basis for'?(z)_
‘ £
Y
f = 4x3 + 2xz v xz + ?2‘3 + anzz. -0
Yx LIRS )
fY-'z. = x2+{o(,,+o£)x2 +2{f Az + 4{23 + 331{22 + anzz =0

First we want m(2)3 € Jf +‘m(2)4
Y '
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2 23 e J + m(2)4 since z°f £ J
. £ . : Yz £
1 ‘ xzz E€J, + m(2)4 since x2£ e J
.#: . ' fY Y'Z f.‘z
2 4 '
xz” € J + m(2)  since xzf e J
fY Y-2 fY
g%ow consider fo-z - +@39x3 +2@ﬁ@xz + 45xz3+3§k222+2nx32 éJf
B , : : ' Y
Hence, ('ol.,+a(+'|) x3 +£@(,;n£)xz € .J‘f + m(2)4, (1)
. - Y
And £ = 4x° + 2xz fZ@ﬂ@xz +‘?23 + 2nxz2 € J
Y"X 70 ) fY ‘
. 3 ' . 4 .
Hence, bx +Z(o€g+d+l> Xz g J + m(2) (ii)
- fY .
Cax(i) - GratDx(ii) gives ddxz - 20kt ’xz €T, ¥ m(2) "
_ . fy
= . 2 | &
That is (ra-t) “xz e.If + m(2)
‘ Y
Siﬁce@ﬁ #1, we have xz ¢ Je % m(Z)4 and also x> é.Jf + m(2) 4,
' : Y ‘ Y
3 . .4.A
Hence, mf2)" e=J + m(2)".
fY
This implies m(2)3 e Tg by Nakayama's Lemma. Hence also
- Y
2
Xz € JfY and by sz_z £ JfY, we have z & JfY and fle é JfY
implies ﬁﬁdfl)xz +2tetl)z £ 3, Therefore, {x,xZ] form a
Y . .
basis for Eigl. That is, by Theorem 5.1.10. J} is a universal

fY
unfolding for fq-

Then, we have the property that there exist a neighbour-

hood N of 0 of the (B,y,3,£,5,n)-space such that when



g =y =2¢6=0, J has Ay at Y.

e can obtain similar result locally at Z.

M= (0()’ UZ = Cﬁs:n), Vz = (B:Y,S), WZ = (i)

,7-:;_ is an universal unfolding of £,

And there exist neighbourhood N of 0 of (B,Y, »%»%,nN)—space
guch that when T =35%=n = 0, 7 has A, at Z. Also, that
J .

(v, & WY) 0 (v, ® W) = f£o}.

3. Transversal of Normal Forms with Singularities at limearly

dependent points

All the traunsversal we dealt with in Section 2 were those
of the normal forms which have all their singularities fixed |
at the origins. The list of exceptions are actually those
which have collinear singularities (Ai.ﬁgl, i7qj; AiAz.q#i,
g§ A ) or have more than three 51ngu1ar1t1es (A Ct} ) (th¢ee
is the number of orlglns). Therefore we would not be able

.to look at each of the singularities locally wiihout making

at least one linear transformatidn: And. as from our experience,
if we ch005e the set of gemerators b;(x) ... b (x) for the
complementary space as before, any 11near transformatlon would
edsily disturb the propefties (1), (I1), we claimed on the
transversals in Section 2. Hence, we‘have-to develop another

method to choose the generators for the complementary spaces
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for this special list of normal forms, taking.bartiéular
attention in satisfying the cl#imed properties I and II of
transversals. Also for the pﬁrposé of easier to attain such
pfoperties, we have choosen the normal forms for this list
to have their singularities fixed, the best possible at the
vertices.

Again, the method is best shown by exanples.

Examp le ﬁ.S.l. Ai ¢}

I' = (xy + ayz + (a+1)ﬁz)(xy + Byz + (B+1)xz)

a # 0, -1
B # 0, -1__ a ¥ B (cod 6)

2 2 .
= X Y2 + (a+6)xyzz + uByzz2 + (a+ 1)(B+1)xzz2

= (a+B+2aB)KY22 + (2+G+B)K2yz

Tﬁe singularities are at X, Y, Z; P (L,-1,+1). Let
us number the singularities say, 1,2,3,4 respectively. We
start off By finding "an unfolding F for T" in a sense that
when taken locally (e.g. when discussing singularity at X
let x = 1 in F) at each singularity; F will be the unfolding
of the singularity and also having  the following properties:
Sﬁppose bl(x), bz(x), b3(x), b4(x).aré the unfoldings for
each of the singularitieé, with parameter.y,$,%,% respectively.
(Note that the sum of Milnor number <+ . number of.moduli in
the normal form = codimension of Fhe orbits )

We want the unfoldings such that there exist a neigh-




N o 0 -
bourhood;En (a,B,v,8,£,5)~space such that

y = 0, F, has a node at X
§ = 0, F, has a ndde at Y
¢ = 0, Fy has a node at 2

¥= 0, F_ has a node at P.

Let us take the bi(x) to be arbitrary, that is,

|
- 4 4 4 3 3 3=
biA— a,x + biy + ciz + éix.y f e;xy + fix ¥+ gixz

‘ 3 3 2 . 2 2 2
+ hiy z + kiyz + mix yz + n;xy 'z + p; ¥y 2 + qix b4

z2) i=1,2,3,4
(1) At X. For a node to exist at X, we need when putting x = 1,

and b4.

the linear and constant terms be.missing from b2, b3,
Allowing a; = 1, we then can decide

a, = ag = a, = 0

d2 = d3 = d4 =0

£, = f3 = f4 =0

(2) At Y. For a node to exist at Y, we need when putting
y = 1, the linear and constant terms be missing from bl’
b

3 and b4. Allowing b2 = 1, we then can decide




1 3 4
(3) At Z. Similarly, allowing ¢y = l, we can decide
e, =€, = ¢, = 0
gy = 8y, S8, =0

(4) At P. 1In order to observe the singularity, we have to

take it to X by the following transformation

X + X
(ex) ' y +> y-x

Z. > ZtX

Then putting x = 1 there. This amounts to teplacing y'by y~1

and z by z+l in F. That is,

(y-1)% + (a+8) (y-1) 2 (2+1) + aB(y-1)%(2+1)?

+

(afl)(B+1)(z¥1)2 + (a+B+2q3)(y—1)(z+1)2

+

(2+a+8) (y-1) (2+1)

+

4 4 o143
E[ai b (y-1)7 ¢ o (241)7 a5 (y-1) 4 e (y-1)

+

(2 +ogs (24D ¢ by (-1 P (ael) 4k (-1 (24D

+m (y-1) (2+1) + n, (=12 (2+D) + p, (y-1) (2+1)

!

+ -2+ r )+ s (-1 (2D




The constant and linear terms are (those in normal form

cancelled)

.*h ,+¢c,-d,~e.+f ,+g, . ~h.,~K.-m.+n.-p. +q., +r, +s5.
El(al bl c'1 dl el fl gl L 1 ml'nl pl ql 1 l)

. . .+k,+m,-2n,+p,~2q.~2s,.
+ (4b1+di+3el+3hl+kl m, 2n1 P qu ZSl)y

+ (+4ci+fi+3gi—hi—3ki-mi+ni—2pfari+2si)z|

We require the constant and linear terms be missing from

1? b2 an@ b3.

Allowing 34+b4+C4—d4‘e4+f4+g4'h4—k4—m4+n4—p4+q4+r4+34 =1

[}

we then can decide that for i = 1,2,3
a -d, - -h,-k.-m.+n.-y. . =
afbi+ci di ei+fi+gi hi kl m;*n. p1+qi+rl+si 0
4b.+d,+3e.+3h.+k,+m.-2n,+p.~2q.-2s5. = 0
i i i i 71 i i Fi i i

-h . - - . -2, . , =0
+ l}ci+fi+3gi hi 3,ki mi"-ni 2p1+21“1+ 2.31 -

Then by the.four sets of equations in (1), (2), {(3) and (4),

we can find a general solution as in the following diagram

'a b e d e f g h. k m n P q r
| 3 2 2. 2 22 22
oyt g Xy xO Xz 1D yz y Kyz wz wd xy' ¥
1 0 o0 #%; 0 % o0 0 o0 |

0o 1 0 o 0 .0 0 2 .0

o 01 0 o o0 ©0 o0 2
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where M., ;s Pis Bio r. all zero, i = 1,2,3,4. Hence, we

have the unfoldings

bi = 3x4 + 2x3y-F 2x3z +_yzzz
b2 = y4+ 2y32 f yzz?

.b3.= z4 + 2yz3 ; y2z2

b4 = yzzz

The next thing, we want to check whether they are actually
universal unfoldings for each of the singularities locally.
Now L :
. 2 2 2 2 2 2 2
F=xy + (ao+Bo)xy z + aosoy z o+ (a0+1)(BO+1)x Z

2

+ (a0+BO+2&oBO)rxyz + (2+aq+30)x2yz

+

[(u+8)xyzz + (a084ﬂ80-+a8)yzzz + (B(ao+1)+d(8041)+a8) 2

+

(a+3+2(a03+a80+a63xyzz +(u+B)x2yz]
+\Y(3X4 - 2x3y + 2x3z.+ yzzz)

+ 6(y4

+ 2y32 + yzzz)
A
+ 2(24 + 2y23 + y“zz)

‘S(YZZZ)

+

Putting x = 1, we have

. . - 2
Fy = Tox [(at+B)y zt= Ha+8)yz]

2



+ f<3— By% 2z + yzéz).
r syt 4 2y32.+ v222)
+_£(z4 + 2yz3 + yzzz)

$(y222)

+

. 2 '
Let £, =T o+ [(a+B)y et HatB)ya)

+ G(Y4 + 2y3z + Yzzz)

+ ‘E(z4 +2yz3 + yzzz)
+ 3(y2z%) .
fX ¢ m{(2) and has siﬁgularity‘Al at the origin. We now want
to show ?(2) is spanned by the vector &3—3y¢2z + yzzz)}
:EX :
gy = (2% *B )z + (avB)z
+ 2y ---- + higher terms € J
} b
X
fxop T 2(a gt (B )z ¢ 2(B(a +1)+a(B_+1)+ap)z

S (2+u0+60)y+(u+8)y + higher terms & Jf

X

‘This implies [2 + (o ta) + tﬁ°+5ﬂ z + 2y €J. + m(2)2
. : )4
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2[(a0+1+a)(80+1+8,)]z + -[2+(uo+u) + (B.0+.B)JY € fo + m(2)?2

Hence y and z € J + m(2)2

fx

provided 4[(uo+a#1)(80+8+1)] # [2+(ao+a)+ (BO+3)]2

That is [(a_+a) - (8 +8)}% # 0, which is our condition on
the normal form, |

Therefore, by Nakayama's Lemma m < J The element 3-3y+2z+

yzzz obviously spans %&El
£ _
unfolding of fX and we xhave the property that there exist

fX
That is, F_, is a universal

X
a neighbourhood N of 0 in (a,B,Y,8,%,¥)-space such that
vy = 0, F has an\A1 at X. Similarly, we can do the same thing

- at Y and Z. Putting y = 1, we have

rr

]
-1

E
—
-~
R .
+
™
S
»
N
+

..... + (a+B)x’z)
+ y(3x7 - 2x3 + 2x3z + 22)

§(1 + 2z + 225.

+

+
A
L~
N
[ ]
Nowe”

Let

+h
Il
1
+
—
Fant
2
.+
.
S
»
N
+
.
| —
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F

f, € m(2) and has singularity A, at the origin. We now want

Y

taoa show is spanned by the vector ﬂl+22+zz)}

2x + (GO+G4BO+B)Z + higher terms ¢ J

m
Il

le

2(a0+a)(Bo+B)z + (ao+a+Bo+B)x

Fh
]

+

2yz + 2¢z + 2%z ¢ J
fY

Hence, we have .

2x + (o *a+g +B)z ¢ JfY + m?
(a ratg #8)x + 2[(a_+a) (B _+B)+y+e+3]s € 1_ + m>
Q 0 8] ] fY

2 provided that

£

This implies x and z £ J + m
Y .

4[Cagrar (B r8)+yravs ] # Cagrarp +6)7

when vy =5 =% = (0 , this condition becomes
[(uo+&) - (BO+B)]2 # 0, which is our condition for normal form.
Since it is true when y = £ = 5 = 0, there exist a neighbuur-

hood of 0 in which it remains true. Therefore we have m c.Jf

Y
Then the vector (1+22+zz) spans

+ m?, which implies m e 3
¥

%Lgl_ That is, FY is a universal unfolding of fY and we have
£ o ' |
Y

the property that there exist a neighﬁourhood N of Q in
(a,B,Y,8,€,%)~space such that when & = 0, F has an Al at Y.
The result for Z is similar: There exist neighbourhood N of 0
in (a,B8,Y,8,£,Y)-space such that when & = 0, F has an Al at
Z. But as for P, we have to take it to one of the vertices,

say X. That is, by taking the transformation (%¥*), Then

putting x = 1, and let a' = a ta, g' = B°¥B,we have
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Fo= (D%« (at48) (-1 2 (241) + a8 (y-1) 2 (2+1)

o (@) (B ) (2412 + (at+B'+2a"E) (y-1) (2+1)
+ (2+0"+8") (y-1) (z+1)

+v[3 + 2(&—1) - 2(z+1) 4 (y-1)2(2+1)2)

+ s[(y-nt +‘2(y-l)3(?+1) + Fy—l)z(z+1)2] -

+ g[(z+1)% & 2(y-l)(z+l?3 + (?'1)2(Z+1)2J

+ ¥ [-12 2+ %)

-+ y[3 + 2(y—15 - 2(z+1) + (y—1)2(3+1)21
+ s[4 + 2(y-1)2(2+1) + (3-1)%(2+1) )

+e((z+D)* + 2(y-1) D)3 + (-1 2241 ).

m(2)
J
fP

We want to show the wvector (y—1)2(2+1)2 spans

Let us now write f, in a simple form




[N

Now

+

+ .

+

+

-1 -
y2-+ (u'+a')(y242§2).¥ d'B'(y2-4yz+22)
(a'+1) (8'+1)z% + (a'+8"+2a'8") (2yz-2z7)
(2+a'+B') (yz) + highe? terms
Y[y2-4yz+z2 ; higher £erms]
5[y2+2yz+z2 + higher terﬁs]

2

E[y2+2yz+z + higher terms]

ZG'B'JY

+

7[2+2(a'+3')
F2(a’+8*)-4a'B' + 2(a'+B'+20'R")
(2+a'+3'l]z + higher terms

(2y+2s+28)y + [-4v+26+ 28]z + higher terms.

[—2(u'+5‘)—4a'B' + 2(a'+8"+2a'B") + 2(u'+B')Jy

EZa'B'+2(u'+1)(B'+1)—2(a'+8'+2u'8')]z + higher terms

_[-4f+25+25]y _

[+27+26+2 ]z + higher terms
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Therefore
fP;Y,= 2{F1+a'46'+a'8')'+Y+5+5Jy
+ [(2+a'+8) - 4y+26+28]z + higher terms ¢ J_
' P
fp., = [(2+a'+B'), - 4y+26+2£]y
+2[1 + v + 8 4-5]2 + higher terms ¢ Jf
P

That is, 2[(1+a'+B'+a'B')+Y+6+£Jy

e m(2)%

+[(2+a'+B') - 4y+26+251z € J
. - . P

and [(2+a'+6') - 4y+26+25Jy
-+z[|+r+6+£]z ercP'+'m(z)Z

This implies y and z é Jf + m(2)2 provided that
P

[(2+0¢‘+B'). - 4y+26+2£]2 # 4[(1+a'+.8'+a‘8') +y+5+s:[-[1+y+6+£]
When o ﬁlp =y =6 =% = 0, this condition becomes

(240 48 )2 # 4(L+a_+B_+a B )
That ig, (ao—Bo)z # 0, which is our éondition on the normal
form.
Hence m(2) = J +‘m(2)2_and 5y Nakay;ma‘s Lemma m(2) c::Jf
‘ (2) |

tp

tp

Then, the vector (y—1)2(2+1)2 does span

P

=

o
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ST

Then FP is .a. universal unfolding of fP « We have .‘the proberty
that there exists a neighbourhood N of 0 in (o(,ﬁ'/ Y,d$, ¢ ;% ) -
space such thaf w_.rhen % = 0, Fhas an A at P, This shows that
F is the unfolding we want for ] . . |

Then we are left to check fhat F is act,ué,lly a transversal
forT, i.e. ¥ is transverse to every orbit of the.strat‘um?f, .
Actually, we can prove a slightly stronger result, if £ ¢ FAT ,

T_S_(G.i') n Tg (F) = {0} - zero vector.
Let us 1ook at Jt:he tangent space ‘bo the normal form at

(Olo,‘éé ¢). It is spanned by ' 7 o |

xY’5 + Byt + (por) «%% (l+z‘;c>0cj52 + %793 — togut @
K ol ¥y (hetDF+ (1t 2 143 + %43 ———hmﬂmj:@

And tangent space of the {transversal. at (d,ﬁ) is spanned

by these two vectors together with the four unfeolding vectors.

We can easily find the tangent space to the orbits by

the following

:h = glq.:ﬂl-qL (a(p+ﬁo) N+ 2 (%4 D tFo+D«52+ (do+fut02n(o)593‘32
+ Z(L*VH'F )XY3
ﬂ-j = zl-x\lj 4+ 2(0{0+P)'){ﬁ5 ¥ Moll; 35 -+ (P(e-r(; '+ .Z,D(a[g)’)(j
+ (2 + oo + [2,)9(3 '
&3 -.: ("to'*f?)’}(j + zp(o{; 33 + Z(iu+)((3.~,+l>’)<j + Z(o(ﬂ{?a—fﬂ,lg)xjj
o+ (24 de+tzo)ij

So the above claimed result, is equivalently shown by
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the nonsingularity oflthe following matrix,

].,..__..,_.V N, r _____ — ,.,!,,,, - ,A_';.Z-'

fxaz "‘Ja gc"y x‘s ‘ 3‘5?

.____1 S

/\: jj‘!xr } !
Mk _2 e mmmn G
sk D wm ok e

I vot  a e wp w Gfy
s oy Glwahz e
sk Gy et s e
Moy e %z:g .

ERTSNNCCENE -

#3 39 %53 g

2(&:”)
ﬂ(ﬂfdo h"’v"’r;") +%f) Z ({3 +0) o m

e

A ; f%‘ i | : B {2+ “F){g(—ff) 2fy ; 2(5:’“:3 200y /g

g

I .

TMJ;ntm | L { HZF p’ + ,ﬂp
Ta..ﬂmt(ﬂ-). | : ‘ f | I_ / 1 it2, Gt A,

We can find the detérminant of this matrix is equal
to (a;&)z which is definitely not zero since we have the
condition ¢#B. Hence the matrix is nomsingular and the

transversality is established. Therefore F is a transversal

. for T.
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The Transversals of all the normal form with singularities

at linearly dependent points ha& been found and checked.

The folloﬁing is the list.

List 5.3.2.

I—:f;rf.ﬁ Frctuke. Termad, Fprna . &m@a}\b’m 5/5 WJWM . [
': ,qf' :Afg;z_ * (xyt+ g*3 + 45t +¥1<§+Mg +€.vxjg)—o 4&39., *%3 'Xé y°3%, |
‘ Xt g2y £ 30 235 8
fﬂfﬂif AF 2l +_53’~+acj’«+,zda<3§+xzxf).io A R L £ «Jémx’g
b L0 di | I Mt AL i REr i
At pr “(4‘:!"+:13+:15+M5+F>°‘ﬂ3)1 3T, g K gl
' ____ - - ﬁ=#4p( Ako , —p-H#o 34'*' ’23}[+35 / 34'*"1353"'35

A S E‘:J*‘“ﬂ%@ﬂ)«g]m Pj%’f(fv*)?‘j] 0 "ﬂé*ﬁﬂé *(F”'“‘s +(+29)ry3 *X?Ja,
b ' XYY + L y’s % (k4D 4% z+@+;zx"x33+4%

) E | ”;:':f;:f! ‘”{6 I++MJ+°9”’C}3+35'
B | SN I gﬂ% IR
: : 5 . “+ 92— -I-laz- e
4 : A‘f | g& j('x +0(50+4C ‘{".’(j) =0 | 35 2Kﬂ+0?«q+2155+'2'3+23,
I o1 geaspa g Peanpey
N B .o e i) E
H, "‘31@‘ gg(mijj) =0 g + A% 4 5%, 5‘* 453 «’3
| et es®, 03t
A;D"LA- !X53(’X+j)-0 o 9(‘*+a&‘m?m<3 , yhe Qx@3\+=x‘3’;:
T e B P s, ey
5 ?4," X; Aygla4y+3) =0 ot &x33+;m'*3 +2133+x3 + 23

i ‘ ' f}+§27<j+o155 +2 293+ Y +y5
| o Peandtanzt+ axydte Ay

i
{

L | g, 5, 4T

; A ey e — A st
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5.%  Strata are Manifolds

The main object of this section is to prove that the
strata we have chosen for the stratification are all mani-
folds. Since we know orbits are submanifolds, we need only
+9 show1this for cases where there are moduli, and note that
in all these cases the singularities are isolated. To

achieve our object, first we need a lemma.

Lemma 5.4,1. Let M be a smooth manifold under the action
of a group G and £ £ M be an invariant set under the action.
Then % is a submanifold of M iff for every point in ¥ there

is a transversal J such that £ A7 is a submanifold of 7.

