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1 Introduction

We study the singularities of envelopes of families of chords (special straight lines) intrin-
sically related to a hypersurface M ⊂ Rn embedded into an affine space.

The origin of this investigation is the paper [10] of Janeczko. He described a general-
ization of central symmetry in which a single point—the centre of symmetry—is replaced
by the bifurcation set of a certain family of ratios. In [6] Giblin and Holtom gave an
alternative description, as follows.

For a hypersurface M ⊂ Rn we consider pairs of points at which the tangent hy-
perplanes are parallel, and in particular take the family of chords (regarded as infinite
lines) joining these pairs. For n = 2 these chords will always have an envelope, and this
envelope is called the centre symmetry set (CSS) of the curve M. When M is convex (the
case considered in [10]) the envelope is quite simple to describe, and has cusps as its only
generic singularities.

In [6] the case when M is not convex is considered, and there the envelope acquires
extra components, and singularities resembling boundary singularities of Arnold. This is
because, arbitrarily close to an ordinary inflexion, there are pairs of points on the curve
with parallel tangents. The corresponding chords have an envelope with a limit point at
the inflexion itself.

When n = 3 we obtain a 2-parameter family of lines in R3, which may or may not
have a (real) envelope. The real part of the envelope is again called the CSS of M . See
Figure 1. The singularities of the CSS are closely related to Lagrangian and Legendre
singularities [2, 12]: they are generalizations of singularities of families of normals to a
hypersurface in Euclidean space. This is because, given a surface germ and a parallel
(equidistant) surface germ, the common normals form a family of chords through points
with parallel tangent planes; it follows that, locally, focal sets of surfaces are a special
case of our construction and all the usual singularities of focal sets will occur. The same
applies, of course, in any dimension n.

Note that the CSS is, unlike the focal set, an affine invariant of a hypersurface M in an
affine space Rn. This is of interest [1, 4] in various applications in physics and differential
equations. For example, a Hamilton function defined on the cotangent bundle to a man-
ifold determines a collection of hypersurfaces in affine space which are the intersecton of
the level hypersurfaces with the fibres (the latter possess a well defined affine structure).
The affine geometry of these hypersurfaces is important in Hamiltonian mechanics and in
optimization theory [1].

In this paper we present a general method for analysing the local structure of the
envelope of chords, assuming that it is real. We construct a generating function depending
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Figure 1: Left: A schematic drawing of the Centre Symmetry Set (CSS) defined locally
by two pieces of surface M and N . The CSS is a surface tangent to all the chords from
M to N where the tangent planes at the ends of the chords are parallel. In this figure the
chords are tangent to two real sheets of the CSS. It is also possible for the two sheets
to come together along a curve (see §3) and for the sheets to be imaginary. Right: a
computer generated drawing of one sheet of a CSS, with three chords drawn tangent to
the sheet.

on parameters whose bifurcation set, when real, is tangent to all these chords. We are
then able to apply methods of [12] to analyse the structure of the CSS both for curves and
surfaces, and to a lesser extent in higher dimensions. Some initial steps in the application
of this method were taken by Holtom in his MSc dissertation [9].

In this paper we concentrate on the theory; in a subsequent paper we shall examine in
detail the geometry of the cases n = 2 and n = 3, also providing computer-drawn figures
to illustrate the different forms that the CSS can take. Some of the results of the present
article were announced in [7].

A different application of our constructions is to a description of generic singularities
of families of equidistants in Finsler geometry. Consider a translation invariant Finsler
metric on an affine space A which is a function on the cotangent space T ∗A invariant
under translations. The nonsingular level set of this function considered as a Hamilton
function (e.g. the Riemannian metric determines a Hamiltonian which is a quadratic form
with respect to fibres) determines a system of Finsler geodesics. Since this Hamiltonian
is translation invariant, the geodesics are straight lines. Given a initial data hypersurface
I ⊂ A the family of Finsler equidistants It arise. For a translation invariant metric the
generic singularities of these families coincide with those of a family of chords determined
by the hypersurface I and by the Finsler indicatrix of admissible velocities (see §2.)

We shall in general distinguish the following three cases which occur in the generic
setting. We consider two hypersurface germs M,a0 and N, b0 in Rn, where the tangent
hyperplanes at the two base points a0, b0 are parallel.
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1. Transversal case (N). The base points are distinct and the chord through them is
transversal to both M and N .

There are two subcases :

(NN) M and N are non-parabolic at these points. (For n = 1, this means that neither
has an inflexion; for n ≥ 2 that all the eigenvalues of the second fundamental
form are nonzero.)

(ND) At least one of these points is parabolic.

2. Tangential case (T). The points a0, b0 are distinct but the tangent hyperplanes to
M and N at these points coincide—the case of a double tangent hyperplane. This
case will be considered only in R2 and in R3 since there arise functional moduli
in higher dimensions. Such generic pairs of points of bitangency with planes form
smooth curves on a generic pair of surfaces M and N in R3.

Again we treat separately the following subcases :

(TN) The points a0 and b0 are not parabolic.

(TD) At least one of these points is parabolic.

These two cases cover all local singularities of generic systems of chords joining the
points from a pair of distinct manifolds, since generic hypersurfaces are nowhere tangent
to each other. However since we aim to describe generic singularities of families of chords
joining the points of one and the same hypersurface the following case has to be included:

3. Inflexion case (I). Arbitrarily close to a parabolic point a0 on a hypersurface M
there are pairs of points a, b with parallel tangent hyperplanes to M . We consider
the family of chords joining these pairs of points. Here again we consider only
n = 2, 3.

In this paper all constructons are local and all objects are assumed to be C∞-smooth.
We are mainly interested in the case of surfaces in 3-space but for completeness we start
with the case of curves in the plane. In Section 2 we give the necessary singularity theory
background and formulate the main results on the normal forms and stability of generic
singularities of the CSS. Following are the main results.

1. Transversal case, §3, Theorems 3.3,3.7.
The generic singularities of the CSS of (N) type for n ≤ 5 are germs of irreducible (sin-
gular) hypersurfaces diffeomorphic to stardard caustics of generic Lagrangian mappings
of Rn → Rn; equivalently, they are diffeomorphic to bifurcation sets of the versal defor-
mations of function singularities of types A,D,E. They are stable and simple and all the
singularity classes are realised. In particular for n = 3 the CSS besides regular points can
have cuspidal edges, swallowtails and pyramids (D−

4 type) or purses (D+
4 type). For the

(NN) case the germs of caustics are disjoint from the germs of M and N. If a ∈ M is a
parabolic point ((ND) case) the CSS intersects the hypersurface N ‘transversally’ at the
point b.
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2. Tangential case, §4, Theorems 4.2,4.3.
The germ at a point on a bitangent chord of the CSS consists of two irreducible com-
ponents: the closure of the union of all nearby bitangent lines (envelope) and a caustic.
The germs of these reducible varieties for n ≤ 3 are diffeomorphic to one of the standard
bifurcation sets of the types B2, B3, C3, C4, F4 from the V. Goryunov’s list of simple sin-
gularities of projections of complete intersections onto a line (see [8, 12]). They are stable
and simple. In the (TD) case they intersect the initial surfaces M or N. An additional
simple singularity, similar to C4, arises.

3. Inflexion case, §5, Theorem 5.3.
The germ of the CSS at an inflexion point of a curve in the plane (n = 2) is diffeomorphic
to a union of smooth line and a branch of a parabola tangent to the line at the origin.
In 3-space there are several generic types of singularities. Some of them are not simple
(diffeomorphic types depend on functional invariants) and contains two components. The
geometric description and normal forms are discussed in §5.

Finally in §6 we consider the question: which 2-parameter families of lines in R3 can
arise locally as chords joining pairs of points of two surface germs where the tangent
planes are parallel? We find that all generic families can occur in this way. However the
degenerate families of chords carry special Lagrange singularities different from singular-
ities of general mappings. Here the situation is similar to comparing Hamiltonian and
general vector fields. Near non-singular points they have the same diffeomorphic type,
while near singular points their classifications diverge.

2 Affine generating families

Let M,a0 and N, b0 be two germs at points a0 and b0 of smooth hypersurfaces in an affine
space Rn. Let ri : Un−1

i → Rn i = 1, 2 be local regular parametrizations of M and
N, where Ui are neighbourhoods of the origin in Rn−1 with local coordinates x and y
respectively, r1(0) = a, r2(0) = b.

Definitions related to the Centre Symmetry Set

A parallel pair is a pair of points a ∈ M, b ∈ N, a 6= b such that the hyperplane TaM
which is tangent to M at a is parallel to the tangent hyperplane TbN. In the sequel we
will always suppose the distinguished pair a0, b0 is a parallel one.

A chord is the straight line l(a, b) passing through a parallel pair:

l(a, b) = {q ∈ Rn | q = λa + µb, λ ∈ R, µ ∈ R, λ + µ = 1} .

An affine (λ, µ)–equidistant Eλ of the pair (M,N) is the set of all q ∈ Rn such that
q = λa + µb for given λ ∈ R, µ ∈ R, λ + µ = 1 and all parallel pairs a, b (close to a0, b0).
Note that E0 is the germ of M at a0 and E1 is the germ of N at b0.

The extended affine space is the space Rn+1
e = R × Rn with barycentric cooordinate

λ ∈ R, µ ∈ R, λ + µ = 1 on the first factor (called affine time). We denote by
π : w = (λ, q) 7→ q the projection of Rn+1

e to the second factor.
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An affine extended wave front W (M,N) of the pair (M,N) is the union of all affine
equidistants each embedded into its own slice of the extended affine space: W (M,N) =
{(λ,Eλ)} ⊂ Rn+1

e .
The bifurcation set B(M,N) of a family of affine equidistants (or of the family of

chords) of the pair M,N is the image under π of the locus of the critical points of the
restriction πr = π|W (M,N). A point is critical if πr at this point fails to be a regular
projection of a smooth submanifold.

In general B(M,N) consists of two components: the caustic Σ being the projection of
the singular locus of the extended wave front W (M,N) and the criminant ∆ being the
(closure of) the image under πr of the set of regular points of W (M,N) which are the
critical points of the projection π restricted to the regular part of W (M,N). The caustic
consists of the singular points of momentary equidistants Eλ while the envelope is the
envelope of the family of regular parts of momentary equidistants.

Besides being swept out by the momentary equidistants, the affine wave front is swept
out by the liftings to Rn+1

e of chords. Each of them has regular projection to the con-
figuration space Rn. Hence the bifurcation set B(M,N) is essentially the envelope of the
family of chords, that is the CSS of the pair M, N. From now on we shall in fact use
B(M,N) as our model for the CSS.

Singularity theory

We now recall some stardard definitions and results (see e.g. [2, 12, 8]) on the sin-
gularities of families of functions depending on two groups of parameters (space-time
unfoldings), which will be used below.

A germ of a family F (z, w) of functions in z ∈ Rk with parameters w = (t, q) ∈ Rn+1
e

where t ∈ R and q ∈ Rn determines the following collection of varieties:

• The fibrewise critical set is the set CF ⊂ Rk × R × Rn of solutions (z, w) of the
so-called Legendre equations:

F (z, w) = 0,
∂F

∂z
(z, w) = 0.

• The big wave front (or discriminant) is W (F ) = {w = (t, q) | ∃z : (z, w) ∈ CF } .

• The intersection of the (big) wave front with t = const is called the momentary
wave front Wt(F ).

