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Introduction

Geometry is an old and venerable subject, going back to ancient Greek times. Indeed to the Greeks
any person was not fully educated unless he or she was proficient at geometry. Euclidean geometry
was considered one of the pinnacles of man’s intellectual achievements, and indeed still is, and
its organisation and methodology was a model for all mathematical investigation. The results
from the Greeks became an established part of the European heritage via the Moslem civilisation
which flourished while Europe was plunged in the so-called dark ages. The rebirth of scientific and
mathematical investigation (and much else) in Europe, during the Renaissance, brought geometry
to the fore again, and the subject has played a major role ever since. When discussing major
scientific revolutions one tends to think of Galileo’s early work, Newton’s discovery of his laws
of motion and gravitational attraction (published in his Principia in 1687), Maxwell’s theory of
electromagnetic forces (1864), Einstein’s relativity (1905, 1917), the work concerning quantum
theory (from the 1920s monwards).

It is easy to forget two major breakthroughs of a mathematical nature which underpin much
of this. The first is the calculus. The fact that this is so commonplace, the fact that many find
it dreary should not blind us to its incredible importance. Most of the major laws of physics are
expressed in terms of differential equations; calculus is apparently the scientific language of nature.
But the calculus is also a powerful tool in the study of things geometrical, and in parallel with
its use in the physical sciences it has solved many outstanding problems concerning curves and
(later) surfaces in 3-space. Major early contributors included I.Newton (1642–1727), G.Leibniz
(1646–1716), C.Huyghens, the Bernoulli family (especially James and John in the early 1700s),
L.Euler (1707–83), A.-C. Clairaut (1713–65), at the age of 16, G.Monge (1746–1818) and J.-B.-
M.-C. Meusnier (1754–93). The use of the differential calculus to solve geometric problems led
to the term differential geometry, though this was not actually coined until 1894. Early work
was concerned with the properties of curves, often motivated by physical problems—for example,
Huyghens in 1673 was interested in pendulums whose time of swing did not depend on the amplitude
of the swing, and was led to the ideas of evolute and involute which we shall encounter in Chapter
1. Work on space curves, initiated by Clairaut, followed by 1729, and was taken up by Euler
in 1775. Euler’s motivation came largely from mechanics. The ideas of curvature and torsion of
space curves come from M.-A.Lancret in 1806, and A.Cauchy further developed these ideas in 1826,
giving practically a ‘modern’ treatment.

The other major intellectual advance often overlooked is the change in our concepts of what
constitutes space; our understanding of the space in which we live. Great advances were made
by J.Bolyai (1802–60) and N.I.Lobachevsky (1793–1856) around 1825 when they proposed (inde-
pendently) for the first time the existence of non-Euclidean geometry. This is a good example of
a problem whose main difficulty lay in a proper formulation. The key advance was made by the
C.F. Gauss (1777–1855), who revolutionised the differential geometry of surfaces with the publica-
tion of his book Diquisitiones Generales circa Superficies Curvas (General Investigations of Curved
Surfaces) in 1827. The theory of surfaces had been developed alongside that of curves in the 18th
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century; in particular Euler in 1728 gave equations for the geodesics on surfaces. Euler’s major work
on surfaces dates from 1760, and his results were obtained later and more elegantly by Meusnier.
Much of Gauss’s interest in the subject stemmed from his involvement with map-making: how does
one represent areas of the earth’s surface on the plane, preserving some chosen quantities such as
angles, or equality of distance?

Another major step was made by B.Riemann (1826–66) in a seminal essay in 1854. The concepts
involved in Riemann’s work are rather difficult, but we may give them a brief mention towards the
end of the course. It is fair to say that Riemann’s view of space proved absolutely essential in
Einstein’s theory of general relativity.

You should not feel that geometry ended with Riemann. It is generally accepted that more
mathematics has been discovered since 1945 than before that date. Geometry has continued to
be of fundamental importance, and there are geometers living today whose names will also be
remembered by future generations. S.S.Chern, W.Thurston and M.Gromov have proved results
which Gauss would have been proud to produce. (Genius is not something that happened only in
days gone by!) Indeed geometry’s central importance in mathematics has had a decided revival over
the last 15 years or so. We shall prove some 20th century results, but must naturally concentrate
on the early and fundamental work of earlier generations.

One of many areas where differential geometry has found practical application in recent years is
Computer Vision, which is the science of extracting 3-dimensional information about the world from
2-dimensional images. The extraction of differential geometric information from camera images,
for the design of industrial robots and other devices, is an ongoing research area.

Outline syllabus

Curves in the plane and in space. Curvature, torsion.
Surface patches in 3-space. Parametrizations of surfaces.
Distance and the first fundamental form on a surface.
Curvature of surfaces and the second fundamental form. Special curves on a surface: principal
curves, asymptotic curves, geodesics. Elliptic, hyperbolic and parabolic points. Special kinds of
surface.
Gauss’s theorem on curvature: the intrinsic nature of Gauss curvature. Area-preserving maps and
cartography.
I hope to conclude with a detailed study of geodesics on a surface and the Gauss-Bonnet theorem.

Prerequisites

The techniques used in the course are calculus (differential and integral), vectors, matrices and
quadratic forms. I shall review any background material which might be unfamiliar.

Organization of the course

I shall provide notes for the course which are reasonably complete, though they will not include all
the examples which are done in class. Not all topics in the notes may be covered; the lectures will
define the ‘examinable material’ of the course. From time to time I shall give out extra material,
mainly illustrations of curves and surfaces.

I shall set weekly homework assignments, taking problems from the collections at the ends of
chapters in the notes—and perhaps an occasional problem from outside.

I shall try to arrange a weekly tutorial where we can discuss the problems and any other
difficulties, and perhaps tackle some extra relevant problems.



INTRODUCTION iii

Assessment

There will be a mid-semester test (announced well in advance) and a final exam. The mid-semester
test will count 15% towards the module mark and the final exam will count 75%. The remaining
10% will be awarded for quality of homework answers. Details will be given during the semester.

Books

As stated above, I shall issue notes for this course. But that should not stop you from looking at
some of the standard books on the subject. There are many of these, and some are listed below,
in alphabetical order of Author.

M.Berger and B.Gostiaux, Differential geometry: manifolds, curves and surfaces, Springer-Verlag
Encyclopaedic, very hard to read, has some gems.

M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall Inc., Englewood Cliffs,
NJ.
Quite useful, but a little slow, and very expensive.

A.Gray, Differential Geometry of Curves and Surfaces, CRC Press
Has an enormous amount of material, so very useful as a resource book. The package Mathematica
is incorporated into the material of the text but it can be used without this too. Huge numbers of
examples.

J.J.Koenderink, Solid Shape, MIT Press
A unique book, written by someone who has a great visual mastery of the subject (his main interest
is in computer and human vision). Almost no proofs, which makes it a wonderful source of ideas
for testing out your understanding!

M.M.Lipschutz, Differential Geometry (Schaum’s Outline Series), McGraw Hill, New York.
These guides tend to be looked down on by professionals, but they contain a lot of worked examples,
which can prove useful. Some of the notation is a bit hard to follow.

J.McCleary, Geometry from a differentiable viewpoint, Cambridge U.P.
Takes a different line from this course, emphasizing non-euclidean geometry and models of the
non-euclidean plane. But the sections on curves and surfaces are useful, and there is an excel-
lent treatment of the Gauss-Bonnet theorem. There is also a most interesting section on map
projections.

B.O’Neill, Elementary differential geometry, Academic Press
A fine text, marred by the use of differential forms which makes it off-putting at the beginning. But
the section on surfaces is very good and has many relevant examples. A new edition was published
in 1997.

D. Struik, Lectures on Classical Differential Geometry, Dover Publications, New York.
Quite cheap, but rather old-fashioned: he uses notation which might prove a bit difficult for you
to follow. On the other hand there is a lot of good stuff there.

J.A.Thorpe, Elementary topics in differential geometry, Springer-Verlag
Does things in a different order from this course, and takes a somewhat more ‘advanced’ standpoint
(despite the title). But might be worth looking at.

T. Willmore, An Introduction to Differential Geometry, Oxford University Press.
A little too advanced, and not very geometric, but well worth perusing.



Chapter 1

Curves

1.1 Introduction

Our major interest will be with surfaces in 3-space. But it turns out that we can best understand
some aspects of the geometry of a surface through the study of curves lying on that surface. For
the present we shall study curves in the plane (which is a very flat surface) and curves in higher-
dimensional space—usually 3-dimensional space.

Curves arise naturally in all sorts of situations and in many guises. Solutions of Newton’s laws
of motion give the orbits of the planets as ellipses with the Sun at a focus. A spot of paint on a
train wheel describes a cycloid as the wheel rolls. A curve may be traced by a linkage of bars and
gearwheels. When the Sun’s rays are reflected from the rounded inner surface of a teacup they
produce on the surface of the tea a bright ‘caustic’ curve.

Many naturally occurring curves are traced out with time, that is they come with a ‘parametri-
sation’. We use this idea as our definition.

1.2 Beginning definitions and examples

Definition 1.2.1 A (parametrised) curve in the real Euclidean space Rn (with coordinates
x1, . . . , xn) is a map

γ : I → Rn, γ(t) = (γ1(t), . . . , γn(t))

where I is an open interval in R. We assume that each of the functions γi has derivatives of all
orders, for all t ∈ I. Such a function γi and curve γ are called smooth. The curve γ is called regular
provided there does not exist t ∈ I with γ′

1 = γ′
2 = . . . = γ′

n = 0. The variable t is called the
parameter : the point γ(t) has parameter value t.

Unless otherwise stated all curves will be regular in this course. The vector (γ′
1, γ

′
2, . . . , γ

′
n),

which is also written γ′(t) or dγ/dt, is called the velocity vector at t. For if we (naturally) think of
the parameter t as being time and γ(t) the position of a particle at time t then γ′(t) is the particle’s
velocity. So if a curve is regular the particle tracing out the curve never stops or turns around,
since the vector γ′(t) is never the zero vector. If say γ′(t) = (1, 0, 0, . . . , 0) then this means that
instantaneously γ(t) is moving parallel to the x1-axis.

Examples 1.2.2 Curves in R2 and R3.

Curves in R2 and R3, are referred to as plane and space curves respectively.
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CHAPTER 1. CURVES 2

(1) γ(t) = (t, t2), I = R; parabola.
(2) γ(t) = (cos t, sin t), I any open interval containing [0, 2π]; circle.
(3) γ(t) = (t3, t6), I = R. The image of γ is still the parabola of (1), but γ is not regular at

t = 0. What about γ(t) = (t2, t4)?
(4) γ(t) = (A cos t, B sin t), I any open interval containing [0, 2π]. The image here (when

AB 6= 0) is an ellipse in R2.
(5) γ(t) = (t2−1, t3−t), I = R. Here the image γ(I) is a curve which crosses itself (t = 1, t = −1

both give γ(t) = (0, 0).)
(6) γ(t) = (t2, t3), I = R. The image here is a cuspidal cubic, and is not regular at t = 0.
(7) Quite generally if f : I → R is a smooth function then the parametrisation (graph f) : I →

R2 given by (graph f)(t) = (t, f(t)) is regular for any f , since (graphf)′(t) = (1, f ′(t)) 6= (0, 0) for
any t.

(8) γ(t) = (t, t2, t3), I = R, gives a twisted cubic in R3. (This is a bit of old-fashioned
terminology; any curve which did not lie in some plane was referred to as ‘twisted’.)

(9) γ(t) = (cos t, sin t, t), I = R, gives a helix in R3. More generally the parametrisation
γ(t) = (a cos t, a sin t, bt), I = R is also referred to as a helix. We can think of it as the thread on
a bolt.

1.3 Tangent Vectors

We shall use vectors a great deal in this course. Given points q, r in Rn the segment from q to
r represents the vector v = r − q. So the vector from O to p (O being the origin) represents the
vector p, and so does any segment parallel to it. Vectors are indicated by arrowed segments; you
should all be familiar with the well-known vector law of addition.

Let γ : I → Rn be a regular curve. The vector v = γ(t + h) − γ(t) corresponds to the chord
segment from γ(t) to γ(t + h). The derivative

γ′(t) = lim
h→0

γ(t + h) − γ(t)

h

has as its direction the limit of these chords, i.e. the tangent at γ(t).

Before proceeding we recall that the scalar product or dot product of two vectors v = (v1, . . . , vn)
and w = (w1, . . . , wn) in Rn is the real number

v · w = v1w1 + v2w2 + . . . + vnwn.

Whenever we mention Rn we shall really be thinking of this space together with this scalar product,
in other words we will be dealing with Euclidean space. The scalar product allows us to define
angle and distance in Rn.

We note the following facts:

Properties 1.3.1 Scalar (dot) products

(1) v ·v = v2
1 +v2

2 + . . .+v2
n and its square root

√
v · v is the length of the vector v, also written

||v||.
(2) v · w = ||v|| ||w|| cos θ where θ is the angle (0 ≤ θ ≤ π) between the vectors v and w. In

particular v · w = 0 means that v and w are perpendicular or orthogonal.
(3) If the vi and wi are all (smooth) functions of t then

(v · w)′ = d(v · w)/dt = v′ · w + v · w′
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where v′ = (v′1, . . . , v
′
n) etc.

