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Abstract.

We consider the local geometry of a generic 1-parameter family of
smooth curves in the real plane for which one member of the family has
parallel tangents at two inflexion points. We study the equidistants of
this family, that is the loci of points at a fixed ratio along chords joining
points with parallel tangents, as a 2-parameter family depending on the
value of the fixed ratio and on the parameter in the family of curves.
Codimension 2 singularities of type ‘gull’ arise in this way and are in
general versally unfolded by the two parameters. We also calculate
the family of duals of the equidistants; here it is necessary to view
them as bifurcation sets of bigerms and they evolve through ‘moth’ and
‘nib’ singularities also encountered in 1-parameter families of symmetry
sets in the plane. Finally we show that certain sub-families of the 2-
parameter family of equidistants can be classified by reduction to a
normal form.

§1. Introduction

A generic smooth, closed plane curve C will not possess two inflex-
ion points at which the tangents are parallel, but a generic 1-parameter
family of plane curves {Cε} can be expected to contain isolated mem-
bers with this property. In a previous article [6], the authors investigated
some affinely invariant constructions—equidistants and centre symme-
try sets—based on such a 1-parameter family of plane curves. Besides
the parameter ε in the curve family there is an additional parameter λ
inherent in the equidistants: for each λ we take all chords joining pairs
of points of Cε at which the tangents are parallel and construct the locus
of points at a fixed ratio λ : 1− λ along these chords.
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2 Equidistants and Duals

In [6] we were not able to consider this 2-parameter family of equidis-
tants as a whole, but in the present article we give a method for doing
this, describing the evolution of equidistants by unfoldings of singulari-
ties of maps from the plane to the plane. The most degenerate case is
that of a ‘gull singularity’, in the language of [5], and in general this is
versally unfolded by the parameters λ, ε. In addition to this we are able
to analyse the inflexions, that is the dual structure of the equidistants,
using an approach via multi-local germs of mappings reminiscent of the
classification of 1-parameter families of symmetry sets in [3].

The classification of maps from the plane to the plane has another
natural application, in the study of projections of smooth surfaces in
R

3 to the plane, where the critical values of the projection form the
apparent contour (also called outline or profile) of the surface for a given
direction of projection. Many of the same singularities cusp, swallowtail,
lips, beaks, and including the gull singularity, occur in that context, and
the duals exhibit the same singularities—for example the dual of a gull
is also a gull. In our situation the duals have a completely different
structure and are described by means of Maxwell sets of bi-germs of
functions (called ‘moth’ and ‘nib’ in [3]).

All our results are local in nature and the article is organized as
follows. In §2 we give the local form of the family of curves being studied,
the same as in [6]. In §3 we explain our first method of studying the
whole family of equidistants and show how they evolve with varying
λ, ε. In §4 we study the duals of the equidistants, that is we capture
their inflexions and bitangents, features which are not preserved by the
methods of §3. In §5 we find the loci along which the geometry of the
equidistants, including the inflexions, changes, and give illustrations of
the results. Finally in §6 we adopt a different approach to the problem,
via reduction of families to a normal form. There is an Appendix filling
in some details from §6.

§2. Families of curves

Consider a family of plane curves, one member of the family having
parallel but not identical tangents at inflexion points. By means of a
family of affine maps of the plane to itself (compare [6]) this situation is
modelled locally by two local families of curves y = f(x, ε), y = g(x, ε),

f(x, ε) = x3f1(x, ε)

= f30x
3 + f40x

4 + f31x
3ε+ f50x

5 + f41x
4ε+ f32x

3ε2 + . . . ,

g(x, ε) = 1 + xg1(ε) + x3g2(x, ε)

= 1 + g11xε+ g30x
3 + g12xε

2 + g40x
4 + g31x

3ε+ g13xε
3 + . . . ,(1)
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where (at least) f30, g30, f30 − g30, g11 are nonzero. For all ε, the first
curve has a horizontal inflexion at the origin, and the second curve has
an inflexion at (0, 1).

We shall consider two situations; see Figure 1.
Case 1 Here, f30, g30 have the same sign, say positive, when we write
f30 = a2

3
, g30 = b2

3
where a3 > 0, b3 > 0.

Case 2 Here f30, g30 having opposite signs, and we write f30 = a23, g30 =
−b2

3
where a3 > 0, b3 > 0.

Note In general we do not need to assume a3 6= b3 in what follows,
even though a3 = b3 implies a greater degree of ‘similarity’ between the
two inflexions. We shall note below when a3 6= b3 is required.

( 0 , 1 )

( 0 , 1 )

( s , f ( s , e ) )

( t ,  g ( t , e ) )
C a s e  1

C a s e  2

 e  =  0  e  >  0 e  <  0

 e  <  0  e  =  0  e  >  0

( t ,  g ( t , e ) )

( s , f ( s , e ) )

Fig. 1. Schematic representation of the two cases considered
here. Case 1 (f30g30 > 0 in (1)) has the inflexions
‘oriented the same way’ or ‘of the same sign’ and Case
2 (f30g30 < 0) ‘oriented opposite ways’ or ‘of opposite
signs’. The sign given for ε assumes (without loss of
generality) that g11 > 0 in the notation of (1), that is
the upper inflexional tangent turns anticlockwise as
ε increases. For Case 2 there are no pairs of parallel
tangents at parameter points s, t for ε < 0, and for
ε > 0 the ranges of values of s, t providing parallel
tangents are bounded.