• The bifurcation set B(F ) is the image under the projection π : (t, q) 7→ q of the
points of W (F ) where the restriction π|W (F ) fails to be a regular projection of
a smooth submanifold. Projections of singular points of W (F ) form the caustic
Σ(F ), and the closure of the set of singular projections of regular points of W (F )
determine the criminant ∆(F ).

• The Legendre subvariety Λ(F ) is a subvariety of the projectivised cotangent bundle
PT ∗(Rn+1) :

Λ(F ) =

{
(w, w̄)

∣∣∣∣ ∃z, (z, w) ∈ CF , w̄ =

[
∂F

∂w

]}
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Here [ ] stands for the projectivisation of a vector.

The family F is called a generating family for Λ(F ).

The germ of Λ(F ) is smooth provided that the Legendre equations are locally reg-
ular, i.e. that the standard Morse conditions are fulfilled (see e.g. [2]).

The following equivalence relations will be used below. Two germs of families Fi, i =
1, 2 are

• contact-equivalent (c-equivalent for short) if there exist a non-zero function φ(z, w)
and a diffeomorphism θ : Rk × Rn+1 → Rk × Rn+1, of the form θ : (z, w) 7→
(X(z, w),W (w)) such that φF1 = F2 ◦ θ.

• right + equivalent (R+-equivalent for short) if there exist a function ρ(w) and a dif-
feomorphism θ : Rk ×Rn+1 → Rk ×Rn+1 of the form θ : (z, w) 7→ (X(z, w),W (w))
such that ρ + F1 = F2 ◦ θ.

If ρ(w) = 0 the families are called right (R)-equivalent.

• space-time-contact-equivalent (v-equivalent for short) if there exist a non-zero func-
tion φ(z, t, q) and a diffeomorphism θ : Rk × Rn+1 → Rk × Rn+1, of the form

θ : (z, t, q) 7→ (X(z, t, q), T (t, q), Q(q))

such that φF1 = F2 ◦ θ.

• space-time-shift-equivalent (r-equivalent for short) if there exist a non-zero function
φ(z, t, q) and a diffeomorphism θ : Rk×Rn+1 → Rk×Rn+1, of the form θ : (z, t, q) 7→
(X(z, t, q), t + ψ(q), Q(q)) with some smooth function ψ such that φF1 = F2 ◦ θ.

The sum of the family F (z, t, q) with a non-degenerate quadratic form in extra variables
y1, . . . , ym is called a stabilization of F. Two germs of families are stably ∗-equivalent if
they are ∗-equivalent (∗ stands for one of the above c, v or r equivalences), to stabilizations
of one and the same family in fewer variables.

We now recall some standard facts.

• The discriminants of stably c-equivalent families are diffeomorphic, and the bifur-
cation sets of stably v-equivalent (r-equivalent) families are diffeomorphic.

• Legendre submanifolds LF of stably c-equivalent families are Legendre equivalent:
the germ of θ determines a contactomorphism of the projectivised cotangent bundle
PT ∗Rn+1 which preserves the fibres and maps one Legendre submanifold onto the
other.

• Moreover the big wave front W (F ) determines uniquely the stable c-equivalence
class of its generating family F provided that the regular points form a dense subset
of W (F ).
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The critical points of the projection π|W (F ) satisfy the equation:

det

∣∣∣∣∣∣

∂F
∂z

∂F
∂t

∂2F
∂z2

∂2F
∂t∂z

∣∣∣∣∣∣
= 0.

Since at a point of W (F ) the first k entries ∂F
∂z

of the first row vanish, the determinant
factorises. Hence the bifurcation set B(F ) splits into two components. One of them (which
is the criminant ∆(F )) is the image under the projection (z, t, q) 7→ q of the subvariety
of CF in (z, t, q)-space determined by the equation ∂F

∂t
= 0. The other one (which is the

caustic Σ(F )) is the image under the projection (z, t, q) 7→ q of the subvariety of CF in

(z, t, q)-space determined by the equation det
(

∂2F
∂z2

)
= 0.

The following version of Huygens’ principle holds: the criminant (envelope) coincides
with the wave front of F, considered as a family in variables z and t with parameters q
only.

Two families with diffeomorphic caustics are called weakly equivalent.

Standard arguments of singularity theory (see e.g. [2]) imply that versality and in-
finitesimal versality conditions for c or v groups yield the stability of wavefronts or bifur-
cation sets (small perturbation of a versal family produces a wavefront or bifurcation set
diffeomorphic to the unperturbed one).

In particular, we will use the following standard result (see [2]) on straightening of
vector fields transversal to stable wave fronts. Denote by Ox the algebra of germs at the
origin of smooth functions in variables x and by Mx the maximal ideal of Ox. If the germ
of an unfolding F (z, t, q) ∈ Mz,t,q of functions in z with parameters t, q is versal with
respect to right equivalence and ∂F

∂t
6= 0 then the family is r-stable.

Generating family for the CSS

We now come to the link between singularity theory and the CSS: a generating family
which describes the CSS and to which we can apply the above results. Let, as above,
λ, µ = 1 − λ be barycentric cooordinates on R; let 〈, 〉 be the standard pairing of vectors
from Rn and covectors p from the dual space (Rn)∧. Let r1, r2 be local parametrizations
of M , N close to a0, b0 respectively, defined on neighbourhoods U, V of the origin in Rn−1,
with coordinates u, v and satisfying r1(0) = a0, r2(0) = b0.

Definition 2.1 An affine generating family F of a pair M,N is a family of functions in
x, y, p ∈ U × V × ((Rn)∧\{0}, 0) with parameters λ, q ∈ R × Rn of the form

F(x, y, p, λ, q) = λ〈r1(x) − q, p〉 + µ〈r2(y) − q, p〉.

Proposition 2.2 The wave front W (F) coincides with the affine extended wavefront
W (M,N) and the bifurcation set B(F) coincides with the CSS of the pair M,N .

Proof. The equations ∂F
∂p

= 0 clearly imply that λr1(x) + µr2(y) − q = 0. Note that as
F is homogeneous of degree 1 in p, it is equal to an appropriate linear combination of its
derivatives with respect to p. So the equations ∂F

∂p
= 0 also imply the equation F = 0.
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The conditions ∂F
∂x

= 0 imply that 〈λ∂r1

∂x
, p〉 = 0 or equivalently either λ = 0 or

〈∂r1

∂x
, p〉 = 0. The latter means that the hyperplane 〈·, p〉 = 0 annihilates all tangent

vectors to M at r1(x). Together with the equations ∂F
∂y

= 0 this implies that either p is a
common conormal to the tangent planes to M and N at corresponding points, or λ = 0,
and p is conormal to N which gives q = r2(y) for the corresponding x, or µ = 0 and p is
conormal to N which gives q = r1(x).

Hence W (F) is reducible and consists of three components: the germ of N : λ =
0, q = r2(y); the germ of M : µ = 0, q = r1(x); and the germ of the set of (λ, q) such that
λ 6= 0, µ 6= 0, and q is a point on a chord joining the parallel pair r1(x), r2(y). The other
claim of the proposition follows. 2

Remarks and Notation

1. The closure of the third component W∗(F) of W (F) coincides with union of all three
and therefore coincides exactly with the set W (M,N). However, formally speaking the
wave front W (F) contains also the other two exceptional divisors, and the Legendre
variety L(F ) has three irreducible components.

2. The proof above shows that the germ of W (F) at any point (λ0, q0) where q0 =
λ0a0 + (1 − λ0)b0, corresponding to x = 0, y = 0, [p] = [dr1|a0

] = [dr2|b0 ], coincides with
the germ of the extended wavefront W (M,N) at this point.

3. In the sequel we deal with the component W∗(F) and with the corresponding compo-
nent of the critical locus CF . When investigating the germ of the CSS we will ignore the
redundant components corresponding to λµ = 0, which are merely the germs of the two
surfaces M and N .

Chords as extremals

The system of chords determined by a pair of (germs of) hypersurfaces M,a and N, b
arises naturally in the following variational problem.

In the tangent space TqR
n (which we identify with Rn itself) at any point q ∈ Rn

choose a set (indicatrix) Iq of admissible velocities q̇ of motion to be the set of vectors
r2(y)−q. So, the directions of admissible motion at q are directed towards the hypersurface
N parametrised by y. Let q(t) be an absolutely continuous (or piecewise smooth and
continuous) trajectory of admissible motion (almost everywhere q̇ ∈ Iq) issuing at t = 0
from hypersurface M. For a fixed value t0 consider the end-point mapping E : C → Rn

(here C is the Banach manifold of all admissible trajectories defined on the segment [0, t0]),
which associates the end-point q(t0) to a trajectory q(t).

As it is well known (this is a modification of Bellman or Pontryagin Maximum prin-
ciple; for the details, see e.g. [1, 12]) the critical values of E for all t0 trace the extremal
trajectories, which, in our case, are projections to Rn of the solutions of the associated
Hamilton canonical equations in the cotangent bundle

q̇ =
∂H∗(p, q)

∂p
, ṗ = −

∂H∗(p, q)

∂q

with the Hamiltonian function H∗(p, q) on the contangent bundle T ∗Rn which in our case

is the (multivalued, in general) restriction to the subset {(p, q)|∃y : ∂H∗(p,q)
∂y

= 0} of the
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function H = 〈r2(y)−q, p〉, provided that the initial conditions (p0, q0) satisfy the relation
〈v, p0〉 = 0 for each v tangent to M at q0.

Direct verification shows that chords, joining points of M and N are extremals in this
problem. So CSS is the envelope of extremals (that is the union of singular points of sets
of critical values of Et0 for all t0.).

The case of a translation invariant Finsler metric corresponds to the indicatrix Iq =
r2(y), the extremals being straight lines issuing from points q0 of M with the constant
velocity q̇0 such that the tangent hyperplane to I at q̇0 is parallel to the tangent hyperplane
to M at q0. In this case (which is the limiting case of systems of chords for N located
“very far” from N) the envelope of these extremals is the bifurcation set of family of
functions F̃ = 〈r1(x)+ tr2(y)− q, p〉 in variables p, x, y with parameters t, q. This is quite
similar to F defined above for systems of chords and produces the same singularities in a
generic setting.

3 Transversal case

In the transversal case (NN and ND in the terminology of §1) we can choose affine co-
ordinates q = (h, s1 . . . , sn−1) in Rn such that a0 = (1/2, 0, . . . , 0), b0 = (−1/2, 0, . . . , 0)
and the hyperplanes tangent to M,a0 and N, b0 are parallel to the h = 0 coordinate
hyperplane.

Take local parametrizations of M and N in Monge form:

r1(x) = (1
2

+ f(x), x1, . . . , xn−1), r2(y) = (−1
2

+ g(y), y1, . . . , yn−1).

Here x = (x1, . . . , xn−1) ∈ U ; y = (y1, . . . , yn−1) ∈ V , where U, V are neighbourhoods
of the origin in Rn−1 and the smooth functions f, g have zero 1-jet at the origin: f ∈
M2

x, g ∈ M2
y.