Here are two basic facts we shall need.
(4) If v · v = 1 for all t (that is v is a unit vector for all t) then using (3) above v · v′ = 0 for

all t. So for each t the vectors v and v′ are perpendicular.
(5) If v and w are functions of t and orthogonal for all t then differentiating the identity v·w = 0

we find v′ · w + v · w′ = 0.

Definition 1.3.2 Let γ : I → Rn be a regular curve. The vector T(t) = γ′/||γ′|| is called the
unit tangent vector to γ at t, or at γ(t). The length of the velocity vector ||γ′(t)|| is naturally
called the speed of the curve γ at t, and we say that γ is unit speed if ||γ′(t)|| = 1 for all t. The
tangent line to γ at t is the straight line through γ(t), containing the direction T(t).

Examples 1.3.3 Tangents and speed

(1) For the circle parametrised as γ(t) = (cos t, sin t) the velocity vector γ′(t) is (− sin t, cos t),
and this is a unit vector, the unit tangent vector to γ at t. Note here that since γ(t) is a unit
vector for all t the tangent vector at γ(t) is perpendicular to γ(t) (i.e. the tangent line to a circle
is perpendicular to the corresponding diameter).

(2) For the helix γ(t) = (cos t, sin t, t) the velocity vector is (− sin t, cos t, 1), and the unit tangent
vector is (− sin t, cos t, 1)/

√
2.

(3) For the twisted cubic γ(t) = (t, t2, t3) the velocity vector is (1, 2t, 3t2), and the unit tangent
vector is (1, 2t, 3t2)/

√
(1 + 4t2 + 9t4).

(4) Consider a space curve γ(t) = (t, f(t), g(t)), where f, g are smooth and f(0) = f ′(0) =
g(0) = g′(0) = 0. Thus γ passes through the origin and has tangent (1, 0, 0) there. Note that
this γ is automatically regular for all t. If we project γ to the y, z-plane we obtain the plane curve
δ(t) = (f(t), g(t)). By the assumptions on f and g this curve fails to be regular at t = 0. This
illustrates the general principle that projecting a space curve along a tangent line yields a non-
regular curve. In fact experimenting with a piece of bent wire will convince you that what you
generally see is a cusp when looking along a tangent line to a space curve.

As a particular case of Properties 1.3 above note that the unit tangent vector to a curve γ
satisfies T · T′ = 0, so T′ is a (possibly zero) vector perpendicular to T. Since ||T|| = 1, T′

measures the rate at which the unit tangent vector is turning; the longer T′ is the faster T is
turning, and roughly speaking, the more curved the curve is.

1.4 Reparametrisation and Arc-length

As usual let γ(t) be a regular curve in Rn. The set of points Rn of the form γ(t) is called the
trace of the curve. Clearly many different curves can have the same trace, for example (t, t2) and
(3−2t, (3−2t)2) both trace out the parabola x2 = x2

1. Think of the trace as being a road, then each
car travelling the road gives a parametrisation with respect to the natural parameter of time. The
condition for the parametrisation to be regular is simply that the car at no time stops. We would
like to choose some standard natural parametrisation of each curve. Clearly one way to proceed is
to drive along the road at a constant speed. Of course the choice of speed is rather arbitrary. For
curves we can fix even this by asking that in time t we travel distance t. To make this precise we
need to define what we mean by distance or arc-length on the curve.



CHAPTER 1. CURVES 4

Definition 1.4.1 The arc-length of a regular curve γ : I → Rn, measured from γ(t0), where
t0 ∈ I, is

l(t) =

∫ t

t0
||γ′(t)||dt (t ∈ I).

In particular if γ is unit speed (i.e. ||γ′(t)|| = 1 for all t), then l(t) = t − t0. A unit speed curve is
often said to be parametrised by arc-length. The key equation, valid for all regular curves, is

l′(t) = ||γ′(t)||.

Remark 1.4.2 We often use s to denote the arc-length parameter, that is s = l(t). Then rather
than writing l′ = dl

dt = ||γ′(t)|| we write s′ = ds
dt = ||γ′(t)||. As a rule confusing variables with

functions does no harm at all, thanks to the robustness of the notation of calculus; one of the few
occasions when we need to keep the function l separate from the variable s is the proof of the next
result, which says that arclength is always a valid parameter on a regular curve.

Proposition 1.4.3 Any regular curve γ : I → Rn can be parametrised with respect to arclength,
i.e. has a unit speed parametrisation.

Proof The map l : I → R is smooth and has derivative l′(t) = ||γ′(t)|| > 0 for all t. It follows that
l maps I bijectively to some interval J and the inverse map l−1 : J → I is smooth. We now define
α : J → Rn by α(s) = γ ◦ l−1(s), and claim that this is unit speed. First writing h for l−1 we
note that since l(h(s)) = s we have l′(h(s))h′(s) = 1. But l′(h(s)) = ||γ′|| by definition of l. Since
α′(s) = γ′(h(s))h′(s) we take lengths to deduce the result.

Examples 1.4.4 Arclengths

It is really useful to know that curves can be parametrized by arclength. It is a different matter to
find an explicit formula for arclength in terms of some given parametrization, because integrals are
generally very hard to work out explicitly. Here are a few curves whose arclengths we can compute.
For another example, see Exercise 4 at the end of the Chapter.

(1) (n = 2) : γ(t) = (t− sin t, 1− cos t), 0 ≤ t ≤ 2π, one arch of a cycloid. Here (ds/dt)2 comes
to 2(1 − cos t) = 4 sin2 1

2 t. So s = 4(1 − cos 1
2 t), taking s = 0 when t = 0. Note that the length of

the arch is exactly 8.
γ(t) = (t, cosh(t)): this is easy because (ds/dt)2 = 1+sinh2 t = cosh2 t, giving s = sinh t, taking

s = 0 when t = 0.
γ(t) = (R cos t, R sin t), circle radius R; this is easy (it is constant speed), and s = Rt, taking

s = 0 when t = 0.
(2) (n = 3) γ(t) = (1/

√
2)(cos t, sin t, t), circular helix: here s = t.

1.5 Curvature of plane curves

Now that we know that any regular curve has a unit speed parametrisation—even if we can’t write
down a simple formula for it—we shall often asume that our curves are unit speed. When it makes
a difference to the formula we shall say so. To make matters (we hope) clearer, for a while unit
speed curves will be denoted by α below, and their parameter will be called s. Thus α′(s) = T(s)
for unit speed α, while for a general curve γ we have T(t) = γ′(t)/||γ′(t)||.

Since T(t) has constant length 1 its derivative measures the rate at which its direction is changing
with respect to the parameter t. Of course for different parameterisations we would obtain different
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rates. But if we measure the rate of turning of the tangent with respect to arc-length we have a
well defined invariant of the curve, that is one which is independent of the parametrisation, and
which has some geometric significance. Remember that for the time being we are working with
plane curves.

Definition 1.5.1 Let γ : I → R2 be a regular plane curve; then the unit tangent T is (as above)
γ′(t)/||γ′(t)||. The unit normal U(t) is defined as the vector obtained from T(t) by rotating
anticlockwise through π/2. Now T′(t) is perpendicular to T(t), so (as we are in the plane) T′ is
parallel to U. Thus there is a real number κ(t) such that

T′(t) = κ(t)U(t)||γ′(t)||.

We call κ(t) the curvature of the plane curve γ at t. Note that κ(t) = ±||T′(t)||/||γ′(t)||.
For a unit speed curve α it’s even easier: T = α′, U is still obtained by rotating T anticlockwise

through π/2, and T′ = κU, κ = ±||T′||. The curvature κ is > 0 precisely when T′ is a positive
multiple of U, that is when the tangent T is turning towards the normal U.

The centre of curvature at γ(t) is the point γ(t)+(1/κ(t))U(t) and the circle of curvature
is the circle with this point as centre and radius 1/κ(t). There is no change here if the curve is unit
speed.

Note Later on (Chapter 4) we shall have various concepts of curvature for curves lying on surfaces.
The plane is an example of a surface, and the curvature κ just defined is, from the point of view of
Chapter 4, the geodesic curvature of γ. So it would also be possible to use this term for κ.

Proposition 1.5.2 (1) If α(s) = (X(s), Y (s)) is a unit speed curve then, using ′ for d/ds,

T = (X ′, Y ′), U = (−Y ′, X ′), κ = X ′Y ′′ − X ′′Y ′.

(2) If γ(t) = (X(t), Y (t)) is a regular curve then, using ′ for d/dt,

T =
(X ′, Y ′)

(X ′2 + Y ′2)
1

2

, U =
(−Y ′, X ′)

(X ′2 + Y ′2)
1

2

, κ =
|γ′ γ′′|
||γ′||3 =

X ′Y ′′ − X ′′Y ′

(X ′ 2 + Y ′ 2)
3

2

.

(3) If γ(t) = (t, Y (t)) for some smooth Y : I → R then, using ′ for d/dt,

T =
(1, Y ′)

(1 + Y ′2)
1

2

, U =
(−Y ′, 1)

(1 + Y ′2)
1

2

, κ(t) =
Y ′′

(1 + Y ′ 2)
3

2

.

In particular if the x-axis is the tangent to the curve at t = 0, i.e. Y ′(0) = 0, the curvature
κ(0) = Y ′′(0) only depends on the second order terms in the Taylor expansion of Y at t = 0.

Note For an arbitrary regular plane curve, it follows from (2) that the curvature is zero for X ′Y ′′ =
X ′′Y ′, which is the same as γ′ parallel to γ′′. Such points are called inflexions of γ. A vertex of
γ is a point where the curvature is stationary, i.e. where κ′ = 0.

Proof of the Proposition The formulae for T and U are immediate from the definition. It is
enough to prove the formula for κ in (2). To do this, note that (using s for arclength)

γ′ =
dγ

dt
=

ds

dt

dγ

ds
= s′T.

Similarly,
γ′′ = s′′T + κs′2U.

Forming the 2 × 2 determinant |γ′ γ′′| = X ′Y ′′ − X ′′Y ′ gives |γ′ γ′′| = κs′3. The result follows

from this and s′ = ||γ′|| = (X ′2 + Y ′2)
1

2 .
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Examples 1.5.3 Curvature of plane curves

(1) For the circle (r cos t, r sin t) it is easy to check that the curvature is 1/r.

(2) For the parabola (t, at2) the curvature κ(t) = 2a/(1 + 4a2t2)
3

2 . When t = 0 this reduces to
2a.

(3) For the cubic curve (t, t3) the curvature is 6t/(1 + 9t4)
1

2 , which is positive for t > 0, where
the tangent T is turning towards the normal U and negative for t < 0, where T is turning away
from U. At t = 0, there is an inflexion.

(3) Given a regular plane curve γ : I → R2, and a point s0 ∈ I we can, by a rigid motion of the
plane, suppose that γ(s0) = (0, 0), and its tangent vector at s0 is in the direction of the x1-axis.
A little thought shows that locally the image of γ can be written in the form x2 = f(x1), with
f(0) = 0, f ′(0) = 0. The results above show that the curvature of γ(s0) is f ′′(0). In particular, if
we have a curve y = ax2 + bx3 + . . . where the dots represent terms of degree more than 3, then
the curvature at x = 0 is 2a.

Proposition 1.5.4 Serret-Frenet Formulae: plane curves

The Serret-Frenet formulae are the key facts we need in order to establish just about everything
that we need to know about curves. Frenet’s work dates from 1852 and Serret’s from 1851.

Let γ be a regular plane curve. The first formula (see Definition 1.5.1) is

T′ = κU||γ′||, hence T′ = κU for unit speed. (1.1)

Now since U is a unit vector U′ is orthogonal to U (Properties 1.3.1,(4)). and so can be written
U′ = λT for some λ. Also differentiating the identity T ·U = 0 we know that T′ ·U + T ·U′ = 0,
so that λ + κ = 0. Hence we obtain the second formula:

U′ = −κT||γ′||, hence U′ = −κT for unit speed. (1.2)

Definition 1.5.5 Let α : I → R2 be a unit speed curve, and let S denote the unit circle in R2.
Then the map U : I → S which takes s to U(s) is called the Gauss map of α. (Note that the
tangent line to α at s is parallel to the tangent line to S at U(s).)

Let us choose a fixed unit vector u in the plane, and, for each s, define the angle ψ by u =
(cos ψ)U + (sin ψ)T. Thus ψ(s) is the anticlockwise angle between u and the normal U(s). We
have U(s) · u = cos ψ and T(s) · u = sinψ. Differentiating these with respect to s and using (1.1)
and (1.2) we obtain

κ sin ψ = ψ′ sinψ, κ cos ψ = ψ′ cos ψ.