We are interested in the equidistants which are the points which are
at a fixed ratio along the chord joining a pair (s, f(s, ε)) and (t, g(t, ε))
at which the tangents to the two curves are parallel (we do not include
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pairs where both belong to the same local curve). Thus the equidistant,
for a fixed λ, consists of points

(1 − λ)(s, f(s, ε)) + λ(t, g(t, ε)),

subject to the parallel tangency condition.

Definition 2.1. (i) When considering values of λ close to some
fixed λ0 6= 0, 1 we write λ = λ0 + α.
(ii) For Case 1 it will be necessary to separate out two special values of

λ0, namely λ0 =
b3

b3 ± a3
. (For the − sign we require a3 6= b3.) These

were also discussed in [6]. For Case 2 there are no special values of λ0.

§3. Equidistants

For any pair of smooth plane curves varying in a 1-parameter family,
γ1(s, ε) and γ2(t, ε), we can consider the “λ-point map”, defined by

(s, t, λ, ε) 7→ (1− λ)γ1(s, ε) + λγ2(t, ε) ∈ R
2.

For fixed λ, ε the critical set consists of points (s, t, λ, ε) where the tan-
gent lines to the two curves at γ1(s, ε) and γ2(t, ε) are parallel. Thus for
fixed λ, ε the discriminant of this mapping, that is the set of its critical
values, is exactly the equidistant for those values of λ, ε. Extending the
map to

(s, t, λ, ε) 7→ ((1− λ)γ1(s, ε) + λγ2(t, ε), λ, ε) ∈ R
4,

the discriminant is the union of all equidistants of all members of the
family.

For our family this becomes

(2) (s, t, λ, ε) 7→ ((1− λ)s+ λt, (1 − λ)f(s, ε) + λg(t, ε)) .

In order to compare this more easily with standard forms we write u =
(1 − λ)s+ λt and solve for t:

t =
u− (1 − λ)s

λ
,

where we shall avoid working near λ = 0. We shall also write λ = λ0+α
for a fixed λ0 6= 0, 1. Then the above family will be written as follows:

(3) H(s, u, α, ε) = (u, H(s, u, α, ε)),
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where H is a real-valued function. We shall use the following abbrevia-
tions:

H0(s, u) = H(s, u, 0, 0); H0(s, u) = H(s, u, 0, 0) = (u,H0(s, u)).

We proceed to examine the map H0 : R2, (0, 0) → R
2 and its unfolding

H : R2×R
2, (0, 0, 0, 0) → R

2 and prove the following proposition, where
we assume as always that λ 6= 0, 1.

Proposition 3.1. For Case 1,

(i) if λ0 6=
b3

b3 ± a3
, then the map H0 has the type ‘beaks’, and is versally

unfolded by the ε parameter alone;

(ii) if λ0 =
b3

b3 ± a3
(for the − sign we require a3 6= b3) then the map

H0 has type ‘gull’1 and is versally unfolded by the parameters α, ε for
generic values of the coefficients. The precise conditions are given below
in (6).

For Case 2, and any λ,
(iii) the map H0 has the type ‘lips’, and is versally unfolded by the ε
parameter alone.

Proof (i) Then H0(s, u) = λ0 + c30s
3 + c21s

2u + c12su
2 + c03u

3 +
higher terms, where

c30 = −
(1− λ0)(λ0(b3 + a3)− b3)(λ0(b3 − a3)− b3)

λ2
0

6= 0.

It is then easy to remove the s2u term by substituting s = s1+ku where
k = −c21/(3c30). Using A-equivalence on the map H0, the term in u3

can be removed too. The result in the present situation is

H0(s1, u)

=

(
u, λ0 + c30s

3

1 +
3(1− λ0)a

2
3
b2
3

(λ0(b3 − a3)− b3)(λ0(b3 + a3)− b3)
s1u

2 + . . . ,

)

where both coefficients are nonzero. This is essentially a normal form for
a (3-A-determined) lips/beaks singularity, where beaks occurs if and only

1See [5]. In [8], Clint McCrory describes three types of ‘gulls’ [plural] singu-
larity which arise from local projections of surfaces to the plane, one of ‘elliptic
type’ and two of ‘hyperbolic type’. As local maps from the plane to the plane
these are all A-equivalent but the patterns of inflexions differ. We shall see in the
next section that the pattern of inflexions on the equidistants is quite different
from this.
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if the coefficients of s3
1
and s1u

2 have opposite sign. But the product of

these coefficients is −
3(1− λ0)

2a23b
2
3

λ2
0

, which is always negative. Hence

the mapping H0 has a beaks singularity at s1 = u = 0. (The lips
singularity occurs for Case 2, for any value of λ.)

The function H(s1, u, α, ε) when the same reduction is made has the
form
(4)

λ0 + α− (1− λ0)g11s1ε−
a23λ

2
0g11

(λ0(b3 − a3)− b3)(λ0(b3 + a3)− b3)
uε+ . . . .