Lemma 3.1 The germ of the family F (see Definition 2.1) at the point x = 0, y =
0, p0 = (1, 0, . . . , 0), λ = λ0, q0 = (h0, 0, . . . , 0), h0 = 1

2
(λ0 − µ0) (which corresponds to

the point q0 = λ0a0 + µ0b0 on the chord l(a0, b0) ) is stably r-equivalent to the germ of
the following family G of functions in z ∈ Rn−1 with parameters q = (h, s), λ at the point
z = 0, λ = λ0, q = q0 = (h0, 0) :

G = −h + λ
(

1
2

+ f(s + µz)
)

+ µ
(
−1

2
+ g(s − λz)

)
.

Proof. The family F differs only by a non-zero factor from its restriction Fr to the
subspace p = (1, p1, . . . , pn−1) which is

Fr = −h + 1
2
(λ − µ) + λf(x) + µg(y) +

n−1∑

i=1

(λxi + µyi − si)pi.

Let wi = λxi + µyi − si and zi = xi − yi for i = 1, . . . , n − 1. The determinant of the
transformation x, y 7→ z, w equals 1. In the new variables z, w the family takes the form
F∗ = G∗(z, w, λ, q) +

∑
wipi where

G∗ = −h + 1
2
(λ − µ) + λf(x(z, w)) + µg(y(z, w)).
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By Hadamard’s lemma F∗ = G∗(z, 0, λ, q)+
∑

wi (pi + φi(z, w, λ, q)) , where φi are smooth
functions vanishing at w = z = 0, λ = λ0, q = q0. Hence F∗ is a stabilization of
G∗(z, 0, λ, q). Since the restriction to w = 0 of the inverse mapping z, w 7→ x, y yields
x = s + µz, y = s − λz we obtain

G(z, λ, q) = G∗(z, 0, λ, q) = −h + 1
2
(λ − µ) + λf(s + µz) + µg(s − λz). 2

Given a point q0 = (h0, 0), h0 = 1
2
(λ0 − µ0) of the chord l(a0, b0), the family G de-

termines an unfolding in small parameters s1, . . . , sn−1, h̃ = h − h0, ε = λ − λ0 of the
organising centre G0 = G|λ=λ0,q=q0

, a function of z alone. Then the quadratic part of G0

is equal to
j2G0(z) = λ0µ

2
0f2(z) + λ2

0µ0g2(z),

where f2, g2 are the quadratic parts of these functions. If this form is non-degenerate and
λ0 6= 0 6= µ0 the corresponding germ of G is a versal unfolding of a Morse singularity. Its
wave front is regular and the bifurcation set is void. This remains true also for the limit
cases λ0 = 0 or µ0 = 0. To see this it is enough to consider the equations determining the
caustic of the component W∗(G) corresponding to λ0µ0 6= 0 (see the Remarks following
Proposition 2.2).

The equality ∂G
∂λ

= 1 for z = 0 implies that the criminant ∆(F ) is always void. So the
following holds.

Corollary 3.2 A point q0 belongs to B(M,N) if and only if the quadratic form µ0f2(z)+
λ0g2(z) is degenerate. 2

Remark. Drawing the Centre Symmetry Set The above corollary is the key to
drawing the Centre Symmetry Set in dimensions 2 and 3. Consider two surfaces, say
M = {(x1, x2, f(x1, x2)} and N := {(y1, y2, g(y1, y2)+k)} where f, g and their first partial
derivatives vanish at (0, 0), so that the tangent planes to M at (0, 0, 0) and N at (0, 0, k)
are parallel. We need find the pairs of points a of M and b of N close to these two
for which the tangent planes are parallel, parametrizing these by say (x1, x2). Of course
this may pose serious computational problems; many examples however can be drawn by
choosing one of the surfaces so that the resulting equations f1 = g1, f2 = g2 are linear in
two of the variables. Here subscripts denote differentiation with respect to the variables,
f1 = ∂f/∂x1, etc. For example we can often use g = −y2

1 − y2
2.

We then calculate the zeros of detH where

H =

(
f11 + θg11 f12 + θg12

f21 + θg21 f22 + θg22

)
,

For each such (real) zero θ we use the values λ = θ/(1 + θ), µ = 1/(1 + θ) (thus θ = λ/µ
and λ+µ = 1) to find the point λa+µb on the CSS. An example showing just one of the
two sheets of the CSS is drawn in Figure 1. A full discussion of the CSS in the surface
case, with illustrations, will appear elsewhere.

Remark. The pencil µf2(z) + λg2(z), λ ∈ R of quadratic forms can meet the variety of
degenerate quadratic forms at fewer than n − 1 real points (some roots can merge or be
complex). We describe the geometry of this for n = 3 at the end of the current section.
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Fix now domains U, V and the Monge parametrisation g(y), y ∈ V of N. Suppose that
at any point the corresponding form g2 is non-degenerate, that is N does not have a
parabolic point. Thus we are considering the NN case here, in the terminology of §1.

Theorem 3.3 Let n ≤ 5. There is an open and dense subset of the space of hypersurfaces
M : (f(x), x), x ∈ U with non-degenerate quadratic form at any point consisting of those
M which together with N as above are such that the corresponding family G at each point
is r-stably equivalent to a versal deformation of one of the germs of functions with a simple
singularity of the types Ak, (1 ≤ k ≤ n + 1), Dk(4 ≤ k ≤ n + 1), E6.

Remark. Generic caustics as above are stable and simple. All the classes listed appear
in examples.

For the proof of Theorem 3.3 we shall need several lemmas. If f2 is a non-degenerate
quadratic form then the gradient mapping χf : x 7→ −∂f

∂x
is invertible. Denote by f∗(p̄)

the Legendre transform of f(x) :

f∗(p̄) =

(
f(x) − x

∂f

∂x

) ∣∣∣x=χ−1

f
(p̄) , p̄ = (p1, . . . , pn−1).

Lemma 3.4 If both f2 and g2 are non-degenerate then the family F (see Definition 2.1)
is r-stably equivalent to a family H of functions in p̄ ∈ Rn−1 with parameters λ, q, of the
following form.

H = −h +
1

2
(λ − µ) −

n−1∑

i=1

pi qi + λf∗(p̄) + µg∗(p̄)

Proof of the lemma. In the affine chart p0 = 1 of the dual space the Legendre conditions
∂F
∂x

= 0 for λ 6= 0 6= µ imply ∂f(x)
∂x

+pi = 0, ∂g(y)
∂y

+pi = 0 for i = 1, . . . , n−1. Solving these
equations for x and y and applying a stabilization procedure similar to that of Lemma 3.1
the family F becomes stably equivalent to the required form

H = −h+
1

2
(λ−µ)−

n−1∑

i=1

piqi+λ

(
f(x) − x

∂f(x)

∂x

) ∣∣∣x=χ−1

f
(p̄) +µ

(
g(y) − y

∂g(y)

∂y

) ∣∣∣y=χ−1
g (p̄) .2

Take an integer m large enough, say m > 7.
For n ≤ 5 the subspace M2

m ⊂ Jm(n − 1, 1) of m-jets at the origin of functions with
zero 1-jet splits into finitely many orbits Oc

α of the right action (of jets of diffeomorphisms
of the source space Rn−1 preserving the origin) having codimension c ≤ n (in M2

m) and a
closed algebraic subset Ōn+1 which is the closure of all right orbits of codimension ≥ n+1.

Take an orbit Oα of positive codimension in M2
m (containing jets with degenerate

quadratic part).

Lemma 3.5 Jets jmf ∈ Oα such that vector jmg∗ is tangent to Oα at jmf form an
algebraic subset Sα ⊂ Oα of positive codimension in Oα.

11



Remark. We identify the tangent space to the affine space Jm(n − 1, 1) at each point
with this space itself.

Proof of the lemma. Clearly, subset Sα is algebraic. To show that it has positive
codimension take a jet jmf ∈ Oα. Let K be the kernel subspace of the quadratic form of
j2f. The quadratic part of a tangent vector to Oα at jmf is a form whose restriction to
K is degenerate. Linear transformations τ : Rn−1 → Rn−1 such that the form j2g∗ is not
degenerate when restricted to τ(K) form a Zariski open set in GL(n − 1,R), since the
whole quadratic form j2ϕ is non-degenerate.

So j2ϕ is transversal to Oα at all j2(f ◦ τ) for any τ from this set. So the complement
to Sα is dense in Oα. 2

Denote by Tm+1 the subspace of Jm+1(Rn−1,R) formed by jets of functions f(p̄) such
that the mapping from p̄, q space to Jm(Rn−1,R) which sends p̄, q to the m-jet at ε =
0, p̄, q of the family

H̃ = −h +
1

2
(λ − µ) −

n−1∑

i=1

pi qi + f∗(p̄) + εg∗(p̄)

is transversal to r−orbit through jm(f), and hence, in particular, the respective germ
of the family is r-versal.

Lemma 3.6 The complement S̄m+1 = Jm+1(Rn−1,R) \ Tm+1 has codimension ≥ n in
Jm+1(Rn−1,R).

Proof. Clearly S̄m+1 is a semialgebraic subset, since the transversality to the orbit in
m-jet space is determined by the (m+1)-jet of the family. Assume its codimension is less
than n.

Split the space M2
m into the r-orbits Oα of codimension ≤ n− 1, the sets Oβ \ Sβ for

all r-orbits Oβ of codimension n and the remaining part, which is the union of En+1and
Sβ (and, hence, has codimension ≥ n+1). The product of each stratum by the set of jets
of affine functions provides a stratification of the space Jm(n − 1,R) of jets at the origin.
Such stratifications over each p̄ provide a stratification W (by semi-algebraic sets) of
Jm(Rn−1,R). The Thom transversality theorem implies that the set of functions f whose
jet extensions are transversal to W (this condition is equivalent to the transversality of
the family Ĥ to the orbit Oα through f) is dense in the space of all functions. For m
large enough Oα orbits are m-determined. So, m + 1- jets of generic f do not meet S̄m+1.
However this contradicts the assumption. 2

We come now to the proof of Theorem 3.3. Consider the projection ρ : Jm+1 (Rn−1,R)×
{R\{0}} → Jm+1(Rn−1,R) which sends the pair (jet of ϕ; λ) to the jet of 1

λ
(ϕ−µg). Here,

as usual, λ + µ = 1. The inverse image ρ−1 (jm+1f) of jet of f under this projection is a
pencil of jets of λf +µg. Since j2g is non-degenerate, any pencil intersects the subset S̄m+1

in at most n−1 points. Hence, the restriction of the projection ρ to S̄m+1×{R\{0}} is a
finite map and its image Im+1,n is a semialgebraic subset (accordind to Tarski-Seidenberg
theorem) of codimension ≥ n.

12
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Figure 2: The simplest case of Theorem 3.7(ii) in which one parabolic surface M produces
a CSS one sheet of which which, Σ2, is the product of a line transverse to the other surface
N and the caustic of, in this case, an A2 singularity. Thus the upper sheet Σ2 of the CSS
is a smooth surface crossing N transversally. The next case would have Σ2 a cuspidal
edge surface with the edge transverse to N .

Now, the Transversality Theorem implies that at any point p̄, q, λ the jet jm+1f for f
from a open and dense subset of the space of functions endowed with the fine Whitney
topology does not meet Im+1,n and hence the family H is r-versal. 2

We turn now to the case ND (§1), supposing that a0 is a parabolic point. Then b0 ∈ N
is a caustic point on the chord l(a0, b0), corresponding to λ = 0.

Fix a generic function g : V → R.