[&ibsen, c.&. 19767

Let T be the normal form of the stratum % . ~ By Lemma
5.4.1. and the homogeneity of orbits,to prove the stratum is
a manifold, it is emough to show that for every pcint T; on
the normal form 77 , A € space of moduli of T + there is
a transversal ;& such that ¥, nﬂk::a.submanifold:of :T .

Let :T be the (ransversal we had chosen for the normal
form T . Note that 7 can be taken as transversal for every
point of the normal form. Now if T is a point on the normal

form [' and we takeca'to be a neighbourhood of T\in7 ,

ve claim that we have the following property: If 'the neigh-

-
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bourhood J& is chosen small enodgh, then
Zf\C7A =T 0~7} : (%)

This means that, a point in the neigthurhood.ya ef_Pl is
in the stratum I, that is having the same sihg#larit? type
as the curves in the nofmal form, iff it is in the normal
form T. : |

Notice that the size of the neighbou;hood,?} may be
different for each'l{.and the neighbourhood is franverse
‘to.the orbit through FA at Pl and hence to all nearby orbits.
If (*) is trué, then since ﬁe know (from Chapter 3) that all
the normal forms are manifolds (actually submanifolds of
their tran5versals);we have T n\7A is a submanifold ofjfk.
So this will preove the main result.l |

Let us now starf to préve our claim (®*). It is easy
to see that for the poiﬁts in fhé‘neighbourhoodgr, if they

are in the normal form ', they are in the stratum, that is
£0J, =107,

But the reverse is not as easy. This involves working in

the jet space and we need a further lemma.

Lemma 5.4.2. Let p: (X x Y,0) - (M,0) be a smooth map germ,

d r

where X°, Y~ are Euclidean spazes and M™ smooth manifold, and

(z,0) (Mm,O) is a submanifold of M with'codfmzrdim‘f =Y,
Supfose. ' ‘
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p(X x {0}Y) < Z and p is transverse to Z at O,

then there exists a neighbourhood A of 0 in X X% Yréuch that

‘for all (a,b) € A, p(a,b) ¢ Z iff b = 0.
Proof. We can write (Mn,d) locally as (Ux Z,O) where

dim U= r. Let m: (Ux Z,0) ~> (M,b)_be the prﬁjection onto .
Consider the composite me p: (X x Y,0) » (¥,0), we have

iﬂoP(X x {0}) = {0} and by the transvérsality the tangent map

To(w e p) is surjective.

Then by Hadamard lemma, we can write

Tep (Ao Ad »g:g“:“;'yf)

i

Patng) - Peluy) \ (g

wheére the pij are smooth and

det (pij (0,0)) # 0 {max. rank)

Let A be a néighbourhood inside which det (pij(x.y)) # 0, Then

for every (a,b) €& A,

plat) e Z f Tepa,t)=0 it (pijat)) i
. . 4r 0
i b= - = b0 &-E.D.
Before we start to prove the reverse, we also need to
know several facts, Suppose the normal form I has singularities
o, ... 0, at points Py ... P, where 2 ¢ 6. To discuss the

1 L L

conditions on the points in the neighboufhood57A such that
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they have the same singularity type as the curves in the normal
form, we have to loock at each of the singularities localiﬁ.

As expalined before, to look a# a singﬁlariﬁy o5 of the

normal form T 1ocally, we take T through a transformation
which will move the singulari;y_ci'to a verte% Xi of the
triangle of reference and then 1et'xi‘= 1 in the resulting
equation. Note that actually in most cases, the singularitieé
are alréady at the vertices and hénce we db not have to take
any transformations. Then the normal form becomes a represen-

tative of a germ
h = P(ci) : (N ,0) - C

ﬁhere N C'Cz in our case.
"Fact (i). h is k-determined (some k L since all the singu-
larities under discussion afé isolated.

If we do the same fhing to the transversal J of the
normal form T, taking it fhrough the above mentioned trans-—
formation if necessary and letting X, = l, we have a repre-

sentative of the germ
"H =:7(ci) : (N xMxUx VxW, 0 >C

By the proPefties of trans;ersals (Theorem 5.2.!), we can
always have the transversal writgen locally in this form,
where M corresponds to the parameters of the moduli terms of T,
..U corresponds to the pavameters of the universal
unfoldi;g term éf 943

V corresponds go the pérameters of the universal

unfolding terms of the rest of singularities;

W corresponds to the constant term:
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For the matter of later convenience, we shall now combine-
*V and M into just V. We can do so because both V and M would
not affect the unfolding and we can regard thém as one.

Therefore we write

H=J(;): ®WxUxVxW0 +C

Fact (ii). By Pfro ot I,yf J ., we know for (x,u,v,w) & (NxUxVxW)
persy

H(x,u,v,0) is a universal unfolding for H(x,0,v,0).

Fact (iii)., By fact (ii) and Part III of Theorem 5.1.10, we

have H(x,u,v,w) a versal unfolding of h.

Fact (iv). For each v close to O, (x) is R-equivalent

H
O,v,0

to h, that is, H (x) has the same singularity as h. In

0,v,0

all our cases, it is casy to check that H (x; has the

0,v,0

same Milnor number p as h. And also by looking at the

lowest terms of the equation we can always tell the number

of distinct tangents and the multiplicity of the singularirty.
Hence it enables us to check whether the singularity is of
the same fype as h orx ﬁot. For example (see Table 2-4 ),
there are only two singglarity types with p = 4, A, and D,-

But A4 has multiplicity 2 and D, has 3., Similarly, we can

4
differentiate between AS and D5.' For u = 6, we have A6, E6

and D But Ag has 1 tangent-direction and multiplicity 2

6"
De has 3 tangents, multiplicity 3
Eg has 1 tangent, multiplicity 3.
Hence we can' always tell the difference.

Now consider the following map whiech was introduced in

Section 5.1.
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Ll

?(H) : Nx Ux V.~ Ji(n,l)

(x,u,f)r4-the k-jet of function Hu v expanded about x)‘
where n = dim ¥ (n = 2 in our case).
Notice that the V_now includes the parameter of the universal
unfoldiﬁg térms cf the other singﬁiarities and also the
moduli parameters M, Since JE(n,l) is the k-jet space with
the constant term zero, we shall deal with the case with the
constant term W = 0 in all the mappingé first. The case
with the W # 0 will Be shown later, _

Let us put jT(H) =p, v=x%, ¥ xu - ", Jt(n,l) =M",
R-orbit of h = Z in the Lemma 5.4.2.

Using Fact (i) and Fact (iii); h is k-determined, H is
versal. Then by Theorem 5.1.7, H is k-transversal, that is,

jT(H) is transverce to the m(k)

~orbit of h at 0.

Using Fact (ii) and.Fact_(iv), when W=20,NxU->(C
is the universal unfolding of.h. Hence N x U is the minimum
dimensional vector space which can be transverse.to the
tangent space to :th2 orbit. Therefore the dimension of
this vectof space is exaétly the codimension of the orbit,
that is, dim N x U = codim Z.

Then we can conclude from Lemma 5.4.2. that there exists

a neighbourhood A of 0 in N x U x V such that for every (x,u,v)

€ A,

if j?(H) (x,u,v) ¢ R(k)—qrbit of h

then x = 0, ﬁ'= 0.
That is, the only poinf wﬁich'can be the same singularity
as he is (0,0,v).

Let us now deal with the case when W # 0. Let Hﬁ v w(x) =
2



- 150 -

|

H v(x)+w, that is H, v(x) is the function without the constant
¥ 3

term. Obviously Hu,v(g) = 0, Suppose Hu’v(x)+w has a

singularity at X R-equivalent to h., Thus Hu v(xo)+w=0.

By definition of ji(H), j?(xolu v) € R-orbit of h. Hence
- ’ . . :

again by lemma, we have xé =0 and u = 0, so w = -Hu v(g) = 0.
' H

Therefore, provided X s U, #, wate sufficiently close to 0O,

we have Hu v(x)+w has a singularity at X R-equivalent to
. 2 ¥ : -
0,

h =?xO = u =0, w=20,

Finally if we want to ensure that X, u, v, are within
a givén neighbgurhood of 0, we can choose u,v,w sufficiently
close to 0, since the singularities are isolated.

The above argument canAbe applied to every singularity
o pf the normal form. |

And we have the property

(Uoi_@ Vo) N (Vg & ng). = {0} for i # j

Thav is, the unfolding parameters cor¥responding to one sin-

gularity will not correspond to another. If we write

U =(, & W°1)'® v, &,

. ) ... @ (Uo EJWG )

2 L L

a point (x,v,u ,w

then for a sfna_ll enough.mi\jhbarﬁﬂqof Ty G2 v

Uy s W } is in the Stratum I, (that is has singularities
,_R. L ’
6. ... 0,at the points Py e P ), if and only 1if

1 L 4

u = w =0, e, u =w_. =0.
1 °1 °y %
That is, just a point on the normal form.

Hence k HJA cT 0\7';\

Therefore we have z f\J& =T N J;
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Since we have prOvéd in Chapter 3 that all the normal forms
~are manifolds (actually submanifolds of their_transversals)
we know that T () 3; is a submanifold of er' Also because
CT can be taken tfansversal for every point of the normal
form I', for every point Ty of the normal form T, there exist
transversal (neighboujrhoo-d JA of 1"?)(:\7 such that If JJL =
I‘[\J& = submaﬁifold of U;.: Therefore, by Lemma 5.4.1,

" we have

Theorem 5.4.3, All the strata are manifolds (for Xg(f7)

see Remark (ii)).

Remark (i). Furthermore the strafa are connected. This is
Hecause the group PGL(3,{) is connected and by the group
action, any two point‘on the manifold can;be taken aleng

the orbifé to Ehe normal form. Since the normal form itself
is the complement of a subvariety in an affine space, it

is connected. Therefore we can find a path for any twé

points on the manifold.

Remark (ii).
We have checked that the Transversal CT chosen for the normal form
x¥ + ox¥2* + 2% =0 for Xq (E7) in the list 4.2 also has the

.sversal‘_(neighhourhood \7;\ of 71 ) e J such that Zﬂ&: Tn \']/'\

properiy that for a point T; on the normal form, these exist a ftran-

= submanifold of Q& . Therefore, Lemma 5,%,1, can.also be applied and

~s
gives us the stratum Xiq ( Eq) also a manifold.
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Chapter 6
Regularity (Whitney)
. e ' 15 ;4 . .y
A Whitney stratification of M = T —{0} 1s a partition
of the manifold into a finite, disjoint union of manifolds
Zi such that M = 21U A UES so that they have desirable

properties. We call Zi strata. The nice properties are

(i) Whitney regularity condition: Aﬁy étratum L, is "regular
over" any other stratum Zj. The definition of regularity
will be given in Section 6.1.

(ii) Frontier conditiom: If Eif\ Ej # ¢, it implies Zi‘= Ej'

This follows from (i), but we can usually verify it

directly (see Chapter 7).

'So far in this context, we had already had a candidate
for the stratification of M in which all the strata had beén
proved to be manifoldé. In our case now, the strata Ei are
the different classes of singularify types as shown in
Chapter.Z, e.g. E(AlAB), T(ay) .

Now we would like to see whether our stratification has

the Whitney Regularity condition.

6.1. Definitions of Regularify

Let P and § be disjoint submanifoldslof a smooth manif01d
M, and P € P N Q where @ is the closure of Q. By choosing
suitable local coordinates at p, we can make P a linear
subspace. It can be verified that our definitions are inde—

pendent of this choice of coordinate.
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Pefinition 6.1.1. (C)-regularity (nofmally called just Regularity)
Q is said to be (C)-regular over P at p if given sequences
PLe 9, of points in P,Q, each tending to p,  such that the .

unit vector from P, to q has limit v and the tangent space

n

to Q at q, Tq Q has limit 7}, then v [ . Q is said to
n -

be (C)-regular over P if q is (C)-regular over every point

of P,

() -Mjw |

(A)~-regularity: Pe ? P ‘
. [ .

Q is said to be (A)-regular over P at p ifrgiven é sequence

q, of points of Q, tending to p, such that anQ has limit

T , then TpP::'ﬂf.Q is said to be (A)-regular over P if

Q is (A)-regular over every point of P,

v

Let np: M > P be the orthogonal projection of M on P
and for any q € M -~ P, write n{q) for the unit vector in the

direction from ﬂp(q) to q.

(B)-regularity:

Q is S0y to be (B)-regular over P at p if given a sequence
- .q, of points of Q,'tending to'p, ;ﬁch that n(qn) has limit
Vs anq anQ has limit Tf, then voe KD'. Q is said to be

(B)-regular over P if Q is (B)-regular over every point of P,
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Note
(i) (B)-regularity is just a special case of (C)-regularity

with p_ being the orthogonal projection of q, on P.

(ii) (A)-regularity does not imply (B)-regularity. TFor example,

{0} x R '
Q {Spirél - {0)}3& R

Q is (A)-regular over P, but is mnot (B)—regular over P.

{a sPiralg x‘R . Let P

(iii) wall [watt 1474 ]

(C) & (A) and (B).

Normally it is not easy to prove regularity between
strata. We have a lemma which will reduce the proof of
regularity over the whole of the strata to only those points

in the Transversal.

Lemma 6.1.2 Let P,Q € M be submanifolds invariant under the
action of the group G. Q is (C)-regular over P iff¥Wp ¢ P
there 18 a transversal U’of P at p such that Q n:r is (C)~-

regular over P at p. [&FbSer:l ’6“6_] .
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6.2, Examples of Regularity

Let Ei, Ej be strata with normal forms T Fj' Suppose
:r is the transﬁefsal.for Ei’ then if we want to prove that Ej
is regular over Ei, by Lemma 6.1.2, it is enocugh to show
for every point PA of T, there exists a neighbourhood :71

of PA'in :7 such that Ej ﬂ:Tl is regular over Ei n Jrl which

is equivalent to Zj NJ A is regular over ry N J} (see p.I51 ).
. P b :

J

4w&ﬂiﬁﬁmm*mﬁ+f“%“ﬂﬁ

In general, it is very hard to find out the condition
on points of :TA that they should lie in Ej. But there are
a few special éases in which we can not only realize the
conditions but also ﬁrove the regularity directly. We sﬁall
dEai with the general aréumen; for proving regularity in the
next section. The following lemma serves ag a tool for

proving simple cases of regularity.

) ' m
Lemma 6.2.1. If P is a submanifold of C™ and Q = pxClcc ¢l
where @’“c: @hrrf in the usual way, then Q/P is C-regular

over F. il

VAR

Proof:

'C"‘/
Both (A) and (B)-regularity is obvious. Hence (C)-regularity

follows.
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Example 6.2.2. Consider _f(Ai q% ), all the singularities

are nodes. Since nodes camn only despecialize into ndn—singular

points, we can be sure that the only strata which can specialize
4 3y . 2 ' 3

to E(Al 4} ) are f(Al) (1rr),ﬂ(A1), E(Al) (the other E(Alf%})

can not specialize to Ai(i} because the line component of

f-/
Af fH.cannot degenerate into a comicec). The transversal

of Z(Ai<£> } at oy, B is ' n x_ (1,0,-1)

NS

_CT' = (xy + (a;ﬁ)yz + (ao+a+1)x2)(xy+(80+8)yz + (BO+B+1)XZ)

I

+ '\{(3}:4 + 2x3y - 2x32 + yzzz)

+ 5(y4 + 2y32 + yzzz)

+ E(z4 + 2yz3- + yzzzj
+ 5 (y2")

We have the property ( P 1§ ) that there exists a sufficiently

in g‘, that is a neighbour-

small neighbourhood :Z;f£X)of T, g

oo ‘
hood N(X) of 0 in (x,a,B,v,8,L,%)-space such that v = 0 iff :j
has Al at X,
Similarly, we have 'CTQOBO(Y)’N'(Y) § = 0 iff Al at Y
T 8,(2),N (1) E=o0 iff &) at 2
. {TaOBO(P),N,(P) %= 0 iff A, at P

| Hence there exists a neighbourhood :7a080 of Ta,B, in ;T
such that CT&OBO N Z(Ai irr) is the union of the disjoint

linear subspaces
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v =8 =158=0, z #

o

§ =t=¢=0, y#

o

o

§=tr =y =0, § ¥

g =y =6 =0, £ #0

By Lemma 6.2;1., :Tuoﬁof] Z(Ai irr) is regular overkf; N T, then
by Lemma §+f+2 regulafity of Z(Ai(ier over Z(Ai i} ).
.Similérly, there exists a neighbourhood U&OBOIOf PaOBO in.CT
such that CT&OBO N Z(Ai) is the union of the disjoint linear

subspace

o g ¢

Yy =¢ =0 T 7 0 /
Yy =% =0 S £ 0 t #0
Y=rc=0 8§ # 0 T#0
§ = E=0 Yy #0 z #0
8 =7 =0 Yy # 0 E_#o
t=1¢=0 _ f%o' 5 #

B )

Again by Lemma 6.2.1, and Lemma 6,1.2, we have Z(Ai) regular
, ¢
over E@l Y. .
- . . ren . .
Also, there exist nelghbourhood\faoeo of ruoBorln ST |
such that :T; 8 n E(Al) is the union of the disjoint linear
0% o

subspaces

v =0 §,8,0 # 0
6 =0 Ys&,8 #£°0
Z=.0 Y,y8,0 # 0
=0 ERERY

As before, regularity‘of Z(Al) over Z(Ai (@5) is established.
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Example 6.2.3. Let X be a certain singularity type,. In
this example we intend to discuss the regularity of X over
A?X. Again we use the fact that nodes can only despecialize

to non-singular points and nothing else. Let us look at

~
. 2
a specific case Z(AlAB?Iﬂz ) over E(A1A3 ﬂ%:). The transversal
2 ' .
of Z(AIAB-fHP) is

/\ .
/¥ A
CT _ 2 2 2 2 2
A= Xy + Xz o+t Xyz o+ o X yz + ax yz
5 L 2
+ px  + YY4 f-5y3z + Eyzz' + Qzé
- We have the propertyffaﬂg ) that there exists a small enough |

neighbourhood ja Y- Pu in Jsuch that

Yy =68 = =0 iff /J has Ay at Y

Also J a small enough neighbourhood :Ta (X) of Fa in
0 0
such that

B =0 1iff :7 has A, at X.

1 .

Similarly,j a small enough neighbourhood Jfa (Z) of Ta at
, ) 0

such that '

z = 0 1ff :7 has Al at Z.

Thus,lthere exist ariéigthurhOOd :7a of Fuo in Jr such
. , o
that :Tao il Z(A1A3 %lb) is the linear subgpace
Y-=6-=E=B=O C#O

2

(This amounts to desingularizing the node at X).
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7

Also, there exist a neighbourhkood .J of Pa :hl(f'such
0
, that(]& N E(A1A3 irr) is the linear subspace
o

t
a
G

y=8=t=¢0 8B40

{(This amounts to desingularizing the node at Z).
' o
So, by Lemma 6.2.1 and Lemma 6.1.2, both A1A3 ¥ and A1A3(irp)
are Whitney regular over AiAB.
Furthermore, we can also see E(A3) is regular over
= 11
E(A%AB), since there would also exist a neighbourhoodi?a
' Q
. " . . .
of I'ao in ‘7 such that Jao 0 I!(A3 irr) is the ‘11near

subspace

.Yy =8 =¢=0 ) ) B,z # 0O

(Here the nodes at X and. Z are both desingularized).

"Example 6.2.4. In this example, we shall show another
method of proving regularity. Notice that this only applies
to very special cases.
Let us consider regularity of Z(A1A3 irr) over Z(AlDé-%% ).
or .
The normal form T of Ls(AlD4 *}-) is
ro= x* 4 xyz2 + xzyz + u0x3z o # 1

(from p.59 Chapter 2)

The normal form T' of E(A1A3 irr) is

rt = y4 + x222 + xzyz + uxyzz + BxyB_

a,# 2, o # -2
%-ag+1 # 0.

(from p.'b Chapter 2)
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Taking T' through the transformation
X + zZ
y *x
z >y

we have x4 + YZZZ + xy22 + axzyz + Bxsz = 0.

Again, taking the transformation y + iy, z - uz, we have

2 22 2
rt = x4 + ATuy %2 +_lu2xyzz + olux yz + Buxsz
We can make _1u2,= 1, aip = 1,
!
. ' 1.
by taking U =a, A= -3
: o
Hence " = x4 +-J§'y222 + xyz2 + xzyz + asxaz
o

This is a form of E(AlA3 irr), but not necessary the

whole of E(AlA irr).

3

If a »02, and af = o (avoiding 62—u6+1‘= 0) T" becomes
x4 + xy22 + xzyz + a'XBZ

which is the complete normal form for z(A1D4—%%')(seelP).

Now let us check the transversality of the orbits of

E(AlA3 irr) to the form P", writ%ng a" = é%, o # 2, B" = af
r" = x + xyz2 + xzyz + afyzzz ; fo3y where
P;= 4x> 4 yzz +I2xfz + B%EXZZ oy # % since a, # *2
r" = xz? + xzz + Zcx,:'yz2




it e e i e rm T e

ry o= 2xyz ¥ x’y + 207 yiz + B'x

e e S — e e e ST IR L B

- .
X T :133' «"‘us «55 %35 ’Jfg 7?3 43

2, I

___Jg_, Z %
D A

Supposerlle; F e A zF;.= ulyzz2 + uzxsz, from above

table we have})\8 = 0"16"= 0,_13 = 0, Aa = 0 and

A, * Aq =0 . 1
2 . = = " ——
7 } = Ao Aq 0 since o, % i
27, * 2a"A7 =0
By 4A % B$A7 = 0, we have Xy < 0
And A t A 0
> ? } EN g = Ag = O
15 + 219 =0

This proves that there is no common tangent between the orbits



. and the form TV, exceﬁﬁ.the vector {0}. _Heﬁcé T" transverse
" to orbits.
Next, put o' = 0. The same calculation shows that the
E(A1D4.%%f) orbits are transverse not only to their normal

form, that is when a" = 0, but actually to the E(A1A3 irr)

form T" too.