This means that the ‘initial speed’
∂H

∂α
provides, up to this order, only

the constant 1, while the ‘initial speed’
∂H

∂ε
provides (since g11 6= 0) the

term s1 which is needed for a versal unfolding of the beaks singularity.
Thus changing λ to values close to λ0 provides only a trivial unfolding
but changing ε to values close to 0 does give a versal unfolding of the
beaks singularity, as observed in [6].

(ii) We take the case λ0 =
b3

b3 − a3
.

Remark 3.2. Clearly this requires a3 6= b3. However all the cor-

responding calculations for the other special value λ0 =
b3

b3 + a3
are

obtained by the formal substitution of −b3 for b3 throughout, and at
that special value it is permissible to have a3 = b3 in which case λ0 = 1

2
.

With λ0 = b3/(b3 − a3) the s3 term is absent from H0 and there is
a standard technique (see for example [9]) for reducing the 3-jet of H0

to a multiple of s2u, using A-equivalence on H0. We can always remove
powers of u using a left-equivalence; we then replace s by s1−c12u/(2c21).
This gives the 4-jet up to A-equivalence

j4H0(s1, u) = λ0 + c21s
2

1
u+ c40s

4

1
+ c31s

3

1
u+ c22s

2

1
u2 + c13s1u

3,

where

c21 = 3a23 6= 0, c40 =
a3(a

3
3g40 − b33f40)

b3
3
(b3 − a3)

and for certain coefficients c31, c22, c13. We therefore assume that the
coefficient c40 of s4

1
is nonzero (compare [6, Prop. 4.1]). A second sub-

stitution s2 = s1 +
1

6a2

3

(c31s
2
1 + c22s1u+ c13u

2) (which is then solved for

s1 as a function of s2, u) removes the degree 4 terms other than s41 and
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the 5-jet of H0(s2, u)) becomes

λ0 + 3a23s
2

2u+ c40s
4

2 + c50s
5

2 + other degree 5 terms

where

(5) c50 =
4b6

3
f2
40

− 4a6
3
g2
40

+ 3a6
3
b2
3
g50 − 3a2

3
b6
3
f50

3a3b63(b3 − a3)
.

The condition that c50 is nonzero also arose in [6, Prop. 4.2] as the
additional condition that a function on a swallowtail surface yielded the
transition on equidistants at a special point. We shall now assume that
c40 and c50 are both nonzero. The conditions c40 6= 0, c50 6= 0 can be
written in the more suggestive forms (as in [6])

(6)
f40
a3
3

6=
g40
b3
3

,
4f2

40

a6
3

−
3f50
a4
3

6=
4g240
b6
3

−
3g50
b4
3

in which the two curves are separated on the two sides.
A further substitution s3 = s3(s2, u) of a similar kind removes the

degree 5 terms other than s5
2
but does not affect c40 or c50, resulting in

the normal form up to A-equivalence

(7) H0(s3, u) = (u, λ0 + c21s
2

3u+ c40s
4

3 + c50s
5

3).

All three coefficients cij are nonzero, so that this jet is 5-A-determined
and occurs in Rieger’s list [9, Table 1] as 115, and is also the ‘gull
singularity’ of [5].

Applying the same transformations to the function H we obtain

λ0 + α+
a3g11
b3 − a3

s3ε+ . . .+
2a2

3
(b3 − a3)

b3
s3
3
α+ . . .+ ks3

3
ε+ . . . ,

where the terms exhibited are the significant ones in the initial speeds
(0, ∂H/∂α) and (0, ∂H/∂ε), and k is an expression involving the coef-
ficients of f, g encountered so far and in addition f31 and g31. These
terms guarantee that unfolding terms (0, s3) and (0, s3

3
) are provided by

the initial speeds and since in the normal form (7) other terms in s3, u
up to degee 5 are in the extended tangent space of H0, it follows that α
and ε versally unfold the ‘gull’ singularity of H0 at s3 = u = 0.

The proof of (iii) is similar to (i) except that there are no special values
of λ here. �
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§4. Duals of the equidistants

4.1. Inflexions

We should like to study the duals of the equidistants in order to
decide the pattern of inflexions (not preserved by A-equivalence). As a
start we derive here the condition for an equidistant to have an inflexion.
The following discussion applies both to Case 1 and to Case 2.

An equidistant has the form, for fixed λ and ε,

{((1− λ)s+ λt, (1− λ)f(s, ε) + λg(t, ε))},

subject to the parallel tangent condition fs = gt. For the purpose of
calculation assume that the condition fs = gt is solved as t = T (s) so
that fs(s, ε) ≡ gt(T (s), ε). Similar arguments apply if s is a function of
t and one or the other holds except for fss = gtt = 0: inflexions on both
curves, which happens for parallel tangents only at s = t = ε = 0. Note
that the tangent to the equidistant is parallel to the tangents to the two
given curves. In fact, for fixed λ and ε, writing

δ(s) = ((1− λ)s+ λt, (1− λ)f(s, ε) + λg(T (s), ε))

the condition for an inflexion is that δ′(s) and δ′′(s) are parallel vectors.
The derivatives are

δ′ = ((1− λ) + λT ′)(1, fs) and δ′′ = (λT ′′, (1− λ)fss + λgttT
′2 + gtT

′′).