Since sin ψ or cos ψ is non-zero we deduce that

κ = ψ′,

which just makes precise the idea that κ is the rate of turning of the normal, or equally of the
tangent, since that makes an angle ψ − π

2 with the fixed direction u.
However note that

ψ′ =
dψ

ds
= limδs→0

ψ(s + δs) − ψ(s)

δs
,

and since S is a unit circle arc-length on S is the same as angle. So we have in fact

Proposition 1.5.6 Let I be a small interval containing s0 in I of length δs, which is mapped by
the Gauss map to an arc on S of length δψ. Then the absolute value of the curvature of α at s0,
|κ(s0)| is the limit limδs→0

δψ
δs .
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1.6 Curvature of space curves

We now turn to curves in more than two dimensions. For a regular curve γ we have the unit
tangent T(t) = γ′(t)/||γ′(t)||, and as before if s is arclength then ds/dt = ||γ′(t)|| = speed. Unit
speed curves will continue to be denoted by α for the time being.

Definition 1.6.1 (i) Let α : I → Rn (n ≥ 3) be a unit speed curve. Then the curvature κ(s) of
α at s is given by

κ(s) = ||T′(s)|| = ((α′′
1(s))

2 + . . . + (α′′
n(s))2))

1

2 .

So κ(s) ≥ 0 and κ is a smooth function of s away from the points where it vanishes. The positivity
of κ for space curves is to be contrasted with the fact that for plane curves we could meaningfully
give it a sign (Definition 1.5.1).

(ii) If κ(s) 6= 0 then we define the principal normal P(s) of α at s to be the unit vector
T′(s)/κ(s). Note that since T(s) is a unit vector P(s) is perpendicular to T(s). When κ(s) = 0
the vector P(s) is not defined.

Note that κP = T′ = α′′ for a unit speed curve. Thus the principal normal is in the direction
of the acceleration vector, just as the tangent is in the direction of the velocity vector. It is a good
intuition to think of driving along a parametrized space curve at unit speed—always travelling
distance d along the curve between parameter values t and t + d—in which case the principal
normal to the curve is along the direction of your acceleration.

For an arbitrary (regular) curve γ(t) we just define the curvature as ||dT/ds|| where s is ar-
clength from some fixed point on the curve. We have

dT

ds

ds

dt
=

dT

dt

and taking lengths we find that, as κ ≥ 0,

κ(t) =
||dT/dt||

ds/dt
=

||dT/dt||
||γ′|| . (1.3)

where ′ stands for d/dt.
Hence we have the equations

γ′ = s′T, T′ = κPs′ = κP||γ′||, γ′′ = s′′T + κs′2P.

So in the case of an arbitrary regular curve γ, the principal normal is no longer in the direction of
the acceleration γ′′, which has a tangential component s′′.

Examples 1.6.2 Curvature of space curves

(1) Consider the straight line γ(s) = (s, 0, 0). Here T(s) = (1, 0, 0) and T′(s) = 0, so κ(s) ≡ 0.
Conversely suppose that a curve α has curvature function κ(s) ≡ 0. Then α′′(s) ≡ 0 (note the zero
here is the zero vector) and we deduce that each component of α must be linear in the arclength
function s, i.e. the curve must be a line.

(2) Consider the unit speed helix 1/
√

2(cos s, sin s, s). The unit tangent vector is given by
T(s) = 1/

√
2(− sin s, cos s, 1), and T′(s) = 1/

√
2(− cos s,− sin s, 0), so the curvature is 1/

√
2. We

really should expect it to be constant. After all there is no way of distinguishing one point on a
helix from any other. (This is precisely why helices are useful for screw threads!)
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(3) Finally consider the twisted cubic γ(t) = (t, t2, t3). So γ′(t) = (1, 2t, 3t2) and ||γ′(t)|| =√
1 + 4t2 + 9t4. The unit tangent vector at γ(t) is (1, 2t, 3t2)/

√
1 + 4t2 + 9t4, and we need its

derivative to compute the curvature. The calculation looks fairly unpleasant. Shortly we shall have
a better method of doing this calculation—see §1.5.4 and Examples 1.6.6.

We now come to the Serret-Frenet formulae for space curves. Before giving them we introduce
the vector cross product and remind you of its basic properties.

Definition 1.6.3 (1) Let a = (a1, a2, a3) and b = (b1, b2, b3) be vectors in R3. Then the vector
cross product of a and b is perpendicular to a and b and is given by

a×b =

(
det

(
a2 a3

b2 b3

)
,−det

(
a1 a3

b1 b3

)
, det

(
a1 a2

b1 b2

))
= (a2b3 −a3b2, a3b1 −a1b3, a1b2 −a2b1).

If i, j, k denote the three standard vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) then this can be written in
coded form as

a × b = det




i j k
a1 a2 a3

b1 b2 b3


 .

The cross product is also known as the wedge product and written a ∧ b.
(2) For vectors a, b, c ∈ R3 we define the triple scalar product written [a b c] by

[a b c] = det




a
b
c


 = det




a1 a2 a3

b1 b2 b3

c1 c2 c3


 .

Geometrically this is twice the volume of the tetrahedron with vertices at the origin and the points
a, b, c. It is zero if and only the the four points O, a, b, c lie in a plane (i.e. if and only if the
three vectors a, b, c are linearly dependent).

Proposition 1.6.4 The vector product has the following well-known properties.
(1) a × b = −b × a.
(2) (a + b) × c = a × c + b × c.
(3) (λa) × b = λ(a × b) = a × (λb).
(4) ||a × b||2 = ||a||2||b||2 − (a · b)2.
(5) (a × b) × c = (a · c)b − (b · c)a.
(6) ||a × b|| = sin θ ||a|| ||b|| where θ is the angle (0 ≤ θ < π) between a and b. (This is a

direct consequence of (4) and the fact that sin2 + cos2 = 1.)
(7) [a b c] = (a × b) · c = a · (b × c).
(8) If a, b, c are functions of t then

[a b c]′ = [a′ b c] + [a b′ c] + [a b c′].

Now back to the Serret-Frenet formulae for space curves. Let α : I → R3 be unit speed,
so that α′(s) = T(s) the unit tangent vector. Then we have seen that the curvature

κ(s) = ||T′(s)||

and provided κ(s) 6= 0 there is a principal normal vector P(s), perpendicular to T(s) with

T′(s) = κ(s)P(s) [for an arbitrary regular curve γ,T′ = κP||γ′||]. (1.4)
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We shall continue to assume that κ(s) 6= 0 in what follows.
Since T(s) and P(s) are perpendicular unit vectors there is a unique unit vector B(s) called

the binormal vector pependicular to both, and such that T(s), P(s), B(s) is right-handed (i.e.
if the components are written as the successive rows of a 3× 3 matrix, then the determinant is 1.)
Indeed in terms of vector product, B = T×P. The plane through α(s) spanned by P(s) and B(s)
is called the normal plane at s, and the plane through α(s) spanned by T(s) and P(s) is called
the osculating plane there. (‘Osculating’ means ‘kissing’ in Greek....the osculating plane and the
curve have a ‘high contact’.

We know that P′ is perpendicular to P, so P′ = λT + τB for suitable λ and τ , which depend
on s of course. But T · P = 0 so T′ · P + T · P′ = 0, which gives κ + λ = 0. Hence

P′(s) = −κ(s)T(s) + τ(s)B(s) [for any regular curve γ,P′ = (−κT + τB)||γ′||] (1.5)

for some real number τ(s). This real number is called the torsion of the curve. So long as κ(s) 6= 0,
τ(s) is a smooth function of s.

Next B′ is pependicular to B and so can be written in the form µT + νP for some µ, ν ∈ R.
Using B · T = 0 we have B′ · T + B · T′ = 0, so µ + 0 = 0. Using B · P = 0 we have similarly
ν = −τ . Hence

B′(s) = −τ(s)P(s) [for any regular curve γ,B′ = −τP||γ′||]. (1.6)

The three formulae (1.4), (1.5) and (1.6) are called the Serret-Frenet formulae for space curves.
They can be summarized for unit speed curves by the following mnemonic:




T′

P′

B′


 =




0 κ 0
−κ 0 τ
0 −τ 0







T
P
B


 .

Note the skew-symmetry of the 3 × 3 matrix. For an arbitrary regular curve γ, multiply the right
hand side of the equation by ||γ′||.

In a sense any problem concerning space curves can be solved using them. The curvature and
torsion of a curve are its main geometric invariants. The curvature measures the speed at which
tangent is turning and the torsion the speed at which the osculating plane is turning (as measured
by the rate of turning of the vector B orthogonal to that plane—see Examples 1.6.6). In fact we
shall see that curvature and torsion completely determine a space curve in Proposition 1.6.8.

We already have a nice formula in Proposition 1.5.2 for the curvature of plane curves, and the
Proposition below gives similar formulae for κ and τ of a space curve. Mercifully, we do not have
to assume unit speed for these formulae.

Proposition 1.6.5 Let γ : I → R3 be a regular curve (not necessarily unit speed). Then

κ =
||γ′ × γ′′||
||γ′||3 .

Thus κ = 0 if and only if γ′ is parallel to γ′′. If κ 6= 0 then

τ =
[γ′, γ′′, γ′′′]
||γ′ × γ′′||2 ,

and γ′ × γ′′ is parallel to the binormal B.
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Proof We use t as the parameter for γ and s for arc-length on γ. We proceed as in the plane curve
case by calculating derivatives of γ with respect to t. A short calculation, using the Serret-Frenet
formulae shows that

γ′ = s′T

γ′′ = s′′T + κs′2P

γ′′′ = (s′′′ − κ2)T + (κ′s′2 + 3κs′s′′)P + κτs′3B.

From these it follows easily that
γ′ × γ′′ = κs′3B,

and
[γ′, γ′′, γ′′′] = κ2τs′6.

Recalling that s′ = ||γ′|| all the required results now follow.

Here is a good strategy for finding P, B etc., for a general regular curve:
1. Calculate T as the unit vector parallel to γ′.
2. Calculate γ′ × γ′′. The binormal B is the unit vector parallel to this. [The only assumption
here is that s′ > 0, i.e. the parameter t and the arclength s increase in the same direction along γ.
This is normally taken for granted; if it were not the case, then B would be minus the unit vector
parallel to γ′ × γ′′.]
3. Calculate P as B × T.
4. Calculate κ and τ from the formulae of Proposition 1.6.5 or from T′ = κP||γ′|| and B′ =
−τP||γ′||.

Examples 1.6.6 Curvature and torsion

(1) Consider the curve γ(t) = (t cos t, t sin t, t). To calculate its curvature and torsion at say
t = 0 we simply apply the formulae above. It is not hard to see that

γ′(t) = (−t sin t + cos t, t cos t + sin t, 1)

γ′′(t) = (−t cos t − 2 sin t,−t sin t + 2 cos t, 0), γ′′′(t) = (−t sin t − 3 cos t,−t cos t − 3 sin t, 0).

Evaluating at t = 0 and substituting in the above equations we find that κ = 1 and τ = 3/4.
(2) The example γ(t) = (t, t2, t3) mentioned above (Examples 1.6.2,(3)) is easy to tackle using

the formulae just proved. For example,

κ(t) =
(36t4 + 36t2 + 4)

1

2

(9t4 + 4t2 + 1)
3

2

.

(3) The sine of the (dihedral) angle between the osculating planes of γ at γ(t + h) and γ(t)
is ||B(t + h) × B(t)|| (see Proposition 1.6.4,(6)). Let us expand B(t + h) for small h by Taylor’s
theorem, using unit speed:

B(t + h) = B(t) + hB′(t) + . . . .

Thus
B(t + h) × B(t)

h
= B′(t) × B(t) + . . . = τP(t) × B(t) + . . . = τT(t) + . . . ,

where . . . here means terms which tend to zero with h. Letting h tend to 0 this means that the sine
of the angle between osculating planes—and hence the angle itself—tends to τ in absolute value.
So the torsion measures the ‘dihedral angle between consecutive osculating planes’. In a similar
way the curvature measures the ‘angle between consecutive tangents’ of γ.
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Proposition 1.6.7 Let γ : I → R3 be a space curve with non-zero curvature, but whose torsion is
identically zero. Then γ lies in a plane. (Note that the converse is clear.)

Proof Since B′ = −τs′P we deduce that B′ = 0 and so B is constant. Now consider f(t) =
B · (γ(t) − γ(t0)), where t0 ∈ I. Differentiating we find that f ′(t) = B · s′T(t) = 0 since B
is the constant binormal. So f is constant. But f(t0) = 0, so the curve γ lies in the plane
B · (x − γ(t20)) = 0 as required.

Finally, as an application of the Serret-Frenet equations, we shall show that the curvature and
torsion of a curve determine that curve. More precisely we have

Proposition 1.6.8 Let γ1, γ2 : I → R3 be unit speed parametrised curves with never-vanishing
curvature. Suppose that the curvature and torsion of the γi coincide, and, for some s0 ∈ I, we have
γ1(s0) = γ2(s0) and the tangents and principal normals coincide there. Then γ1(s) = γ2(s) for all
s.

Remark 1.6.9 Of course any two curves related by a rigid motion have the same torsion and
curvature (as functions of arc-length). On the other hand given two curves with this property the
other hypotheses of the proposition, namely that the curves have a point in common where the
tangent and principal normals coincide, can clearly always be satisfied by moving one of the curves
by a rigid motion. So this proposition really does state that any two curves in R3 with the same
κ and τ can be obtained by a rigid motion from each other.