W‘Tﬁo _’. jmma#—b(.dﬂj- g‘
?ﬂ7’ L i %ﬂ Ay

This shows that we can choose the same transversal for both
strata.

Suppose we choose

:7 _ 4 2 2 3 3
fa, = x  + xyz + X'yz + a x'z + ax’z

+ by4 + cz4 + dysz + exy3 + fyzz

to be the transversal for E(A1D4$ at a_, wherg a,b,e, ... f

are small. Since this is also a transversal for P",{fﬁoﬂ

Z(A1A3 irr) = \j;o A T" (see p.Il8 ). Hence the points of

”{Taorwhich lie in fhe Z(A1A3) are precisely the points of

the normal form I'"., Using Theorem76.1.2.,‘Z(A1A3 irr) is regu-

lar over.Z(AlDa) iff VriaéE(A1D4),:rao It Z(Al_A3 irr) is

regular over CTao A Z(A1D4). But :Taof‘ Z(A1A3 irr) =

J; A T" appears as a plane (a,f) and Crao N Z(A1D4) as jgst

a line (a) in the plane, Henée regularity follows immediately.
ﬂotice ;hat this method only apﬁiies to cases when we

can cﬂéose a common transversgl fof both str;ta concerned.

We have checked that in two other cases Ai q@: - Ai

4oL q_lp
Alﬂr"Al_

Ll

we can also use this technique.
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6.3. The Uniqueness of Unfolding Technique: General Theory

for Proving Regularity

. The general argument for proving regularity depends on
the facts that "any two r—parameter versal unfoldings are
isomofphic“ (Theorem 5.1.10 III) and "Regularity holds for
products" (Lemma 6.2,1).

‘Let T be the normal form for the stratum I. As explained
before‘(p. fi§ ) when the normal.form I is taken locally at
a singularity g;, and fixed values are taken for the mpduli

it becomes a germ for the singularity of the form
g : (N,0) > (L ,0)

(Thus, if the singularity is at X, then é(y,z) = F(l,y.;)).
Let Gf be the transversal of T. Again as explained in
P s When iflis taken locélly af a sinéularity a, of T,
if becomes a versal unfolding of g. Omitting the comnstant
term (with the singulafity at X, this comes from the term

in x4)\jr is of the form
¢ : (NxU=xV, 0 ~ (L,0

wheré U is the universal unfolding paramefer space and
V is the parameter space of the moduli and the
unfolding terms relating to other siﬁgularities.
By properties of transversals, (ﬁ. 11 ) there exists a
neighbourhood Q of 0 in N x U x V suéh that if (x,u,v)é'§
G(x,u,v) has ¢ ; mnear 0 iff x =0 énd ﬁ = 0,
Secondly, let us introduce another versal unfolding of g.

Let N x U x V E?, and n = N x U > be a standard universal

unfolding of g. Now define



© e
F=(NxUxV, oy »C
(x,u,v) P n(x,u)

Then ¥ is a versal unfolding of g with the same number of
parameters as G, only that it is independent of the V-

parameters. That is
F(x,u,v) = F(x,u,v")

for any points e ‘g |
For a simngularity type wahich can specialize to that of
g (for local specialization see Chapter 7 ; note that X may

be a cluster_of several singularities such as AlAlAz) we write

5,(0) = [(u,v,0) €U x VK € Gy (04w hao o
o Sigubaly Lype X e 0}
Sx(® = f(wrwye Ux VXC: Fup)+w has a
pogudanity Kype X non O }
If o is the singularity type (up to right equivalence)

of g then by the argument in §5.4 (xo simple), we have

85 (6) = {(u,v,w) e UxVx{ : ¢ (x)+w has a singu-
o - u.v

larity type o~, mear 0}
= {(u,v,w): v = w = 0}

STO(F) = {(u,v,w) ¢ UxVx € : Eu v(x)+w has a singu-

4

larity type o  near Q!
= {(u,v,w)$ u =w = 0}.

Now by Theorem 5.1.10 III, F and G are isomorphic, that

is there exists
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(i) diffeomorphic germ

¢ T(NxUxV,0) »(NxU=xV, 0)

written as ¢(x,u,v) = (¥(x,u,v), p;(u,v), p,(u,v)) where

yo o identity

3
(ii) a germ ¢ (U x Vv, 0) = (T, 0)
éuch that

G(x,u,v) = F(¢(x,u,v)) + c(u,v)

F(}P(X:U,V), pl(usv): DZ(U,V)); + C(U,V)

(¥)
Now since F is independent of the third set of coor-

dinates, we are allowed to change Py as long as we keep ¢ 1

germ of diffeomorphism.

We claim that we can make py{u,v) = v.
2

First, since ¢ is a diffeomorphism, its Jacobian

ay KR
9x  du av
Bpl Bpl

0 du av
apz sz

0 su v

must have non-zero determinant.

That is,
90y 3Py
du _Bv‘ = 0 or (pl,pz) is a diffeomorphic
i L) gern.
du oV UsV=0
After the replacement pz(u,v) = v, Bpl apl
du au
becomes
sz sz

Ju ov
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Bpl 9p1
Jdu av ,

and we want this to remain non zeto,
0 I '

that is, the germ ¢ will still be a diffeomorphism.

Notice that if (Bpg - o e RS el 20,
3v / O y du av du | o |3V |0
392 302‘
su au | &
Since 'Bpl Bpl
' au Bv !
is non zero, this implies — F 0
du |op
3 Py 3P,
du av | @

Ip
Therefore if we can show (~—19 = 0, then
2v /0

9py 0Py
Ju dv :
# 0 as required,

I p
To prove {5;%)0 = 0, first we have

SUO(G) = {(u,v,w): u=w=0}

By (#*), this implies F(P(x,u,v), p,(u,v), py(u.v)) + c(u,v)+w
has (as a function of x) a singularity of type g, near

0 iff u=w=0 : (*%)

But since Po o = identity, for each fixed (u,v) near 0,
? .
N4 is a diffeomorphism and F is independent of py. So
u,v
the conditioéﬁ%(y(x,u,v), pl(u,v), pz(u,v)) + ¢c{u,v)+ w to

‘have a Uo—singularity near 0 can also be written as



_ 167 -

. -

py(u,v) = c(u,v) + w =0

Combined with (%%*), we have for all small v,

p,(0,v) = c(0,v) =0

Now consider the composite

v-uxv Py

v B (0,v)

It is identically zero. Hence the Jacobian of the composite

at 0 is zero, that is

( 391) .
Therefore v 0 —70 as rqu%red.

. . 'Bc
(Similarly, we can also show (3;)0 = Q).

Thus, we can write

G(x,u,v) = F(y(x,u,v), p(u,v),v) + c(u,v)

Now we define a germ

B e wxvxl , 0 > wzxv=xl, 0)

(u,v,w) H-(fl(u;v);v, w+é(u,v))

It follows that (u,v,w) & S‘(G)

iff ég(u,v,W) = (pl(u,V),v, wte(u,v)) € 8_(F).

The Jacobian matrix of §9 at Q0 is



R NS N
Ju Vv
0 . 0
e 3e
ou ov 0

Ipqi :
——1I # 0, this matrix
3u |

Bp)
: 13— dc -
Slnge (3;— 0 0 (Bv) 0 = 0 and

is invertible. This implies.;g is a germ of diffeomorphism.
By the above, §9 preserves strata,so regularity is invariant
under it. Therefdre, we have the following 1emma:

]
Lemma 6.3.1. For eﬁch simple singularity of a normal form,
there exists a diffeomorphic germ 4; as defined in the
previous paragraph, such that if preserves strata and’
therefore.regularity-is invariant under it,

Also, we can easily deduce that

Corollary 6.3.2. S“EG) is regular over the V-space u=w=0,

Proof: Since k? takes S, (G) to 5, (F), the space u=w=0,‘(that
*o %o o

is V-space) is taken to itself by &} . Therefore, SX(G) is

regular over V iff S%(F) is regular over }9‘({0} x VvV x {ogkv..

Now since F is independent of V-parameters, we have

{a,b,c) é %&(Fjéé-(a,b',c) £ S%(F), that is SﬂFF) is a product.
Therefore, by Theorem 6.2.1, (products are regular) SKfF) is
reguléf over the V—sPace; Hence by above S%(G) is regular
over V, '

The above lemma and corollary apply, of course, only to

one singular point of the normal form of 8(00). In the case



»

- 169 -
when fthere is only one singular point on the normal forﬁ
of E(oo) the V-space will correspond only to the parameter
space of the wmoduli, that is, the normal form itself. There-
fore, the above Corolléry 6.3.2 proves the regularity of
%%(G) over the normal form in the transversal. Then by
Lemma 6.1.2, we have the'regulérity of the stratum of sin-

gularity type ¥ (Z(¥%)) over the stratum of singularity type

co@(coﬂ.

Let us now look at an example

Example 6.3.3,.

2

® > A, % = Al’Al’ or A, (see table T4 for

3!

local despecialization).

Normal form for quartic curves with A3 is

Ta,8 Y(x;y’z) = x%2% 4 x3y + y4 + uxyzz + Bx2y2 + ny3
s Y : \

Putting z = 1, we have the germ

2
g, (x.7) = x* + x7y + gt “oxyz + Boxy + Yo*¥

with A, at 0.

The transversal at point Pa

oBo’Yo

]
—

:7'0 (X,¥,2s 0,B,Ys8,E,0) (x,y,2)

‘ 2
+ axyzz + Bx2Y + YKY3
+ 624 +-Ey23 + zyzz2

By putting z = 1, we have a representative of the germ of the
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versal unfolding G  of g,

3 4 ' 2 2
Go(XsYsU,B,Ys5,5,§) = X2 + xy +y o+ aoxyz + Box v

. 5 2 ‘
+ Yoxy3 + Mxyz + Bx'y o+ ny3 +Ey + Qyz

as a versal unfolding we have omitted the constant §.
By properties of transversal (p./§ ), there exists a neigh-
bourhood ? of 0 in (x,y,z,,u,B,Y,G,f,g)—space such that
:To has an A3 at (x,y,z) near Z'iff x=y=§=¢=7=0.
Following the general argument, we define another versal

unfolding

'3 2 2
Fo(x,y, 6;B,Y,%,5) = x2 + x7y *+ y4 + uoxyz +'Box v

2 2 /
+ Yoxy + Ey + ;y

of g, where (x,y,u,B;Y,é,c)é-g'. Note that F, is independent
of the (a,B,y)-parameters.

Here now the (x,y)-space corresponds to the N~space in the
general argument, (a,B,Y)—space corresponds to the V—gpace
and (€,z)-space to the U-space. Then, as FO,GO:N X V x U—>
N x V x U in the general argument we have, by isomorphism

of unfoldings

G (%:,7,2,8,7,28,%) Fo@(x,y,a,s,v,i,c);
‘pll(u,BsY’-EaC ): QZ(IG’B’Y’E,C)’

. ‘ .
plB(Q,B’Y, » 5D, pZI(GaB:Y:E—: C)s

pzz(a,B,Y,E,CD + C(IW:B’Y: F-sC)
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where Piy> p12

and Py3 are components of P> which is now

corresponding to the V¥space and p,,, p,, are components
21° P2y #F P

of Py which is now corresponding to the U-space. (Note

this is a different notation from the general argument).

By the same proof as in the general argument (p.léé )

wé can write
Go(xay’a’B,YsE,C) = Fo(EP(an:UsB,‘Y,E.,C),d,B,Y,

7p21(a96,Y:£:‘:).s pzz(a:B:Y:E:C)) + C(Q,B,Y,E,'C)

Write S, (6) = {(a,8,7,6,€,8) : G (x,7,a,8,7,E,0)

.A3
an A3 near Q}
= {(G’B:Y!GJE:C) 't T = r = 46§ = 01}
SAB(FO) = {(o,B8,v,8,¢&,8) « F (x,y,0,B,v,2,2) =
an A, near ol
= {(0,B,Y,8,£,8) : §=1¢70 =46 = 0}
S?(I(GO) = {(G:B:'Ys&sga‘:) g GO(X,Y,Q’B:YNE:C) =
singularity type ¥ near 0}
S’(’(FO) = -{(Q:B:Y:G:‘E’:C) : FQ(X,Y,O}.,B,'Y,E,,'C) =

singularity type % near 0}

(%)

-§ has

-8 has

=& has

-8 has
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Define 0@: (v L xU, 0) > (Vx Cxu, 0)

(U'SB,Y’G,E’C) -+ (a!B’Y’G-i-c(u’B’Y,E’!C)

p21(u353Y55’ z), pzz(a:B,Y:E:;))'

(Note the different poesition of U, V,L from the general
argument. This is foi the ﬁurpose of keeping a,B,Y,ﬁ,f,;-in
the same order, i.e. the same space all through). The
Jacobian matrix. of & is inve?tible.n Hence & is a germ
of diffeomorphism.

We can easily see that the (a,B,y)-space goes to itself

(c,)

unﬁei: a@' and by (*) (o,B,y.6,£,C) € 5%

P D (a,B,7,8,8,0) = (a,B,v,8+c(a,B,7,8,8),
Ppp(@:Bs¥,2,0), py,(a,8,v,2,2)) € S (Fo)
But since Fo is independent of (a,B,y)-parameters

variables, we have SK(FO) regular over o,B,yYy-space. That

is, by (9~"1 one have § (Go) regular over (a,B,y)-space.

7,
Hence the stratum Z(%) is regular over E(A3), where 4 can
. 2
in fact be Al, Al or AZ'

As for the case when there are several singularities
on the normal form, we have to apply the theory to each
of the singularities separately. The regularity follows

from the following 1emma:

Lemma 6.3.4. Let Yl, Y2, Xl‘and .8 be sub-manifolds of a

euclidean spacé BN.
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Suppose Y is regular over X

Yy is regular over X, and Y, f Y, and Xl;ﬁ X,

Then‘Y1 N Y2 is regular over Xl f XZ'

Proof. Suppose Yy is regular over X, and Y, is regular

over X,. Also Y, % Y, and X1;$ X,
Let Yl N Y2 =Y, Xlrﬂ X, = X3 then by transversality, X and -
Y are submanifolds of the euclidean space.

Let y; € Y, X, € X be sequences such that
} where x » X

We prove regularity of Y over X at x,
X.7Y,

Suppose T Y =+ T and - L.
PP yi L =y

i ,I 1 71
We have to show & ~ T.

Surely, we have yi & Yl and yi & Y2

X, € Xl and ?i & X2

X.”y.
1 Yl

and has limit % in both cases.
B . :

y Y . [ R +* . i
Now. suppose Tyi 1 has limit Ty and TY-YZ has limit T,

(Existence of limit is guaranteed by the fact that Grassmannian

is compact, so at any rate a suitable subsequence of the

sequence will have a limit). We claim that

T 'Y = Ty,Yl N Ty.Y2

Vi 1 i
It is clear that T Y nrT Y,=2T Y,
y; 1 y; 2 Y
For T Y, NT Y, T Y, we have to use the dimension formula
y yi 2 'y

i i i
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for transversality in R% dim Y = dim ¥y ¢t dim ¥,-N. Also
N = dlm_(Ty,Yl + Ty.YZ) = dim (Ty_Yl) + dim (Ty.YZ) - dim
. 1 1 1 . 1
(T_ Y. A T_Y,).

vyl vy ?

Therefore we have dim (Tin) = dim (TinI'n Tin2)'
Hence Tin = Tinl N Tinz.
Also, we claim T = T 0N Ty

The inclusion T & T, AT is always true. But for the

2

other inclusion, we know T, Txxl, T, :LTXX2 by A-regularity.

Hente Tl 18 transverse to_r2 gince X1,$ X2. Hence

alm(rl Iy T2) = dlg Ty 4 dim T, - N
= dim Yl + dim Y2 - N
= dim Y = dim 1~
Hence 1 = Tl N Ty

By regularity given, we have
L e Ty and & ¢ Ty
S¢ that L a1 Q.E.D.

Example 6.3.5. This'example is to show a case where T + Ty N ty-

The diagram show a Whitney‘Umbrella.({ﬂgw C&F>

'/A-OVL&ULL | T":rz A Vlnrzsﬂ

7= € the deabl fo)

STATNDG




Remark-6.3.& With this lemma, the regularity over singularity

. type with more than one singularity can be proved in the
following way. . The same technique as in the single singularity
casé can be applied to each of the singularities separately.
Using the above lemma, a2ll we need then is the condition

that YI‘K Yz‘and X ﬁixz. We Will give the-gEneral argument

in Section 6.4,
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»

6.4. The application of the Uniqueness of Unfolding Technique

to the proof of regularity over strata with two

singularities or more

For illustrative purposes, we shall show the general
argument in the case of two singularitieé."The reguiarity
of those with more singularities can be deduced from the
same method. More detaills will be-given in Section 6.6.

Note that this method only applies to simple.isolated sin-
gularities. lence E; should be dealt with differently, dw
Chopter 8.

Consider a stratum ¥ wﬁich consists of curves with two
singularities of types oy and 0y The normal form I has these
singﬁlarities fixed say at thé verticeé'X-and Z-of the
triangle of reference., Suppose we have a.stratum I épe-
cializing to &, that is, for some point I, on'T obtained
by_giving fixed values to the modﬁli; suppose we have a sequence
of points in I' (that is, a sequence of curves in GPz'éll
giving points in i')'With limit T . These curves will have
singularities close to X and Z; let those close to X form a
type X, (which may be several singularities e.g. AIAIAZ if
g = Ag) and those close to Z form a type Xq .

We shall verify regularity of L' over I at LI The
proof will not require us to kpow what X and X2 are, nor

1

which point I, of T has been chosen. ©So we are in fact

verifying regularity of X' over the whole stratum I for any'
L' specializing to I.

We shall as usual work in a transversal:T to f, and
verify regularity of J N Z' over JNE =T at Iy An,exﬁlicit

example is given in Section 6.5 to help the reader follow
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the argument.

Letting x = 1 in > it becomes a representative of
tﬁe germ gl(Nl’O) -+ ({,0) of singularity Oq - Similarly,
putting z =1, FO becomes a representative of fhé germ
gz(N,O) + (L,0) of singularity o2.

The transversal Gr of T at T, taken locally at X by
letting x = 1, (see p. 18 ) becomes a versal unfolding Gy

of o, and taken locally at Z by putting z = 1, becomes a

1
versal unfolding G, of g, (see p./If). Also, follow ing

Section 6.3.3, we can define other versal unfoldings F, and
!
F2 for o and 0, respectively. And furthermore, we can

write the versal unfoldings as follows:

For o5, Gy ¢+ (Nx U xUyxMxUW,, 0+ ((,0)

Fy ¢ (N x U x U, x M x Wy, 0) » ((,0)

where N is a meighbourhood of (0,0) in 4?2 (coordinates y,z).

Ui is the universal unfolding parameter space for Gq
U2 is the universal unfolding parameter space for 02§
W2 is the constant parameterhcorresponding to the

unfolding of T i.e. corresponding to the term in YA.
M is the parameter space of the moduli of the normal form,
Let v, = U, x M x W,, this is the V-space for 0, as in Section

1

It is chosen to be a standard universal unfolding of 01;

6.3.  And ¥, is independent of the UZ x M x W, parameters.

For Gg, We have

Gy % (N x U, x U, x M x W, 0) + f,0

1 2
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Fy * (N x Ul X U2 x.M x W

2 0 > (G0

where N, U U, and M are defined as for Ul,lﬁhd Wi is the
constant parameter corresponding to the unfolding of Oy i.e.,
corresponding to the terﬁ in x4. Let V, = U1 x M x W,, this
is the V-space for o, as in Section 6.3.3. F, is independent
of the Uy % M x Wl parameters. It is.the standard universal
unfolding of Ty |

By properties of transversals (p.[lf), there exist small
enough néighbourhoods 91 and ?2 of Q'in (U1 ® U2 x M x Wl X WZ)

respectively such that

Scl(Gl) = {(ul, Ug, M, Wi, “’2)- vuy o= W1_= 0} S

(recall that this means the function Gl(—, Uy, u,, m, wz) + w4

has-cl near (0,0)4$,ui = ﬁl = 0).
Sol(Fl) = {(ul, Uy, My Wy, W, Y uy ='w1 = 0}
and SUZ(GZ) = {(uy, u,, m, Wy, Wo) U, =W, = 0}
soz(sz = {(uys uys my vy, Wy) fuy =, = 0)
Define S9°1(G1) = {(u), uy, m, Wy, W) € gh 2 Gl(ul,uz,m,wz)(x)+wl

has a singularity type xT near 0}.

(i.e. the function Gl(—;ul,u ,m,wz) + w. has *& near 0).

2 1




S (F.) = {(u,, u,, m, wo, wW,) & ? 4 F (x) +w,
’xl 1 1 2 | 2 1 1 l(ul,uz,m,wz) 1

has a singularity type %1 near 0},

and S,;Z(Gz) = Wy, vy, m, wys wyd g ?2 "G2(u1,u2,m,wl)_(x)+wz
has a.singularity type %2 near. 0}.