Computing T ′ and T ′′ from fs(s, ε) ≡ gt(T (s), ε) we find T ′ = fss/gtt
and T ′′ = (fsssg

2
tt − gtttf

2
ss)/g

3
tt. Finally substituting these into the con-

dition for δ′ and δ′′ to be parallel, and clearing denominators, gives the
following condition (besides fs = gt):

(8) ((1 − λ)gtt + λfss)fssgtt = 0.

However the bracket is in fact exactly the condition for the equidistant
to be singular, that is δ′ = 0 so the condition reduces to fss = 0 or
gtt = 0. (Both occur simultaneously only for s = t = ε = 0.) Extending
the calculation we find that the inflexion is ordinary (δ′′′ not parallel to
δ′) if and only if the corresponding derivative fsss or gttt is nonzero, and
this will be the case for small values of s, t, ε since a3 and b3 are nonzero.
We deduce the following.

Proposition 4.1. The equidistant has an inflexion at the (nonsin-
gular) point corresponding to (s, t) where the tangents are parallel if and
only if fss = 0 or gtt = 0, that is one of the two curves has an inflexion.
In our case this means that, for any ε, inflexions occur exactly for s = 0
and for t = 0 and all these inflexions are ordinary inflexions. �
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Corollary 4.2. Away from any singular points of the equidistant,
for Case 1 (inflexions ‘facing the same way’) there are exactly two in-
flexions on the equidistant, both ordinary, and for Case 2 (inflexions
‘facing opposite ways’) there are four.

Also, the tangent to an equidistant at an inflexion point will either
be parallel to the x-axis or to the line y = g11x.

The second statement of the corollary follows because for a pair of
points p = (s, f(s, ε)) and q = (t, g(t, ε)) with parallel tangents, the
tangent at the corresponding point (1 − λ)p + λq to any equidistant is
parallel to those tangents. The tangent at the the origin s = 0 to the
curve y = f(x, ε) is horizontal and the tangent at (0, 1) (t = 0) to the
curve y = g(x, ε) has slope g11. �

4.2. The family of duals

We now explain how to study the duals of the equidistants by means
of a suitable map. For fixed ε and λ 6= 0, 1 let

(9) F (s, t, u, v) = ((1 − λ)(s, f(s, ε)) + λ(t, g(t, ε))) · (u, 1)− v,

where · is the euclidean scalar product of vectors. Then Fs = 0 means
that the tangent to the curve {(s, f(s, ε))} is perpendicular to (u, 1) and
Ft = 0 similarly for the curve {(t, g(t, ε))}, while F = 0 means that v =
p · (u, 1) where p is the equidistant point for the value λ corresponding
to parameter values s, t. Since the tangent to the equidistant has the
equation (x−p) · (u, 1) = 0 we can use (u, v) to parametrize the dual of
the equidistant. For fixed λ and ε the set of points

{(u, v) : ∃s, t such that F = Fs = Ft = 0}

is the dual of the equidistant for that λ and ε. This is the discriminant
set of a family of functions of two variables s, t. However this description
is not quite satisfactory since F (s, t, 0, 0) has type D±

4
and hence λ and

ε cannot versally unfold the singularity.
To get round this problem we split F into two parts, F = (F1, F2)

and regard it as a bigerm, of singularity type A2
2 at u = v = ε = 0 (and

any λ 6= 0, 1), as follows. Let, again for fixed λ,

F1(s, u, v, ε) = (1−λ)su+(1−λ)f(s, ε), F2(t, u, v, ε) = −λtu−λg(t, ε)+v.

Thus, F1(s, 0, 0, 0) = a2
3
s3+ higher terms, and F2(t, 0, 0, 0) = ±b2

3
t3+

higher terms, where the sign is + for Case 1 and − for Case 2. All these
are of type A2 since a3 and b3 are nonzero. We have the following.
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Proposition 4.3. For fixed λ, ε the dual of the equidistant is the
levels bifurcation set or Maxwell set

B = {(u, v) : ∃s, t such that F1s = F2t = 0, F1 = F2}.

Furthermore, for any λ 6= 0, 1, the parameters u, v, ε in F give a multi-
versal unfolding of the A2

2 singularity of this bigerm at (s, t) = (0, 0).

Note that in our situation we do not need to specify s 6= t since they
are parameters on two separate curve pieces.

Proof of the last statement. The ‘initial speeds’, evaluated at u = v =
ε = 0, are

Fu = ((1−λ)s,−λt), Fv = (0, 1) and Fε = ((1−λ)O(s3),−λg11(t+O(t3))),

which give the requisite terms (s, 0), (0, 1) (or (1, 0)) and (0, t) for a
multiversal unfolding of the A2

2 singularity, since g11 6= 0. �

This result implies that, for any λ, including special values, the
levels bifurcation set B is locally diffeomorphic to the levels bifurcation
set BG of the standard multiversal unfolding of an A2

2 singularity, namely
(see [3]):

G1(x, p, q, r) = x3 + px, G2(y, p, q, r) = y3 + qy + r,

with BG = {(p, q, r) : G1x = G2y = G1 −G2 = 0}

= {(−3x2,−3y2, 2(x3 − y3))}.