Theorem 3.7 Let n ≤ 5. There is an open and dense subset of the space of functions
f(x), x ∈ U such that

(i) for λ 6= 0 6= µ and the germ of the family F is r-stable equivalent to a versal
deformation of one of the germs of functions with simple singularities of the types
Ak, (1 ≤ k ≤ n + 1), Dk(4 ≤ k ≤ n + 1), E6;

(ii) for λ = 0 the caustic is diffeomorphic to a cartesian product of a line which is
transversal to the boundary N and a caustic of a simple singularity of type Ak, Dk k ≤
n.

Proof. Let G be as defined in Lemma 3.1. Solving locally the equation G = 0 for λ we
get another useful transformation of the generating family.

A point λ0, µ0 on the affine time axis being fixed, the decomposition of G into power
series in a small parameter ε = λ − λ0 provides:

G(z, λ0 + ε, q) = −h̃ + e0(z, s) + e1(z, s)ε + e2(z, s)
ε2

2
+ e3(z, s)

ε3

6
+ o(ε4),
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where

h̃ = h +
1

2
(µ0 − λ0) = h − h0,

e0 = λ0f(x) + µ0g(y),

e1 = 1 + f(x) − g(y) − λ0fx(x)z − µ0gy(y)z,

e2 = −2fx(x)z + 2gy(y)z + λ0fxx(x)z2 + µ0gyy(y)z2,

e3 = 3fxx(x)z2 − 3gyy(y)z2 − λ0fxxx(x)z3 − µ0gyyy(y)z3,

x = s + µ0z, y = s − λ0z, fxz is the scalar product at the point x = s + µ0z of the
gradient of f(x) with the vector z, similarly fxxz

2 is the value of the second differential
form of f(x) (evaluated at x) on the vector z etc.

Since e1 6= 0 near the origin, the equation G(z, ε, q) = 0 has the following solution for
ε :

ε = −
Q

e1

[
1 +

e2

2e2
1

Q +
3e2

2 − e1e3

6e4
1

Q2 + φQ3

]
,

where Q = e0(z, s) − h̃ and φ is a smooth function in z, q. Equivalently, the family germ
G multiplied by an appropriate a non-zero factor (depending on z, ε, q) takes the form

Gr = ε +
Q

e1

[
1 +

e2

2e2
1

Q +
3e2

2 − e1e3

6e4
1

Q2 + φQ3

]
.

Remembering z = x − y, 0 = w = λx + µy − s,

Q = λ0f(s + µ0z) + µ0g(s − λ0z) − h̃ = λ0

[
f(x) +

µ0

λ0

g

(
s

µ0

−
λ0

µ0

x

)]
.

a stratification similar to that constructed in the proof of Theorem 3.3 proves the following

Lemma 3.8 Let n ≤ 5 and let a generic function g be fixed. For generic f at any
λ0 6= 0 6= µ0 the germ at the origin of the family Q of functions in z with parameters
(h̃, s) is R+-versal.

It remains now to consider the boundary case λ0 = 0, µ0 = 1 (recall that we are
assuming that b0, given by λ = 0, is parabolic).

The function Q0 = Q |λ0=0 = g(s) − h̃ does not depend on z and vanishes exactly on
N =

{
q : h = g(s) − 1

2

}
. To prove the infinitesimal r-stability of the family Gr it suffices

to consider the coset of Gr modulo the ideal A = Ox,qM
2
q.

The inclusions: Q0 ∈ Mq, Q0 + h̃ ∈ M2
s, and equalities:

e1 = 1 + f(z) + sfx(z) − g2(0)zs (modA), Q0e2 = h̃
[
−2fx(s + z)z + g2yyz

2
]

(modA),

prove that
G0 = Gr|λ0=0 =
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ε + Q0 − Q0

[
f(z)

1 + f(z)
+

fx(z)s − g2yy(0)zs

(1 + f(z))2
+

−fx(z)z + 1
2
g2yy(0)zz

(1 + f(z))3
h̃

]
(modA).

The caustic Σ(G0) splits into two components: a redundant component Q0 = 0 (which
is the germ of underlying hypersurface N) and the caustic of the family Γ being the
expression from square brackets in the latter formula:

Γ =
f(z)

1 + f(z)
+

fx(z)s − g2yy(0)zs

(1 + f(z))2
+

−fx(z)z + 1
2
g2yy(0)zz

(1 + f(z))3
h̃.

To show that for generic f (provided a generic g2 is fixed) the family Γ of functions
in z with parameters q = (h̃, s) is R+-versal we can assume that the germ of f is right
equivalent to a quasihomogeneous one.

Proposition 3.9 The germ at the origin of Γ is R+-versal if and only if the simplified
family

G∗(z, q) = G∗(z, h̃, s) = f(z) − g2yy(0)zs +
1

2
h̃g2yy(0)z2

is R+-versal. (If so then they are R+ - equivalent).

Proof. The assumption on f implies that the germ f belongs to the gradient ideal
Oz

{
∂f

∂z

}
. Hence the local algebra Af = Oz/Oz

{
∂f

∂z

}
coincides with the local algebra of

the organizing center Γ0 = Γ |s=0 = f(z)
1+f(z)

and the coset of ∂Γ
∂q

in this algebra coincides

with that of ∂G∗

∂q
.

Remark. Another simplification is possible. The R+–versality of G̃ = f(x) − g2yy(0)zs
implies the R+-versality of G∗. The corresponding diffeomorphism of parameter space map
the cylinder over the caustic of G̃ in s space onto the caustic of G∗ in q space, tangent
vector to the generator of the cylinder being ∂

∂h̃
.

To complete the proof of theorem 3.7 we use arguments similar to that of theorem 3.3
constructing an appropriate Whitney regular stratification of the jet bundle and applying
the Thom transversality theorem.

Due to the well defined affine structure in z space induced from Rn the shift of the
reference point z = 0 to any z0 results only in subtraction of an affine form df |z0

from
the germ f, z0. So it suffices to construct a stratification of the subspace M2

m of the fibre
Jm

z0
(n − 1,R) over each point and then multiply it by the subspace of all affine forms.
Since the right orbits of codimension ≤ 5 are the orbits of quasihomogeneous germs,

Proposition 3.9 implies that they form the required strata over the points z0 where the
quadratic form g2yy(0) is non-degenerate.

Stratification of the base Rn−1 (z-space) by the degenerations of g2 and the corre-
sponding refinements of the orbit stratification in the fibres provides a stratification of
the jet bundle such that its transversality to the jet extension of f implies r-versality of
the generating family. 2

Special Chords in 3-space

In the particular case of two parallel surfaces M and N in R3, where the chords joining
points with parallel tangent planes are simply the common normals to each surface, the
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CSS reduces to the common focal set of the two surfaces. In that case a generic normal
meets the CSS at two distinct points, and these two CSS points coincide on a chord
(normal) precisely for an umbilic on M (and therefore on N). The CSS (focal set) then
has the singular form D±

4 . A similar situation holds in the more general case of a system
of geodesics normal to an initial hypersurface in a Riemannian manifold.

Turning now to the general CSS in Rn, n > 2, there can be fewer than n − 1 real
caustic points—that is, points of the CSS—on a generic chord. Recall from Corollary 3.2
that CSS points on the chord correspond with degenerate quadratic forms in a pencil
determined by the 2-jets of the two surfaces. For example, if n = 3 and both f2(z) and
g2(z) are hyperbolic, the pencil of quadratic forms µ0f2(z) + λ0g2(z) can pass outside
the cone of degenerate forms in the 3-space of all quadratic forms in two variables and
hence contain no caustic points: there are no real points on the CSS here. A pencil
tangent to the cone contains a single caustic point. A pencil passing through a positively
(negatively) definite form either meets the cone at two distinct points or passes through
the origin (zero quadratic form).

In the Euclidean (or Riemannian) case a normal geodesic traces a line on the Legendre
variety Λ of the family which is transversal to the inverse image I of the caustic under
the Legendre projection of Λ to the base Rn. This is called an optical condition (see e.g.
[2]).

Now we will describe generic singularities of sets BM , BN of points a ∈ M (respec-
tively, b ∈ N) such that the chord through a, b has exactly one caustic point. Such
chords will be called special. Special chords just correspond to lines which are either
non-transversal to I or pass through the singular locus of I which, in a generic setting, is
the closure of the D4 stratum.

Using the generating family F(z, w), where z = (x, y, p̄), w = (λ, q), any chord is
the set of solutions of Legendre equations F (z, w) = 0, ∂F

∂z
(z, w) = 0 for certain fixed

values of x, y, p̄. Since (r−, v−, etc.) equivalences used above do not preserve the fibration
(z, w) 7→ z, the diffeomorphic type of caustic does not determine the behaviour of special
chords. We need to work with the initial family F or outside the parabolic curves with
H = −h + 1

2
(λ − µ) − p1q1 − p2 q2 + λf∗(p̄) + µg∗(p̄) using the conormals p̄.

Let p̄ = (p1, p2) and

H = Hessp̄(λf∗(p̄) + µg∗(p̄)) = det




∂2H
∂p2

1

∂2H
∂p1∂p2

∂2H
∂1∂p2

∂2H
∂p2

2




Proposition 3.10 Outside the parabolic locus germs of the sets BM , BN are diffeomor-
phic to germs of the set U ⊂ (Rn−1)∧

B =

{
p̄ |∃λ : H = 0,

∂H

∂λ
= 0

}
.

Proof. Since H is affine in parameters q, the Legendre conditions (determining the
Legendre projection of the variables (p̄, λ) which form a local coordinate system on Λ)
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can be solved for q. The inverse image I of the caustic is formed by the solutions of the
equation Hessp̄H = H = 0 which does not involve q explicitly.

Hence the chord through (p̄, λ) is special if and only if ∂H
∂λ

= 0. 2

Fortunately, these conditions are Legendre equations for the family H of functions in
λ with parameters p̄, the set B being the bifurcation set of this family.

Theorem 3.11 For a generic pair of surfaces M,N :

(i) a special chord is isolated if it crosses either M or N at an elliptic point (the cor-
responding caustic germ is of D±

4 type);

(ii) inside the hyperbolic regions of M and N the germ of B is either the germ of a
smooth curve (the corresponding caustic points are of A2 and A3 types), or the
germ of a pair of transversally intersecting smooth curves, or an isolated point (the
corresponding chord passes through D±

4 singularity of the caustic);

(iii) the germ of BM at a special chord which crosses M at a parabolic point is the
germ of a smooth curve belonging to the closure of the hyperbolic region and having
second order tangency with the parabolic line. The points of intersection of these
special chords trace a smooth curve on N which has fourth order tangency with the
intersection of (the regular part of) the caustic with N.

Figure 4 shows a computer picture of two hyperbolic surfaces with their associated CSS
in the case where there is coincidence of caustic (CSS) points along a curve. Figure 3
shows the D4 case where both surfaces are elliptic.

Proof Using small parameters p̄, ε = λ − λ0 the germ of H at p̄ = 0, λ = λ0 takes the
form H = Aε2 + Bε + C with

C = Hessp̄ϕ(p̄), A = Hessp̄ψ(p̄), B = det




∂2ϕ

∂p2

1

∂2ψ

∂p1∂p2

∂2ϕ

∂1∂p2

∂2ψ

∂p2

2


 − det




∂2ψ

∂p2

1

∂2ϕ

∂p1∂p2

∂2ψ

∂1∂p2

∂2ϕ

∂p2

2




where ϕ = λ0f∗(p̄) + µ0g∗(p̄) and ψ = f∗(p̄) − g∗(p̄).
Hence the equation of U is B2 − AC = 0. Also at the origin C = B = 0.
At first consider the generic points of I of corank 1 (with the singularities A2,3,4 of the

caustic). The equation C = 0 determines a germ of a smooth curve in p̄ space tangent to
I.