S*Z(Fz) = ?(ul, Uy, M, Wy, Wz) & ?2 iFZ(u Wl)(X)+W2

l,u29m!

has a singularity type %2 near 0}.

Then by the isomorphism between the versal ﬁnfoldings and

argument omn p.iég, we have

Gl(X: ul’ uz: m, Wz) = Fl(wl(x’ ul’ uzs m, Wz):

. P(uli uz: m, WZ)’ u2: m, W2)

+

Cl(ul, uzs m, W2)

(recall that the wvariables (u2, m, W2) appear as just v on

p.tbb)

and G2(x, Uy, Uy, m,'wl) = Fz(yz(x, ups u,, m, wi)

dl! p'(ul’ 'l].2, m: Wl), ul) m’ Wl) + Cz(ul, uz, m, Wl)

(recall that the variables (ul, m,'wl) appear as just v on

p.16b)

where (;)'31(0,0,0,0) = identity and 1f2(0,0’0,0) = identity
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»

(ii) ¢ (U, x U, x ¥ x W, ; 0)=(C, 0)

¢, = (U, x Uy x ¥ x W, 0)>(C, 0)

Then by Lemma 6.3.1, we have diffeomorphisms j@l and ng

9‘:(U,KU2XMXW,XW2,/ O)-—) (UJXUAIMKWIXWL/O)
(u'). o, m ;o Wiy w?‘) — (F(u’z Uy, M, wi’)} Uy, M,
W, + ¢ (U, 7’(12/ m, wz”z) ; 502)

[

and

('Ul:.} W, , 7YL w,, uoz) '_'—}( ’Hfg’e f(u:,?iz,“m w)

m, 0, , W2+t Cz(%,ﬂzm:wz)>

having the property that

(S, @) = B (Se,(RY)

and ) ( Sy, (é&)> ; D, ( Sy, (Fz))

{that 15,;91 and é}z preserve strata).

Then by Corollary 6.3.2.; we have the regularity of

(6¢.) over S8 (G U, x M x W

S ) space
ﬁq 1 oy 1 2 2

gnd- Sﬂb(cz) over SU (G2) U, x M x W, space,

2
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Now to prove the regularity of § (G Yy N s (Gz) over
% Xy

Sgl(Gl) N Scz(GZ)’ we need the transversallty S l(Gl)?ﬁ—s

and Sul(Gl) A SUZ(GZ) in the space U; x Uy x M x W, x W,
by Lemma 6.,3.3 But

Scl(Gl) N SGZ(GZ) =U, x M x W, N W) xMx W =M
since the variables in the 5 spaces Ul’ U2, Wl, Wz, M are
all different,
Then,-the transversality S0 (G ) ﬁiS (G ) is obv1ous
Therefore, all we need is S (G )] m S
Let us now try to find the tangent vector to ax (Fl):

1

Consider the restriction

e ) > s

1 o, F1 %1((;

1’
%wl(Fl) is a product over U, x M x W,, that is,
(uy,uy,m,wy,wy) € 8, (Fy) = (ug,u),m',w,,wi) ¢ S (F,)
1°%2 1°¥2 % oL 1°%2 1 XL
provided all points are close to O,

Consider the curves given parametrically by

(ul{.uz + teis m, Wls Wz)’ i=1,2 ---;.dim UZ

(ul, u,, m + tej, LD wz), i 1,2 cery dim M

and (ﬁl, Uy, M, Wy oy h&-+t )

where e, stands for a unit vector with 1 in the ith place

GZ)
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and 0 elsewhere, These curves lie in SW (Fl) for small |t]
1 .
provided (ul,uz,m,wl,wz) £ Swl(FI) (by product structure

ok Sy:(Fl))' The tangent vectors to these curves at
1

(ul,uz,m,wl,wz) are

cumuLim g:;uf&ﬂ . cotidonstes ' ~
| L, (%%
Co -~ o, O---- 0, 24 , ©, 0 )
(o----n 0, ©---+ 0,0----0, 0, l)
L=t z/.Q. duliz ) ? =1, 2, duia M

Then the images of these tangent vectors of § (Fl) under
. _ 1 -
the Jacobian of g}ll are just tangent vectors of §- (G

)
| ) %, 01
at i} (u, ,u,,m,w, ,w,). We want to verify that these
1 1°72 1°72
dim U, + dim M+l tangent vectors are linearly independent.

Now the Jacobian matrix of é}l at (ul,uz,m,wl,wz) is

2L 28 o e

RAY SUy am QNZ,
o T 0 -0 0
o (oY L O ©
¢ e [ 2
du, T ym a W2
0 0 0 © !

and the inverse of this is
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dp o - =
(Ga) -(EGL) -() () o

0 T J 0

o 0 | T o] 0

o (ii,)(%&)“ B BT 1 G
0 0 |

\"

Hence the tangent vectors (**) under the inverse become

e, 0, [(%%)(%5)’5)‘52) %%;ﬂ“; 02
. _ dkaiuz'"

¢
L{
—I
Ua é% /
" \ ANy 3Ly _pe 0
’SE am ‘:T/ A K"“’)(M (am (;"‘) X o

( (26
b
Wy, tz)
( ;('“f,-uz,
o wywnwg
_ and . N
(), oo et ),
| . | | m,w”w;_)

respectively.

On p.jt§ in Section 6.3. , we have proved

B, C(R), o
0

i —r—
Q2

That is, in our case now, we have
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35), = (35, - Gh), - (32), *89), 24), -0

— — —

Therefore at (ul,uz,m,w15w2) = 0, thgse tangent vectors

of S, (G.) becomes
.»x,l 1

(o, 0, 2,00, o, o)
(o ----- © ,0--0 JBJ‘, , 9. 0)
and ( o---- 0, 00, o, Q’ t) respectively,

hence are clearly linearly indeﬁendent. Therefore for
small—(ul,uz,m,wl,wz) the images of the wvectors under
the Jacobian of &}Il will remain linearly independent.'
Similarly, we have the same result for(ga. ihat is,
we can find tangent #ectorsrfor S%;(Gz) in the same way.
The résulting tangeﬁt vectors Withz(ﬁl,uz,m,wl;wz)_= 0

would be

( X’k 7 O——-‘O/ 0.---0 /O_) O)
Cetrditales toeduioles coetdeinales ! 2
(o-- CE ©, ’E‘J: , © /O)

b=, 2, i Un, fzi, 2, hiaM

?

which again will be clearly linearly independent,

2o~
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Now let us look at the following table of tangent vectors at 0

T Sy, (&) Up . Uz M W W,
iy, | OO pLE ° °)
izt . : : .
B e ° °)
i ( 0 C 2 o % )
T-é::UZ - G M %
| (o 0 2 ° °)

£ O \* > o )
b=i,2,- dinl :
. 0 @]
( ik 0 © )
<' o O Ql 0 0 >
s _ . AJ.;M ’
a,h) :

Clearly, they span the whole of the Space'Ul x Uy x M x

W, x WZ’ and hence the taﬁgent space, Therefore for small.

1

(u;,u,,m,w. ,w,) these ﬁectors still span the tangemnt space
1072 1’72 P & P

to the amibient space U, x U, x M x W, x W thereby establi-

1 i

shing the transversality of the intersection. Hence provided

2’
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. we restrict ourselves to a suitably small neighbourhood of

0 the two strata 5. (G,) and S, (G.) intersect transversally.

= X, 1 x, 2 y

Therefore by Lemma 6.3f, S, (6,;) 0 S_ (G,) is regular over
"‘1' 1 b 4 2

2

the U; x M x W, N Uy x M x W, = M space, that is the normal

form.
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6.5 Example

In order to gain a more explicit vérsion of the general
argument in Section 6.4, here we give an 3xaméle of proving
regularity over a stratum with two singularities in full
details., It is advisable to study this together wiﬁh the
general argument,

Let I be the AyA, stratum. The normal form T is

3

y + x"z° + xy3 + uxyzz where o # %2

in which A2 is at X and A3 at Z.

The transversal :7 of T at I, is

:7'= y +.x z + xy + qoxyzz + axyzz

+ px + Yx3y + 624 + Eyz3 + ;yzzz
At X (putting x =1 in Jf)

G]_(Y9Z=GQY)6SE:C)

4 2 2

- . 2
=y + =z + y3-+ qoyzz + lo:yzz + yy + 6z4 + 5?23 + Ly z
is a versal unfolding of A2, where in the notation of
Section 6.4
(y,z)-space is the N-gpace’

(a)-space is the M-space

(vy)-space is the U -space



Note that

Similarly

where now

N—-space

- 188 -

(§)=-space is the W,-space

(5:5)-sbace is the U,~space

we have omitted the constant B for versal unfolding.

at Z (putting z =1 in :7), we have
Go(x,y,0,B,v,%,0)

+ x2 + x3y + aoxyz + axyz + BX4 + YX3Y tey + Yz
in the notation of Seéfion 6.4 (x,y)-space is the
(a)?space is the M-space

(B)-space is therﬁi-space

(y)-space is the U;-space

(£,t)-space is the Urspace

The constant 8§ has been omitted.

Then by properties of transversal (p.11§), there exist

neighbourhoods gl and'%2 of O (asB,ys8,t,Z)-space resbectively

such that

if (asB;Y:S,E:C)-éﬁ]

Gy (=ya,7,8,%,2) has A, 0 iff y = 0

(énd the 4, is necessarily at (0,0))

and if (a¢,B,v,%2,L) €& ’gz , then
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Gz(“,&,B,Y,E,C) has A3 near 0 iff % = T =0

(A3 necessa;ily at {0,0)).

Then we define versal unfoldings Fy and F, for A2 and A3

respectively,

. _2 _ |
Fily,2z,0,7,8,%12) = Y4 + z o+ Y3 + aoyzz + yy - standard

universal unfolding of A, and independent of %, ¢, o, 8,
' r

_ 2 ‘
Fo(xs5,0,8,Y,%,8) = s o+ x® woxy s aoxyz +ey + oy’ -

standard
univergal unfolding of A3 which is independent of Yso, B,
Then by isomofphism of versal unfoldings and argument in

Section 6.3..; we have .
a3, 40,853 = F(Y (43,51, 45%), o, P Y52,
d, 3) tp+ a(x, 1,4, ¢ ‘5)-

/

‘and | 6’2(4‘13/ "{f/gf r/ €, \-5) =Fl (DDZ ('X.j,- x’F/ ¥, ¢, 3), %, F/ 4
f”(o(,fg,zr, £%) ,- f”(oc,fs, I, s, ‘5))_

+ & + Cz(o(,ﬁ, 5£,%)
Let %, and X, be as defined in Section 6.4,

Then,-by Lemma 6.3.1,, there exists diffeomorphism Jg

1
and 292
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(d’ F’ X) 51213) j—{-‘; (0{/ ﬁ'f.cf(d/ X’ J/E’ 3)//)(0(/3'/‘51613)/

£,€,3)

(<, 8,7, 8, ¢, s) J@f—»(«,f, Y, 5+cz(x,ﬁ,2f,s, ),

I‘ f’(d,F, ¥,¢,3%), f"(ex,F, Y, ¢ 3)) ,

81

1 t}bl

such thaf s . (G.) (Fl))

and s, (¢ = B, (F,))

%

Then by Corollary 6.3,2, we have the regularity of

s . (G.) over the (a,8,€,Z)-space
“#1 X '
and | : QXQ(GZ) over the (a,B,y)-space-
provided o,B,y,8,8,C are small enough. It is obvious that

(a,6,2,2)-space intersects (o,B,y)~-space transversely imn the
o~space of moduli. Then, if we can show that ﬁx'(Gl),and
1

(Gz) intersect transversally it will follow from Lemma 6.3,1,

%xh

that qu(Gl) N sz

the required result. ' -

(Gz) is regular .over o-space, which is

The following is how we find the tangent vectors of

S (G15 and S5, (G It now follows from the‘general argument

).
v Ky 2 | .
that this transversality holds however there follows an

alternative version of the argument in which we work explicitly:

with diffeomorphisms 9 and 59_1. Let us concentrate only
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on 291 at the moment. Suppose we write

G:( B, ¥, 4,8 3) > (a, b, £, 4, e 4)
M oW U W, T

where
a = o
b= g + cl(a,Y,G,i,E)
¢ = c (a,y,ﬁ,g,cj (write this imstead of p(a,y;G,Q,g))
d = & |
e = %
f =1z

. . -1 '
Consider the inverse map £§1 = (a,b,c,d,e,f) > (a,B,y,0,£,8)

Now by taking the identity map ( SL ég_ » we have

_0 Y a3 3k 3ol -
O-——-'——-——-—- PR T SN X O
3ﬁ 24 {3+ Eye ap +al S/T;I"%

Hence y 1is independent of b.

So we can write ,9’11 as

o = &a
g = b"Cl(a, Y.(a,C,d,e,f) d,e, f)

B(a,b,c,d,e,f)

Yy = y(a,c,d,e,f) -
§ = d
¢ = e
r = f

For any (a,b,c,d,e,f) & SXJ(Fl)’ the curve (a+t,b,c,d,e,f)
L. )
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(|t] small) lies in S (Fl). The image of this curve under

%4

S-]-_l is (a+t, B(a+t,b,c,d,e,f), y(a+t,c,d,e,f) d,e,f)

and the tangent vector to this curve at t = 0 is
38 oy
(]-’ _a";’ '3—1: 0, 0, 0)

Writing %% as Ba this shows that

(L, B_, v

W0 Ygr 05 0, 0)

is a tangent vector to S, (G ).’ Similarly we find
0, B4 Y4 1,0 0, 0)
(0, Bes Yo 05 1L, 0)
(0, Bges vg» 0, 0, 1)

are tangent vectors to le(Gl) atcgui(a,b,c,d,é,f).where
1 _ .
the partial derivatives are -~ evaluated at (a,b,c,d,e,f) E'Sxi(Fl).
1
In the G2, F2 situation we find similar results.

92 : (CI,B,Y,&,E,C) > (a,b,c;d,g,f)

where
a=a
b = B
c =y
d =68 + cpla,B,yY,E,8)

Ty



» _193.—_

= e(a,B,v,%,5) (writing this for p'(o,B,v,2,2))

i
I

H
I

£(a,B,v,€,2) (writing this for p"(o,B,v,€,z))

By considering the inverse map ,8';1 and the identity

(,@2. ,,@ ;1) we have

= 98 - 2% da ... ;e ) >

0_ 37T Ja T+ +T'T = 34
and _ 3% . 3% da 3% ) 9%
0= 22 = 23,28 22 . 2%
3§ & 3 YRy o d

Hence both % and ¢ are independent of d,

. -1
. Then we can write ;92 as

a = a
B. = Db
Y = ¢

§ =d - Cz(asb,c: i(a,b,c,e,f), c(a,b,c,e,f))
= §(a,b,c,d,e,f)
¢ = g(a,b,c,e,f)

tr = r(a,b,c,e,f)

Hence we can obtain as before wvectors
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as tangent vector to S” (GZ) at £);1(a,b,c,d,e,f) where the
2

partial derivatives are evaluated at (a,b,c,d,e,f) & Sx (Fz)
. . 2
We now claim that the seven vectors we have obtained

span the ambient space {°, provided a,b,c,d,e,f are suffi-

ciently small.

: o)
Consider now the Jacobian matrix of £;l and 1ts inverse é%

g, | - B,

{ o o o 0 o | | [ 0 © 000

by 1 Ay by Ay by fa 1 Pe Po Po f4

Ca 0 Ly £g Ly Ly Ya o Yo ¥a ¥, ¥4

0 0 's] f e 0 0 o O [ o 0

0 0 ¢ o [ © c o o |} 0

¢ o o o o | o o o o |

-
0@|°091 = Ie
- ! 0 o O o) 0

prﬁ'ﬂfd ﬁd*&(“@ﬂ/d éféf%"ﬁ }F@fé?
Lt Ayla 0 LY. Gt he Vs Fothyly Coekel

0 Co o | o 0
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Hence (}'D(.,.Fa.f.‘ﬁ}ﬁ.‘.o : | ’Co(-{' Crr&:o
ﬂﬁ4-4ykz =0 % A
ﬁdgfbg+fyﬁi:0 ard LJf-ﬁg%(:o
ﬁ£-+é€+é7fh=o' © Lg + Lyl =0
ﬁé+é5+@%ﬁ0 &;}ﬁ1ﬁ=o

From these equations and the fact that cY_# 0 when at 0

(see p.{kT7), we can show that

b, = b, = b, = b, = b, =0 (all evaluated at Q)
and : ,£¢ e T cé = e = 0 "
Hence Ba = Bd = ?e = Bf = 0 | n

Y, =7Yd =Y, T ¥ =0 "

Similarly for Gy, F, case, we have

g, =&y =Ly =0

Hence at 0, all the partial derivatives in the vectors are
zero, Then it is obviously that these seven vectors span
@6 at 0. It follows that, provided (a,b,c,d,e,f) is suffi-

ciently close to 0, the partial derivatives will also be so
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small that the seven vectors still span 4:6. Hence for

small enough a,b,c,d,e,f, 5 (Gl) and § (Gz) intersect

%1 %,

transversely.
bo.s.
Note that in the case when there are more than two sin-
gularities, we have more to check than just transversality,

between the S_,(G.)'s where i = 1, ve.. n, n > 2, TLet us
T

now introduce the notion of general position.

Def. 6.6.1. Smooth sub-manifolds Xl, e Xn of a.smooth
manifold Z are in general position when the natural map
TXZ—+ @sz/Txxi is surjective for each point x in the
i ‘
intersection [} X,.
Py 1.

This is the generalized transversality in the case when
n > 2. In the case when n = 2, this says simply that Xis X,
intersect transversally in Z.- We can show this easily.
Let us have the surjectivity of the mép

Ta: Z — T')C Z @ T?( Z
TaX T«_Xz

P> (3+ X, -7§+7%X2)

?éfo Z That is, given ("Z-!-T“X,/ 3'17;)(2 67—5“297-9(2
there exists ? Such. Hat : I T'?‘XJ' Ta Xz

F-me TxXi T-3 e Tx X,

For transversality, we have to show

T Xo + Tx X, = Ta Z fnmd» xeXinkX,
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Now for every 0 & sz’ let n = &, t = -8, then by surjectivity

there exists ‘?e sz such that
7—7{ =‘—d, é’rx/\,’

T-% =4 ¢ Taky

Therefore

o -U = (5'71)—(}—}) ‘

= %K
~28

]|

Hence . 6 = —ial + %uz as required,.
‘The converse of this is also true. The transversality
also implies the surject:l';vity of the map 7;(2 -3 Tx Z_ @ Tx Z
- | o HXi - Tak

Assume Txxl + TxX2 = sz’ then glvgn n agd_c e.TxZ we can

write

no=ny + Moy where U [ Txxl, up & TXKZ.

r = Cl + CZ where Cl & Txxl, ;2 & TXX2

Then choosing 3 = N, + El’ we haVE‘g'— n € Txxl and33-§ eTxXZ_

as required.
With this generalized notion of transversality we have

a similar lemma to Lemma 6.3.4u

Lemma 6.6.2, Let ¥ .,Yn and Xl""’xn be submanifolds of a

120"

smooth manifold Z, where n 2 2. Suppose

Yi is regular over Xi
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and Y .,Yn and Xl,...,Xn are both in general positions.

L1
Then Ylf\ -« N Y is regular over Xlﬂ coe AKX

The proof is similar to that of Lemma 6.3.4.