To understand the evolution of the dual equidistants for a fixed λ and
ε passing through 0 we therefore need to identify the function ε on B.
For a stable function the evolution will be, up to local diffeomorphism,
a standard ‘nib’ or ‘moth’ transition from [3], and this occurs when the
plane ε = 0 is transverse to the limiting singular strata of the surface B,
namely the limiting tangent lines to the cuspidal edges and the double
curve. The ‘nib’ is illustrated in Figure 3 along the ε-axis and the ‘moth’
is the 4-cusped curve on the right of Figure 4, which shrinks to a point
and disappears in the transition.

It is clear that we can solve the equations F1s = F2t = 0, F1 =
F2 for u and v, and the remaining equation is then simply fs(s, ε) =
gt(t, ε) which is the condition for parallel tangents of the original two
inflexional curves y = f(x, ε) and y = g(x, ε). This equation is solved
locally by say ε = E(s, t), such a smooth solution being guaranteed
by g11 6= 0. The lowest terms of (u, v, ε) as functions of s and t, say
(U(s, t), V (s, t), E(s, t)), are as follows, for any λ:



Equidistants and Duals 11

(U, V,E) =
(10)(
−3a23s

2 + . . . , λ+ 2a23(λ − 1)s3 ∓ 2b23λt
3 + . . . ,

3a23
g11

s2 ±
3b23
g11

t2 + . . .

)
.

Here the upper sign is for Case 1 and the lower sign for Case 2. Note
that U(0, t) ≡ 0 since U = −fs(s, ε) before we substitute for ε.

The cuspidal edges on B correspond to inflexions on the equidistants
and these occur for s = 0 and t = 0 only (see Proposition 4.1). Putting
s = 0 or t = 0 in (10) then gives the limiting tangent vectors to the
cuspidal edges on B as (0, 0, 1) and (1, 0, 1), both of which are transverse
to the plane ε = 0. We therefore need to examine the limiting tangent
vector to the double curve on B. Calculation shows that the relation
between s and t on the double curve of B is D(s, t) = 0 where

D(s, t) = a23(1− λ)s3 ± b23λt
3 + . . . ,

so that t = ks + . . . where k3 = ±a2
3
(λ − 1)/b2

3
λ. The tangent vector

to the image of this curve on B then has the form (ps3 + . . . , qs5 +
. . . ,∓18a23b

2
3(λk + 1− λ)s3/g11 + . . .), where p 6= 0. The limit as s → 0

is transverse to the plane ε = 0 unless the coefficient of s3 in the third
component is 0. This is equivalent to

(
λ− 1

λ

)2

= ±
a23
b2
3

; for the upper sign + this is λ =
b3

b3 ± a3
.

For the upper sign (Case 1), these are the special values of λ. For the
lower sign (Case 2) there are no special values of λ. We deduce the
following.

Proposition 4.4. For Case 1 (f30 = a23, g30 = b23 in (1)) the func-
tion ε on the set B is stable provided λ is not one of the special values
b3/(b3 ± a3), and the transition on dual equidistants as ε passes through
0 is then a ‘nib’ transition.

For Case 2 (f30 = a2
3
, g30 = −b2

3
in (1)) , the function ε on B

is always stable and the transition on the dual equidistants as ε passes
through 0 is a ‘moth’ transition.

Remark 4.5. At a special value of λ in Case 1 we can examine the
situation less formally by direct calculation. The transition is almost
identical to a nib transition, except that for ε = 0 the two cusps with
a common tangent are no longer both ordinary cusps. The outer one
is ordinary and the inner one is rhamphoid. In terms of the standard
A2

2 surface BG, parametrized by (x, y) 7→ (u, v, w) = (x2, y2, x3 − y3),
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a function whose level sets model the transition at a special value of
λ is u − v + w2, while stable functions which model the nib/moth are
respectively 2u− v and u + v. There is an additional condition for the
non-stable function ε to be equivalent to u − v + w2 and that is the
second condition of (6) above.

§5. Equidistants and duals together

Our aim in this section is to describe the equidistants and their duals
simultaneously, that is to include inflexions in the ‘clock diagram’ of the
equidistants, in the (ε, α)-plane where λ = λ0 + α for a fixed λ0. The
most interesting situation is Case 1, with λ0 a special value, and we shall
start with that.

Let f30 = a2
3
, g30 = b2

3
in (1) (Case 1) and λ = b3/(b3−a3)+α, and

consider a neighbourhood of the origin in the (ε, α)-plane. (The calcu-
lations for the other special value b3/(b3 + a3) are similar.) There are
some loci in the (ε, α)-plane which help us to understand the geometrical
structure of the equidistants.

(S) The set of points (ε, α) for which the equidistant has a swal-
lowtail singularity (the dual a double inflexion or undulation).
Crossing this locus, the number of cusps on the equidistant
(inflexions on the dual) changes by 2, and the number of self-
intersections on the equidistant (double tangents on the dual)
changes by 1.

(T) The set of points (ε, α) for which the equidistant, and hence
also the dual, has a self-tangency or tacnode. Crossing this
locus the number of self-intersections of the equidistant, or of
the dual, changes by 2.

The calculations to identify these loci are straightforward but tedious
and we state the results, as follows. We shall assume without loss of
generality that g11 > 0.

Proposition 5.1. Assume that the conditions of (6) both hold.

(i) The swallowtail locus S has the form

ε =
a3
3
b3
3
(a3 − b3)

6

2g11(a33g40 − b3
3
f40)2

α3 + . . . .