Note that vanishing of all three A,B,C at the origin provides a non-generic condition.
In fact, vanishing of C and B (the rank of the Hessian matrix Ĥ0 of ϕ at the origin being
1) implies that ψ vanishes on the kernel subspace of Ĥ0 (in other words, if d2ϕ = dp2

1, then
d2ψ = adp2

1 + bdp1dp2.) The extra condition A = 0 then implies that b = 0 so reference
points on M and N both are parabolic with coinciding kernel directions.

So, generically, A 6= 0 and the equation B2 − 4AC = 0 determines a smooth curve
(tangent to I).
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Figure 3: This illustrates Theorem 3.11(i). A part of the CSS in the D4 case where both
pieces of surface (not shown here) are elliptic. There is a single chord which is tangent to
the (singular) CSS once; this appears as vertical in the figure. All other chords, such as
the one shown, are tangent to the CSS in two points.

Now consider the D4 case. The matrix Ĥ0 totally vanishes, the function C has zero
1-jet at the origin and B(0) = 0.

To write down the 2-jet of the function B2 − 4AC it suffices to retain second order
terms in ψ and cubic terms in ϕ. By an appropriate affine transformation reduce j3ϕ to
standard form 1

6
(p3

1 ± p3
2), and take j2ψ = 1

2
(ap2

1 + 2bp1p2 + cp2
2). Then the form

j2(B2 − 4AC) = (±ap2 − cp1)
2 ∓ 4(ac − b2)p1p2

is positive definite if

a2p2
2 + c2p2

1 ∓ (6ac − 4b2)p1p2 = 16(ac − b2)(2ac − b2) > 0.

So if 1
2
b2 < ac < b2 the form is hyperbolic and the function B2 − 4AC has hyperbolic

Morse singularity at the origin with zero level surface being the normal crossing of two
smooth branches, otherwise the form is elliptic and B2 −4AC vanishes only at the origin.

The remaining parabolic case can be treated similarly using the family F . 2
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T w o  s h e e t s  o f  t h e
C S S  m e e t i n g  a l o n g     
        a  c u r v e

c h o r d  t a n g e n t  t o  
b o t h  s h e e t s

C h o r d  t a n g e n t  t o  C S S
w h e r e  s h e e t s  m e e t

Figure 4: This illustrates Theorem 3.11(ii). Left: a computer figure of two hyperbolic
pieces of surface with the CSS between them. In this case there is a curve of points on
each surface (marked as a dashed curve) where the tangent planes at corresponding points
are parallel and the chord joining these points is tangent exactly once to the CSS: the two
sheets of the CSS come together along a curve. At other parallel tangent pairs the chord
is tangent twice to the CSS. The figure shows one example of each type of chord. The
slightly ragged appearance of the CSS where the to sheets join is due to computational
errors. Right: a schematic figure of this situation, with two CSS sheets meeting along a
curve which is drawn heavily.

4 Tangential case

Preliminaries (n = 3)

For the present we work with n = 3; the details of what follows are similar, and simpler,
in the case n = 2. For higher dimensions the corresponding classification of v-orbits (see
[12]) has functional invariants.

In R3 = {q = (h, s, t)} we can without loss of generality assume that a0 = (0,−1/2, 0),
b0 = (0, 1/2, 0) and the common tangent plane to M,a0 and to N, b0 containing these
points is defined by the equation h = 0. The surfaces M and N are parametrized by local
coordinates x1, x2 and y1, y2 centred at the origin in R2. Thus

M =

{(
f(x1, x2), −

1

2
+ x1, x2

)}
, N =

{(
g(y1, y2),

1

2
+ y1, y2

)}
.

We proceed as in Lemma 3.1 to replace p in the formula of Definition 2.1 for the generating
family F by (1, p1, p2) and then to eliminate variables by a stabilization procedure. Note
that now the chord through a0 and b0 is along the s-axis and the base point on this chord
will be λ0a0 + µ0b0 = (0, 1

2
(µ0 − λ0), 0). Thus we write λ = λ0 + ε, µ = µ0 − ε, s =

s̄ + 1
2
(µ0 − λ0) where ε, s̄ are small. We then use the change of variables (x1, x2, y1, y2) 7→

(z1, z2, w1, w2), where z = x − y, w1 = λx1 + µy1 − ε − s̄, w2 = λx2 + µy2 − t, and
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eliminate the variables w and p by stabilization. In this way we can reduce F to

F (z, ε, h, s̄, t) = −h + λf(s̄ + ε + µz1, t + µz2) + µg(s̄ + ε − λz1, t − λz2).

This implies the following

Proposition 4.1 1. The caustic points on a bitangent chord correspond to the val-
ues λ0, µ0 such that the quadratic form µ0f2(z) + λ0g2(z) is degenerate. Compare
Corollary 3.2.

2. The organizing centre F0 = F restricted to {h = s̄ = t = 0} has the form

F0 = (λ0+ε)f (ε + (µ0 − ε)z1, (µ0 − ε)z2)+(µ0−ε)g (ε − (λ0 + ε)z1, −(λ0 + ε)z2) .

3. The quadratic part QF of the organizing centre F0 is

QF = λ0µ0

[
f2(z)µ0 + λ0g2(z) +

(
∂2f2

∂x2
1

−
∂2g2

∂y2
1

)
εz1 +

(
∂2f2

∂x1∂x2

−
∂2g2

∂y1∂y2

)
εz2

]

+ λ0f2(ε, 0) + µ0g2(ε, 0).

4. Since F, ∂F
∂λ

and ∂F
∂z

all vanish at any point of the form (z, ε, h, s̄, t) = (0,−s̄, 0, s̄, 0)
the whole of the s-axis is contained in the criminant ∆. This is the chord passing
through a0 and b0.

The classification of germs of functions in M2
w,ε with respect to stable v-equivalence

(without parameters) starts with the following orbits [8, 12] (w ∈ R) :

Bk : ±w2 + εk; Ck : wk + εw; k = 2, 3, 4 F4 : w3 + ε2.

Their miniversal deformations in parameters q and adjacency diagram are the follow-
ing:

Bk : ±w2 + εk + qk−2ε
k−2 + · · · + q0;

Ck : wk + εw + qk−2w
k−2 + · · · + q2w

2 + q1ε + q0;
F4 : w3 + ε2 + q2wε + q1w + q0.

B2(C2) ← C3 ← C4

↑ ↑
B3 ← F4

↑
B4

The remaining classes form subset of codimension 3 in the space M2
z,ε.

The planar case
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This case was first investigated by Paul Holtom [9]. In the plane (n = 2) we are considering
two germs of curves M and N tangent to the s-axis in the plane with coordinates q = (h, s),
at the points a0 = (0,−1

2
), b0 = (0, 1

2
). The two curves are parametrized by x and y,

and we use z = x − y, s̄ = s − 1
2
(µ0 − λ0). The generating function, after the reduction

described above, is

F = −h + λf(s̄ + ε + µz) + µg(s̄ + ε − λz).

Generically bitangency occurs at isolated pairs of points with non-vanishing second
order terms of the corresponding functions f(x) = a2x

2 + a3x
3 + . . . and g(y) = b2y

2 +
b3y

3 + . . . , that is, with neither a0 nor b0 an inflexion. The point h = 0, s̄ = 0 is a caustic
point if and only if µ0a2 + λ0b2 = 0.

Theorem 4.2 For generic pair of curves in a plane near a double tangent the criminant
∆ coincides with the double tangent. On this line there is at most one caustic point. The
germ of the caustic Σ at this point is a smooth curve having inflexional contact with ∆.
The generating function at this point is v-equivalent to the C3 type family:

C3 : F (z, ε, q) = z3 + z(ε + s̄) + h.

Proof. (See Figure 5.) The quadratic part of the organizing centre F0 = F |q=0 is

QF (z, ε) = λ0µ0

(
(µ0a2 + λ0b2)z

2 + 2(a2 − b2)λ0µ0εz + (λ0a2 + µ0b2)ε
2
)
.

The determinant of this form can be converted (due to the relation λ0 + µ0 = 1) into
a very simple expression detQF = λ0µ0a2b2 which does not vanish at the intermediate
points λ0 6= 0 6= µ0 at the chord.

Restricting the form QF to the subspace ε = 0 we get Q0
F = QF |ε=0 with the deter-

minant det(Q0
F ) = λ0µ0(a2µ0 + b2λ0)z

2. So if a2 6= b2 there is a single point on a generic
bitangent where this determinant vanishes. Generically at this point the cubic form in z
(ε = 0) does not vanish. So the organizing centre is of C3 type. Moreover generically the
coefficient 2(λ0a2 + µ0b2) of the sε term in the Taylor decomposition of F is non-zero—in
fact this just requires that the absolute values of the curvatures of the two pieces of curve
at a0, b0 are not equal. Hence the family F is versal.

The remaining case λ0 = 0 can be treated similarly to that of transversal pair. At
λ0 = 0 the family takes the form:

F = −h+ εf (s + ε + (1 − ε)z)+ (1− ε)g(s+ ε− εz) = −h+ ε
[
a2z

2 + 2a2εz + εb2 + . . .
]

(where . . . stand for a function from M3
z,ε) and so has no caustic (since apart from ε = 0

there are no solutions of F = ∂F
∂z

= ∂2F
∂z2 = 0 near the origin).

We have F = ∂F
∂z

= ∂F
∂ε

= 0 only when (z, ε, h, s̄) = (0,−s̄, 0, s̄) so that the germ of
the bitangent line h = 0 in the q-plane forms the envelope ∆. 2

Figure 5 shows a schematic diagram of the situation with a bitangent line.

The space case

To describe generic singularities in R3 we use notation q = (h, s, t) ∈ R3, z = (u, v) ∈ R2,
s̄ = s − 1

2
(µ0 − λ0) so that h, s̄, t, u and v are all small quantities. We can always assume
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Figure 5: Two pieces of curve with a common tangent, and chords joining points with
parallel tangents. The caustic Σ is drawn heavily and is the ‘true’ CSS, tangent to all the
chords, and the criminant ∆ is the bitangent itself. Notice that Σ has inflexional contact
with ∆, as in Theorem 4.2.

that at least one of the quadratic forms f2 or g2 is non-degenerate and does not vanish on
the bitangent chord. Suppose this is f2. By an appropriate affine transformation it can
be reduced to the normal form f2 = x2

1 ± x2
2, while the other one takes the general form

g2 = ay2
1 + 2by1y2 + cy2

2. The surfaces have basepoints (h, s, t) = (0,±1
2
, 0). When a = 0

an asymptotic direction of N lies along the chord between basepoints; note that this is
an affinely invariant condition.

The recognition of space-time singularities involves the quadratic part

QF (ε, u, v) = λ0

(
(ε + µ0u)2 ± µ2

0v
2
)

+ µ0

(
a(ε − λ0u)2 − 2b(ε − λ0u)λ0v + cλ2

0v
2
)

of the organizing center F0 and the quadratic part of its restriction Q0
F to the subspace

ε = 0 :
Q0

F (u, v) = λ0µ0

(
µ0(u

2 ± v2) + λ0(au2 + 2buv + cv2)
)
.