Hence, the extra condition we need to check for regu-
larity in the case when there are more than two singularities

is the surjectivity of the map "Exz — @ TxZ for every
. i TeXi
poilnt x & ﬂXl and the map T‘j‘[_ > @ 1Y % for each y ¢ |} Yi.
v Ty I

The way we check this surjectivity is by comsidering

the tangent vectors we found for each S5 (Gi) in the general

x
argﬁment (see p.fm;). .As for %ﬁ (Gi)‘s, the general position
o
is obvious. We shall now look at the case when n=3. Then

similar as in p./f6 , we have a table of tangent vectqré'at
g(:l"é Hus Claim o genoal TM% 5 Mue at o Ot ikt alye G Tane
ithi Small neighberhood of 0 ) | f

| U U U M Wy Wy o Wy
73‘&&(&0 o i £ o) o -0 ‘ O -]
o s 0 .
° o 24 ¢ ° °
L o
0 o 1 © © ©
. ! o o
S 0 o & °
N ©
o 0 o 24 o ©
. 0
0 o ) o o !
. 0 o o o o |
| Tj Spc(&z) 2y o o o ° e ©
' £f o 0 o ° e °




(3] o ¢ £ 0 o o
0 o ) QE§ o 8 o
[} ° o ,;o H (4] o
I 0 o c o0 o {
Tg gx(&;) 2y | 0~ o b o &) O
é’g o 0 o © 0 o
) Ly ° 7] 0 o 0
Y ,Q,L 0 o 0 0 0
b 0 (] L 0 o )
o o o) ﬂf;’. 0 e ,,_D
0 0 o :0 ! . e
o o o o 4 I ©

Now given

[ ;ri_z_ @ T?Z @ T‘j[z
78 S“ (é@ Ty Sk ((Tz) Tg Se(4s)

where 3!}32)?367-#2 :U’XUZXU3XMXWlX,W2xW3-

We want to find g ¢ U‘l‘KL’Q_X U3 x M XW,'X[_A-&XW?.»

such That | E" gl 6 T'a/ S“CCTQ ,
| 5-%, e Ty Sk )
3 _..}3 € 'Tcur Sx “@)



Now let

.3l = ((b_('/ Uz, U , M, W, W2, “"5)
= ( 0, ul, Uz, m, o , W, ("J_;)'i'(‘uf/ ©, 0,0, LU,IOI O)
bk (Oz U, W ,m, o, w),b\)_;) € -EjS/)CCéﬁ>
M\de(fu;,o, °o,0, W, o, o)xe T%S“C&L)A'Tj.f;e(érg)

\Leﬂ/ o
S wj M_gz :(M’,rﬂf-}/'u; ’ 'YYL’, U'Jf’) wz!, U-{a’)

11

/. ’ ' / ’
('u”o , Uz, m',w', o, w;)+(o, Uy 00,0, w),{)

‘ &
¢ Tydu () TSk TySe @)

174 L L
=(M';u2/191fm$‘”ﬁ‘Mf/ws

= ul'"; M-’-" ©, M',I W'r.f} .Wz" / 0) :.‘!—.CO, 0, rM;’/ O/ S, e, UJ;)
€ Ty Sk (G3) | - € TySx(e)n TySwlt)

Let us choose

—},:C’ul/ 'L(:{, 7’(3”) m, oy, W;/ L\J}") € Ty z

Then, we have 'g - %i & —Tg S% Cé'l)

f T-3, ¢ TysSu (&)

5% ¢ sk (&) o aquba

Hence S%(Gl)’ SK;GZ) and S¢}G3) a?e ;n general position at

0. Hence it is true also for small neighbourhood of 0 in

Uy x U2 x.U3 X M x W, x W, x W3), and by Lemma 6.6w2,

regularity of

S%(Gl) n S%(Gz)f] Sﬁ(G3) over

Sﬁo(Gl) N s.%o(cz) N S%(GB) is establ:'__s"ned.
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CHAPTER 7

DESPECIALTZATION

7.1 Local Despecialization

In Section 6.4, p.]7,, we encountered the following
situation: Consider a stratum I which consists of curves
with two singularities of types-dl and 0y The normal form
T has these singularities fiexedrsay at vertices X and Z of
the triangle of reference. Suppose we have a stratum L'
specializing to X, that is, for some point FO on I' obtained
by giving fixed values to the moduli, and suppose we have a
sequence of points in I' (that is, a sequence of curves in
¢P2 all giving points in ') with limit To. These curves
will have singularities close to X an& Z; let those close
to X form a type X1 fwhich may be composed of several sin-
gularities e.g. AlAlAZ if g, = A6) and those close to Z form
a type X, (similarly Xo may be of thé type which has more
than one singularities).

It is in this Chapter that we discuss the problem of
evactly what stratum I' will specialize to Z, that is, what
stratum &' caﬁ have a sequence of curves with limit Fé.

We start off by looking at what type of singularity X1
can occur close to X(Ul) and sim?larly what type x, can occur
close to Z(Gz). That is, we want tolloék at how a singularity
o can despecialize (break up) localiy. We c¢laim, for this, .
it 1s enough to look at tﬂe universal unfolding of the sin-
gularity o with the Enfolding parameters being sufficiently

small,

Toe prove the claim, we look at gingularity f where



with F(x,0) = f(x).
We can regard F as an unfolding of f and induce it from

the universal unfolding G of f, where

with ¢{(x,u) = (¢l(x,u), d(u)) where ¢l(x,0) = x and ¢ : ¢k+d§,

and also a germ

¢ @k,@ +~ C,0

such that F{x,u) G(p{(x,u)) + c(u).

Hence F (x)-c(u) = Gé(u)(¢1(x,u)) = G@(u)(¢l,u(x))

Since ¢1 o = identity; ¢l 4 will be, for small u, a nonsingular
F 3
change of coordinates, depending on u. Now SX(F) =

{(u,v)e @kX¢l i F(-,u)+v has singularities of type x near 0}.

SX(G) f'{(ﬁ,v) EQTXG : G{=,w)+v has singularities of type x
near 0}.

(The dashes indicates that this is the variables).

Then {(u,v) ¢ SX(F)¢¢ G(¢l(x,u), #{u)) + c(u)+v has singularity

of type x mear 0 & (¢(u), é(u)+v) € SX(G)
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Hence (u,v) =» (2(u), c(u)+v)-is a smooth map taking SX(F) te
SX(G) and taking O to 0. Hence every type of singularity
occurring arbitrarily close to O in any analytic family F
also occurs arbitrarily close to 0 in the particular family
G. So it is enough to look at only the universal unfoldings.
Let us now look at two examples using elementary methods
(the genefal result is most conveniently obtained by using

Dynkin diagram, see later p.2/#).
Example 7.1.1 ©Local despecialization of A3

Let us use the standard formularand the universal unfolding

for A3. That is

F=x * %24 + q + Bz + %Yz

The conditions for singular points are

F =0, Fx = 2x = 0 and F_ = 23 + B + yz =0
That is, lz + o + Bz + lez =0
4 2
x =0
3 _ ]
and . z”7 + yz + B =0

BZF 2 232F BZF 2
Xz +

sz (0,z1) 9xdz (O,zl) 322 (0’21)
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1 4 ‘

— 1 2 o] 2 2 l 3 —— - =y
= 2(2x + (le+Y)z Yo+ 6(6212 )y o+ 5 6z +
2 1 2 2 3 1 4
= —_ +
X+ 2(32l +y)z~ o+ Z,2° * 4Z

Therefore, we have a node iff 3Zi.+ ¥y # 0

a cusp iff 323 + ¥

Il
o
[\

—
~4
o

Now let us consider the roots of the quartic

1 4 1 2
ZZ + g + Rz + EYZ = 0

The absence of the term z3 ensures that there is norquadruphv

root. For a double root, it must have a root z, common with

its derivative, which is the cubic

But then this is just the condition for a singularity of F.
Hence, for general B, y as long as 3zi + vy # 0, the singu-
larity is a node. That is, in short, double root of F = Al.
For a triple root, the quartic must have a root z, common
not . only with its first, but also the second-derivative which
322+'\{=0. |
But, then £his is exactly the c0nditibn for the sgingularity
being a cusp. Hence, triple root of T = A, .

Since a quartic canlhave at most two double roots oy
ohe triple root, the possibilities of local despecialization

are as in the following diagram Ag ‘ A,
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Note that the above technique can be applied to all Ak

singularities. For example with A_, we will have a sextic

5
equation ‘and again

double root of the eguation = Al

triple root of the equationr% A2

4 ple root of the equation = Aq

5 ple root of the equation =» A4
The absence of the.term z5 would ensure Fhat there is no 6 ple

root. Then, by considering the possible roots for a sextic,

we can deduce the following local despecializations easily.

Example 7.1.2 ZLocal Despecialization of D,
Taking .the standard formula for D, and its universal

wnfolding, we bave
F = %x + %23 + o + Bx + vz + 6x=z

The conditions for singular points are

F=0','Fx=x + 8 + 8z =0
F, = z2 + y + 6x = 0
Of course, by choosing B =y =46 =0, o # 0, we can

ensure that F has no singularities at all. Let us next



consider the case when 6 = 0, B, y # 0. By F_ and F; we

X

have

We can see there are actually up to four possible singularities.,
If (b,c) is one singularity, the other possibilities are

(-b,c), (b,-c), (-b,-c) where

Let us consider

(i) (b,c) is a singularity iff F(b,c) = 0 iff a = %(b3+c3).
(ii) (-b,-c) is also a singularity together with (b,c) iff we
can replace b lvr -b aﬁdrc by -¢ in the equation
= %(b3+c3) and get the same o iff o = 0,
(iii) (b,=-c) is alsoua singularity tegether with (b,c) we can
replace ¢ by -¢ in fhis equation and get the same o
iff e = 0 i.e. ¥ = 0 and « =‘%b3.
(iv) (—b,c).is also a singularity together with (b,c, 1ff
we can replace b by -b in the equation and get same a
22

iff b =0 1i.e. B = 0 and o = Ec .

(i) E 4 0, v # O, ¢« # 0, then (b,C) is

(ii)

Hence, in case

the only singularity. If B # 0, v # O, @ = 0, then (b,c)

and (-b,-c¢) are the only singularitiés.“(lll)lf B #0, vy =0,

o # 0, then (b,0) ig the only singularity. (lv)lf g = 0,
Yy # 0, o # 0, then (0,c) is the only singularity.
In case (ii) we have two singularities and by symmetry

they must be of the same kind, so it is enough to expand F

about one of them to sece what type of singularity it is.
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Now let us expand F about (b,e).

F(xtb, z+c) = %(bez + 2cz%) +
Hence it is always a node when R, y # O, rTherefore we have
two nodes in case (ii) and one node in case (i). In case (iii)
and (iv), we have to expand F about (b,0) and (0,c), we can
easily see that it is always a node as well.

So taking § = 0, we can deduce

T%_ — Af

N\

Al

Now for the case when 8§ # 0, Wwe have by Fx

_ ox’-g )
é
Substituting this into F_, and F = 0, we have
2 2
(%) 1i.e,. X4 + 26X2 + GBX + Y62 + Bz = 0
and ‘ .
2 3 2 2 :
1 2 1,x°+8 Y, X +B % +B
kE) = 2¢E TR - X *tby =
()3x +3(5)+0t+8x (5) GX(G) 0

The Equation (**) determines « once X is given.
Now suppose (u,v) is a eritical point, on the curve.
Expand .F about (u,v)

%(2ux2+26xz+2v22) + %(2x3

Flu+x,v+z) +223)

+

.= ux2 + §xz + vz2 + %(x3+23)
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/

1f 62 # 4uv then the quadratic part is not a perfect
square and this is a node.
2

If 6" = 4 uv, then u and v must both be nonzero since

§ # 0, and the equation becomes

ul{x + g% z)2 + %(x3+z3)
Let x' = x + 5 2
2u
z!'! = 7.
- ot S - o
then x = X' - =— 2z, z = 2
2u

Hence by substitution, and taking away the primes, we have

2 1 8 3 1 3
ux o+ g(x—iz )"+ §z
o i1, 8.3 1 : 3, 4.3
This }s a cusprprov1ded 3( 2u) * 3 # 0 i.e. 87 # 8u
3 3 .
If 87 = 8u”, then the leading terms becomes
2 § 2
ux” + —5 x2© o+ L.,
4du
which is a tacnode since & # O.
Thus the conditiomns for Aqgs A2, A3 are:
. 2
Al iff &7 # 4uv
A, iff 62 = 4uv and 63 # 8u3
F :
A3 iff 62 = 4uv and 63 = 8u3.
. e
Now given 8, vy, &, if u is a root of (*) and v = —g

then for the unique o determined by (**) we have a functiomn

with singularity at (u,v). The next task is5 to determine

what kind of singularity it will be and which kinds can occur

simultaneously.
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Now if u is a repeated root of (*), then

4u3 + 4Bu + 8§° = O inrst derivative)

and u4 + 28u2 + 53u + Y52 + 52 =D

From above, the condition for a cusp is just 62_= 4uv, which

2 .
is by v = —EE:E » the same as

bu + 4Bu + 85 = 0.
fence we have iepeated root of (*) implies a cusp. For

triple root we also have the condition 3u2 + B = 0 (second

derivétive).

* v 5 v - 38 8
And satisfying first derivative, we have 52 = 4uv so that
3

.. . 3 . . , .
eliminating v we get §° = 8u”, which is precisely the condi-
tion for a tacnode.

Hence, when § # 0, considering the roots of (%)

simple root u => node

a2y

double root u =>» cusp at (u.v) where v = 3

triple root u =5 tacnode

I

For Daé"'AZ’ we require F vanishes at a double root of
(#*). We can always choose a (when 6§ # 0) to ensure T vanishes.
So we just need (*) to have a double root when § # 0. No

doubt the discriminant of (%) can vanish when & # 0.

For D4 b~A3, we need (*) to have a triple root. Again
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this is possible., Of course (*) can not have a quadrupole
root since there is no x3_term, unless B = v = & = 0,
Note also that, since § # 0, we can make (%) into any
quartic equation with the x3 term absent (and the x term
present), by chooéing By v, 8. Hence all the above possibi~

lities certainly occur,

We now go on to determine which combinations of singu-

larities can occur. Now
1
F = §x3 + %23 + o + Bx + vz + §xz = 0
-%%-8
when z = ——=— at a singular point.

We also have

]
(o]

x + B + &z

It
<

z2 + v + &x

By substitution,

F = %’x(—B—ﬁz) + %z(—y—éx) + Bx + er+ §xz +
i _ =% -B
Using z2 = ——, we have
¥é = % BSx + %Y(—XZ—B) + %Sx(—xz-ﬁ) + od

This gives a cubic equation which must be satisfied by u for

any singular point (u,v). We are interested in how many
of the distinct roots of (#¥) can alsdo be roots of F = 0,
Rkx) 4 ’ 3 2 ' _ -

( Y i.e. §x~ + 2yx~ - B8x + (2By-3a8) =0

It is certainly clear that not all four can be. Hence we

4 .. .o .
can rule out Al. By examining the condition for (%} to be

of the form (linear factor) x (*#%%) we find that it 1is
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s

possible to have 3 nodes. In fact the simplest examﬁle of

this 1s B = vy = 0, in which case the 3 {(distinct) roots
shared by (*) and (%¥%%) are x = £8 where 53 = —-1. The wvalue
of a is —%63 and z = -526. Similarly it is pessible to

have 2 nodes. Hence we have D4é~ Ai and_D4é" Ai.

Hence, finally we can now write

/I

~A
A} Al Pf;a ‘Hl

Also, we need to show that, provided there is an A2
or worse in the despecialization, there cannot be any other
singularities.

Let (u,v) be the singular point on the curve. Let us

expand F about (u,v), we have
F(x+u, z+v) = ux2 + dxz + vz + %(x3+z3)

Suppose that this is a cusp or worse on the curve. Imposing

the condition 62 = 4uv, the equation becomes (as before)
2 1 & 3 1 3
ux~ + E(X Eﬁz) + §z

Denaote this by

F(x,¥y) = ux”™ + 3X] T yg Xz ot

We want to see whether we can have another singularity near

(0,0) for small u, v, 6§.
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~Consider

. o 2
af 2ux +‘x2 - Exz + 8 zz'z 0 (i)
90X u 2
du
2 3 .
9F _ 0§ .2 8% 87 2 .
52 = oy X F R EZ (——3 z" =0 (ii)
Zu 8u~ -

Multipljing (i) by g% and adding to. (ii), we have

2 3
SIS R S PR S

Zu _4u2 2u 8u

L5 §x + z7 =0
2
Hence X = g , since &6 # 0.

Hence any singularity besides the cusp must have x # 0, z # 0.

Substitute into (ii), we have

3
1 2 8 ) - e
768 2 5 2 (__3 1) =0 (iii)
2u 8u
Substitute x = i into f(x.y), we have
1 3 12 a 5 1,67 '
- 32" Z+('——2-" 2)2"5('—3—1)=0
38 2ud § 4u 8u
(iv)
(-3)x(iv) + (iii)
53 3 1 2 ~3u 36 §
-§+<-__"_'-_'_"—) +(2 + 2_ 2)Z=0
8 2u6 2ué 8 4u 2u
A
Z 1 -3u &
i.e, =5 + =%z + (—— + ) = 0 (v)
53 ud 62 4u2




L. (iii)+-§1€ X (v)

62
3 ‘
S I g G -0
67 Bu § 4u
This implies 8§ = 0, a contradiction.

‘Hemew, there can be no other singularities together with a
cusp or anything worse, henge rule out the cases Al 9
AfAZ, A; and A1A3.

The above are two examples in which we use elementary
calculation to find the despecializations and also for
shouing cases which are nof pussible. Note that the general
results of despecialization are shown in §7.2 and here we

shall give several lemmas which can help us to rule out

easily some cases which were so troublesome in the examples,

Lemma 7.1.3. The sum of the milnor numbers of the singula-
rities of the "upper stratum'" is always less than the milnor

number of the "lower stratum". That is

GABRIELOV (197%), Th.3

Eui < | ‘Ek£:§3mp@==#ﬂ1£ ]
For example, D4 O A

Lemmas 7.1.4, The number of singularities t in the "upper

stratum"” is less than or equal to the number

i(p + r - 1)

where p is the milnor number of the singularity of the "lower

stratum" and r is the number of branches of the singularity.
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That is,
t s-i(u + r - 1) [Teissier f?75- ] '
For example; for E6’ t(y +r - 1) = 3, |
hence E6 I Al, A
Note 7.1.,5., One other fact, in the global specialization,

it is obvious that reducible singularity type can never

specialize into irreducible ones.

§7.2 General Results

Now we proceed to the general result of Despecialization
of simple_singularities. This is shown in the paper bj
0.V. Lyashko [Lyashko!?Tﬁ ]. The arguments make use of the
Dykin Diagrams., A Dykin diagram of a singularity of milnor
number p is a connnected graph with p vertices numbered 1,
2, ..., U that corresponds to the vanishing cycles of a dis-
: |
tinguished basis (sée [Grabrielov 1973]). Two vertices are -
|
connected by k simple edges, if the intetsection index of i
the corresponding vanishing circles is equal to k (or minus k).
The Dykin diagrams of the simple singularities are shown as
follows i (2.2,

[

7.2.1, First we give a list of simple singularities which

actually occur on quartic curves:
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£

To the right of the dotted lines are singularities

“occurring only on reducible quartics.

7.2.2., With each singularity As Dy, Ek_we associate a

Dynkin Diagram

b
o>

4
L

:
|
-

\
k &’/’/ﬂ

l

% { ~ We quote a theoreﬁ ffom Lyashko [Lyashko HTQ ]. : ﬁ

=
Y

L]
o
-

~J
-
L

Theorem 7.2.3. A collection of singuiarities Ops Oy wve O
specialise -into a simple singularity ¢ 1ff there exist

vertices of the Dynkin Diagram for d such that removing 1
them and the edges coming from them, we are left with Dynkin

Diagrams for the singularities o o_.

Tphpoovas
12,72 > 'n
By this theorem, we can work out a list of despecializa-

tion for simple singularities.

7.2.4., Realizable local Despecializationsof Simple singula-

rities on quartic curves. , ' ?

b (mo aiaguandty)

AL <

A, < ¢
Ay
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whether say A4

I3

7.3 Global Despecialization: Isolated Singularities Case
Before we go into Global Despecialization, we like to:
give a clear meaning of specialization, If Cn is a sequence

of curves all in one stratum £' and if Cn + £ where C is in

a different stratum I, then we say that C is a specialization
of curves in %', This simply says that I /) cl(i') # ¢.

If we restrict our attention to the strata with isolated
singularities we can rule out many specializations by local
considerations (using general result’ﬁ»%}})For example 1f C
has type Ag, then it cannot be a liﬁit of curves of type A3

2

since the singularity A5 cannot break uprlocally into three

cusps (sep Section 7.2). Likewise if C has type A1A2A3 then

C cannot be a limit of curves of type Ai,

produce locally one node and A3 can only produce locally 2

since A, can only

nodes, making a maximum of 4. What is not so clear now is

can specialize to A A, A.: even though in theory

1 17273"

4 nodes can come from A1A2A3, can they all occur on the
same quartic curve? That is, can all the local despecializa-
tions be put together to form a globalrone?

We shall show in what follo%s‘that all specialization

not ruled out by local considerations do actually occur.

Theorem 7.3.1. Anj number of separate l?cal despecializations
of simple singularities can be realizgd simultaneously on
quartic curvesL

To illustrate the meaﬁing of the theorem, let us look

at the case of Despecialization of AZAB' We know that ¢,

a2 >4y locally at each singularity.

Al » A, and ¢, Aq, AZ‘ 1

2

Then we can deduce from the theorem that
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2 3 .
¢s Aj, Ay, AT, AJA, Al > AjAl

We must note that the arguments we use to prove Theorem
7.3.1 actually prove the stronger result that.whenever
2 N1 cl(E') # ¢, then T ecl(?), i.e. if one curve of type T
is a limit of curves of type I' then all are. Hence in the
above example the theorem actually implies that the A2A3
stratum is wholly contained in the closure of each of the 6
strata on the left.

In order to prove, for a particular pair of strata, that
I ©el(Z') it is clearly enoﬁgh to siiow that the ﬁgrmal form
I' for £ is contained in cl1(x'), that is for any curve of I
in the nérmal form we can find a I' curve arbitrarily close |
te it in the @}5 of all quartic curves. This is because

every curve of I . is projectively equivalent to one in the

normal form (fiven any = curve, C say, take a projective trans-

formation P so that PC is in the normal form. Given a

sequence C in @' tending to PC, we simply take P_lcn as a W

sequence tending to C). In fact, we show that I' « c1(2'Aa J )
where Uﬂis a transversal for I'. That is, we work entirely Y

in the transversal.

]
B | )
_ By properties of transversal (p./fg), each of the sin-
‘ gularities of I' is allocated with fhe‘appiopriate versai
unfolding terms and the terms corresponding to one singulérity
i will noﬁ correspond to another,
|
In the case of a "lower" stratum with only one singularity’

the specialization follows without difficulty from the local
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.
despecialization technique in Section 7.1. Or we can use
p

the general result in Section 7.2 to prove the specialization.
Note that in both cases the argument is independent of which
curve of % we start from so it really does prove & c cl(I').

But is this true in the case when the "lower" stratum has

two or more singularities? Here we meet with some difficulties.

Let us look at an example in Th¢ case of two singularities.