Proof We use the obvious notation, with suffices 1 and 2 to distinguish the two curves. We consider
the function

f = (T1 − T2) · (T1 − T2) + (P1 − P2) · (P1 − P2) + (B1 − B2) · (B1 − B2)

= ||T1 − T2||2 + ||P1 − P2||2 + ||B1 − B2||2.

Differentiating we obtain, writing κ1 = κ2 = κ and τ1 = τ2 = τ ,

f ′ = 2(T1 − T2) · (κ1P1 − κ2P2) + 2(P1 − P2) · (−κ1T1 + τ1B1 + κ2T2 − τ2B2)

+2(B1 − B2) · (−τ1P1 + τ2P2)

= 2κ(T1 − T2) · (N1 − N2) − 2κ(P1 − P2) · (T1 − T2)

+2τ(N1 − N2) · (B1 − B2) − 2τ(B1 − B2) · (P1 − P2)

= 0.

In other words f is constant. On the other hand by hypothesis f(s0) = 0 (since T1 = T2,
P1 = P2,B1 = B2 there) so f is identically zero. Thus each of the three squares making up f
is zero so in particular T1(s) − T2(s) = d(γ1(s) − γ2(s))/ds is identically zero, So γ1(s) − γ2(s) is
constant and since it is zero for s = s0 the result follows.

1.7 Exercises

1. Find a regular parametrised curve γ(t) whose trace is the circle x2 + y2 = 1 such that γ(t)
runs clockwise around the circle with γ(0) = (0, 1).

2. Check that the curve γ(t) = (t2 − 1, t2 + 1, t3 + t) is regular and find its unit tangent vector
at γ(t).
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3. Consider the plane curve γ(t) = (A cos t + B sin t, C cos t + D sin t), where A, B, C, D are
constants, not all zero.

(i) Show that, if AD 6= BC, then γ is regular for all values of t.

(ii) Suppose that AD = BC and (without loss of generality) that A 6= 0. Show that γ is
regular for all values of t except those with tan t = B/A.

(iii) Show that, if AD 6= BC, then γ is an ellipse centred at the origin, that is the equation
of γ has the form px2 + 2qxy + ry2 = 1, where q2 < pr and p > 0. When will the ellipse
be a circle?

(iv) What curve is traced out by γ when AD = BC but A 6= 0?

4. Show that for the plane curve γ(t) = (x(t), y(t)), where x(t) = cos3 t, y(t) = sin3 t, 0 ≤ t ≤
π/2, the arclength measured from t = 0 is s = 3

4(1− cos 2t). Sketch the curve over the range
0 ≤ t ≤ π/2. What do you think happens for larger values of t? For which values of t does
the curve fail to be regular? Calculate the curvature of γ.

5. Find the unit tangent, unit normal and curvature of the following plane curves:

(i) γ(t) = (A cos t, B sin t), A > 0, B > 0, I an open interval containing [0, 2π].

(ii) γ(t) = (t2 − 1, t3 − t), I = R.

6. The cubic curve y2 = x − x3 consists of an oval, lying in the region 0 ≤ x ≤ 1, and another
part. Removing the points (0, 0), (1, 0) the oval splits into two pieces, parametrised by γ(t) =

(t,±(t− t3)
1

2 ). Show that for these curves (0 < t < 1) we have κ(t) = ±2(3t4−6t2−1)/(9t4−
4t3 − 6t2 + 4t + 1)

3

2 . Why do the halves have opposite signs for κ? Is κ positive or negative
for the top half? (And is that the upper or lower sign?)

7. Let α : I → R2 be unit speed, with α(0) = (0, 0), T(0) = (1, 0), U(0) = (0, 1). Show that

α′′(0) = (0, κ(0))

α′′′(0) = (−κ2(0), κ′(0))

α(4)(0) = (−3κ(0)κ′(0), κ′′(0) − (κ(0))3).

8. Let α : I → R2 be unit speed, and let F : R2 → R2 be a linear map with with matrix A
relative to the standard basis. Let β = F ◦ α. Show that β′(s) = Aα′(s) (where we write α′

and β′ as column vectors), and deduce that β is regular provided that A is non-singular, unit
speed provided that A is orthogonal. Deduce that, if A is orthogonal, then the curvatures of α
and β differ by the sign of detA. This shows that rotations preserve the curvature, reflections
reverse its sign. (Obviously translations preserve curvature: here β(s) = α(s) + v for some
fixed vector v.)

9. Parallels Let γ be a unit speed plane curve, and let d be a fixed real number. The curve
δ defined by δ(t) = γ(t) + dU(t) is called the parallel to γ at distance d. Show that δ is
a regular curve except for those values of t where κ(t) 6= 0 and d = 1/κ(t); also for these
irregular points δ(t) is the centre of curvature of γ at γ(t), i.e. the point γ(t) + 1/κ(t)U(t).

10. Evolute Given a unit speed plane curve γ with κ(t) never zero we can consider the locus of
centres of curvature of γ, namely the curve

ε(t) = γ(t) + [1/κ(t)]U(t),
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which is called the evolute of γ.

(i) Show that the evolute is a regular curve except for those values of t for which κ′ = 0.
These are the points where the curvature has an extremum, also known as vertices. Each one
is called a vertex.

(ii) With κ′ < 0 again, show that the unit tangent and normal to ε satisfy Tε = U, Uε = −T,
and the curvature of ε is κε = −(κ3/κ′). Deduce that the evolute has no inflexions.

(iii) Assuming that κ′ < 0 on I, so that the radius of curvature ρ(t) = 1/κ(t) is increasing on
I, show that the arc-length on ε from t0 to t1 > t0 is ρ(t1) − ρ(t0).

(iv) Deduce from (iii) that

||γ(t) − ε(t)|| = ||γ(t0) − ε(t0)|| + (arc-length on ε from t0 to t).

Deduce that, if a piece of string is wrapped around the evolute, one end being fastened at
ε(t1) and the other end starting at γ(t0), then as the string is unwrapped the ends are at ε(t)
and γ(t) for all t > t0.

11. Recall from Exercise 10 that a vertex of a plane curve is a point where the curvature has an
extremum (κ′ = 0, where ′ can be derivative with respect to any regular parameter). Find
the vertices of the plane curve γ(t) = (t, t4).

12. For the unit speed helix α(s) = (1/
√

2)(cos s, sin s, s), show that κ(s) = 1/
√

2 for all s. Find
expressions for T(s), P(s) and show that B(s) = (1/

√
2)(sin s,− cos s, 1) for all s. Find τ(s).

13. Find the curvature and torsion at the point t of the helix

γ(t) = (a cos t, a sin t, ct),

where a > 0. Calculate P and B for this curve.

14. Find the curvature and torsion of γ(t) = (t, t2, t3) at the origin.

15. Show that, for any constants a, b, c, d, e, f , the curve γ : R → R2 given by
γ(t) = (at + bt2, ct + dt2, et + ft2) lies in a plane in R3, and find the equation of this plane.

16. (January 1999, Qu.1) Let γ : I → R2 be a regular plane curve with unit tangent T, unit
normal U and curvature κ. Let r be a real number. The parallel curve δ to γ at distance r
is the curve defined by

δ(t) = γ(t) + rU(t).

(i) In this part, you may assume that γ is unit speed. Show that δ is a regular curve except
for values of t where κ(t) 6= 0 and r = 1/κ(t).

Assume now that rκ(t) < 1 for all t ∈ I. Show that the unit tangent Tδ and unit normal
Uδ to δ are the same vectors as T and U respectively. Show further that the curvature
κδ of δ is given by

κδ =
κ

1 − rκ
.

Show that the evolute of δ (namely, the curve δ + Uδ/κδ) coincides with the evolute
γ + U/κ of γ.
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(ii) For the (non unit speed) curve γ(t) = (t, t2) find an explicit parametrization of δ. Also
find the curvature κ of γ and show that, for r > 1

2 , the parallel curve δ has exactly two
points of non-regularity.

17. (January 1999, Qu.2) Let γ : I → R3 be a regular space curve.

(i) Supposing γ is unit speed, and γ′′ is never zero, define the standard vectors T, P, B
and the curvature κ and torsion τ of γ. Prove that

(γ′ × γ′′) · γ′′′ = κ2τ.

(ii) For a general regular space curve γ with κ 6= 0, write down formulae for the curvature
and torsion of γ. Let u be a real constant and let

γ(t) = (t, t3, t4 + ut2).

Show that, for u 6= 0, γ has no points where κ = 0. Show that for u > 0 there are exactly
two points where the torsion is zero and for u < 0 there are no torsion zero points. Show
that, for u > 0, binormal vectors at the two torsion zero points are parallel to

(−2u3/2, −12u1/2, ±3
√

6).

[Extra, not on exam: what happens when u → 0 through positive values?]

18. (An old exam question) (i) Explain what it means to say that γ : I → R2 is a unit speed
plane curve. Define the unit tangent vector T(t), the unit normal vector U and the curvature
κ(t). Show that U′ = −κ (short, as usual, for U′(t) = −κ(t)T(t)).

(ii) Let γ be a regular plane curve. Show that the foot of the perpendicular from the origin
to the tangent to the plane curve γ at γ(t) is given by (γ(t) · U(t))U(t). As t varies, this
point traces out the pedal curve of γ. [The line through the origin parallel to the normal U(t)
meets the tangent to γ in a point λU(t) where λ is chosen so that this point—the foot of the
perpendicular—lies on the tangent to γ.] Let us write

δ(t) = (γ(t) · U(t))U(t),

or just δ = (γ · U)U, and assume from now on that γ is unit speed. Show that

δ′ = −κ((γ · T)U + (γ · U)T).

Show that the second factor (γ ·T)U+(γ ·U)T is zero if and only if γ(t) = 0, which says that
for this t the curve passes through the origin. [This was probably done as a class example.
Write γ = λT + µU and deduce from (γ · T)U + (γ · U)T) = 0 that λ = µ = 0.] Assuming
that γ(t) is never zero, deduce that δ is a regular curve except for those points corresponding
to inflexions (i.e. where κ = 0).

For a (non-unit speed) curve in the form (t, Y (t)) find an expression for δ(t). Show that, if
Y′′(t0) = 0, then δ′(t0) = 0.

19. Let γ be a unit speed plane curve with κ never zero. Define the plane curve δ by δ(s) =
(γ(s) ·U(s))U(s). (This is the pedal curve of Exercise 18. It is regular since γ has never zero
curvature.) Calculate δ′ and δ′′ and show that κδ, the curvature of δ, is zero if and only if

2κ||γ||2 = −γ · U.

Show that this holds if and only if the origin lies on a circle of radius 1/(4κ) whose centre is
on the normal U to γ.
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20. (An old exam question) Let γ : I → R3 be a unit speed space curve. Define T, κ, and,
assuming that κ 6= 0, define P,B, τ . Show that B′ = −τP.

Suppose that 0 ∈ I and γ(0) = (0, 0, 0),T(0) = (1, 0, 0), κ(0) 6= 0 and P(0) = (0, 1, 0). Show
that B(0) = (0, 0, 1) and γ′′(0) = (0, κ, 0), γ′′′(0) = (−κ2, κ′, κτ) where here κ, τ and their
derivatives are evaluated at t = 0. Write down the condition for γ′(0), γ′′(0) and γ′′′(0) to be
linearly independent [i.e., for the triple scalar product or determinant of these 3 vectors to
be nonzero].

Let γ be as above and let α : I → R2 be defined by

α(t) = (γ(t) · T(0), γ(t) · P(0)).

Show that α is a regular curve at t = 0 [i.e. that α′(0) 6= 0] and that its curvature there
equals the curvature κ(0) of γ at t = 0.

21. Let γ(t) be a regular parametrised space curve which does not pass through the origin. Show
that, if γ(t0) is the point on the curve closest to the origin, then γ(t0) is orthogonal to γ′(t0).
[Hint: Let f(t) = γ(t) · γ(t) = square of the distance of γ(t) from the origin. Deduce that
f ′(t0) = 0.]

22. A parametrised curve γ : I → R3 has the property that its second derivative γ′′(t) is identi-
cally zero. What can be said about γ?

23. Let γ : I → R3 be a regular parametrised curve and let v ∈ R3 be a fixed vector. Assume
that γ′(t) · v = 0 for all t ∈ I, and that γ(0) · v = 0 too. Prove that γ(t) · v = 0 for all t ∈ I.
What does this mean geometrically?

24. Let γ : I → R3 be a regular parametrised curve. Show that ||γ(t)|| is a non-zero constant if
and only if γ(t) is orthogonal to γ′(t) for all t ∈ I. [Remember that ||γ(t)||2 = γ(t) · γ(t).]
What can you say about the curve γ here?

25. Let γ : I → R3 be a regular parametrised curve and suppose that all of its tangent lines pass
through a fixed point (say (0, 0, 0)). Prove that γ is a straight line.

26. The Darboux vector D is defined by D = τT + κB. Show that for a unit speed curve,

T′ = D × T, P′ = D × P, B′ = D × B.