Calculating their determinants a significant cancellation of terms, due to the relation
λ0 + µ0 = 1, yields (apart from a factor λ2

0µ
2
0 in each case)

det(QF ) = ±aµ0 + (ac − b2)λ0, det(Q0
F ) = λ2

0b
2 − (µ0 + λ0a)(±µ0 + λ0c).

Hence generically on each bitangent chord (parametrized by λ0) there is one point where
det(QF ) = 0, and at most two points where det(Q0

F ) = 0. The value of det(Q0
F ) at the

root of det(QF ) is equal to ±(ac − b2)λ2
0b

2a−2. So the forms are both degenerate if (i)
b = 0 or (ii) ac − b2 = 0. Note that the first of these means that the principal axes of
the two surfaces at the basepoints coincide. This has an affinely invariant formulation:
the pencil λf2 + µg2 contains a degenerate form whose kernel subspace is the bitangent
direction. The condition (ii) means that the basepoint is a parabolic point on N .

Theorem 4.3 For fixed generic f and for g from an open dense subset in the space of
functions on V the germ of B(F ) at a point where λ0 6= 0 6= µ0 is diffeomorphic to one
of the bifurcation sets of Bk, Ck, k = 2, 3, 4, or F4 versal deformations. In all cases the
criminant coincides with the ruled surface swept by bitangent chords.
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Figure 6: Two pieces of surface, upper and lower in the figure, together with the ruled
surface ∆ of bitangent chords, which forms a ‘semi-cubic cylinder’ (a surface with a
cuspidal edge), as in the case B3 of Theorem 4.3. The line through the base-points
(0,±1

2
, 0) on the two surface pieces is drawn heavily and, like all the bitangent chords, is

tangent to the cuspidal edge, this line being tangent at the origin. The remaining part of
the CSS (the caustic Σ) is not local to the origin and is not shown.

The case B3 is illustrated in Figure 6.

The proof given below consists of the direct verification of the versality of the family F
for generic g. Classes B3, B4 occur when rank(Q0

F ) = 2, rank(QF ) = 2. Classes C3, C4

correspond to the points where rank(Q0
F ) = 1, rank(QF ) = 3, and the class F4 corresponds

to the points where rank(Q0
F ) = 1, rank(QF ) = 2.

The pairs(f, g) admitting a point λ on a bitangent chord where one or both of these
forms has corank ≥ 2 are not generic (their jets form a subset of codimension > 2 in the
jet space).

Case 1 Consider the situations where the singularities B3 and B4 can appear. Let
±aµ0 + (ac − b2)λ0 = 0 but λ0 6= 0 6= µ0, b2 − ac 6= 0 b 6= 0. Note that since λ0 + µ0 = 1,
the values of l0 and µ0 are determined by a, b, c. They are λ0 = ±a/(ac − b2 ∓ a), µ0 =
(ac− b2)/(ac− b2 ∓ a); in particular the denominator in these expressions cannot be zero.

Since rank(Q0
F ) = 2 the variables u and v can be eliminated by a stabilisation. Namely,

solving the equations ∂F
∂u

= 0, ∂F
∂v

= 0 for u and v we find
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u = −
1

µ0

(ε + s̄) ∓
a

bλ0µ0

t + . . . ,

v =
a

bλ0µ0

(ε + s̄) ∓
µ0(1 ∓ c) + a

b2λ0µ0

at + . . .

where dots stand for functions of ε, s̄, t in M2
ε,s̄,t.

After substitution of these expressions into the family F we obtain:

F̃ (ε, q) = −h + c3ε
3 + c4ε

4 + s̄(c1,1ε + c2,1ε
2) + t(c1,2ε + c2,2ε

2) + ϕ(ε, s̄, t),

where ϕ ∈ M5
ε ∪ M2

s̄,t ∪ M3
εMs̄,t. Let α = ∂3f

∂x3

2

evaluated at (0,0). Then we find the

following:

c1,1 = 0, c1,2 =
2b

±cλ0 + µ0

=
2(±a − ac + b2)

b
6= 0,

c3 = ∓
a2

b2λ2
0µ0

+
a3

b3λ2
0

α +
g3(b,−a)

b3µ2
0

, c2,1 = ∓
2a2

b2λ2
0µ0

+
3a3

b3λ2
0

α +
3g3(b,−a)

b3µ2
0

,

where g3(b,−a) stands, as usual, for the result of substituting y1 = b, y2 = −a in the cubic
form of the expansion of g about (0, 0). From these it is clear that, so long as a 6= 0, we
cannot have both c3 and c2,1 equal to 0. The coefficient c4 involves the coefficients of the
cubic and quartic forms from the Taylor decompositions of f and g.

Hence, if c3 6= 0 the family F is a versal unfolding of a B3 -singularity (its caustic is
void and the criminant is a cylinder over semi-cubic parabola). If c3 = 0 then for generic
f and g we have c2,1 6= 0 and c4 6= 0. In this case the family F is a versal unfolding of a
B4 singularity (the caustic is void and the criminant ∆ is an ordinary swallowtail).

Case 2 Consider the case where singularities C3, C4 can occur. So we suppose that
λ0 6= 0 6= µ0, b 6= 0 6= b2 − ac, λ2

0(b
2 − ac) − µ0λ0(c ± a) ∓ µ2

0 = 0
The kernel vector K = −λ0b

∂
∂u

+ (µ0 + aλ0)
∂
∂v

of the quadratic form Q0
F has both its

components non-zero. The inequality ∂2F
∂ε∂t

|0 = 2µ0b 6= 0 shows that provided the cubic
form F3(dz)3 of the function F |ε=q=0 does not vanish on K then the family F is a versal
unfolding of a C3-singularity.

For generic f and g at isolated points on chords joining points of contact of bitangent
planes the form F3(dz)3 can vanish on K. Consider such a point.

Since rank(Q0
F ) = 1 there exists a diffeomorphism

θ : (u, v, q) 7→ (ρ(u, v, q), τ(u, v, q), q)

which reduces the family F |ε=0 to a stabilization F̃ = F ◦ θ−1 = ρ2 + ψ(τ, q), of a
family in one variable τ with j2(ψ(τ, 0)) = 0. The vector K is tangent to the curve
γ = {q = 0, ρ = 0}.

Denote by α = ∂3f

∂x3

1

|0 and by β = ∂3g

∂y3

1

|0 Since F |ε=0,q=0 = λ0f(µ0z) + µ0g(−λ0z), the

third order terms in j3
(
F̃ |γ

)
depend only on the components of K. Hence the equation
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j3
(
F̃ |γ

)
= 0 splits into a sum of the terms which do not include the coefficients α and

β and the term T1 = 1
6
λ0µ0(αµ2

0 − βλ2
0)b

3.

The equation ∂3F̃
∂t∂τ2 |γ = 0 does not include α and β, while the equation ∂3F̃

∂s̄∂τ2 |γ = 0
spits into a sum of terms which do not depend on α and β and the term T2 = 3

2
λ0µ0(αµ0+

βλ0)b
2.

The determinant of the mapping (α, β) 7→ (T1, T2) is non-zero since λ0, µ0 and b are

non-zero. Hence, if for generic f, g we have j3
(
F̃ |γ

)
= 0 then ∂3F̃

∂s̄∂τ2 |γ 6= 0 and (as it can

be shown considering fourth order terms) j4
(
F̃ |γ

)
6= 0. This implies that the germ of F

is a versal unfolding of a C4-singularity.

Case 3 In the remaining generic case when both quadratic forms are degenerate and
λ0 6= 0 6= µ0 the equations

±aµ0 + (ac − b2)λ0 = 0, λ2
0b

2(b2 − ac) = 0

imply that b = 0, b2 − ac 6= 0, ±µ0 + cλ0 = 0 (since otherwise either µ0 = 0, or
a = 0 or c = ±a which all provide an extra condition to be avoided in a generic setting).
Geometrically in this case the pencil of quadratic forms f2 and g2 has the bitangent chord
as a principal direction. The kernel direction of Q0

F is K = ∂
∂v

.
Since the family F has the form

F = −h + (λ0 + ε)
[
(s + ε + (µ0 − e)u)2 ± (t + (µ0 − ε)v)2 +

f3 (s + ε + (µ0 − e)u, t + (µ0 − ε)v) + . . . ] +

(µ0 − ε)
[
a (s + ε + (µ0 − e)u)2 + c (t + (µ0 − ε)v)2 +

g3 (s + ε + (µ0 − e)u, t + (µ0 − ε)v) + . . . ]

the third order form G3(u, v) of the restricted organizing centre G = F |ε=0, q=0 when
evaluated on the vector K is generically non-zero:

G3(K) =
1

6
λ0µ0

(
µ2

0

∂3f

∂x3
2

∣∣∣∣
0

− λ2
0

∂3g

∂y3
2

∣∣∣∣
0

)
6= 0.

So the organizing centre F0 = F | q=0 is equivalent to the F4 normal form ε2 + z3.
The Taylor decomposition of the derivative

∂F

∂t

∣∣∣∣
u=q=0

= 2λ0µ0(±1 − c)v
(
modMε ∪M2

v

)

starts with a generically non-vanishing term, which is one of the basic monomials in local
algebra of the F4 miniversal deformation.

The other derivative ∂F
∂s̄

∣∣
u=q=0

belongs to Mε ∪ M2
v; however it contains the other

monomial εv of the local algebra multiplied by a generically non-zero factor:

∂F

∂s̄

∣∣∣∣
u=q=0

= λ0µ0εv

(
∂3f

∂x2
1∂x2

∣∣∣∣
0

−
∂3g

∂y2
1∂y2

∣∣∣∣
0

)
+ . . .
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where dots denote the terms which do not involve these components of the jets of the
underlying functions f and g.

So, generically the deformation F is space-time equivalent to a standard deformation
of an F4 singularity. 2

To complete the current section, we describe the singularities arising at the reference
points when either λ0 or µ0 vanish at the bitangent chord.

Theorem 4.4 For generic pair of germs of surfaces:
(i). If a 6= 0 then at λ0 = 0 the family F is equivalent to B2 normal form. It has no

caustics, and the criminant coincides with the ruled surface swept by bitangent chords.
(ii). If a = 0 (the form g2 vanishes on the bitangent chord, which means that an

asymptotic direction of the surface N lies along the chord) then the germ of F at λ0 = 0
is equivalent to the B3 normal form. It has no caustic, the criminant is a surface with a
cuspidal edge.

(iii). If the quadratic form g2 is non-degenerate then the germ of F at µ0 = 0 is
equivalent to the B2 normal form.

(iv). If b2 − ac = 0 (the quadratic form g2 is degenerate) the germ F at µ0 = 0 is
space-time stable equivalent to the normal form (similar to that of C4):

C̃4 : H = −h̃ + ε
(
ε + ut + s + u3 + v2

)

Remark. The caustic of C̃4 is diffeomorphic to a smooth surface (similar to the criminant
of C4) with the redundant component h̃ = 0. The criminant of C̃4 is diffeomorphic to the
folded Whitney umbrella (that is to the caustic of C4).

Proof. At λ0 = 0 the family F takes the form

F = −h + εf (s + ε + (1 − ε)u, t + (1 − ε)v) + (1 − ε)g (s + ε − εu, t − εv) .