Example 7.3.2. Suppose the "lower" stratum ig 3 (AZAB)

Normal form T = x222 + xy3 + y4 + axyzz (A2 at X, AB at Z)

2 2 3
Z

The transversal 3(= X + xy”T o+ y4 + aoxyzz

+ uxyzz + BX4 + Yx3y + 624 + Eyz3 + Cyzzz

Now we want to see whether Z'(Ai) -+ Z(A2A3), that is, whether
for any neighbourhood U of 0 in (o, ...Z)-space, there exists
a point of U which is an Ai?

We know that given o,B,y J 6,¢,¢ arbitrarily cloce to 0

. 2 .

such that there is A] close to Z and given afs,z J6,v
arbitrarily close to 0 such that there is Al close to X,
But the §,t,r depend on B,y and B,y depend on §,%,z.

So it is not clear that we can always find points of U giving

Al near X and Ai near Z2.

This is the difficulty we meet with in all the cases
with the lower stratum having two or more sinéularities. To
avoid this difficulty we introduce a ﬁap'a,whiph serves the
purpose of fixing the "redundant" unfoiding parameters (v in
previous notation). We make use of the diffeomorphism é@

which was defined in Section 6.3.

é@: (U x VW, 0) »(U=xVx W, 0)
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'

(u, v, w) + (p(u,v) v, wtrc(u,v)) 7 ‘

It has the property of preserving strata, i.e.,

546) = B (Sp(F)

[

wy W Y W f
) 1 {
t % !
; s |
) I
| |
- o | v
Tiie "lines" v = constanl go to themselves underpg .
Let us have that projection
afu', v', w') = (u', 0, w')

Since we know that F (p.fé#) is independent of v, we can
change v and keep u,w constant in S%(F).

Hence
7(plu,v), v,w + c(u.v)) & 8, (F) .

that is, (plu,v), 0, w + c(u,vD & Sfo).

so &7 (otu,v), 0, W + clu,v)) €5 (0.

Now we introduce (1.
L*UuxvVvxwWw->1U=xHWw.

&Zﬂ'ﬂgnloﬁoag

whare ' (u,v,w) = (u,w).
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Then d has the property that

(5,v,9) & S, (&) & (u',0 w') € §,(0)
where (uf,w‘) = &(u,v,w) . al
This enables us to change the "redundant" unfolding parameters

v to 0 provided we make a certain change in the "universal" :

unfolding prameters u and the "constant" parameter w.

The Jacobian matrix of 2} at O is Eﬁg o o E
au i
o L o
2C
Since 3f - and 2t s o o { P
JUio vl i
_ ' o Y - !
The inverse of this lé (Ju} 6 o
0 I o
(% ey |
U w) o I Jo
So that the Jacobian of [z at 0 is I o o
|
© o | |

which has maximal rank, hence a,is a submersion, and locally

at 0 a surjection.

Now we are ready to prove Theorem 7.3.1. For illustrative
purpose we shall perform the proof in the case where there
are only two singularities in the singularity type of the

lower stratum. For cases with more than two singularities,

similar results are true and will be stated afterwards.
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Proof 7.3.1.
0,0 0 o
Let % = %1%2. Suppose ﬁi - Zﬁ and K, - %., we want to
show‘%ﬁﬂz -+ x&%g, where Xﬁ, xg are single simple singularity

types and X, %2 are singularity types that may cousist of

several singularities.

According to Sectiomn 6.4, for %2, we will have Gy F1

and then by Lemma 6.3.1 g}l can be defined (see p.l67).

And similarly &;2 for ﬂg. That is
é?l : (Ul X U2 x M ¥ Wl x WZ’ Q) =+ (Ui X U2 %M x Wl X WZ’ 0)
(ul, Uy s W, Wy, w2) > (p(ul, Uy, m, WZ)’ u,, m,

wy ot cl(ul,uz,m,wz), wz).
£}2 ‘ (Ul,U2 x M x Wl x WZ’O) -+ (U1XU2XMXW1XWZ’O)

(ul’ Uzs m, Wl,'Wz) -+ (ul’ p'(ulsuzymswl); m, Wl’

w2+c2(u1,u2,m,w2))

have the property that

(s %Il(s (F)

(G1) %1

%y

(s, (c,) = H*

2 (s?éz(Fz))

i.e. g}l, A@z preserve strata.

. [a] .
Consider 4, , case first,

Let "yt (ul, Ug, M, Wy, W2)l+ (ul, 0, 0, w
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(uls uzs m, Wl: WZ) 4 (Ul, Wl). _ ! . |

e -

Then we can define a function Qﬁ

/51
U, x U2 x M x Wl x W, —> ?1 S Wl. {f
= 10 -1 “i
where CLl T ;91 o my 091 |
i
|
With the property that ;
: (Gp,uy,m,wy,w,) £ %XQ(GI) =
fr
E _ (a”(ul’u?_’m’wl’wz)’ 0, 0, d{# (ul’uZ’m’Wl’Wz)’ 0) i
3 LY ‘. —— :
q,L? U.H’
£ s, (G;)
7 O
Let us use the result on RQZ‘Ecompute the Jacobian of d1
at 0,
[ ' ar
o oo\ [floovoo\ [y o,
0 0 /o
o - .
0o ¢ ¢ S o 10l /70000
f{ oocoe 1 © o O 000 p ' = ofo
coClc v o L oo o oelo
o] l o

°© 000 @_9)00[0
. dJ
¢ 0 | 0 ¢ 00O

and this has rank equal to (dim U, + 1).

. . ; o
We now do a similar thing in the XQ cage., Let
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T, 3 (u,,u,,m, w,,w,} > (O,u,,0,0,w,)
2 1772 1+72 2 2

W

LS (ul)uz;m; Wl,wz) —> (uz, WZ)

We shall define az x W

U1 X U2 X M x Wl X W2-?U2 2

where (Lz ﬂ£ o I}@;l o T, © o@*Z

which has the property

(ul, Uy, m, Wy, WZ) A Q%ZCGZ)

(0,41 Guyruypms wy,w))s 05 0,dy, (0, ,uy m, Wlfwz)) & Sy, (G-

2

—— .

’

' r
Uy 4

The Jacobian matrix of az at 0 is
0T ¢ 0O . .

(0 00 0 1) having rank (dim U, + 1)
Consequently the map

ai X aQ = U, x U, x M x Wl x W2 —%(Ul X Wl X U2 X Wz)

(ul,u2 m, Wl(WZ) kb(dl(ulluz,m, wl,wz),

Ay Cay uys my wy,wy))

has rank (dim Ul + dim U2 + 2) at 0, hence a surjection at

0. Certainly then Q& x aq is locally a surjection, so .that

if we can find points (ulfwl’ u, wz) € Uy x Wy x U, x W,
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arbitrarily close to 0 for which

(up,0, 0, w;,0) & S%l(Gl) . |

and (0O, u,, 0, 0, wz) & sz(Gz)
then we can find points (ul,uz,m,wl,wz) arbitrarily close

to 0 for which

(Ulsuzsmswlrwz) € S?(, (Gl) | S?{

(G,)
1 2 2

[Then with the property of transversal (p.[l§), we know that ‘
definite unfolding parameters are attached to definite
singularities and they do not overlapj. Also the unfoiding

for each of the singularities ace actually wversal unfoldings.

Therefore we can find such (ul, o6, 0, LA 0) so that the
unfolding formula has a type‘%l singularity near 0 and ' é
gimilarly we can find such (O; Uy s 0o, 0, W2) so that the
unfolding formula has a type x? singularity near 0. Hence
by the surjectivity of &1 x 0, ve can reallze‘x1 andl'}C2

simultaneously. Q.E.D.

Remark (i). There are ambiguous cases like A5+D%.when there
are two candidates for the singularity type in the upper
. . . ~
stratum (in this case As(l?r) and A5 7r4-). The Thgorem
? \ only implies that at least one of these two must specialize

to Dg. Therefore we have to distinguish the possibilities

B that both of them specialize or only one does. Checking is

required in these ambiguous cases., Further detail will be




h.
b
k-

3
et
i

- D97 -

shown later in Section 7.4.

Remark (ii}). In the cases when there are more than two
singularities in the "lower" stratum, we shall have the
map ﬁﬁ X QQ pis QBX... xﬂh being still locally a surjection

at 0. The same arguement proves the result,

Finally, we note that

Every quartic curve without repeated component specializes

to X_. - To see this, take any line meeting the curve in
4 distinct points and change coordinates so that this line is

z = 0, The curve has the form

2
OLZ4+A2.3+BZ' +Cz +D = 0

where o ¢ @, and A, B, ¢, D are linear, quadratic, cubic,

quartic in X, y respectively. Furthermore D has 4
distinct factors since =z = 0 meets the curve in 4 distinct points.
Now replace z by tz ({a projective'chahge of coordinates for

t # 0) and let t =+ 0. The resulting limiting curve D = 0
is an X9.

With more care it can be shown that the whole of the xg

stratum is in the closure of every stratum of curves without

‘repeated component, i.e. that the cross-ratio of the 4 points

D=0 above can take any value. An argument is sketched in

Bruce & Giblin (to appear)}.
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§7.4 Ambipguous Cases

|
|
\
B

1 1 ‘ Theorem 7.3.1 has shown that all the global despeciali-
zations can be realized, but as explained in Remark 7.3.3,
}‘i there are cases when one singularity type can have two

) Cases

candidates and this is where ambiguous“arise. If there
is only one candidate for the singularity type in the "upper"
stratum, by Theorem 7.3.1, we are sure that.if a despeciali-
zation occurs, the ”upp9r” stratum must be the only candidate
we can have. But if fﬁére are two candidatcs , we are doubtful,
because the Theorem only implies at least one of them is
a despecialization. There is the possibility that both of
them can specialize or only one can. This needs further
checking.

The following is a list of singularity types having two

candidates,

3 3 i
7.4.,1. A] irreducible Aj -—f}jL_ ?

; ] : v , r./

ﬁ : , A1A3 1rr§duc1b1e A1A3 )
N | AR sy b
_' | | »
A5 1rreduc1blg A5 /

2, , 2 ‘
ATAL [}._} , AlAg @
Ards 7—L - Ay hs @

If we can check that one does not specialize, then by

Theorem, the other must. That is what we are going to do

with the ambiguous cases, A lot of the possibilities are
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ruled out by the Lemmas in §7.3 and the fact that a éeducible
curve can not degenerate intoe an ilrreducible one. The
following are the only outstanding ambiguous cases. Note
that we only look at cases where Zu goes up by one., This

is because of the fact that despeqializations are transitive,

i.e. if . > 5, and I, - I

1 2 5 then ., - .. And we have checked

3° 1 3
through all the cases with ZIp goes®*up by more than one in
the big table of specialization, again all of them can either

be proved by transitivity or disproved obviously by Lemmas

or facts mentioned above,

a3(irr) | A

. g 1 o
AjA,(irr) Y (Th.7.3.1) X (red. > irr)

~ |
AjA, ﬁ¥zq_ Y (Check (9)) v (Obvious by geometry)
AiAz(irr) Y (Th.7.3.1) X (red. > irr)
D, (irr) v (jh.7.3.1) X (red. g irr)
Ai —f%}% /r(Check (1)) | v (Obvious by geometry)
Ai dﬁb / (Th.7.3.1) ;K (Line A conic)

MKA1A3(irr) _ A1A3 AN
¥ ' . .
A, Girr) / (Th.7.3.1) X (red. = irr)

AjA, (irr) Y (Th.7.3.1) X (red. D¢ irr)




A2A3(irr)

D5(irr)

A

i

|

B

B

\ _ 8,0, ke
! |

‘ - E

|

|

. 1
11} | 2
B A T{li
3 '
B | 2
| ‘_ Aphg @
3
AjAy “QJ:

5 g%e
Al

4
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v (Th.7.3.1)

( Y (Th.7.3.L1)

X (Check (8))
Y (Check (2))
Y (Th.7.3.1)

¥ (Check (3))

%

X (red. > irr)
)( (red, = irr)
V. (0bvious by geometry)

v (Obvious by geometry)

X (line A() conic)

Y (Obvious by geometry)

A D

Y (Obvious by geometry) )Q(COHic - cubic)

>< (line e comnic)

v (Obvious by geometry

Y (Check (4))

AS(irr)

Aﬁ(irr)

E6(irr)

Dy 'L#L

Y (fh.7.3.1)

Y (Th.7.3.1)

VY (Cheek (7))

v (Obvious by geometry)

><(conic-ik? cubic)

/'(Obvious by geometry)

/_/

AS ’ /
-:><kred. J&? irr)
)<(red. 2 irr)

Y (Obvious by geometry)
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I
| b ]
Ayhg 7i X (Check(10)) / (0bvious by geometry) ||
o ﬂ
‘ . A !
AjAg @ Y (Th.7.3.1) )( (line => conic)

2 | 2 !
ATA, 7&& ATAg ((D

D6 A_P_ -. ¥ (By geom.l or Th.7.37.1-) X(conic_\_) cubie) '
AjA, 75; / (Th.7.3.1) | X (conic s cubic)

A1A5 C@ ){(uneAv conic) V (Th.7.3.1)

A1A2A37ﬂi Y (Th.7.3.1) X (conic =g cubiﬁ) - .‘ '|
- o | )
A1D5 -—bt Y (Th.7.3.1) ' .X(conic -’l\—b- cubic) .'
N i|
Aio)AB é Y (Check (5)) | | Y (Obvious by geom.) H;
j
ﬁ? >< (tangent > : Y (Obvious by geom. or . }i
non- tangent) : Th.7.3.1) ) “‘
Ag @ X (line A—> c‘onic) Y (Th.7.3.1) |
ALA, 72_ S AA, @ |

A, @ Y (tine Ao conie) Y (Th.7.3.1)

E7l % Y (Th.7.3.1) I><(conic 4@- cubic)
1 D¢ é’ Y (Check (6)) ‘ v (Obvious by geom.)

2 5 7_2 Y (Th.7.3.1) x (conic A\#> cubic)
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There are a total of ten cases that we need:to check,
Some of them, can be provéd to be true by showing an explicit
family of-the "upper stratum" I' degenerating into the
"lower stratum" I. In the general argument about speciali-
zations no mention is made of the .point in_therlower stratum,
Once we have found a family in ' with limit in ¢ it will ﬁ”
follow that the whole of % is in the closure of &' (this
"frontier condition" #lso follow; from regularity). The P v
cases which are not covered by the above list (where there . i
are non-isolated singularities) are all orbits, so with

one of those strata, E'n I # ¢ automatically implies Te Tt

Also for some cases in the above list, we have to disprove
the property by some special technique, for example by showing IR

that there is only one connected family of L' in the universal

unfolding space of I and since we know one of them is true, nﬁH |

the other must not.

We shall proceed with the checking, ' ¥Hﬂ”

3 . 4 . Nl
Check (1) Al(lrr) > Al 7&#; is true.

Consider the general form for Af(irr).

ax2y2+bx2z2+cy2z2 = xyz {(ax+By+yz) ﬂ

at$0, b #0, ¢c# 0, ot £2, B ¢# +2, v ¢ +2

P

: : 1
Now let ¢ =+ 0, we have ' : :

x(axyz + bxz2 - yz (ax + By + yz)) =0
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. ¢
Clearly x = 0 cut the cubic at three distinct points for

B #0, v # 0, since -yz(By + yz) 0. And we ‘can easily
~ check that the cubic is a nodal cubic with the node at X.

i 3,. 4 ¢
Hence when c =+ O, Al(lr;) - Al 747— .

Check (2) A1A3(irr)‘+lA§A3 7&2; is true. 7 Hf

Consider the general form for A1A3(irr)

ay4 + bx222 + cxzyz + dezz ; exj3 =0
where a # 0, b # 0, ¢ # 0 - ‘ E I?Ll: J
Let‘a -+ 0, then we have

x(bxz2 + cxyz + dyzz + ey3)'= 0

The 1ine x = 0 cuts the cubic at two points, one repeated,
since yz(dz + ey) = 0

i.e. at (6,0,1) twice and (0,-d,e) once.

Ip ie easy to check that the cubic is a‘nodal cubic ifrb # d
or ¢ # e, with the ﬁode at X, ' L i 

Hence when a =+ O, A1A3(irr) - AiAB—%uE . .

Check (3) AjAz(irr) » AD, LL  is true.
If we let b + 0 in the general form for‘AlAB(irr) as in

Check (%), we have

y(ay3 + cxzz + dxyz + exyz) =0

The line y = 0 cuts the cubic at (0,0,1) twice and (1,0,0)




K

once, And the cubic has the node at (0,0,1) and the tangent
"directions at the node are
/Y
x(cx + dy) = 0

Hence when b =+ O, A1A3(irr)~—?AlD4-*ﬂr
o

/N AN

Check (4) Ai f%%— +_Ai _ is true

Consider the normal form for Af 7%}1

x(xy2 * yzz + y22 + axzz + Pxyz) = 0

o # 0, o-B+1l £ 0, B # 4o
Let o =+ 0, we haﬁe
2 : -
xv{xy + yz + z° + B8xz) = 0

If B # 1, the conic is genuine, The line x = 0 cuts the

eonie at (0,1,0) and (0,1,-1)., The line y = 0, cuts conic,

0

4 5
at (1,0,0) and (1,0,-R). Hence when o + O, Al fy£, -+ Al .
Check (5) A% 1A _‘KLL is true.

Consider the normal form for A§A3.#l£_

x(z3 + xyz ¥ uyzz + xyz) =0 ' ; ¢ 0, o # 1

Let oo + 1, we have-x(y+z(zz+xy) = 0 where x = 0 cuts conic

twice at (0,1,0), ytz = 0 cuts conic at (1,0,0) and (1,-1,1).
;

Hence when a« - 1, we have A A3 {lg; -+ A A d>\
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Check (6) A1A5 _7rji_ - A1D6 ~€E%~ is true.

Consider the general form for A Ag ﬁril
: /

'x(aZB + bxy2 + cxyz) =0

where a # 0, b #.O, c # 0

Let b - 0, we have xz(az2 + ¢cxy) =0

The line x = O, cuts the conic twice at (0,1,0)

The line z

Hence when b =+ Oy A1A5 7721 -> A1D6 155%’

Check (7) As(irr) -+ D6—i%L is true.

Consider the normal form for As(irr)

2.
x222 - 2xyzz + y4 - ux4 - xzy = 0

Take the transformation x + x
y &y
Z >z + ax + by
we have
xz(z + ax + by)2 - Ztyz(z + ax + by) + y

t.e. x22% + 2ax’z + 2bx2yz + 2ax3y + (az—a)x

4

+ (b2—2a—1)x2y2 - ZXYZZ - ZYXY3 + 74 =0

Take the transformation x - Ax
y > Uy
Z * VEZ

Then we have

'_lzu2x222+2a13vx3z+2bkguvx2yz+2abksux3y

4

0 cuts the conic at (0,1,0)} and (1,0,0)

-oax - xy =0
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2 2 2 2 2 3 . 4
+ (az—u)A4x4+(b2—2a—l)k Lxy "2Au2vxy z-2bh xy 4yt = 0
2 o o2 )
Let us choose a = E? , b o= - 13 , V= %r , o o= a2 - JE h;
- A 2hu : A : IR
) ) 6 !
4y . _ -
The equation becomes !
p4x222 + 2u4x32 + xzyz N X3y N X4 +,XZyZ _ ZPﬁxyzz . .
_ xy3 + u4y4 - 0 |
This is still As(irr) B
Let p =+ 0, we have ' ’ ' 1-;
xzyz + xay‘+ x4 + x2y2 - xy3f= 0
i.e. x(xyz + xzy + x3 + xy? - y3).= 0

The line x = 0, cuts the cubic three times at (0,0,1).
And we can easily check that the cubiec is nodal with the
node at (0,0,1) and tangent direction x = 0, y = 0. f:%ﬂ'~

Yence we find 2 family of A_(irr) -+ D -
v 5 6

Cuheck (8) A1A3(@D%+A5.;:; | | _ N |

. - /"/
Let us look at the universal unfolding of Ay 7~L
4
y

fF(x.y) = x2+yﬁ + o + By + sz + 5y3 + £

We want to look for A1A3 in this unfolding space and see
whether it is connected as a piece,

Let us look at the singularities of £

6
f =0 =% X2 + v + a + By + sz + 6y3 + ¢y =0
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h
]

0 = 2x =0

f 0 = 6Y5 + B+ 2yy + 33Y2 + 4Ey3

Ty

Substituting (1) into £ 0 = y6 + B + By +

-For A1A3, there must be a triple root ¥ of

(2

(1) '
0 (2) L
Pasydegyt a0

(3)

) and a simple

root y5 of (2) where Y3 # yy. And also yl and V4 both

satisfy (3). (There is of course another root Yo in (2)).

Condition for triple root ¥y of (2)

(i) vq satisflies (2), hence B is determined

5 2 3
g = -6yl - 2vy, 36yl - 4Ry,

(ii) £ 0 = 0, y is determined

4 - .2
Y =-—15y1 - 36Yl - 6£Y1

. . 3 .
(1ii) fyyy(yl) =0, § 20y1 4£y1 (triple root)

Condition for simple root of (2)
Y3

2

. . .5 o _
(iv) fy(yB) =0, B = ~6y; 2Yy 4 28y, GEY 4

Thus B, ¥, & all determined by £, ¥y and Y3e
to concentrate on these variables.