These imply that T′,P′ and B′ are all perpendicular to D. [Physically, this says that D is
in the direction of the ‘instantaneous axis of rotation of the triad T,P,B’.]

Show that D = P × P′ (still assuming unit speed). [The rectifying plane of a space curve γ
at γ(s) is the plane through γ(s) perpendicular to the principal normal P(s). The last result
says that the Darboux vector D(s) is in fact the limiting direction of the intersection of the
‘rectifying planes’ at parameter values s and s + h, as h → 0.]

27. Let α : I → R3 be unit speed, with α(0) = (0, 0, 0), T(0) = (1, 0, 0), P(0) = (0, 1, 0). Show
that B(0) = (0, 0, 1) and

α′′(0) = (0, κ, 0)

α′′′(0) = (−κ2, κ′, κτ)

α(4)(0) = (−3κκ′, κ′′ − κ3 − κτ2, 2κ′τ + κτ ′)

In these formulae, κ and τ stand for κ(0) and τ(0) respectively.
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28. Let α : I → R3 be unit speed, and s0 ∈ I. Define γ : I → R2 by γ(s) = (α(s) · T(s0), α(s) ·
P(s0)). (This is the projection of α to the osculating plane at α(s0). Note that γ need not be
unit speed.) Show that restricting γ to some suitably small open interval containing s0, it is
a regular curve, and that its curvature at s0 equals the curvature of α at s0. Try projecting
to the plane spanned by P(s0), B(s0).

29. Find the equation of the osculating plane at the point t0 of the curve γ(t) = (t, t2, t3).

Prove that, if a is a point not on the curve there are at most three points on the curve whose
osculating plane passes through a, and when there are exactly three points they are coplanar
with a.

30. If all of the osculating planes of a curve pass through a fixed point show that the curve lies
in a plane. If they are all parallel to a fixed plane show that the curve is planar also.

31. A space curve with κ never zero is such that its tangent T makes a constant angle α with a
fixed direction a. Prove that P · a = 0 and that B makes a constant angle, also α, with a.
Prove also that κ/τ = tanα.

32. Prove that a curve γ for which the quotient κ/τ is constant has the property that its tangent
T makes a constant angle α with a fixed direction a.

33. Suppose that the curvature and torsion of a curve γ are both non-zero constants. Show that
γ is a circular helix i.e. a parametrisation of a curve of the form (a cos t, a sin t, bt), for some
constants a and b.

34. Consider the unique circle through three nearby points γ(s−h), γ(s), γ(s+h) on a unit speed
space curve. (This ‘circle’ will be a straight line when the three points are collinear.) Here is
a formula for the reciprocal 1/R of the radius of the circle through three points with position
vectors u,v,w in space:

1

R
=

2||u × v + v × w + w × u||
||u − v|| ||v − w|| ||w − u|| .

(Maybe you would like to prove this! Of course three points always lie in a plane so you could
assume the points lie say in the x, y-plane.) Putting u = γ(s− h),v = γ(s),w = γ(s + h) we
expand by Taylor’s theorem:

u = γ(s) − hT(s) +
h2

2
κ(s)P(s) + . . . , w = γ(s) + hT(s) +

h2

2
κ(s)P(s) + . . . ,

where each . . . stands for terms of higher order in h than two. Now show that the numerator
in the expression for 1/R has the form h3κ(s)+. . . and the denominator has the form 2h3+. . ..
Deduce that the limit of 1/R is indeed κ(s).

It would be slightly better to work with say γ(s − k), γ(s), γ(s + h) so that we have three
arbitrary nearby points on the curve. This results in

1

R
=

κhk(h + k) + terms of degree ≥ 4 in h, k

hk(h + k) + terms of degree ≥ 4 in h, k
,

so that the same result holds when h and k simultaneously tend to 0.

35. Show that the curvature and torsion of a regular space curve with κ never zero are unaffected
by translations and rotations.
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36. [This extended example is somewhat ‘off the syllabus’.] Closed curves in R3 can be knotted
(we will not say precisely what we mean by that, but you can probably guess). Here is
an example which illustrates how a knotted curve can lie on a naturally defined surface—of
course the idea of surface won’t be introduced formally until later but you will undoubtedly
know already what one looks like!

Consider a circle, radius b > 0, centred at (a, 0, 0), where a > 0, and lying in the plane y = 0
of x, y, z-space. The circle consists of points (a + b cos φ, 0, b sin φ) (Why?). Now rotate the
circle around the z-axis; this produces the surface of points

X(θ, φ) = ((a + b cos φ) cos θ, (a + b cos φ) sin θ, b sinφ)

(Why?)

(i) Assume that a > b. Why does this imply that the surface does not intersect the z-axis?
The surface is called a torus, or a torus of revolution. Note that a > b > 0 implies that
a + b cos φ > 0 for all φ.

Assume from now on that a > b.

(ii) Why are the circles X(θ, φ) for a fixed θ with 0 ≤ θ < 2π all disjoint from one another?
Deduce that in fact X(θ1, φ1) = X(θ2, φ2), where all angles are in [0, 2π), if and only if θ1 = θ2

and φ1 = φ2. That is, no identifications take place under X except when one or other angle
is increased by 2π.

(iii) Consider the space curve γ obtained by putting θ = 2t, φ = 3t above, that is,

γ(t) = ((a + b cos 3t) cos 2t, (a + b cos 3t) sin 2t, b sin 3t).

Show that this curve closes up at t = 2π, and then repeats. It is marginally harder to show
that the points γ(t1) and γ(t2) are never the same, when 0 ≤ t1 < t2 < 2π, but maybe you
can see how to do this from (ii) above: you need only check that no two points of the line
θ = 2t mod 2π, φ = 3t mod 2π, for 0 ≤ t < 2π, are the same point of the half-open square
0 ≤ θ < 2π, 0 ≤ φ < 2π. A diagram may suffice for this. The conclusion is that the curve γ,
for 0 ≤ t < 2π, is a ‘simple’, i.e. non-self-intersecting, space curve lying on the torus.

(iv) Projecting the space curve γ to the (x, y)-plane we get say

δ(t) = ((a + b cos 3t) cos 2t, (a + b cos 3t) sin 2t).

Show that this is a regular curve which self-intersects precisely at points γ(t1) and γ(t2) where
(t1, t2) are the pairs

(π/6, 7π/6), (π/2, 3π/2), (5π/6, 11π/6).

(Hint for showing that δ′(t) is never 0: Work out the square of the length of δ′(t). It comes
to 4(a + b cos 3t)2 + 9b2 sin2 3t.) Show also that the image of δ meets the circles of radius
a − b, a + b in the x, y-plane where t is a multiple of π/3. Perhaps by now you can get a
clear idea of what the image of δ looks like, and also which branches of γ go ‘over’ and which
‘under’ at the crossings of δ. Perhaps you can even convince yourself that γ is knotted, by
taking a closed loop of string with the same over-under arrangement. (This is called a trefoil
knot. Of course other possibilities are given by θ = mt, φ = nt for integers m and n.)



Chapter 2

Surface patches in Euclidean Space

The 2-dimensional analogue of a curve is a surface. However surfaces are much more complicated
than curves. This seems natural enough, after all there is a jump from 1 to 2 dimensions! However
even allowing for this they are more complicated objects. In some ways this is due to the fact that
there is no analogue of the nice parametrisation of curves by arc-length.

Surfaces arise in a great many situations, but chiefly as the “surface” of objects around us. In
particular biological objects (for example plants and animals) have geometrically interesting forms.
What, for example, do we find attractive in a face? In the past mathematicians have tried to
measure the beauty of sculptures using some differential geometry. Moreover manufactured objects
can have some interesting geometry associated with them. Objects produced on a lathe correspond
to so-called surfaces of revolution, the standard cooling tower is an example of a ruled surface,
as are a number of tent-like buildings designed by architects of late. Indeed many of these are
examples of developable surfaces (these are surfaces which can be made from sheet metal without
any stretching or tearing). Surfaces also arise as soap bubbles spanning wires which can be very
beautiful, and are examples of so-called minimal surfaces. We shall spend some time looking at all
of these types of surface.

Gauss, who was one of the great figures in mathematics, made an enormously important con-
tribution to differential geometry. His work was at least partly motivated by a surveying project
given to him by the Hanoverian and Danish governments. Surveying, of course, is concerned with
looking at the surface of the earth. This is related to the subject of cartography, or map making.
One problem of great importance to the navigators of the 16th and 17th centuries was how best
to represent the surface of the earth (roughly a sphere) on a flat sheet of paper (or vellum or
whatever). We shall spend a little time looking at this problem too.

2.1 Basic facts about maps

We shall use parametrizations of surfaces which are maps from some region U in the parameter
plane into R3. In practice we need U to be an open subset:

Definition 2.1.1 A subset U of R2 is open if around every point a ∈ U there is an open disk
contained in U .

This is not a serious restriction, for example the whole plane is open, and the set {(u, v) :
u2 + v2 < 1} (interior of the unit disk) is open. Basically so long as we define a set by means
of < and >, and not by means of =,≤ or ≥, it will be open. We only need this so that we can
differentiate our functions everywhere.

18
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Definition 2.1.2 Let U be an open subset of R2 and X : U → R3 a map. Write X = (X1, X2, X3).
We say that X is smooth if each of the functions X1, X2, X3 has partial derivatives of all orders
which are continuous on U . We shall use coordinates (u, v) as coordinates on U .

Definition 2.1.3 Let X be as above, and a ∈ U . The matrix

JX(a) =




∂X1

∂u
∂X1

∂v

∂X2

∂u
∂X2

∂v

∂X3

∂u
∂X3

∂v




where the partial derivatives are evaluated at a is called the jacobian matrix of X at a. The
linear map DX(a) : R2 → R3 with this matrix is called the derivative of X at a. Thus, for any
vector v ∈ R2, written as a column, we have DX(a)(v) = JX(a)v ∈ R3, where the vector in R3

also appears as a column.

The following property says that plenty of smooth functions exist, and reassures us that the
order of mixed partial derivatives is unimportant.

Properties 2.1.4 (1) Polynomials, trigonometric functions, the exponential and log functions are
smooth throughout their domains of definition. The sum, product, quotient, and composite of any
two smooth functions are smooth wherever they are defined.

(2) If f : U → R is a smooth function, then any partial derivative of f is independent of the
order in which the derivatives are taken. In particular ∂2f/∂u∂v = ∂2f/∂v∂u.

2.2 Local surfaces

We are now in a position to give a precise definition of local surface.

Definition 2.2.1 Let U be an open subset of R2. A local surface or patch M is a smooth
mapping

X = (X1, X2, X3) : U → R3

We may use X = (X, Y, Z) occasionally. We shall use (x1, x2, x3) or (x, y, z) for coordinates in
R3.

Examples 2.2.2 Patches

(1) Consider U = R2, and X(u, v) = (u, v, au+ bv), where a and b are real numbers. The image
of X is the plane through the origin orthogonal to the vector (a, b,−1).

(2) Consider U = {(u, v) : u2 + v2 < 1} and the map X given by X(u, v) = (u, v,
√

1 − u2 − v2).
The image of X is the upper half of the unit sphere in R3.

(3) Let γ : I → R3 be a regular curve, and define Γ : I × R → R3 by Γ(s, t) = γ(s) + tγ′(s).
Then the image of Γ is the set of all tangent lines to the curve γ. It is called the tangent developable
of γ.

Let γ be a parametrisation of the unit circle. Then the image of Γ is the set of points on or
outside the circle. Note that there are two of these tangent lines through any point of the plane.

On the other hand for the helix γ(t) = (cos t, sin t, t) Exercise 12 at the end of the chapter shows
that at any rate the ‘forward’ tangents, given by t > 0 do not intersect in space.
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(4) Examples (1) and (2) are particular cases of the following. Let U be an open subset of
R2 and let f : U → R be a smooth function. Then the graph of f is the image of the map
(graph f)(u, v) = (u, v, f(u, v)). Later, we shall be particularly interested in the case when the
function f is quadratic, say f(u, v) = au2 + 2buv + cv2.

(5) Consider X : R2 → R3 defined by X(u, v) = (v cos u, v sinu, v). The image of this mapping
is the cone given by the set of points (x1, x2, x3) in R3 such that x2

1 + x2
2 = x2

3. Clearly this has a
‘bad’ point corresponding to the line v = 0: this is the cone point on the surface. (It is not difficult
to find worse examples. The map X : R2 → R3, X(u, v) = (u, 0, 0) is a big disappointment as a
surface; the map X(u, v) = (0, 0, 0) is even worse.)

Now just as we avoided non-regular points on curves we also wish to avoid bad points like the
cone point in the previous example. The idea is really rather simple. We wish to study objects that
look locally like a piece of the plane. The condition that our surface should resemble, infinitesimally,
the plane is that encompassed in the following definition of a regular surface patch (sometimes called
a regular local surface).