(i)+(ii). The decomposition of the organizing centre F0 = F |q=0 starts with the terms

F0 = ε
(
aε + u2 ± v2 + 2(1 − a)uε − 2bvε + ε2(1 − a + g3,0) + ϕ

)

where g3,0 is the coefficient of y3
1 in the expansion of g(y1, y2) and the function ϕ ∈ M3

ε,u,v.
If a 6= 0 the function in brackets is right stable equivalent to the function aε + ξ(ε, s, t)
with ξ |s,t=0 ∈ M2

ε So the family is right stable equivalent to h̃ + ε2, which is of B2 ≈ C2

type and has no caustic.

If a = 0 then generically the organizing centre of the family has a decomposition which
starts with the terms:

F0 = ε(kε2 + 2uε − 2bvε + u2 ± v2 + . . . )

with k 6= 0. This is stable right equivalent to the germ of ε3.
The decompositions of the derivatives

∂F

∂s

∣∣∣∣
q=0

= 2aε + 2ε2(1 − a) + . . . ,
∂F

∂t

∣∣∣∣
q=0

= 2bε − 2bε2 . . .
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prove (using b 6= 0) that the family is stably v-equivalent to the B3-normal form

F = h̃ + tε + sε2 + ε3

with no caustic and the criminant being a surface with cuspidal edge.

The case µ0 = 0 and g2 non-degenerate coincides with the case (i).

Finally, if µ0 = 0 and the form g2 is degenerate the organizing centre F0 = F |q=0 of
the family

F = −h + (1 + ε)
[
(s + ε − εu)2 ± (t − εv)2 + f3 (s + ε − εu, t − εv) + . . .

]
−

ε
[
a(s + ε − (1 + ε)u)2 + 2b(s + ε − (1 + ε)u)(t − (1 + ε)v) + c(t − (1 + ε)v)2+

g3 (s + ε − (1 + ε)u, t − (1 + ε)v) + . . . ]

takes the form
F0 = ε [ε − g2(u, v) + g3(u, v) + ψ(ε, u, v)]

with ψ ∈ MεMε,u,v ∪M4
u,v.

Again using the decompositions of the derivatives ∂F
∂s

and ∂F
∂t

and an appropriate right
equivalence (u, v, ε, q) 7→ (x(u, v, ε, q), y(u, v, ε, q), ε, q) we can reduce the family F (in a
generic setting) to the form:

H(x, y, ε, q) = −h̃ + ε
[
ε + k1xt + k2s + x3 + y2 + ψ

]

with ψ ∈ MqM
2
x ∪M2

ε and non vanishing coefficients k1, k2.

Lemma 4.5 The family H is v-equivalent to the normal form

H0 = −h̃ + ε
[
ε + xt + s + x3 + y2

]
.

Proof of the lemma. The space H of functions H is an Ox,y,ε,q-module. The tangent
space TH at H to the v-orbit of the family H contains the sum of the following modules

Ox,y,ε,q

{
H,

∂H

∂x

}
+ Oε,q

{
ε
∂H

∂ε

}
+ Oq

{
∂H

∂q

}
.

The latter coincides with the sum

Ox,y,ε,q

{
εx2, εy

}
+ Oε,q

{
ε2

}
+ Oq {1, εx, ε} .

Hence, TH coincides with the total tangent space to H at H. Using the Malgrange prepa-
ration theorem the infinitesimal v-versality of H holds and implies v-versality. So for all
ψ the families H are equivalent.
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5 Chords near inflections and parabolic points

Lemma 3.1 still holds for systems of chords through parallel pairs of points close to a
parabolic point on a single hypersurface M ∈ Rn. However the resulting affine generating
family posesses more specific features. Since germs of M and N at the distinguished
points a0 and b0 coincide the family G(z, λ, q) takes the form:

G = −h + λf(s + µz) + µf(s − λz),

where the germ of the function f (defining the hypersurface) has vanishing 1-jet at the
origin and its second differential at the origin is degenerate.

This formula implies the following properties of the family G:

Proposition 5.1 1. The function G |z=0 = −h + f(s) vanishes exactly on the hypersur-
face M.

2. The family G contains no terms linear in z : ∂G
∂z

|z=0 = 0.
3. The family G is invariant under the symmetry λ 7→ µ, z 7→ −z which has a fixed

point at λ = µ = 1/2, z = 0.
4. The component W∗(G) of the extended wavefront corresponding to λµ 6= 0 (compare

the Remarks following Proposition 2.2) contains the axis q = 0, λ ∈ R, which projects
to the origin in q space. So the mapping π

∣∣
W (F ) is not a proper map but is a kind of

blowing-down map.

5.1 Planar inflection case

Starting with the planar case z ∈ R, s ∈ R observe that up to an appropriate affine
transformation a germ of a generic plane curve at an ordinary inflection point is the
graph h = f(s) of a function f(z) = z3 + c4z

4 + c5z
5 + . . . with c4 6= 0.

Hence

G = −h + f(s) + λµ
[
(µ − λ)z3 + (µ2 + λ2 − µλ)c4z

4 + · · ·+

sz2(3 + 6c4s + . . . ) + (µ − λ)sz3(4c4 + . . . )
]
.

Proposition 5.2 (i) For λ0 6= 0, 1
2
, 1 the germ of G(z, ε + λ0, s) at the origin is r-

equivalent to the germ at the origin of

H = −h̃ + (1 + ε)sz2 + z3,

The caustic and criminant here contain only the redundant component h̃ = h − f(s) = 0
(the curve itself).

(ii) For λ0 = 0 or λ0 = 1 the normal form is

H = −h̃ + ε(sz2 + z3)

which has only the redundant component of the caustic and criminant.
(iii) For λ0 = 1

2
the family is weakly equivalent (giving only diffeomorphism of caustics)

to the normal form
H = −h̃ + sz2 + εz3 + z4.
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Figure 7: A plane curve with an inflection, and some chords drawn through points with
parallel tangents local to the inflection. The upper curve tangent to the chords is the CSS
in this case; see Proposition 5.2(iii).

In this case the criminant is the redundant component h̃ = 0 and the caustic is the union
of this with a B2 bifurcation diagram, in fact {(h̃, s) = (1

3
z4, 2z2) : z ∈ R}. See Figure 7.

Proof. (i) An appropriate rescaling of z, s and a diffeomorphism s 7→ 3s + 6c4s
2 + . . .

reduce the family to the following one:

G = −h̃ + sz2(1 + A(ε)) + z3(1 + B(z, ε, q))

with smooth functions A, B such that A(0) = 0, ∂A
∂ε

|0 6= 0 and B(0) = 0.
Applying the Moser homotopy method it is easy to prove that all such germs are r-

equivalent. In fact, the tangent space TGA at G to the space A of deformations of this
form is an Oz,ε,q-module.

The tangent space Tv(G) to the r-orbit through G contains a subspace

T∗ = Oz,ε,q

∂G

∂z
z + Oε,q

∂G

∂e
ε + Oq

∂G

∂s
⊂ Tv(G),

Evidently T∗ = TGA and r-versality of G follows.

The proof of (ii) is similar. Now the space of deformations

A =
{
εz2sA(s, ε) + εz3B(z, ε, s)

}

is exhausted by sum of the subspaces of the right orbit generated (over the corresponding
algebras of germs of functions) by:

z
∂G

∂z
= 2εsA(ε, s)z2 + 3εz3B̄(z, ε, s);

ε
∂G

∂ε
= εsÂ(ε, s)z2 + εz3B̂(z, ε, s);

s
∂G

∂s
= εsÃ(ε, s)z2 + εz3B̃(z, ε, s)
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with smooth functions Ã 6= 0, Â 6= 0, B̄ 6= 0 and B̃, B̂.

To prove (iii) observe that the equations ∂G
∂z

= 0, ∂2G
∂z2 = 0 do not involve h. The

infinitesimal r-versality condition holds for the family 1
z

∂G
∂z

≈ s + εz + z2 + . . . . Hence
there exists a diffeomorphism of (z, ε, s)-space θ : (z, ε, s) 7→ (Z(z, ε, s), Υ(ε, s), S(s))
which reduces the family 1

z
∂G
∂z

to the form S + ΥZ + Z2 and which is equivariant under
the symmetry Z(−z,−ε, s) = −Z(z, ε, s), Υ(−z,−ε, s) = −Υ(z, ε, s, ) S(−z,−ε, s) =
−S(z, ε, s). In the new variables the caustic is determined by Υ = −2Z, s = Z2.

The equation G = 0 implies now that at the points of the caustic h̃ = Z4α(Z2) for
certain smooth function α such that α(0) 6= 0. Hence an appropriate transformation of
the form h̃ 7→ h̃ + ψ(s), where the 2-jet at the origin of ψ vanishes reduces the caustic to
the required form.

5.2 Space case

Let a germ of a generic surface M be the graph of a function h = f(s, t) where h, s, t ∈ R.
Let

f = f2 + f3 + . . . , fk =
∑

i+j=k

ai,js
itj

be the Taylor decomposition of f into homogeneous forms.
On a generic surface M parabolic points form a smooth curve. At any of them the

quadratic form f2 has rank 1. At a generic parabolic point on the parabolic curve the dual
surface has an A2 singularity (cuspidal edge). By an appropriate affine transformation
(of s, t plane) the 3-jet of f at such a point can be reduced to the form:

A2 : f3(s, t) = s2 + t3 + a2,1ts
2 + a3,0s

3 + . . .

After this normalisation of the 3-jet at some isolated points the 4-th order form f4 can
vanish on the line s = 0. These special points will be called A∗

2 points. The notation A2

remains for generic points with non-vanishing f4 |s=0 .
In these cases (A2, A

∗
2) the organizing centre of the affine generating family takes the

form:

G0 = λµ
[
x2 + (µ − λ)

(
y3 + a2,1x

2y + a3,0x
3
)

+ (µ2 − λµ + λ2)f4 + . . .
]
.

Theorem 5.3 I. In the cases A2, A∗
2 if λ0 6= 0, 1

2
, 1 the affine generating family is v-

equivalent to the normal form

G = −h̃ + (1 + ε)(sy2 + y3)

if λ0 = 0, 1 the affine generating family is v-equivalent to the normal form

G = −h̃ + ε(sy2 + y3)

These families have only redundant components of the caustic and the criminant - the
surface itself h̃ = 0.
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II. In the case A2 at λ0 = 1
2

the germ of the generating family is weakly equivalent to

the normal form : G = −h̃ + sy2 + εy3 + y4. The caustic is a cylindrical smooth surface
with a boundary, which coincides with the parabolic line. The caustic is tangent to M
along the boundary. The criminant is only the redundant component h̃ = 0.

III. In the case A∗
2 at λ0 = 1

2
the generating family is weak equivalent to the normal

form
G = −h̃ + (1 − ε2)

(
sy2 + εy3 + ty4 + y6

)
,

Hence the caustic is diffeomorphic to the image of a half plane under the simple mapping
Â4 (from the classification by D.Mond of mappings from R2 to R3):

(t, τ) 7→
(
t, τ 2, τ 3 + t5τ

)
.

The criminant is h̃ = 0.

Proof. The organising centre and terms linear in parameters h̃, s, t from the affine gen-
erating family are given by the formula:

G1 = −h + λµ

[
f2(x, y) +

∑

i>2

fi(x, y)(µi−1 + (−1)iλi−1)

+
∑

i>2

(
∂fi(x, y)

∂x
s +

∂fi(x, y)

∂y
t

)
(µi−2 + (−1)i−1λi−2)

]
.