(ii) The self-tangency locus T has the form

ε =
3a43b

4
3(a3 − b3)

4

g11B
α2 + . . . ,
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         d u a l

( a l w a y s  2  c u s p s )

g 1 1 >  0 ,  B  >  0

1  c u s p

0  c r o s s i n g

3  c u s p s

1  c r o s s i n g

   1  c u s p

1  c r o s s i n g

      3  c u s p s

2  c r o s s i n g s

1  c u s p
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t a n g e n t s

1  i n f l e x i o n

2  d o u b l e  

t a n g e n t

1  i n f l e x i o n

1  d o u b l e

t a n g e n t

3  i n f l e x i o n s

1  d o u b l e  

t a n g e n t

1  i n f l e x i o n

0  d o u b l e

t a n g e n t

Fig. 2. Case 1, λ = b3/(b3 − a3) + α. The swallowtail (S)
and self-tangency (T) loci for the equidistants, as
in Proposition 5.1, showing how the number of self-
intersections and the number of cusps on the equidis-
tant changes around the (ε, α) diagram. The thin
dashed lines in the left-hand diagram represent the
coincidence of a self-intersection and an inflexion, as
in Proposition 5.2. The quantity B is given by (11).
If B < 0 then the figure is reflected in the origin, so
that S remains essentially unaltered and T moves to
the second quadrant.

where

(11) B = 4b63f
2

40 − 4a63g
2

40 + 3a63b
2

3g50 − 3a23b
6

3f50

(the same as the numerator of c50 in (5)), ε has the sign of B and α has
the sign of −B.
(iii) In addition, crossing the α axis, ε = 0, where beaks transitions occur
on the equidistant, the number of cusps changes by two but although there
is a self-tangency on the equidistant the number of self-intersections does
not change. �

These loci are illustrated in Figure 2 and the equidistants and duals
themselves in Figures 3, 4.

There are two other loci in the (ε, α)-plane, where λ = λ0 + α and
λ0 is a special value, which affect the configuration of the equidistants
in a minor way. Firstly, an inflexion, which always corresponds to s =
0 or t = 0, can occur at the same place as a self-intersection on the
equidistant. Crossing this locus an inflexion migrates from one sides
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e

a

T

S

I

I

I

I

S

e

a

T

S

Equidistants Duals of equidistants

Fig. 3. (As with Figure 2 we take g11 > 0, B > 0, B given by
(11).) Left: for Case 1, λ = b3/(b3−a3)+α, α and ε
small, this shows the evolution of the equidistants of
the family of curves studied in this article. Inflexions
are marked by a circle and those labelled I migrate
across the nearby self-intersection as ε → 0. For ε < 0
the inflexions on the equidistants are horizontal and
for ε > 0 they are parallel and of positive slope g11
(see Corollary 4.2). One bitangent line is indicated
at top left. The swallowtail locus S and self-tangency
locus T are as in Figure 2. Right: a necessarily more
schematic indication of the duals, since there is no
canonical coordinate system in the dual plane. The
transition along the ε axis is called a ‘nib’ in [3].

of a self-intersection to the other. It occurs only for Case 1 (there are
no special values of λ for Case 2) and is given by (i) in the following
proposition. Secondly, and also for Case 1, the same event can occur on
the dual equidistant, which means that, on the equidistant itself, there
is a bitangent line which, for one tangency, is the (limiting) tangent at
a cusp. Crossing this locus a bitangent line migrates through a cuspidal
tangent on the equidistant. See (ii) below.

Proposition 5.2. Suppose as before that a3
3
g40 − b3

3
f40 6= 0. Then

(i) the locus in the (ε, α) plane where an inflexion and a self-intersection
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coincide on the equidistant has the form

ε = ±
a2
3
b2
3
(a3 − b3)

8

3g11(a33g40 − b3
3
f40)2

α4 + . . . ,

where the sign is + for inflexions corresponding to t = 0 and − for in-
flexions corresponding to s = 0.
(ii) the locus in the (ε, α) plane where the dual has an inflexion coin-
ciding with a self-intersection has the form

ε = −
2a33b

3
3(a3 − b3)

6

g11(a33g40 − b3
3
f40)2

α3 + . . . .

Assuming as usual that g11 > 0, this locus lies locally in the second and
fourth quadrants of the (ε, α) plane where ε and α have opposite signs.
�

The migration of inflexions on the equidistant is noted on Figure 3.
We do not attempt to include the second migration (ii) on the same
figure but an idea of what is happening on the equidistant itself is in
Figure 5.

Fig. 4. Case 2, the equidistant (left, a lips) and dual (right)
for ε > 0, with a bitangent line indicated correspond-
ing to the self-intersection on the dual. The dual is
called a ‘moth’ as in [3] and it disappears as ε → 0.
Note that this lips necessarily has four inflexions, as
in Corollary 4.2.