Definition 2.2.3 A smooth mapping

X = (X1, X2, X3) : U → R3

is called a regular (surface) patch provided the jacobian matrix




∂X1

∂u
∂X1

∂v

∂X2

∂u
∂X2

∂v

∂X3

∂u
∂X3

∂v




has rank 2 at all points (u, v) of U . If in addition the mapping is injective, i.e. the image of X
does not self intersect, then we call X a regular injective patch. To prove injectivity you assume
X(u1, v1) = X(u2, v2) and deduce that u1 = u2 and v1 = v2.

For the most part we shall be dealing only with such patches and may even refer to them as
just ‘surfaces’. We denote the image of X by M , and shall sometimes refer to the surface as M ,
even though it is really the particular parametrisation given.

Remarks 2.2.4 (1) If we denote (∂X1/∂u, ∂X2/∂u, ∂X3/∂u) by ∂X/∂u, or just Xu for short, and
similarly for ∂X/∂v, we are asking that these two vectors are linearly independent at all points of
U . This is the analogue of the condition for a curve to be regular. There we only had one variable
(say u so that the second column of the matrix is not there). We then asked that the matrix had
rank 1, that is, that the matrix was not the zero matrix.

(2) The condition on X being injective is a bit of a nuisance. You will recall that we did not ask
for this when defining a regular curve: we allowed parametrized curves to cross themselves; there
was just more than one tangent line at a crossing point. For surfaces, however, it is really better
not to allow the possibility of more than one tangent plane at a point.

There is one harmless brand of non-injectivity, exemplified by (5) of Examples 2.2.2 above.
Strictly, the map X(u, v) = (v cos u, v sinu, v) is not injective since X(u + 2nπ, v + 2mπ) = X(u, v)
for any integers m, n. But no problems are caused by this. Generally when a formula of X involves
cos and sin of angles the non-injectivity is not a problem.
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Example 2.2.5 Graph surface

Let us consider the graph parametrisations of the form (u, v, f(u, v)) for some smooth f . Here
Xu = (1, 0, ∂f/∂u) and Xv = (0, 1, ∂f/∂v) and these are clearly linearly independent. So we
always have a regular patch; note that injectivity is automatic here.

We now define the tangent plane to a regular injective patch at a point, which in a sense is the
best linear approximation to the patch at that point.

Let M be a regular injective patch, parametrized by X, and let p = X(u0, v0) ∈ M . Consider
a regular curve β(t) = (u(t), v(t)) in the parameter plane with β(t0) = (u0, v0). The curve γ(t) =
X(β(t)) will then be a regular curve in R3 which lies on our surface patch M . So we can consider
the velocity vector γ′(t0) to γ at p. The vectors γ′(t0) which arise in this way are called tangent
vectors to M at p. Note that they are not necessarily unit vectors.

Fortunately it is very easy to find all the tangent vectors to M at p, since they are simply linear
combinations of two easily calculated vectors, as follows.

Differentiating γ(t) = X(β(t)) = X(u(t), v(t)) with respect to t gives

γ′(t) = Xu(u(t), v(t))u′(t) + Xv(u(t), v(t))v′(t) or γ′ = Xuu′ + Xvv
′ for short. (2.1)

Evaluating at t = t0 it is immediate that γ′(t0) is a linear combination of Xu and Xv, both evaluated
at (u0, v0).

Conversely let us consider a linear combination λXu+µXv. Define u(t) = u0+λt, v(t) = v0+µt,
so that β(t) = (u0 +λt, v0 +µt), which is clearly a regular curve (a straight line) through (u0, v0) in
the parameter space. Then define γ(t) = X(β(t)) as before. Thus u′(t) = λ, v′(t) = µ here (for any
t). Hence γ′(t0) = λXu + µXv, and the given linear combination of Xu and Xv has been shown to
be a tangent vector to M at p = X(u0, v0). Summing up:

Proposition 2.2.6 Let p = X(u0, v0) be a point on a regular injective patch X : U → R3. Then
a vector v ∈ R3 is tangent to M at p if and only if v can be written as a linear combination of the
vectors Xu(u0, v0), Xv(u0, v0).

The set of all tangent vectors to M at p is called the tangent plane to M at p:

Tangent plane at p = X(u0, v0) is the set of vectors v = λXu + µXv,

where Xu,Xv are evaluated at (u0, v0). We often say that the tangent plane is spanned by the
vectors Xu,Xv.

Note This definition only involves vectors and the tangent plane as above might as well be assumed
to pass through the origin. To move it to the point p we simply add p to all the points λXu +µXv.
Sometimes this is called the affine tangent plane to M at p. I shall just use the same phrase
‘tangent plane’; it should always be clear from the context whether it is important to ‘move the
plane parallel to itself to pass through p’ or not. For example if we want to find the equation of the
tangent plane then obviously we move it to pass through p first. If we just want to know directions
in the tangent plane then we might as well leave it passing through the origin.XC

Examples 2.2.7 Surfaces and tangent planes

(1) For the graph of a function f : U → R, that is the surface (u, v, f(u, v)), the tangent plane at
the point p corresponding to (u0, v0) is spanned by (1, 0, fu(u0, v0)) and (0, 1, fv(u0, v0)).
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In the case when f(u, v) =
√

1 − u2 − v2 these are the vectors


1, 0,− u0√

1 − u2
0 − v2

0


 ,


0, 1,− v0√

1 − u2
0 − v2

0


 .

Note that these vectors are orthogonal to the vector (u0, v0,
√

1 − u2
0 − v2

0); it should be geometri-
cally clear why this is so!

(2) Let us consider the tangent developable again—recall Exercise 2.2.2(3). So γ : I → R3 is
a regular curve, which we take to be unit speed, and we define X : I × R → R3 by X(s, t) =
γ(s) + tγ′(s). The image of X is the set of all tangent lines to the curve γ. When is this a regular
patch? To answer this we need to write down the jacobian matrix of Γ, but this is the matrix with
columns the vectors γ′(s) + tγ′′(t) and γ′(s). These vectors are respectively T(s) + tκ(s)P(s) and
T(s) and are linearly independent provided tκ(s) 6= 0. So if the curvature of γ is nowhere zero the
restriction of X to I ×R+ is a regular injective patch (where R+ = {t ∈ R : t > 0}), provided the
‘forward’ tangent lines, given by t > 0, do not intersect one another. (Compare the helix example
of Exercise 12.) The tangent vectors to the surface at the point X(s0, t0) are spanned by T(s0)
and P(s0). The same holds if γ is regular but not unit speed.

(3) We next consider a rather interesting class of examples, namely surfaces of revolution.
For this we consider first a regular parametrised curve γ : I → R3, whose image lies in a plane,
and a line in that plane. We use coordinates (x1, x2, x3) in R3 and take the plane to be given by
x2 = 0 and the line to be the x3-axis. By spinning the curve about this line in 3-space we sweep
out a surface called a surface of revolution. So we are dealing with a mapping X : I × R → R3

defined by
X(t, θ) = (γ1(t) cos θ, γ1(t) sin θ, γ2(t))

where γ(t) = (γ1(t), 0, γ2(t)).
The derivatives are Xt = (γ′

1(t) cos θ, γ′
1(t) sin θ, γ′

2(t)), and Xθ = (−γ1(t) sin θ, γ1(t) cos θ, 0).
One now easily checks that these are linearly independent unless γ1 = 0, (using the fact that γ is
a regular curve). In other words X is a regular patch except at points where the axis meets the
curve. To make the patch also injective we need to restrict θ to some range like 0 < θ < 2π and
also to assume that γ does not intersect itself.

As an example we consider the curve γ(t) = (2+cos t, 0, sin t), the unit circle centred at (2, 0, 0)
in the (x1, x3)-plane. When we rotate this about the x3-axis we obtain a torus of revolution.

(4) As a final source of examples we consider ruled surfaces. Roughly speaking these are
surfaces which are obtained by moving straight lines about. More precisely we shall have as our
two ingredients a unit speed space curve α : I → R3 and a family of unit vectors β : I → R3, so
that ||β(s)|| = 1 for all s. The parametrisation is then given by

X : I × R → R3, X(s, t) = α(s) + tβ(s).

The derivatives are Xs = T (s) + tβ′(s), Xt = β(s) where as usual T (s) is the unit tangent to α at
s. For a regular patch we want these vectors to be linearly independent (they will then span the
tangent space to the surface at the given point).

The tangent developable (Exercise 2.2.2(3)) is an example of a ruled surface. So are the cylin-
ders, which are obtained from this procedure by taking γ to lie in a plane, and β to be a fixed
unit vector orthogonal to that plane. So for example we might take γ(s) = (cos s, sin s, 0) and
β = (0, 0, 1), and we obtain a classical cylinder. In this case it is easy to see that we have a regular
patch, that is that the two derivatives are linearly independent.
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As a slightly more interesting example of a ruled surface we choose α(s) = (cos s, sin s, 0) to be
the unit speed circle, and β(s) = α′(s) + e3 where e3 is the unit vector (0, 0, 1). In explicit form
this is just

X(s, t) = (cos s − t sin s, sin s + t cos s, t).

Note that X2
1 + X2

2 − X2
3 = 1 − t2 + t2 = 1. This shows that the image of X is a hyperboloid of

revolution. Note also that if we took β to be −α′(s) + e3 we obtain the same surface. You can
check that this means that there are two (straight) lines through each point of this hyperboloid.

Definition 2.2.8 Given a regular injective patch X : U → R3 and a point (u0, v0) ∈ U we define
a normal at X(u0, v0) to be a vector perpendicular to the tangent plane at X(u0, v0). There are
two possible choices of unit normal, indeed these are ±(Xu × Xv)/||Xu × Xv)||. With a choice of
sign, the normal is denoted by N.

Examples 2.2.9 Normals

(1) Consider the unit (hemi-)sphere: recall that U = {(u, v) : u2 + v2 < 1} and the map X is given
by X(u, v) = (u, v,

√
1 − u2 − v2). The vector product Xu × Xv is given by

(1, 0,−(1 − u2 − v2)−1/2u) × (0, 1,−(1 − u2 − v2)−1/2v)

= ((1 − u2 − v2)−1/2u, (1 − u2 − v2)−1/2v, 1)

which is a multiple of (u, v, (1−u2 − v2)1/2). In other words we recover the geometrically clear fact
that one of the unit normals to the unit sphere at a point p is p itself.

(2) Consider the quadric surface given by X(u, v) = (u, v, uv). Note that Xu = (1, 0, v), Xv =
(0, 1, u) so that a unit normal vector here is (1 + u2 + v2)−1/2(−v,−u, 1).

2.3 Exercises

1. Show that
X(u, v) = ((u + v)/2, (u − v)/2, uv)

is a regular injective patch. Check that the image is the hyperbolic paraboloid x3 = x2
1 − x2

2,
using coordinates (x1, x2, x3) in R3. Determine the tangent vectors Xu,Xv, and unit normal
N to this surface patch at the point given by (u, v) = (1,−1).

2. Find a regular patch whose image is the cylinder (in R3) given by

x2
1/a2 + x2

2/b2 = 1.

Find the tangent plane at a general point p of the cylinder.

3. Let U = {(u, v) : u > 0}, and define

X(u, v) = (u cos v, u sin v, u + v).

Show that this determines a regular injective patch.

4. Let X(u, v) = (u− v, u+ v, 2(u2 + v2)), for all (u, v) ∈ R2. Show that X determines a regular
injective patch. Can you describe this surface geometrically?

5. Let X(u, v) = (
√

1 − v2 cos u,
√

1 − v2 sinu, v), with −π < u < π and −1 < v < 1. Show that
X is a regular injective patch. Describe the image of X geometrically.
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6. Show that a unit normal to a surface of revolution

X(u, v) = (γ1(u) cos v, γ1(u) sin v, γ2(u))

(where γ1(u) > 0 all u) is given by

N = (−γ′
2 cos v,−γ′

2 sin v, γ′
1)/||γ′||.

(The surface is obtained by rotating the curve γ(u) = (γ1(u), 0, γ2(u)), which lies in the x1, x3

plane, about the x3-axis in (x1, x2, x3)-space.)

7. A cone in R3 is defined by a parametrization X(u, v) = p + vβ(u), where p is a fixed point
and β(u) is a unit vector for all u. Show that this is a regular patch if and only if v 6= 0
and β′(u) is a non-zero vector for all u. If p = (0, 0, 1) and β(u) = 1√

2
(cos u, sinu,−1) then

describe the resulting cone.

8. Show that the tangent plane is constant along a ruling of a cone, that is along the lines in
the ruled surface.

9. Show that the tangent plane to the tangent developable of a (unit speed) space curve γ,
with κ never zero, is the osculating plane at the corresponding point of the curve. (Thus
X(s, t) = γ(s) + tγ′(s), with t > 0 to ensure regularity, and you want to prove that the
tangent plane at X(s, t) is spanned by T(s) and P(s).)

10. The Möbius strip, far from being an exotic dance, is a surface which you may have seen
before. It can be thought of as a ruled surface where we take

α(s) = (cos s, sin s, 0) and β(s) = (sin(s/2) cos s, sin(s/2) sin s, cos s/2).

Check that this yields a regular patch (parametrised as α(s) + tβ(s)) . Find a normal at
(cos s, sin s, 0) and compare the expressions you get at s = 0, s = 2π. Can you draw a
picture? Take say −0.5 < t < 0.5.