The four conditions are

' ' 2 3, _  _..5
B+ 2ygy * 3y,8 + bdyjt 6y,
_ 2, 3, _ .5

B + 2yyy * 3yyd + by % 6y3

Y o+ 3y16'+ 6y§t = —15y1

3

So 1t 1s emnough
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3 g | B
§ + byg = ‘ZOYI L |
Let us look at the determimnant ? }
2 3 B i
2 3 " |
4(y1=y,) i |
o
0 1 Syl 6y1 :
0 0 1 4y, !

Thus the determinant is never zero and B, y, §, ¢ are upiquely
determiced by ¥q and Yqe 50 we can analyse the set of solu- »
tion by looking at the remaining equation. That is the con-

dition for Y1 and y3 both satisfying (3) g;f=

6 . - 2 - 3 4 6 2 4
Yy * Byy *yyy * 8y) *teyy T yg ot Byg toyyy o+ Gyg ey,
) 6 6 2 2 33 b by C b
loe. ¥~y gt8(y 7y d+v (v -y3) +8(y -y ) +E(y ~y,) = 0 (4) o
o 3 H
Now from (iii) & = —20y1 - 4ﬁy1 : : N
. | 2
from (ii) vy = —lSy? - 3(-20yi—42y1)y1 - 6€y1
. 2
= Ady, + bgyy
' 4
from (i) g = —6yi —‘2(45y{ + 6£yi)y1 - 3(-20y§-4€y1)yi

3
~4
4LY1

fl

5 o
~36y2 - gy

3
3

1

. 5
from (iv) B = -6y, - 245y ~6¢y2)y, ~ 3(-20y>-45y )yi-bsy

5 4 3 2 2
173

‘ =-—6y3 - 90yly3 + 60y1y3 - 1l2%y
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+ 12% 2 4 37 ’
12%y,v4 EY3
Hence we have
.5 5 4 _ 3.2
36y1 + 6y3 + 9Oy1y3 6Oy1y3
3 2 2 3
= / - 12 -
€4y y1¥3 * 125354 - 4y3)
= 4gly 7y 4)
2 2
Hence be = —36yl - 18y1y3 - 6y3
. o 2 _ 2
i.e. i“ 18Y1 9Y1Y3 3373
2
5 "18y% T 9VyY3 T 3y§ 3
Thus by substitution § = —36y1 -4 ( 5 )Yl

4 3.2
= 18yly3 + 6yly3

2 2
_18}]1 - QY]_YS = 3Y3

and vy = 45yg + 6( 5 )yi
o alb 3. 2.2
= "9y ¢ 27yiy4 T 9¥Yq
a2 a2
5 = ~20y§‘— 4 ( %1 gzly3 3y3)yl

3 2 2
= l6y1 + 18y1y3 + 6y1y3

So when we substitute into (4) we .get, after eliminating the

factor (yl-y3),

4 3,2,.2.3 4 Koo 4 3,2
2(yi+yly3+yly3+yly3+yly3+y3) + 2(18yyy4*+0yiyy)




L= 24 -
S 2 2 '
+ 2(—9yi-27yfy3—9yly3)(yl+y3)

3,102 2, 02 2
* 2(16y +18y y g6y v o) (¥ Y Y4+ )

' _ 2 a2 3,2 2,3, _
o (18y 19y ¥ 4=3y ) (v +y Yty yatyy) = 0
then we have

5 4 3 2 2 3 4 5
= 2y 7y v, 8y y L tiyly i t2y.y.~y, = O
1 173 173 173 173 73

) 4
1.e. (yl-y3) (2yl+Y3) =0

Since Y1 # Yqs the curve is simply 2yl+y3 = 0. Thus the
AlAB's near As(irr) are in fact a single connected curve,
This holds for each value of the modulus of the normal form
and clearly the curve will vary cantinuously as-fhe modulus

varies, Hence the whole collection of A1A3's in the trans-

vevsal is connected. But of the two types of A neither

1A3

specializes to the other, hence only one type of AjA can

3
. : -
occur near ‘Ag 7rl— . Since we know A1A3 7ﬂl_ Ag 7,4
’ - - /
is true, it fOllOWS that A1A3(1rr) ;Xa AS A

+

L - 7
3 . ’
Check (9) Al(erR ;*; A1A3.#QaL (Fef. Check 8).

If we can check that for Af > A3, the collection of AT near

=N

Aa_in the tramsversal is in only one connected family, then

we can say‘Ai near A A, would 'also be in only omne connected

173

family. Let us look at the universal unfolding for Ag.

f(x,v) = x2 + y4 + g + By + YYZ
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.= 2x =0 =% x =0 ' (1)
- 3 _ 3
fy—4y + B + 2yy = 0=B = -4y -2vyy (2)

By substituting (1) into £ = 0, we have

4
y* & o+ By + yy?

0 , (3)

Two simple roots of (2), y1 and Yy, say (yl # yz) must both

satisfy (3), hence

T

J

4 4 22y
1 " Yy T Bty + vlymys) =0 (4)

Also both Yy and Y, satisfy (2). Hence

3 ] o

by, — 4y, * 2vyy = 2yy, = O
P

) 2(y1-v3)

&, (5)

Substitute
B

-4yf - 2yy, and (5) into (4)

5 3
4(y7-y3)

+ —T§I:§;T(y1"yz)yl

4 4 3 _
_yl Yy * ( 4y1)(y1 yz)

3__ 3¢
SR o

. Jh_ h_, 4 3 b_, -3
So YT Ay ey Y oAy Ay LT,
A3 3 4
2(y ¥ Y,V T,7¥,) = 0

4 4 3

. 3
ﬂUQL/ —yl + y2 + 2y1y2 - 2yly2 = 0
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2 _ 2y ,.2 2, _ 2 _ .2y _
(ry =y Oy vy - 2yyy, (] v,) =0

i.e. (yp = ¥)7 (v +y,) =0

/-\./
same reason, as in Check (8), since we have A3 f%% —_
1
A

AA, I, 3¢ v
123 44, it follows that AT(irr) A AlA, .

Let us look at the transversal for AlAs(irr)

x(z3+xy2+xyz) + ax4+5y4+yy3z+6y222+gyz3+gz4 = 0

The condition for A5 to remain is

But then the resulting curve must still have the line x = 0

as a component, i.e. still reducible. Hence P

Ag(irr) ;*% A A 7,5& ‘




- 2Ll -

/
7.5 Specialization to Quartics with Repeated Components

The specializations concerning all cases where the lower

stratum I has isolated singularities have already been
covered in the previous sections. And the argument shows
that if Z'+I the whole of Le closure of Z', Now we are
left with two other types of specializations (I} Cases
where ' has isclated singularities and I has non-isoclated
singularities (i.e. repeated components) (ILI) Cases where
' and ¥ both have non-isolated singularities.

For (IIL), it is easy to deduce the sﬁécializations

from the geometric structure, The following is a complete

diagram of specializations of the repeated component stratca

amongst themselves,

Diagram i.5.1} | _ hu_é 3ﬁ‘

Note that all these are orbits, so it follows immed-
iately that the lower orbit is wholly in the closur=z of
an upper orbit.

As for (I), we need to discuss each case individually.

Let X be a singularity type without repeated component.
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The situations are ’ ﬁ
. a '
(L) x ~ is true for yx = Xq(E7)—>f/v .
‘ | . i
: . . . . |
(Obvious by geometric observation). Since all ¥ without !
repeated components specialize to X% ok, ;/i_'[g am alt  we 3 1

can deduir Hhak a2 % gt .«&FMM- C@“\TM g 56&1.(1‘5& “to é__//_’ o i
theae belew &£ wm "Dimgaa-m/ T540.

(2) x - ' is true for all X except Ai 4 ?%iﬁgf PRI ?
Al ;#72%:_ and Xg ;%ff . This is because it is obvious @3 

by geometric appearance that all singularity type with

n = 7 speciaiize into ?ij- except A3 47#£§; . But ?'?

Ag specialize into by similar reasons. That - e

leaves us with A7 3p WAé%: ﬁﬁég; and Xq ;%% >

because lines can never degenerate into a conic. -

(3) x =~ ﬁéé' is true for x = AJD, —ffﬁ“ since the ‘?ﬁ*

normal form for A D6 hf:J is xz(ax%yz) = 0 and when

a + 0, it becomes /§ . Hence for all strata with E

Iu § 5 since they all specialize to AlD6 454— . Also 1t i
is true for x = D¢ _LFA ., A A5 -TJ& (EZ), Aﬁﬁﬁsfﬂt ,

. 3 .9

A1D5 s A1A3 . Aqu » since .they all

specialize into A1D6 fg*_. Also it. is true for x = AlAg }éﬁ\,_ .i
AiD4 é%; for obvious geometric reasons. For x = A7, . i

specialization does not occur; this follows because for

X = A6, it does not occur (see below). Since a cuspidal
cubic does not specialize to _/\ , we have A2A5 T#Zi_,
E, /%_ do not spécialize to ﬂéé_ . Also it is obwvious

| : .
that ﬁiﬂédOes not specialize to éz . This leaves us
7




being doubtful. However, b6 is e

a triple point with 3 coincident tangents, so there is no

. w3
with x = A6, EG’ A2A4, A2

point of /)\ which could be a limit of Ee singularities. 'ﬂﬂ‘ |
The case ¥ = A6 will be done later in some detail, we found
that specialization does not occur, but for ¥ = A2A4 and

oo
Ag, it still remains doubtful. The difficulties we meet S ;
. 3 i

with in these cases will be discussed.

(&) % - is clear one way or the other by obvious
3
9
example with Iu = 7, we have A7 é@ > C? s but‘all the

geometric reasons except for x = D4, D5, E6 and A For

others don't. Fof the triple points ¥ = D, DS’ E6’ it
is clear that they do not specialize to a repeated conic
since a limit of triple points must be at least a triple
point, and every point of the repeated conic is double,

!i i .:
This leaves only Ag doubtful. ‘ hﬁ-“
) Yl
) i

: n I
(5) x ~ ={£}= . Neither XQ(E7) %%%— nor any of the (Iu = 7) H
curves could specialize to %§9=-due to their geometric

structure.’ Taking those ¥ with (Zp = 6), it is obvious t

that A§ €i> , AfI%F g&) L do specialize to 4%%1

Also let us consider D¢ _HQ_ with the form x(x3+y3—xyib

. . i '
taking the transformation x->x, y>Ay, z 5z, the forwm becomes

x(x3+h3y3—xyz). Let A + 0, the curve sfecialiée to

xz(x?—yz) which 1is t{%}r . Hence we have D, J%L_—é %%%—. L

For one reason or another, we can see that A

1. ? .

oy O |
A1A3 s A1D5 _&F- s AIAZAB-QﬁcmduﬁHB 422 don't specialize i
: !
to zé%r ., For example AlD5 ACKT and A1A2A3 7ﬂi; do not :

specialize to #%# because -a cuspidal cubic can only specialize
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to a conic and a tangent. For the rest of the (Zu = 6)-
cases, A6’ E6 and A1A5 7,%; will be shown to be not

specializing to :é}z . (p. 250 ) and the cases Ai,

A2A4 sti1ll remain doubtful, For (Zuy = 5) cases, those

specializing to Ag ég} » AfD4 é&) and DG.JF_ will

obviously specialize into #%% . That leaves us with the al

2 3 - . .
cases AlAZ, A1A4 and A1A2 #%r_ . But since a cuspidal

cubic can only specialize into a conic and a tangent, [ !

3 ~ . N 2 .
AlAz 7q}1 is ruled out. The two cases AlAz and A1A4 st1ill
remain doubtful. .For (Iy = &) cases, every X specializes,

Therefore after checking through (1) to (5), we arec
left with the following cases. We will check §{1) and |
- S(6) of the following in detail. And S(2), S(3) and S(4) ' :
2- - follow from S(l); S(5) and S(7) follow from S(6). Q(l) : | jiﬁ:‘y

to Q(5) are the cases which still remain doubtful,.

;iﬂ S(1) A > 7259 | Doubtful Cases’ '.':}aé
] | 5(2) Eg AT}A Q(L) Afﬂ.}ﬁ_}A 1

E S(3) g So LS | ez a2 — :
5(4) Eg > 4@9; Q(3) &, — F=
S(5) A A T«“: S S Q) _AIAE N <

[¥%]

o L2

S(T) Ak, > -
S(1) can be done in rhe following wéy. Suppose we

have é! in the closure of the stratum X containing an Ay

" MTWWMMMWMLja&ﬁuMMM o [Buneee & Giblon] |
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singularity of type k 2 4. We concentrate on the Ag sin-
gularity P of the curve in the upper stratum and follow
this curve down a path into the lower stratum ;Zl?. For
we take xzyz'= 0. The 1imiting position of the.singulari
P must be on the line x = O (sincg the other singularity

at X is only a node). We have two cases (i) P » Z on

x = 0, (ii) P - some point on x = 0 besides Y or Z, in

this case, we can take P + (0,1,1) by a change of coordinate.

For case (i), suppose the séquence of curves with
Iimit xzyz = 0 is xzyz + terms in the 15 meonomiale of
quartics with small coefficients (i.e. coefficients + O
in the sequenqe)f
Also suppose P is at (o,B,l) where @, ~+» O as P =+ Z,
Substitute x + x+0z, yry+Rz, Z +.z, into the equation,
the effect is to take P to Z and to make small changes in
the coefficients. Thus we have |

(l+6)x2yz 4+ small terms in other monomials; & = 0.

By doing the following.substitution,
-1
x + (1+8) *x%, vy -y, 2 » 7,

we can turn the coéfficients of xzyz back to 1 again with
out altering the fact that all the othex coefficients are
small.

Now Eonsider the direction of the unique tangent lin
te the Ak singularity. By passing to a subsequence we ca

assume that this line has a limiting direction, say my =

If m # 0, then we can take the limiting direction as y =

By a similar argument to the above we can assume that all

)

.

ty

e

n
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curves in the sequence actually have tangent line equal

to v = nx,

Suppose q R%i-singularity family ft with limit
xzyz = 0 and having Ay at Z (k » 2) with limiting tangent P
direction y = nx. As above we may assume the tangent
direction is Fixed at y = nx,

ft = Xzyz + smail terms in the 15 monomials = O.

Now substitute y ~ ytnx, then the new family g, R

g Xz(y+nx)z + still small term ,... = 0 has limit I

xzyz + HXBZ 0 and has A, at Z with limiting tanpgent N i
direction y = 0 (Note that the family we had for the fixed ‘
tangent direction at y = nx is TmémIMQt?y equivalent to gt). !

So we are looking for

xzyz + ﬂXBZ + gmall terms in other 13 monomials il

with Ak’ k z 2 at Z, tangent direction y = 0. Having such
. |
an Ak(k » 2) at Z implies terms 24, sz, vz 3, x222 and xyzz k?
2 2 ‘

must be missing from the equation and the term y z must
be present (double point, not triple point). Hence consi-

dering the leading terms in the resulting equation ‘ o

xzyz + nx32 + uyzzz + .... =20 (¢ # 0)

\'JX

we have A2 at Z if n # O
,AB at Z 1f n = 0.

Therefore if m $#.0, at worst, we can only have Aq at Z.

When m = 0, that is the case when the tangent direc-
tion is x = 0, we must have for &,, k 3 4 at Z, the equation
. . 4 z 3 2 2 2 3 ..
with the terms in z , Xz , y2 , y 2 , xyz and y z mlssing, ‘

. 2 4 .
and the terms 1in xzzz, xy z and y forming a perfect square.
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Hence we have (at least)
xzyz + axzz2 + bxyzz + cy4 + dxy3 + ex2y2 + fx3z
3 4o L2 |
+ gx"y + hx = 0 where b ~4ac = 0, a # 0, ¢ # 0. :

Consider the equation in non-homogeneous coordinates at Z.

. ) e
X%y + a(x+%¥2)2 ¢ axy> + ex?y® + £X° + gx3y + hx® = 0. o
|
Take the transformation X = X - %%YZ, we have (X —-£§Y2)2Y+a(x)2 h
b
b 2. .3 b 2. 2.2 b 2.3 b 2.3 ‘;,
+ d(X - == - 2y - = - 1K
(X . 2aY YT + e(X s YTYT O+ £(X ZaY )T o+ g(X ZaY V7Y ‘\
_ by2.4 _ IS
+ h(X 2aY ) =0, !i;‘ ]
Hence leading terms are v
2 b2 _5 b..5 b..3 3 S
aX”® + Y~ - d(+—)Y - =XY¥7 + dXY¥" + ... =0 e
. 2 2a a ‘:
ha ' i
. ¥
b
I1f 4 - E ?é 0, then u = (2-1)(5-1) = 4,
. b - ~
i1f d = E‘ . then p = (3-1)2 + 1 =5 O
Therefore the milnor number for the singulafity at Z is
always £ 5. Therefore we can't have an A6. We can also ?

see ;hat similary situation holds for E6'

For S(6), we check it in the following way. We take

xz(xz—yz) = 0 for =%§}r . Suppose J ¢qui-singularity family

ft with limit xz(xz—yz) = 0 and having Ak(k = 4) at Z.,
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]
o

22
ft B —xzyz+axy22+8xzz2+yy4+6xy3+ix37+Ex3y+nx3z

where a,8,v,8,%,% and n are all small and a2 = 48y
B # 0 (since not triple point),

At Z, we have i

X4—X2Y+GXY2+BX2+YY4+6XY3+EX2Y2+;X3Y+nX3 = Q

|
Take the transformation X + X - é%Yz, the leading terms are

2
2 o . o] 5 o 3
BX + [5 (—"ﬁ) - —E]Y + [6+2(2—B)J XY +

=0 h;
4B \'
I
o
o ol i
So the condition for A, is §(-— - —) # 0 i
4 2B 2 e i
48 A
;o
a |
i.e, & + 7% # 0 and a = 4By B

Now we want to see whether we can have A4 together Aﬂ;
with another singularity (with tangent direction tending w
te x = 0). Let us check For the other singularity near

/N

2
—t = 4x3—2xyz+ayzz+28xz2+6y3+2€xy"+3Cx2y+3nxzz = 0 (i)

3 . .
— = -xzz+2axyz+4Yy3+36xy2+2Ex2y+€x =0 (ii)

= —x2y+axy2+28x2z+nx3 =0 (iii)
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Bft .
If x = 0, we have by Ty =0, y =0, assuming vy # 0. For
2 ‘
Y = 0, by ¢~ = 4By we have o = 0, then 8§ # 0 for isolated
8 f
singularity, but by 3;5 we can again have v = 0 if % = 0.

So we can assume xX ¥ 0,

If y = 0, we have by (i), (ii), (iii).

4x2+2822+3n3z

=0 (iv)
=z + x =.0 : (v)
2Bz + nx = 0 : {vi)

Substitute (v) and (vi) into (iv) we have

L + 3nz + 28C% = 0

which 1is a contradiction since B,nm,% are small. So we can

assume y # 0.

For singularity near Z, we can assume z # 0. Subtracting

(iii)®z) from (i) we have 4x3—xyz+6y3+2£xy2+3cx2 +2nx2z=0 {(vii) ﬁ
-  ay-ayZenx’
By (iii) we have z = y gﬁxn ‘ (viii) :

‘ ! —
Substitute (viii) into (ii) and {(vii), we have

x2(88-2n2) +x2y (3n+687) +xy 2 (=1+4BE=2an) +y-(a+28) = 0 (ix) v

x3(n+28C)+x2y(—1+485—2un)+xy2(3u+666)+y3(—2u2+88T) =0

(x)
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. 2
But since o = 4By for A we have the term y3 vanishes

43
in equation (x).
Hence we have xz(n+28c)+xy(—l+4B£—2un)+y2(3@+666) = 0 (xi)
Now(ﬁx(ix) —(jx(xi) gives

2 2 2 .
x“(24B~6Nn") +xy (8N+16RL)+y " (~-2+8B£—~4an) = O (xii)

Now —(-Z+$é~4an)x(xi) + (3a+6B8)x(xii) gives

x[(3a+655)(245—6n2)-(—2+85i—4un)(n+2SE)]

+y[(3u+686)(8n+168c)—2(-1+465—2un)2] 0 (xiii)

Writing (xiii) as —-Ax+By = 0, then y +%X

where A

- ((30+668) (248-6n2) = (~2+8pE-4an) (n+28L) ]

w
]

[(3u+6sa)(8n+16sc)-2(—1+4sz-2an)2J

It is clear that A - 0, B + =2 as all the parameter approach
0. Hence if we put x = 1, y will approach zero, so we must
have z + « (otherwise limiting position of singularity

could not satisfy x = 0).

: 2 2
Now substituting y = A into (viii), z = AB-oA —nB
‘ B 2
. B728B
] 2 AB—qu—nBz
and since B~ =+ 4, we must have 76 5+ @

But now A = multiple of B - 2n+l4un2
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B = multiple of B + 16&n—2—8a2n2 oo

’ 2
So AB—GAZ—T]B2 = multiple of B - 24a—n3ﬂ52u3n4—64u4n5

(Notice that -terms in n, anz cancel!)

2.3 : 2
n

. . o
It follows that 8 -+ ®, go in particular e - o

o . . .
But 3 = 4y - 0. This is a contradiction.

Hence we have shown that A4 cannot occur with another

singularity, i.,e., A1A4 ‘AT7 4%%-'
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CHAPTER 8

In this chapter we use a method due to J.W. Bruce to
show that certain of the strata low down on the spécializa*
tion diagram are regular over E?' Several technical details
are explained in Bruce's thesis (1978) and we shall not go

nt)
into these. We consider the transversal to L, given by

4 2 2 2
Jf = x +a0ﬁ2y +y4+ax ¥

2
z(bx y+cxy2)

+

-+

ZZ(dX2+exy+fy2)

ZB(gX+hY)

+

+

24 ) (al#4)

It is enough to show that regularity holds along
analytic paths a = a(t), ..., k = k(t), so we assume that
4, ..., k are analytic functions éf a éomplex variable
t with value 0 for t = 0, and that {7. as above lies in
some fixed stratum I of curves with isolated singularties.
Let r = minimum order of a, ...,k.  (We  write 0(a) for order

of a, etcl.).