§6. Reduction to a normal form preserving the ε-fibration

In Proposition 3.1 it was shown that the family H given by (3) is A-
equivalent to a versal unfolding of a lips, beaks or gull singularity. In this
section the same family is considered using a finer notion of equivalence
which we call (α, ε)-A equivalence. As before, λ = λ0 + α and λ0 is
either a general value or a special value, but never 0 or 1. Restricting
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Fig. 5. Migration of an inflexion on the dual equidistant
across a self-intersection produces this change on the
equidistant, where the configuration is from the bot-
tom right of the equidistants diagram in Figure 3. A
similar change occurs in the top left but with a single
bitangent line.

the permissible changes in the parameters so that ε can be replaced by
a function in ε only (not involving α) preserves the fibration over ε. In
particular, this preserves how the families of equidistants evolve as α
varies for fixed values of ε near zero. It does not, however, preserve the
families of equidistants as ε varies, for a fixed α, such as α = 0. The
advantage of the method here is that it is possible to reduce to a normal
form.

Definition 6.1. Two germs of families Hi : R
2 × R

2,0 → R
2, i =

1, 2, of the variables s, u and with parameters α, ε are called (α, ε)-A
equivalent if there exists a diffeomorphism germs θ : R2×R

2 → R
2×R

2,
of the form

θ : (s, u, α, ε) 7→ (θ1(s, u, α, ε), θ2(s, u, α, ε), A(α, ε), E(ε))
and a diffeomorphism φ : R2 ×R

2 → R
2 ×R

2, of the form (φ1, φ2)× id,
which is the identity on the last two coordinates, such that φ◦(H1×id) =
(H2 × id) ◦ θ + c(α, ε) for a smooth germ c(α, ε). (Here Hi × id is the
identity on the last two coordinates (α, ε).)

R
2 × R

2
H1×id //

θ

��

R
2 × R

2

φ

��
R

2 × R
2

H2×id // R2 × R
2
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In other words,

(φ1(H1(s, u, α, ε), α, ε), φ2(H1(s, u, α, ε)))

= H2(θ1(s, u, α, ε), θ2(s, u, α, ε), A(α, ε), E(ε)) + c′(α, ε)

where c′ is the first two components of c. (The last two components
must be of the form (α − A, ε − E).) The key requirement is of course
that the equivalence preserves, up to local diffeomorphism, the critical
point set and its image, the set of critical values, of a family H for α
and ε close to 0, and also preserves the projection onto the ε-axis.

Theorem 6.2. At α = ε = 0 the generating family H is (α, ε)-
A equivalent to one of the following versal deformations in variables
(u, s) ∈ R

2 and parameters (α, ε) ∈ R
2:

Case 1 Beaks λ0 6=
b3

b3 ± a3
, 0, 1 H = (u, s3 − su2 + εs)

f30g30 > 0

Gull λ0 =
b3

b3 ± a3
H =

(u, s5 + s4 + s2u+ αs3 + εs)

Case 2 Lips λ0 6= 0, 1 H = (u, s3 + su2 + εs)
f30g30 < 0

The classification follows on from the reduction given in §3 and the
observation that the component of H that is linear in s and u does not
depend on α (see equation (4) above). The complete proof depends
upon a special version of the versality theorem which holds for (α, ε)-A
versality; see the Appendix (Lemma A.1). �

The local singularities for the two parallel inflexions case studied
in this article fit into the general adjacency diagram for equidistants as
follows:

Smooth Cuspoo Swallowtailoo Butterflyoo

Beaks

ggO
O

O

O

O

Lips

OO

Gull

OO

ggO
O

O

O

O

O

Note that the normal forms for lips and beaks in Proposition 6.2 do
not contain α, that is they do not depend on the particular λ-equidistant
where λ = λ0 + α is close to a non-special value λ0. Along the chord
between a pair of parallel inflexions, which we call a supercaustic chord,
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every ε-family of equidistants, for a fixed non-special value of λ, under-
goes either a beaks or lips bifurcation depending on whether the inflex-
ions have the same or opposite sign. (For inflexions of the same sign,
this happens when crossing the α-axis at constant α 6= 0 in Figure 3;
for inflexions of opposite sign the ‘lips’ of Figure 4 shrinks to a point
and vanishes.) It is well-known that such bifurcations are not possible
for Legendrian curves such as the λ-equidistants, that is where λ varies
but ε remains fixed, since they alter the topology of the curves (see for
example [1, p.60]).

In the case of inflexions of the same sign, where f30g30 is positive,
the supercaustic chord contains two special values of λ0 where the more
degenerate gull singularity occurs with normal form as given in Propo-
sition 6.2. Since (α, ε)-A equivalence preserves the fibration over ε, the
normal form of the gull singularity preserves how the λ-equidistants bi-
furcate for fixed values of ε near zero (λ = λ0 + α where λ0 is a special
value).

Using the normal form for gull in the table, we can calculate the
critical set of H and hence the critical locus (set of critical values) which
is the ‘big equidistant’. From that a clock diagram can be drawn and
this will correctly depict the bifurcations of the equidistants but only
projection to the ε-axis can be relied on as representing the bifurcations
for a fixed ε and α close to 0. Of course this clock diagram does not
include any information about inflexions of the equidistants, such infor-
mation not being preserved by diffeomorphisms. It is not difficult to
calculate the swallowtail locus S and the self-tangency locus T in the
(ε, α)-plane; these come to

S : ε = −4s3 − 15s4, α = −4s− 10s2, so ε = 1

16
α3 + . . . ;

T : ε = s4, α = −2s2, so ε = 1

4
α2, α ≤ 0.