11. Let S2 denote the unit sphere {(x1, x2, x3) : x2
1 + x2

2 + x2
3 = 1}, and R2 denote the plane in

3-space given by x3 = 0. If (u, v, 0) is a point of R2 then the line joining (u, v, 0) to (0, 0, 1)
meets S2 in a point other than (0, 0, 1). Denote this point by X(u, v). Compute the formula
for X. (Hint: X(u, v) = λ(u, v, 0) + (1− λ)(0, 0, 1) where λ 6= 0 is chosen so that X(u, v) lies
on S2.) Show that the map determines a regular injective patch. (Hint: Prove Xu.Xv = 0.)
How much of the sphere is covered by the parametrization X? The inverse mapping is called
stereographic projection.

12. Consider the helix γ(s) = (cos s, sin s, s). Show that the tangent lines to the helix lie entirely
in the part of R3 defined by x2

1 + x2
2 ≥ 1. Suggestion: The general point on a tangent line is

(x1, x2, x3) = (cos s − t sin s, sin s + t cos s, s + t)

for t ∈ R. (The ‘forward’ part has t > 0.) Show x2
1 + x2

2 − 1 = t2.

Why can two ‘forward’ tangents to the helix never meet in space? (The same applies to two
‘backward’ tangents (t < 0) to the helix.) Hint: Project the helix and tangents to the (x1, x2)
plane. (On the other hand a forward and a backward tangent can intersect; it is actually
possible to find these points of intersection. This is an optional extra to the question.)

Deduce that the tangent developable X(s, t) = γ(s)+tγ′(s) of the helix (see Example 2.2.2(3))
is a regular injective patch provided we restrict to t > 0 or alternatively to t < 0.



Chapter 3

Distance and the First Fundamental
Form

We shall only be considering regular injective patches X in this chapter so we’ll just use the word
surface for such an X. Thus the jacobian matrix of X will be assumed of rank 2 at every point of
the domain and the map X will be assumed injective.

Suppose that we have a regular curve γ : I → R3 whose image lies in a surface X : U → R3.
Thus γ is the image under X of a some regular plane curve β : I → U ⊂ R2. So writing
β(t) = (u(t), v(t)) we have γ(t) = X(u(t), v(t)). Now we can work out the length of any part of the
curve γ using the fact that the distance from γ(t0) to γ(t1) is

∫ t1
t0

||γ′(t)||dt. The crucial point then
is to determine the length of the velocity vector γ′.

Now since γ(t) = X(u(t), v(t)) using the chain rule we see that

γ′(t) = Xu(u(t), v(t))u′(t) + Xv(u(t), v(t))v′(t).

In other words dropping the t’s we see that

||γ′|| = ||Xuu′ + Xvu
′|| =

√
(Xuu′ + Xvu′) · (Xuu′ + Xvu′)

=
√

(Xu · Xu(u′)2 + 2Xu · Xvu′v′ + Xv · Xv(v′)2.

So the three quantities Xu · Xu, Xu · Xv, Xv · Xv evaluated at say (u0, v0) completely determine
the length of any tangent vector at p = X(u0, v0). Moreover these quantities determine the length
of any curve on the surface. In other words it is they that determine the notion of distance on the
surface.

Definition 3.0.1 The coefficients E = Xu · Xu, F = Xu · Xv, G = Xv · Xv are called the first
fundamental form coefficients. The first fundamental form I itself associates to any two tangent
vectors a = a1Xu + a2Xv and, b = b1Xu + b2Xv at p = X(u0, v0) the number

I(a,b) =
(

a1 a2

) (
E F
F G

) (
b1

b2

)
.

Thus I(a,b) = a · b and I(a,a) = ||a||2.

Examples 3.0.2 First Fundamental Form (1) A co-ordinate system on the plane P ⊂ R3

passing through the point p and containing the orthonormal vectors a = (a1, a2, a3) and b =

25
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(b1, b2, b3) is given by X(u, v) = p + ua + vb. We can easily compute the first fundamental form:
for Xu = a, Xv = b. And since a and b are orthonormal we have E = 1, F = 0, G = 1.

(2) Consider the right cylinder X(u, v) = (cos u, sinu, v) where U = {(u, v) : 0 < u < 2π, −∞ <
v < +∞}. When we compute the first fundamental form, we notice that

Xu = (− sin u, cos u, 0), Xv = (0, 0, 1)

and therefore
E = sin2 u + cos2 u = 1, F = 0, G = 1.

So we see that although the cylinder and the plane are distinct surfaces the results are the same.
In other words from the point of view of the distance geometry in the surface the two are indis-
tinguishable. When we realise that the cylinder can be obtained from the plane by rolling it up
this becomes clear. These are two important examples. For they indicate that there are two types
of geometry associated with any surface. There is the geometry of how the surface bends in the
ambient space (the so-called extrinsic geometry), and the geometry determined by the distance in
the surface (the so-called intrinsic geometry). We see that the plane and cylinder have the same
intrinsic geometry, but quite different extrinsic geometry. For the cylinder curves while the plane is
flat. It is an amazing fact that one measure of how curved a surface is depends only on the distance
or metrical properties of the surface. This is the so-called Gauss curvature. But we get ahead of
our story!

The first fundamental form also allows us to measure angles on the surface.

Definition 3.0.3 Suppose that we are given two regular curves γ1 : I1 → R3, γ2 : I2 → R3 which
lie on the surface, and γ1(t1) = γ2(t2) for some t1 ∈ I, t2 ∈ J . The angle between these curves at
this common point is defined to be the angle between their tangents there.

Let γ′
1(t1) = a = a1Xu + a2Xv and γ′

2(t2) = b = b1Xu + b2Xv. Then the angle is easily calculated
to be θ where

cos θ =
I(a,b)√

I(a,a)I(b,b)
.

This is entirely determined by I. If the curves γi are unit speed, then both terms in the denominator
are 1.

Proposition 3.0.4 (i) Given a surface X : U → R3 the images of the curves u = constant, resp.
v = constant, are regular curves, with velocity vectors Xv, resp. Xu, and unit tangent vectors
Xv/

√
G and Xu/

√
E.

(ii) The angle between these two curves at a given point is given by cos θ = F/
√

EG. In
particular these curves are orthogonal if and only if F = 0.

The proof is immediate.

Examples 3.0.5 E, F, G

(1) Consider the cone X = (u cos v, u sin v, cu), −π < v < π, u 6= 0 for some constant c. (Note that
the equation of this surface is (x2

1 + x2
2 = x2

3/c2.) Here

Xu = (cos v, sin v, c), Xv = (−u sin v, u cos v, 0),
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so
E = cos2 v + sin2 v + c2 = 1 + c2, F = 0, G = u2 sin2 v + u2 cos2 v = u2.

So the images of the lines u = constant, v = constant are orthogonal.
(2) Consider the sphere, minus the points (0, 0,±1), parametrised as

X(u, v) = (cos u cos v, cos u sin v, sinu),

where1 −π/2 < u < π/2. Here

Xu = (− sin u cos v,− sinu sin v, cos u), Xv = (− cos u sin v, cos u cos v, 0),

so E = sin2 u cos2 v + sin2 u sin2 v + cos2 u = 1, F = 0, G = cos2 u sin2 v + cos2 u cos2 v = cos2 u.
Here the lines u = constant are the lines of latitude, the lines v = constant the lines of longitude.

(3) Consider the right helicoid parametrised as X(u, v) = (u cos v, u sin v, cv). This is an example
of a ruled surface, as can be seen by looking at the images of the line v = constant. Note that
Xu = (cos v, sin v, 0),Xv = (−u sin v, u cos v, c). Here E = 1, F = 0, G = u2 + c2.

(4) Consider the torus of revolution parametrised as

X(u, v) = ((2 + cos u) cos v, (2 + cos u) sin v, sinu).

Here Xu = (− sin u cos v,− sinu sin v, cos u), and Xv = (−(2 + cos u) sin v, (2 + cos u) cos v, 0). So
we deduce that E = Xu · Xu = 1, F = Xu · Xv = 0, G = Xv · Xv = (2 + cos u)2. Again it should
be clear why the images of the curves u = constant and v = constant are orthogonal.

(5) We now find the length of the curves X(t, c), 0 ≤ t ≤ 2π on the torus in (4), where c is a
constant. The length is given by

∫ √
E(u′)2 + 2Fu′v′ + G(v′)2dt.

But u(t) = t, v(t) = c so u′ = 1, v′ = 0 and the integral is
∫ 2π
0 dt = 2π. These curves are the

meridians of the torus.
For the curves X(c, t), /0 ≤ t ≤ 2π the integral becomes

∫ 2π
0 (2 + cos c)2dt = 2π(2 + cos c)2, and

the values vary between 2π and 6π. These curves are the parallels of the torus.
Quite generally given a surface of revolution the curves (indeed circles) obtained by rotating a

point of the curve about the axis of revolution are called parallels, the curves obtained by rotating
the given plane curve through a fixed angle are called meridians.

3.1 Exercises

1. Find the first fundamental form for the surface

X(u, v) = (u − v, u + v, 2(u2 + v2)).

Find the cosine of the angle between the coordinate curves X(u, 1) and X(1, v) on this surface
at the point X(1, 1) = (0, 2, 4) where they meet.

1Strictly speaking this is not injective since (u, v) and (u, v +2nπ) give the same point for any integer n. However
this kind of non-injectivity, arising from the nature of angles as lying on a circle rather than on the real axis, is
harmless and will be ignored.
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2. Find the first fundamental form for the surface

X(u, v) = (
√

1 − v2 cos u,
√

1 − v2 sinu, v),

with −π < u < π and −1 < v < 1. (Recall Exercise 5 in Chapter 2.)

3. Find the first fundamental form for the cone X(u, v) = p+vβ(u) where β(u) is a unit vector for
all u. What does this become in the case when p = (0, 0, 0) and β(u) = (cos u, sinu, 1)/

√
2?

What if p = (0, 0, 0) and β(u) = (cos u, sinu, 0)? (What is this? It might help to set
v = r, u = θ.)

4. For which parameter values s, t is the ruled surface X(s, t) = γ(s) + tB(s) generated by the
binormals to a unit speed space curve γ regular? Find the first fundamental form for this
ruled surface.

5. Find the length of the arc X(exp(v cot β/
√

2), v), 0 ≤ v ≤ π on the cone

X(u, v) = (u cos v, u sin v, u),

where β is constant.

6. If the first fundamental form of a patch X : U → R3 is of the form E = 1, F = 0, G =
f(u, v) for some smooth f then show that the v parameter curves (i.e., those of the form
X(u0, v), u0 constant) cut off equal segments from all u-parameter curves (i.e., those of the
form X(u, v0), v0 constant).

7. Show that the u and v parameter curves on the surface (u, v, f(u, v)) are orthogonal to each
other if and only if (∂f/∂u)(∂f/∂v) is identically zero. What can you deduce about the
surface if say ∂f/∂u is identically zero?

8. Find the length of the curve X(u,
∫ π/4
u (1/ cos t)dt), 0 ≤ u ≤ π/4 on the sphere

X(u, v) = (cos u cos v, cos u sin v, sinu).

9. Let I be an open interval and let φ : I → R be a smooth function. Consider the parametrized
surface

X : I × R → R3, X(u, v) = (u cos v, u sin v, φ(v)).

Show that this is a regular patch provided u > 0. We assume from now on that u > 0.

Find a unit normal N to this surface patch and show that E = 1, F = 0, G = u2 + (φ′(v))2.

Given a curve γ(v) = X(u0, v) where u0 is constant. write down an expression for the length
of γ between two points v = a and v = b. In the special case u0 = 1, φ(v) = 1

2v2, show that
this length is ∫ b

a

√
1 + v2dv.

10. Let X : U → R3 be a surface. Show that u is the arc-length along the curves X(u, v0) (v0

constant) if and only E is identically 1.
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11. (January 1999 exam, Qu. 3) Let X : U → R3 be a surface patch. Define the term regular
and the coefficients E, F, G of the first fundamental form for X.

Let X be the surface patch

X(u, v) = (u cos v, u sin v, u), u > 0.

Show that X is a regular patch. Draw a sketch of the surface M determined by X. Show that
E = 2, F = 0 and G = u2.

Let k >
√

2 be constant, and let

β(u) = (u,
√

k2 − 2 lnu), 1 ≤ u ≤ 3,

be a curve in the (u, v) plane. (Here ln is the natural logarithm.) Find the length of the
corresponding curve γ(u) = X(β(u)) on M .

Calculate a unit tangent to γ and show that this tangent makes a constant angle θ with the
direction (0, 0, 1), where cos θ = 1/k.



Chapter 4

Curvature

As in the previous chapter we shall be dealing almost exclusively with injective regular patches,
and shall just refer to such a patch as a ‘surface’.

We now wish to measure in some way the manner in which a surface curves or bends at a point.
Intuitively a sphere is more curved than a plane. How can we measure this curvature? One way to
do this is via sectional curvature. The idea is very simple. Given a point p on the surface M and
a tangent vector a to M at p, we intersect the surface with the plane spanned by the normal at p
and a. In this way we obtain a plane curve. The curvature of this curve at the point p is a measure
of how fast the surface is bending in the direction a. We shall actually introduce some other ideas
first.