When λ0µ0 6= 0 (also when λ0 = 0, 1 but dealing with non-redundant components)
the variable x can be eliminated by stabilization:

1

λµ

∂G1

∂x
= 2x + 2a2,1sy + 6a3,0xs + 2a2,1tx

+(µ − λ)
[
2a2,1xy + 3a3,0x

2 + . . .
]

+(µ2 + λ2 − µλ)

[
∑

i+j=3

ai,jix
i−1yj + . . .

]
+ . . . .

Solving the latter for x and substituting the result into the expression of the family G
gives a family in y, q, λ with only the following low degree terms

Ĝ = −h̃ + µλ
[
(µ − λ)y3 + (µ2 + λ2 − µλ)a0,4y

4 + 3ty2 + . . .
]
.

Clearly, the reduced family remains symmetric under the involution (s, t, µ, λ, y) 7→
(s, t, λ, µ,−y).

If a0,4 6= 0 or (a0,4 = 0 but λ0 6= µ0) the family has the form already considered in
Proposition 5.2. Hence the result follows.

In the remaining case µ = 1
2
−ε, λ = 1

2
+ε and a0,4 = 0 the family (up to an appropriate

right equivalence) is the following

Ĝ = −h̃ + λµ
(
ty2 + εA(ε2, s, t)y3 + sB(ε2, s, t)y4 + εC(ε2, s, t)y5 + D(ε2, s, t)y6 + . . .

)
.
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Here . . . stands for terms divisible by y7 and the functions A,B,C,D do not vanish
at the origin generically. For example, D = a0,6 + 1

4
(µ2 + λ2 − λµ)2a2

1,3.
The following proposition completes the proof of the theorem.

Lemma 5.4 The caustic of Ĝ is diffeomorphic to that of the family

G∗ = −h̃ + λµ
(
ty2 + εy3 + sy4 + y6

)

Proof. Due to the invariance under the involution the family Ĝ is a function of the
basic invariants y2, yε, ε2, s, t, h̃. Assign weights 1, 2, 3, 4, 6 to the variables y, s, ε, t, h̃
respectively. The lowest weighted homogeneous part of Ĝ up to rescaling of the variables
equals

G6 = −h̃ + ty2 + εy3 + sy4 + y6

and has weight 6. The explicit formulas determining the caustic provide

ε = −4sy − 10y3, t = −
3

2
εy − 2sy2 − 3y4.

Together with the equation G6 = 0 they determine the caustic diffeomorphic to the image
of the Legendre mapping

(t, τ) 7→ (t, τ 2, τ 3)

(semicubic cylinder) where τ = y2 − 2
9
s. All deformations G̃ of G6 involving only terms of

weights < 12 do not contain invariant factors ε2 and thus are affine functions in ε. Solving
the equation G̃ = 0 for ε we obtain antiinvariant rational function, whose caustic again
is semicubic cylinder. However generic deformations involving terms of weight 12 (e.g.,
factors ε2 as in G∗) fail to produce a Legendre parametrization of the caustic. The lowest
weight terms in the parametrizations of the caustic give a simple Â4 D.Mond singularity

(t, τ) 7→ (t, τ 2, τ 3 + τt5)

Since the 12-weighted jet of this mapping is sufficient the claim of the lemma follows.

On the parabolic line there are also special isolated points of A3 type. The dual surface
has swallow tail (A3 singularity) at the corresponding dual point. The 4-jet of a generic
surface at A3 point by an appropriate affine transformation can be reduced to the form:

A3 : f = s2 + st2 + a3,0s
3 + a0,4t

4 + sϕ(s, t)

with a0,4 6= 0 and some cubic polynomial ϕ(s, t). Generically at these points the term f5

restricted to the line s = 0 does not vanish.

Explicit calculations of the affine generating family in this case results in the following:

Theorem 5.5 In the case A3 the germ of the preimage Σ0 of the caustic (germ of singular
points of the extended wave front) with a generic value of λ diferent from λ0 6= 0, 1, 1

2
is

diffeomorphic (in the space h̃, s, t, ε ) to the caustic of the family

G = −h̃ + sy2 + ty3 + y4,
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which is cylindrical along the ε axis. For λ0 = 1
2

the caustic is diffeomorphic to that of
the family

G = −h̃ + sy2 + εty3 + y4.

There also exist two values of λ0 symmetric with respect to λ0 = 1
2

the germ of Σ0 at
which is diffeomorphic to the germ at the origin of the caustic of the family

G = −h̃ + sy2 + ty3 + εy4 + y5.

Remark. The projection of S0 to the (h̃, s, t)-space maps the total coordinate axis ε to
the origin. Hence the germ at the origin of the caustic Σ is the image of the germ at the
total line of Σ0 and therefore generically is not simple.

6 Families of lines

In this final section we consider the question: Given a smooth 2-parameter family of lines
in R3, can we find a surface S such that the lines join pairs of points of S where the
tangent planes are parallel? This question amounts to asking whether the families of lines
considered in this paper, namely those arising as chords joining pairs of parallel-tangent-
plane points, are special, at any rate locally. In fact, in most cases we reduce the local
construction of a surface S to the solution of a second order linear PDE, showing that
generically the surface S can be constructed.

Suppose we are given a family of lines L(u, v) in R3, where the line passes through
(u, v, 0) and has direction (a(u, v), b(u, v), 1). A general point of one of these lines is
(x, y, z) = (u + az, v + bz, z). We shall work locally, that is assume (u, v) is any point in
some neighbourhood of a base-point (u0, v0).

2

Consider now a distribution of 2-planes in R3 given by α = 0, where α is the 1-form

α = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz.

We shall seek to impose the condition that, at all points of L(u, v) for a fixed u, v, the
1-form α is the same, that is, we want A,B and C to be functions of u, v. The object is
to find such an integrable distribution α and then to choose two integral surfaces S1, S2.
It will follow that tangent planes to the Si at points of intersection with the lines L will
be parallel. This will provide the pair of local surfaces which we seek.

The general integrability condition is α ∧ dα = 0, but in fact we shall be able to find
a solution with dα = 0. We have

α = A(u, v)dx + B(u, v)dy + C(u, v)dz

= A(u, v)(du + (da)z + adz) + B(u, v)(dv + (db)z + bdz) + Cdz

= Adu + Bdv + z(Ada + Bdb) + (Aa + Bb + C)dz

= α1 + zα2 + (Aa + Bb + C)dz, say,

2Of course even this is problematic in some circumstances we have considered in this paper. For

example if we consider the family of lines arising from a parabolic point of a single surface, as in §5, then

the lines cannot be parametrized in this way.
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where α1, α2 are 1-forms in u and v. Hence

dα = dα1 + zdα2 + (−α2 + d(Aa + Bb + C)) ∧ dz.

Assume now that dα = 0 (locally) as a 2-form in u, v, z. The only coefficients of du ∧ dz
and dv∧dz come from the last term in dα, so that −α2+d(Aa+Bb+C) = 0. Then since z
only occurs in zdα2 we must also have dα2 = 0 and finally dα1=0. Note that, conversely, if
dα1 = dα2 = 0, then we can make dα = 0 by choosing C satisfying dC = α2−d(Aa+Bb).

Now dα1 = d(Adu + Bdv) = 0 implies (locally) that A = ∂f/∂u, B = ∂f/∂v for
some function f . Consider dα2 = d(Ada+Bdb) = 0, which implies that α2 = dg for some
function g(u, v). That is,

gu = Aau + Bbu = fuau + fvbu

gv = Aav + Bbv = fuav + fvbv,

which gives ∂
∂v

(fuau + fvbu) = ∂
∂u

(fuav + fvbv), that is

fuuav − fuv(au − bv) − fvvbu = 0 (1)

Solutions f to this PDE determine functions A = ∂f

∂u
, B = ∂f

∂v
and C as above, solving

our problem of finding a suitable distribution of 2-planes.
According to the classic Cauchy-Kovalevskaya theorem equation (1) has a (local) so-

lution provided that the cofficients of the three partial derivarives do not all vanish. We
conclude with a geometrical interpretation of this condition, and some other remarks.

The equation (1) is hyperbolic if and only if (au − bv)
2 + 4avbu > 0. Note that the

matrix

Λ =

(
au av

bu bv

)

has eigenvalues λ which are roots of the equation

λ2 − λ(au + bv) + (aubv − avbu) = 0.

Hence (1) is hyperbolic if and only if the eigenvalues of the matrix Λ are real and distinct.
Consider two nearby points (u, v, 0) and (u + δu, v + δv, 0) in the parameter plane,

and the corresponding lines of the family, in directions (a, b, 1) and (a+ δa, b+ δb, 1). The
condition for these two lines to be coplanar is that the vectors along them, and (δu, δv, 0),
should be linearly dependent. This amounts to δuδb − δaδv = 0, or

av(δv)2 + (au − bv)δuδv − bu(δu)2 = 0.

The directions in the parameter plane which give ‘infinitesimally coplanar’ lines of the
family are therefore the directions (δu, δv) satisfying this equation. These are easily
checked to be the eigenvectors of Λ. When they are real, these directions can be called
‘principal directions’ of the family of lines at a particular point in the family.

For example when the family of lines forms the normals to a given surface M , the
principal directions in the above sense always exist and are the principal directions on
the parallel surface to M through a chosen point. At umbilic points of M , where the
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eigenvalues are equal, all directions are principal, since Λ is symmetric in this case. The
eigenvalues remain real over the whole surface M .

In the general case Λ will not be symmetric, and it is possible for the eigenvalues
of Λ to coincide without all directions being principal. In fact, the condition for equal
eigenvalues is

(au − bv)
2 + 4avbu = 0, (2)

while the condition for all directions to be principal is

au = bv, av = bu = 0, (3)

which is much more special. This is the condition for all of the coefficients in (1) to vanish.
When the equation (1) is elliptic there are no real eigenvectors or eigenvalues, though

the construction of the surfaces proceeds as before. In the parabolic case, the eigenvalues
coincide. Compare §3, ‘Special chords’.

Continuing in the general case to consider principal directions, we can calculate the
point (u + za, v + zb, z) at which lines of the family which are infinitesimally coplanar
actually meet. A short calculation shows that z = −1/λ where λ is as above an eigenvalue
of Λ. Let us remain within a region where the eigenvalues are real and distinct (hence (1)
is a hyperbolic PDE) and non-zero (hence Λ is nonsingular). Then λ and z are smooth
nonzero functions of u and v, and the point (u−a/λ, v−b/λ,−1/λ) traces out a (possibly
singular) surface C. The tangent plane to this surface at the given smooth point contains
the direction (a, b, 1), that is, the surface is tangent to the corresponding line of the family.
The surface C can be regarded as the CSS of any two surfaces which are constructed, as
above, to have parallel tangent planes at their points of intersection with the lines of the
family. We can refer to C also as the envelope of the family of lines.

What this amounts to saying is that the CSS can, at least in favourable cases, be
regarded as the critical locus (image of the critical set) of a mapping of the form

F : R3 → R3, F (u, v, z) = (u + a(u, v)z, v + b(u, v)z, z), z 6= 0,

the values of z giving points of the critical set being z = −1/λ where λ is an eigenvalue of
Λ. There are a number of results on mappings R3 → R3, for example [3, 11], and these
can be used to analyse some of the cases treated in this paper.
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