A sketch of the resulting clock diagram is in Figure 6.
As previously mentioned, gull singularities also occur as projections

of smooth surfaces in R
3 to the plane (see for example [3, 5, 8]). In

such projections, other singularities of the same codimension as the gull
include butterfly and goose singularities. It is interesting to note that
whilst butterfly and gull singularities both occur in one-parameter fam-
ilies of equidistants (only the latter in the context of our article), goose
singularities are absent from the list. Goose singularities occur as the
closure of the intersection of lips and beaks strata, and for equidistants
these occur separately depending on the sign of f30g30. Since we as-
sume our original curves have ordinary inflexions, so that f30 and g30
are nonzero, goose singularities do not occur.
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S

S T

e

a

Fig. 6. The clock diagram for a gull singularity derived from
the normal form in Theorem 6.2. Here S is the swal-
lowtail set and T is the self-tangency set.

§Appendix A. Sketch of the proof of Theorem 6.2

Denote by Ω the space of map germs F = (F1, F2) : R
2 × R

2, 0 →
R

2, 0 in variables x ∈ R
2, parameters α and ε, with the property that

the linear terms in x = (x1, x2) do not depend on α. That is, for each

i, j ∈ {1, 2} we have
∂2Fi

∂xj∂α

∣∣∣∣
x=0

≡ 0.

Lemma A.1. An infinitesimally (α, ε)-A versal germ F ∈ Ω is
(α, ε)-A versal.

Proof (This proof is modelled on [7]; see also [2, p.151].) Let F be an
infinitesimal (α, ε)-A versal deformation of the germ f : R2, 0 → R

2, 0
and let G be a 1-parameter deformation of F (parameter β):

G(x, α, ε, 0) ≡ F (x, α, ε), F (x, 0, 0) ≡ f(x)

G : (R2 × R× R× R, 0) → (R2, 0).

We may consider G as an 3-parameter deformation of the germ of
a map in x with parameters α, ε, β ∈ R. The result follows from the
following lemma.
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Lemma A.2. The deformation G of f is (α, ε)-A equivalent to one
induced from F .

Proof Following [7, p.8–9] the key step in the argument is to solve the
following “homological equation” for the unknownmap germs Ξ1,Ξ2, L1, L2

and A.

∂G

∂β
+

∂G

∂α
Ξ1(α, ε, β) +

∂G

∂ε
Ξ2(ε, β) +

2∑

i=1

∂G

∂xi

Li(x, α, ε, β)

= A(G(α, ε, β, x), α, ε, β),

where for us it is important that Ξ2 is a function of ε, β only, that is
independent of α.

For any germ s : R2, 0 → R
2, 0 there exists a decomposition sig-

nifying infinitesimal (α, ε)-A versality (here and below terms involving
derivatives with respect to x = (x1, x2) stand for the sum of two terms):

s(x) =
∂f

∂x
h(x) + k(f(x)) +

∂F

∂α
ξ +

∂F

∂ε
ν, where ξ, ν ∈ R.

Consequently for every germ S(x, α, ε, β) there exists a decomposition:

S(x, α, ε, β) =
∂G

∂x
h(x) +K(G,α, ε, β) +

∂G

∂α
ξ +

∂G

∂ε
ν

+[βσ0(x, α, β, ε) + ασ1(x, α) + εσ2(x, α, ε)]

Decompose σ0, σ1 and σ2 using the same procedure:

S(x, α, ε, β) =
∂G

∂x
(h(x) + βh0(x) + αh1(x) + εh2(x))

+K̃(G(α, ε, β, x), α, ε, β)

+
∂G

∂α
(ξ + βξ0 + αξ1 + εξ2)

+
∂G

∂ε
(ν + βν0 + αν1 + εν2)

+[β2σ00(x, α, β, ε) + βασ01(x, α, ε) + α2σ11(x, α, ε)

+βεσ02(x, ε) + αεσ12(x, ε) + ε2σ22(x, ε)]

We have now obtained a better decomposition where the part in the
square bracket is now of the second order in α, ε and β. The coefficients
of the other terms will form the linear parts in α, ε, β of Li, A,Ξ1,Ξ2

respectively.
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Notice that if we consider mappings S ∈ Ω (i.e. with the property
that no linear part in the variables contain α) then ν1 will be zero and
the coefficient of ∂G/∂ε will be a function in ε and β only. Continuing
in this way we obtain the decomposition

S(x, α, ε, β) =
∂G

∂x
L(x, α, ε, β)

+ K(G(x, α, ε, β), α, ε, β) +
∂G

∂α
Ξ1(α, ε, β) +

∂G

∂ε
Ξ2(ε, β)(12)

at the level of a formal power series. Note that Ξ2 does not depend on
α. The preparation theorem (see [2]) shows that the decomposition (12)
exists for convergent series and in the C∞ case, where it is necessary to
apply the preparation theorem to the Ex,α,ε,β module (Ex,α,ε,β)

2/{∂G
∂x

+
K(G(x, α, ε, β), α, ε, β)}, to the map (y, α, ε, β) → (α, ε, β) and to the
generators ∂G

∂α
and ∂G

∂ε
. The decomposition (12) for S = −∂G

∂β
,K = −A

provides the desired solution of the homological equation and the lemma
is proved. �
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