Lemma 8.1 Suppose that the order of d,e,f,g,h,k are all >r.

Then regularity holds along the path given above.

Let Tt be the tangent space to I at F_. It can be

t

W
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shown that T = lim T_ automatically exists. We have to
-0 n,
prove that T, = T where T is the tangent space to the E7

2 2 4 '
stratum at x +aox y +y . Now by the local product structure
of orbits, we know that TD will contain the tangent space

to the orbit through :To = x4+a0x2y2+y4. This is spanned

ajg 2.7,
by Xg—= ... 2p—

so that the wvector
Ix

2 2 3 4
2x4+aox y . 2% y+a02y3, 2xy3+aox3y{ 2y4+aoxzy

will all belong to T, - It follows, using a§#4, that x3y and
xy3 belong to Té. We shall use this fact below, Further,

m "
the tangent space to E7 at ;70 is the direct sum of the
tangent space to the orbit through :70 and the "medulus

2
.direction" spanned by xzy“. Therefore we have only to

prove X2y2 E To'

Proof of Lemma 8.1 First we consider A~regularity

1 aj& bx2 2+ Y3
— ¥y = 22 Y TECEY_ 4+ terms which - 0 as t + 0,
tr dz oF

This is a tangent vector to the orbit through

CTt = J;(t)’ ..., k(t) at this point and we are interested

in the limiting direction of this tangent vector as t - O.
If 0(b) = r, O(c) 3 * then the limit is

2.2 3
box y ote Xy € j;

c(t)

where b_ = lim bCt) F0, c_ = lim .
o e F o e L
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'

However xy3 &\j;, so this proves Xzyzé 7-, as required.

1O e
If 0(b) » r, 0(c) = r then we use — Xe N
t I

If finally 0(b) > r, 0(c) > r then by the hypothesis ‘ _“'
of the lemma 0(a) = r, -In that case the tangent vector

at.y;,to the path in I given by :Tt is

— X'y + terms which - 0 as t + 0

This vector belongs to Tt so its limit, a nonzero multiple L
of xzyz, belongs to TO.
This establishes A-regularity.

Now we turn to B-regularity. The vector perpendicular

to the "modulus direction", i.e. a=-axis, through C]; is Aok

; z(bx2y+cxy2) T oeae.. * 24(k) (1) iﬁ:
. Sy

2 -

Jt T i“

} | |

Qi Qo We have to show that the limiting direction i

of this vector(vhich always exists) is in T,.

Consider the wvector in Tt given by !§

N 2 2

—L-z t_ z(bx yrexy ) + terms > 0 as t =+ 0 |
tr 0z tr _ T
. _ . | .

The limiting direction of this vector, is

2 . . .
z(box y+c0xy2), so this latter vector is in T,.

But (1) has the same limiting direction so the result is

proved. ' y
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Lemma §,2 Suppose that I is a stratum which does not
y

specialize to any stratum other than E containing curves

|
of phe form : i'
5 .
xfra x’y%ryte2’? Q(xiy.2) = 0

where Q is quadratic in x,y,z. Then the corders of d,e,...,k

are all >r, ) : o

Proof. Let n mia (0(b), O(c)s

n, = mia (0(d), O(é), 0(£))
n, = min (0(g), 0(h))
- 0(k)

Thus each ni zZ T

. . . . =
We make the substitution in Cjt given by z - =zt

This changes:Tt to {7; say, but :7;;:7t are in the stratum

L (indeed in the same orbit)., FEach term of C7; will have ah

a finite limit provided

nl—OL>0 |
n, = 20 2 0
2 -
(2)
n3—3a>,»o ‘
n, - 4al? o}

We shall use the following easily verified facts: e
n

1f n, < 2r and o 7; then r-a > 0O

then r-a > 0

If g < 3r and o

N
3

P4
4

If n, < 4r and o then r-o > O
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n n n /
. 2 3 4 v
Now suppeose min ijr, = 7r} < r | v,
n n n n L
2 3 4 2
1. = ¢ =2 . - 2 |
Case 5 < 3 and A Put o 5 ‘
Then n,-4o 232“40 =0 . {
ﬁ Similarly n3-3a = 0 and n2—2u = 0, Also n, = 3 r=a>0
from the above facts., Hence (2) holds.  :7
n n n n
3 2 4 3
Case II. '—3— £ ) and T. Pui o = 3 o

Then as before we find (2) holds and ng > a,

n n n n

4 3 2 _ 4
Case ITT. -"4— < 3 annd —2‘. Put o = A o e el |
Then as before we find that (2) holds and n, > o, :  ﬂi

1
Thus by choosing o we can ensure that 1im£f exists and !
has no terms involving(%g(cubic in x,y), so that I does

T

specialize to a stratum containing curves of the form ‘$
4 . 4 - . i
;3 +aox?y2+y +22Q(X,y,z) = 0 with Q # 0. '

Turning this round we have proved that 1if no such

specialization exists then

which certainly implies that n,, Ny, 0, are all > r (since
r > 0).

Putting together Lemmas 1 and 2 we have:

ProP( 8.3. Supose I is a stratum specializing to E but

not to any other stratum containing curves of the form
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¢ 2 2 4 2 '
x}-l*aox y ty tzZ Q(X:Y’Z) =0 (3)

"
Then & is A and B regular over E7.
It remains to enumerate the strata which contain any

curves of the special form above..

Lemma 8.4 A gquartic curve can be put in the form (3) by
a projective transformation if and only if there exists a
iine meeting the curve in 4 distinct points at which the

tangents are concurrent.

Proof. .  (This result was pointed out by J.A., Tyrrell).

The line z = 0 meet (3) 1in 4 distinct points since ai # 4.

n
ja}

The polar cubic of (0,0,1) clearly containg the line =z
and it foilows that-the tangents at these points pass
through (0,0,1).

Conversely if such a line exist choose it to be z = 0
and choose the point of comcurrence to be (0,0,1). Then

2
the curve must take the form A Q(x,y,z) = 0 for some

‘quartic ¥ in X,¥ with distinet roots. But a change of

variable involving only X and y will now bring the curve

to the form (3}.

Lemma 8.5 No curﬁe of any of the following types can be

put in the form (3):

3 ‘ 3 2 6
Ag > A2A4, Az, D6’ AlAS (two types), A1A2A3, A1A3, A1A4, Al,
2 3
Ay, B ADgs Aghss ByATs AjDy.
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Remark 8.6 _ It can be shdwn that at least some curves of

any other type can be put in the form (3). If is a remarka- ﬁ:
ble (and so far unexplained) fact that the types iisted
above are precisely the quartics with isélated singularities
whose st}ata are orbits. Of‘course no quartic with a
repeated component can be put in the form (3) since every

line will meet it in at most 3 distinct points.

Proof. We illustrate the proof by some examples.
W Ag (5%+39?+“?:° X
A jt(.x,;,,‘})sﬂ‘ghg«g‘;-ﬁj""ﬂ#«’y7 7
. - Y z

If there exists 4 distinct collinear points at which the tangents
are concurrent at (a,b,c), ithen the polar P with respect to N
. ) 3 i

(a,b,c,) is P= ag-%+b}§-+63% 7 _

o P = alaxst+ 24’3 ¥ 34%) . o _ ol
+ blanyy + 44>+ =) o \ |
+e(ax’+ any?) ' | o -1
The line should not be passing through (0,0, 1) because it
would cut cubic at coincident points.
A genefal line not passing through (0,0,1) is of the form
§:w<x+ﬁﬂ . We want the condition for itrto be a component
of the polar cubic P,
Substitute into thé cubic

s We have

a zm(az«+/}3)z+ dyz(a(xftf\y)*-f 3«13] \ ‘
+ b [4«3(4«1*1?3) + G4yd+ 3] | | | ;M

4+ c[axt(anepp+ 2ny’] =©

That is  [2ex*+ b+ adc]ad+ T4aup £3a 4 4bx +2¢p 17y

-+f£aﬁz+ﬁad+4bﬁ+Q¢]452+I?aﬁ+4%153:o




4
)
IS

Fence we have four eguations : o

o?ﬂﬂ(z-f-[)-/'a?:x’(.:.o (i’ o Vo
‘Y o
4@&(;3 + 3a +4ba + o?cfj’:o ey b
Qap? + 4K r4bpt 2c =0 ) | }
1:26\)8 + 4b =0 v/ i
|
If we have a = 0, by (iv), b = 0. Alsc by (iii) we have ﬁ‘v
¢ =0, This is a contradiction. Hence we can assumre a0, X
. . -2b
ther by (1v).7 F —- | ”
Substitute into (iii) _aby? L/-2b) 1 a¢ =0
s Ra(-3) + ek +4b(~ 2 . |
i
- ihi
S RAA+RC =0 | |
LoAH=-< \jw
a o
Substitmfe into (ii) S ' b ‘ ﬁ‘
sassie 5t (0, (€Y 38) g (-§) 2l me
* ) ."‘
, .oa=o0 Conluwdelion J‘;
o ‘ il
1 ) . - .;‘,5\
) _ o 23 2 X 2 2z 2 b
Let  $(x,y,3) = 3% +Y3° + axy3"+ X5 +*Y 7 7
IF there exists 4 distimet collinear points at which the :
tangents are econcurrent at (a,b,c), then the polar P with
respect to (a,b,c), then the polar P with respect to {a,b,c)
is P = a(2y)®+ 93+ 9213‘) L | :
th (3P +axg" 4y} +27y) 0
. z : ol
+c(433+3‘352+4”<33*“5) o a
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The line should mot pass through (1,0,0) and 0,1,0) A general

line not passimg through (1,0,0) and (9,1,0) is of the form

[

X =y +Xz. We want the condition for it to be a comoomnent
of the polar cubic P, L

Substitute into the Polar cubic

a [Ry5% 973 + (y+3) 9]

+o [P a(3+kj)5f+ 2(4+%3)93 + £(j+0(j)53]
vo Taghe 33574 Hlgrap) w + (grapdy’] = 0
Tt o, [orabe+ec]s’

Z
o s
* [&‘1* 2b + abx + 2bx* + 3¢ +'4C¢5J Ys

AR
© s [ +daxy 2b 4 4bk taet e I3
¢ [2a+2b+c]¥ =0

Hence we have four equations

btabot +4c =0 W) . e
Ad+2b +2bx + obhx? +3c t#cX =0 Q) —
&+ 2ax +2b 4+ 4bo 4+ 4¢ +¢X =0 (L

. o

ga+ 2b+¢ =0

1{ b=o, Lbyw ¢=o0 . o

f e And by (iv) we have a = 0 , T 15 &
contradiction. |

Hence we can assume b %0

By (iv) we have ¢ = -2a -2b (V)'

Substitute {(v) into (i), we have

(2-T)b-9a = o W
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Substitute (v) into (iii), we have
~74 + (2 -6)b = 0 Wiy

Substitute (v) into (ii)

(8¢ = #)a +(-bx -4 + Ix2) b=0 i)

By (vi), we have a = Q—o{é:@i « Substitute into (vii),

since b+o , we have

T10X-T) L (ax-g) o

8
[go( +/];o

- L
=z

But by- substituti_ng X :'-:ZL ‘f‘hio ( vii) s WE héve‘ .
[-8(-p-4]a + [-4(-4) -4+ 24 b=o
<o [—-/ -{-:ZL] b=o
b =0
K 18 a contradiction,

The reat E%ﬂu. crses un +he Lot caw bz ff’lm Hue Same oy
Qs e Raue dmiukﬁm@m%““f’&“-
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!
Theorem 8.7 The strata listed in Lemma 8.5 are regular

Y

7

Proof. Let T be one of the strata listed in Lemma af, By

Prop. 8.3 we need only verify that % does not specialize
o

to any stratum other than E7 containing curves of the

form (3). But from the specialization diagram, I specialize

l’b
only to strata on the list, to E7 and to strata with

repeated components. The result follows.
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APPENDIX

Calculation of Milnor numbers

First we have to introduce the notion of quasihomo-
geneous and semiqguasihomogeneous functions, The following

definitions and results are frdm EArnold 19741.

Def. 1, We consider the arithmetical space dzn with fixed

coordinates Xy ee X A function f: (QP,O) ~ (£,0) is said

to be quasihomogeneous of degree 1 with expomnents al, cees O

(rational numbers) if

f(lulx ey lanx Yy = A f(x, ... %) for all r ¢ (€
. n 1 n

1’

. k ; .
In term of the Taylor series f = Xf x uasihomogenelt
¥ e d g ¥y
of degree 1 means that all the exponents of non-zero terms

lie on the hyperplane

We call this hyperplane T the'diagonal.

Def, 2, A quasihomogeneous function f is said to be

non~degenerate if 0 is an isolated critical point.

Def., 3. A monomial xk = xlkl .. X ko (generalized)

degree d if <u1k> = alkl +‘-___. + dnkn ='d.
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|

t \J
“l

;

|

!

Def., 4, A polynomial has filtration d if all its monomials ﬂ;
are of degree d or higher: when the degree of all monomials fy

\
is d, we call d the (generalized) degree of the polynomial. ‘.

polynomial of-degree 1l with exponent o, and £' is a

Def, 5, A polynomial is said to be semi-quasihomogeneous f
l

of degree 1 with exponents a = Gy vy O if it is of the 1q
¥

. . 1o

form £ = fo+f‘ where fo 15 a non-degenerate quasihomogeneous \w
|

polynomial of filtratiom strictly greater than 1.

In our context, we deal with polynomials of (ordinary)

|
\
!
degree four in three variables. Let us consider one of . "
’ |
\

our normal forms, say the normal form of AlAB(irr) (p.16). o

y4+x222+x2yz+uxyzz+8xy3 =0 o F £2 N
| B2-aB+140
(The o here is of course ¢ modulus and not a quasihomogeneous
exponent).
Locally at one of the singularities, which is in most

cases at one of the vertices of the triang{¢ . of reference,

say X, the normal form becomes (letting x = 1 in the equation)
a semi-quasihomogencous function of two variables y and =z.

In the above case this gives

l'i'
2
thez2evzravzepy’

The non~degenerate quasihomogeneous part can be found by

tsing the Newton diagram. The Newton Diagram can be drawn .




by representing each of the monomials 7Pz of the function

by the point (p,q) in the YxZ-plane. The Newton polygon

consists of the segments joining monomials on the Newton
diagram which have the property that every other monomials
on the diagram is on or above such a segment, Or, in other
words, it is the boundary of the convex hull of the monomials
in the Newton Diagram.

Each segment of the Newton Diagram Qefines a quasi-
homogeneous type (aI’GZ) if the ﬁonomials on the segment

kl + k. = 1}, And 1f the

are on the diagonal T = {k: ak,

%

. monomials on that segment define a nondegenerate function

then the whole function is semi-guasihomogeneous, LSometimes,
though, they define a degenerate function and then we need

the idea of piecewise quasihomogeneous function or the

"magic formula" (see later) e.g. for'Y5+Y222+Z4 both

YE+YZZ2 and Y222+Z4 are degenerate; notice that this

Y5+Y222+Z4 does not actually occur on quartic curveé].
In our example, ZZ, YZ and Y3 are the terms on the
dewton polygon but only 22 and YZ are on the diagonal
I = {k: ulkl+u2k2 = 1} where
(al,az) = (},4) and the rest

of the terms have degree > 1,
According to Arnold's result |[Arnold 1974 Th. 3.1]
(£ *ET) = w(E)

where fo+f' is a semiquasihomogeneous function with f its

n0n—degeneréte quaéihomogeneous part. And by (}rnold 1974

H‘.




L)\

9_..

Th 10,21, we can [ind the Milncor number p of a quasfhomoge—
L

neous and nondegenerate function f by the following formula

where (q ,uz) is the quasihomogeneous type of the function.

1
In our case, the Milnor number for ZY—Y2 is (2-1)(2-1)=1
i.e. U =1, ' ﬂu
Let us look at the.other singularity at Z. Letting

z = 1 in the normal form, we have a semi-quasihomogeneous .

function of two variables in x and vy il

Y

] I

! ; | v*ex?extyroxyZepxy’

Ll -

N ’

AN

i \ I ! X "By the Newten diagram, the lowest terms 1

are Xz, XY2 and Y4. All of these are |

on the diagonal T with (ul,az) = (1,1) and the other terms 'ﬂ

" are having degrees > 1, Since o # *2, the quasihomogencous
part 1s pnon-degenerate,

So p = (2-1)(4-1) = 3.

Let us see what happens when o = 2 (this o is the

parameter in the moduli space of the normal form). Then

the lowest terms form a degenerate function (X+Y2)2+X2Y+BXY3.

So in order to obtain a non-degenerate gquasihomogeneous
part for the function, we have to take it through a trans-

formation, namely,

X -+ X—Y?
Y=Y
2+ Z ' ©




. = 270 - i

|
Hence, the function becomes f i

%24 (x-12) PyeB(x-v2)Y°>

2

i.e. ‘X2+X Y~(2'B)XY3+(1-B)Y5

Assuming B # 1, the coefficient of Y5 is nonzero. The !

\(

Newton polygon consists of one

segment, joinlng Xz and YS and i

they are both on the diagonal T

[ X with (al,uz) = (%,g)s and ihe $*

\ |

\

'

rest of the terms have degree »1., So the Milnor number p

can be obtained by il

po= (2-1)(5-1) = 4

So when & = 2, B # 1 the equation represents the stratum
AlAa' (The singularity is-A4 and not D4 since 1t 18 a
double point).,

Let us look at some more examples .

(i) D6 with normal form z(y3+z3+xyz) = 0.

The singularity is at X, so letting x = 1, we have

it I
. Y3Z + Z4 + YZZ.

The Newton polygon joins all 3

|

l
;
|

|

] . 3
; monomials, but only Y Z and YZ
TR ) . L2 b,
are on the diagonal T with (ul,az) = (3’33 and z with

degree > 1, Also Y32 + YZz is nondegenerate. Hence the

5
Milnor number T (5—1)(5—1) = §

te
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(i1i) Dg xzyz = x4+uxy3+y
The singularity is at Z, so letting z = 1, the fﬁnction becomes )
, Tﬁz*ﬁf‘ x’y - x* - axy? - ¥ ' 5
The terms on the Newton pelygon

i | are X4, XZY and Ya, but only X2Y H

\

. ¥ and Y4 are on the diagonal T with 1

(ay,0,) = (3 l) and X°, XY? have degrees > 1. Also XZY~Y4 :
is nondegenerate. Hence ho= %-1)(4 1) = 5. ju

(1ii) Ay (zx-y?) = <3y

The singularity is at Z, so letting z = 1, we have

(x--Yz_)2 - X°Y

Taking the transformation

X +-X+Y2 .
Y » ¥ é
zZ + Z ;
2
we have X2 - (X+Y“)3Y
\f/.lj_l. i |
T % x2-x3y-3x2y 3-3xv° -y’ : !
e )
| J { _ The terms on the Newton polygon
AL 2 7
V[ TT are X° and Y and they are both
V1 < o .
Pl II . on the diagonal T with (ul,uz) =
(%,%), and the rest of the terms have degrees > 1. Also
X2—Y7\is nondegenérate. Hence p o= {(2=-1)(7-1) = 6.

Apart from the above technique, we also have a magic

formula from [A.G. Koshireuko 19761 for calculating u for




- f
non—degenerate quasihomogeneous functions. Actually this

formula is not just for non-degenerate quasihomogeneous

function. It is suitable for any function for which the |

terms on the Newton polygon give a nondepgenerate function

(see example (iii)). The "magic formula" is

u(f)=2V2—Vl+l i

where v, the area of the polygon T (f) (i.e. below the

Newton Polygon and above the axes in the Newton Diagram)
and Vq is the length of the intersection of the polygon !

|
: _ |
T_(f) with the coordinate axes. 5

Examples - S I

(1) E7 z(y3+xzz+y2z) =0

z L The singularity is at X, so |
. 2 i

f lJetting x = 1, we have Y3Z+23+Y Z2 !

F

|

[

L4

- S T

[
IF,
=7). According to the diagram, v, = 6, v, = 6.

T (by previous technique p = (%—1)(3—1)

Hence W{Ff) = 2x6-6+1 = 7.

(ii) D xyz(xty) = x4+ax2y2+6y4 (by previous technique

e

T ’ : we have u = 2x2 = 4), Accotding

to the diagram, V, = 51, v, o= 8.
ﬂll
2

B +1 = 4,

u(f) .= 2

Yt X

(iii) To illustrate the point that the formula is suitable

for any functions for which the terms on the Newton Polygon




- 273 -

p
give a nondegenerate function, we choose the following

‘example. Note that it does not occur in quartic curves,

It is not quasihomogeneous and since both Y5+Y222 and

2,2 .4

v27%47% are degenerate it is not even semi-quasihomogeneous.

Hence we cannot use the quasi-homogeneous formula. But by
z "7'! f; " the magic formula, we can easily
% N | find out the Milnor number is
:H < U= 249 - 9 + 1 = 10.

- Y

If in case the terms on the Newton Polygon give a degenerate

function, then we have to do coordinates changes to gei a
non-degenerate function before we can apply the "magic

formula".
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