In what follows we shall always suppose that our surface M comes a long with a smooth choice
of unit normal vector which we shall denote by N.

4.1 Curvatures of a curve on a surface: definitions

Let γ : I → R3 be a regular space curve whose curvature is never zero, lying in a surface M . Pick
a point p on the image of γ. The tangent T to the curve γ at p is, by definition, tangent to M at
p. The vector U = N × T, being orthogonal to N, is also tangent to the surface. It is the normal
to γ in the tangent plane to the surface M . Note that T,U,N form an orthonormal frame. This
shares its first vector, T, with the T,P,B frame of Chapter 1. The pair P,B can be rotated in
the normal plane to γ through an angle, say φ, to coincide with U,N:

U = cos φP − sinφB; N = sinφP + cosφB (4.1)

or going backwards (4.2)

P = cos φU + sinφN; B = − sin φU + cos φN. (4.3)

Hence, from the first Serret-Frenet formula (1.4),

T′ = κPs′ = κs′ cos φU + κs′ sin φN.

Definition 4.1.1 The scalar κn = T′ · N/s′ is called the normal curvature of the curve γ at p
and the scalar κg = T′ · U/s′ is called the geodesic curvature of γ at p. This definition is still
valid at points where the curvature κ of γ is zero. See the Note below.

Note Using the above equations, we see that

κn = T′ · N/s′ = κ sinφ and κg = T′ · U/s′ = κ cos φ, so also κ2 = κ2
n + κ2

g, (4.4)

30
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but in order to define κn and κg we do not need to set up the T,P,B triad at p. (As above, this
can only be done if κ 6= 0.) When κ = 0 we have T′ = 0 so both κn and κg are, by the above
definition, zero.

Remark 4.1.2 Tangent plane of M and osculating plane of γ. Note that, assuming κ is
nonzero, the binormal B coincides with the surface normal N if and only if sinφ = 0, which is
equivalent to κn = 0. Thus the osculating plane of γ coincides with the tangent plane to the surface
if and only if κn = 0.

Example 4.1.3 Geodesic curvature of a plane curve If M is the plane then N is constant
and equal to B, so that φ = 0, κn = 0 and κg is the ordinary curvature of γ (Definition 1.5.1).

There is another scalar which fits in naturally here. The derivative of N will be perpendicular
to N and therefore a linear combination of T and U. Now using T ·N = 0 we get κn = T′ ·N/s′ =
−T · N′/s′ so this gives us one of the coefficients. The other one is called (minus) the geodesic
torsion κt of γ at p:

N′ = −κns′T − κts
′U; κt = −N′ · U/s′, κn = −N′ · T/s′.

Note. The more usual symbol for the geodesic torsion is τg. It isn’t really a curvature but the
symbol κt has the advantage of uniformity and also the matrix below is easy to remember since
g, n, t come in alphabetical order!

Thus, for a unit speed curve γ on M , we have the mnemonic



T′

U′

N′


 =




0 κg κn

−κg 0 κt

−κn −κt 0







Ts′

Us′

Ns′


 , (4.5)

where the skew symmetry of the 3×3 matrix follows from differentiating T ·U = U ·N = N ·T = 0.
It is not obvious at this point, but in fact N′(t0) depends only on the surface M and on the

tangent T(t0) to the curve γ at γ(t0). Thus κn and κt depend only on the tangent to γ. This is
not so for κg. See Proposition 4.3.1.

Before going on to more formal properties of the above scalar functions, let us consider their
geometrical import by considering when they are zero.

4.2 Zeros of the three curvatures

Consider first when κt = 0. Using (4.5) this means that N′.U = 0;N′ = −κns′T. Think of this
as saying that, driving along the curve γ, the normal to the surface has no tendency to move to
left or right (component of N′ in the U-direction is zero), but moves only in the plane of N and
T. For a car driving along γ, the axles are in direction U and (supposing it to be vertical!) the
radio aerial is in the direction N. Then the aerial is tilting in the plane of T and N but not moving
side-to-side. When κt = 0 happens at an instant t we say that T is a principal direction on M
at the current point p (see below for formal definitions); when it happens for all t we say that γ is
a principal curve or line of curvature on M .

Example 4.2.1 Curve on a sphere If X is a parametrization of a sphere1 of radius r, centre
the origin, then X · X = r2, and also clearly N = 1

rX. For any regular curve γ on the sphere, we
1more properly of a sphere minus two points, say, using latitude and longitude as in Example 3.0.5,(2). The curve

γ will need to avoid these points.
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will then have N′ = 1
rγ′ = 1

rs′T so that N′ · U = 0. This means that every curve on a sphere
is a principal curve. Driving around on a sphere, the radio aerial never has a tendency to move
side-to-side, only up and down. Also it is clear that κn = −N′ · T/s′ = −1

r : the normal curvature
of any curve on the sphere equals minus the reciprocal of the radius. The same result holds, of
course, if the sphere has centre any other point p, say. We have N = 1

r (X − p), etc.

Curves γ on M for which κg = 0 at all points are called geodesics. The meaning of κg = 0 is
that T′ · U = 0, which says that the tangent to γ has no tendency to move left or right, only up
or down in the plane of T and N. Using the car analogy, the car is ‘driven straight’: the wheels
are not turned left or right. On the plane, this results in travelling in a straight line, since κg = κ
for a curve in the plane (Example 4.1.3), and if κ is identically zero then the curve is a straight
line (Example 1.6.2,(1)). A point of γ where κg = 0 is called a geodesic inflexion of γ. See
Proposition 4.3.1 below.

Example 4.2.2 Geodesics on the sphere Take a regular curve γ on a sphere of radius r centre
the origin. Thus s′T = γ′, s′T′ + s′′T = γ′′, N = 1

rγ at all points of the curve. The condition
T′ · U = 0 becomes γ′′ · (N × T) = 0, that is [γ, γ′, γ′′] = 0, this being the triple scalar product.
Assume this holds all along γ. Differentiating, the only possibly non-zero term is [γ, γ′, γ′′′], so this
must be identically zero too. Hence γ, γ′, γ′′ and γ′′′ are all coplanar. But this implies that the
torsion of γ is identically zero (1.6.5) and hence that γ is actually a plane curve (1.6.7). Therefore
γ lies in a plane Π say, and so is a circle on the sphere. Since Π also contains the vectors γ the only
possibility is that the plane passes through the centre of the sphere. Hence geodesics on a sphere
are great circles. Perhaps it is intuitively clear that if you drive straight ahead on the surface of a
sphere then you have to go along a great circle.

Remark 4.2.3 Wheels travel equal distances on a geodesic Continuing with the informal
analogy of a car driving along curves on a surface, consider a geodesic γ, where κg = T′ ·U/s′ = 0,
and think of a car with a very short axle driving along γ. For the purpose of discussion assume
that the car moves with unit speed (i.e. γ is unit speed, s′ = 1), though this does not affect the
result. At time t, the ends of the axle are at γ(t)±λU(t), where λ is the (very small) length of the
axle. At time t + δt they are at

γ(t + δt) ± λU(t + δt) = γ(t) + δtT(t) + λ(U(t) + δtκtN(t)),

to first order in δt, where we use the fact that κg = 0. See Figure 4.1.
The distances travelled by the two ends of the axle (i.e. by the two wheels) between times t

and t + δt are, therefore,

δt
√

1 + λ2κ2
t .

Note that these distances are equal. If κg has been non-zero the distances would have been unequal
(you could check this). So when you drive along a geodesic you keep the wheels turned straight
ahead (T′ · U = 0), and the left and right wheels of your car travel the same distance.

Before considering other examples, let us note the following very useful fact which allows us to
simplify calculations considerably.

Proposition 4.2.4 Let γ be any regular curve on the surface M (not necessarily unit speed), with
parameter t, and let T̃, Ũ, Ñ be any non-zero vectors, not necessarily unit, in the directions of



CHAPTER 4. CURVATURE 33

(t +  t)γ δγ(t)

(t +  t)γ δ

-  U(t)

γ(t +  t)δ
γ

(t)γ λ

λ

+  U(t)

λ

+  U(t +   t)λ

δ

δ

-  U(t +   t)

(t)

Figure 4.1: Driving along a curve, with the axle along the vector U, the positions of the wheels at
the ends of the axles are shown for two time instants. In Remark 4.2.3 we are concerned with the
situation where the left and right wheels travel the same distance between times t and t + δt.

T,U,N respectively. Then, using ′ for d/dt,

κn = 0 ⇔ T̃′ · Ñ = 0 ⇔ T̃ · Ñ′ = 0;

κg = 0 ⇔ T̃′ · Ũ = 0 ⇔ T̃ · Ũ′ = 0;

κt = 0 ⇔ Ũ′ · Ñ = 0 ⇔ Ũ · Ñ′ = 0.

The last is the condition for T̃ to be a principal direction.

Proof Let us prove the assertion about κn. Suppose that T̃ = λT, Ñ = µN for non-zero scalars
λ, µ which just give the lengths of T̃ and Ñ. Then

T̃′ = λ′T + λT′ = λ′T + λs′(κgU + κnN),

where s is arclength on γ. Hence T̃′ · Ñ = λs′µκn, which is zero if and only if κn = 0. All the other
proofs are analogous to this.

The above proof actually establishes slightly more:

Corollary 4.2.5 Provided T̃, Ñ are positive multiples of T, N,

κn =
T̃′ · Ñ

s′||T̃|| ||Ñ||
= − T̃ · Ñ′

s′||T̃|| ||Ñ||

κg =
T̃′ · Ũ

s′||T̃|| ||Ũ||
= − T̃ · Ũ′

s′||T̃|| ||Ũ||

κt =
Ũ′ · Ñ

s′||Ũ|| ||Ñ||
= − Ũ · Ñ′

s′||Ũ|| ||Ñ||

If we use (as we normally would) T̃ = γ′, then s′ = ||T̃||, so that the denominators in some of the
above equations can be simplified.

As a example of the above Proposition, let us find all the curves where one of κg, κn or κt is
zero on the circular cylinder.
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Example 4.2.6 Circular cylinder Take the cylinder with equation x2 + y2 = r2 in 3-space,
having parametrization

X(u, v) = (r cos u, r sinu, v),

where 0 < u < 2π to maintain injectivity of X. For the curve γ, we simply think of u and v as
functions of t. The normal to the cylinder is N = (cos u, sinu, 0) (it so happens this is a unit
vector), while the (non-unit) tangent and normal to γ are

T̃ = (−ru′ sinu, ru′ cos u, v′), Ũ = N × T̃ = (v′ sinu,−v′ cos u, ru′).

The condition for a principal curve, N′ ·Ũ = 0, now easily reduces to u′v′ = 0, which says that u or
v is constant. Thus the principal curves on the cylinder are the straight generators u = constant,
and the circular sections v = constant.

The geodesics are given by T̃′ · Ũ = 0, which comes to u′v′′−u′′v′ = 0. This says that d
dt

u′

v′ = 0,
i.e., that u′ = kv′ for some constant k. This in turn implies that u = kv + l for constants k, l. So
the geodesics are precisely those curves on the cylinder which, when the cylinder is unrolled onto
the plane, give straight lines. Note that there are many geodesics joining two given points in this
example.

Curves with κn = 0 at all points are called asymptotic curves. If κn = 0 at a point of γ we
say that the tangent to γ at that point is in an asymptotic direction. It is not hard to check that
none exists on the sphere or the cylinder—we shall see the reason for this in §4.3 below. It seems
an extraordinary condition at first sight: the derivative of N has no component in the direction
of travel: N′ · T = 0 (or Ñ′ · T̃ = 0). So the unit surface normal N is always moving only in the
direction U perpendicular to the direction of travel. Alternatively, the tangent T moves only left
to right, not up and down (T′ ·N = 0, or T̃′ ·Ñ = 0). Certainly this happens if T is constant, which
will occur if γ is a straight line. Can a straight line occur on a curved surface? Certainly on a cone
or cylinder, but here is a more interesting example. For an example where T is not constant, see
4.2.8 below.

Example 4.2.7 Saddle surface, or hyperbolic paraboloid Consider the surface given by the
equation z = xy in 3-space, parametrized X(u, v) = (u, v, uv). We have a non-unit normal

Ñ = Xu × Xv = (1, 0, v) × (0, 1, u) = (−v,−u, 1).

Also a non-unit tangent vector to γ(t) = (u(t), v(t), u(t)v(t)) is T̃ = (u′, v′, uv′ + u′v). So the
condition for κn = 0 in Corollary 4.2.5, namely Ñ′ · T̃ = 0. becomes simply u′v′ = 0. So the curves
u = constant and v = constant are the asymptotic curves on the saddle surface M . Note that in
either case we get a straight line on M . Along any of these straight lines, both κn and κg are zero,
since the unit tangent T is constant and therefore T′ = 0 along a straight line, so that these are
automatically geodesics. It is important to notice, however, that the normal Ñ = (−v,−u, 1) is
not in a constant direction when say u is constant. As you drive along the line u = constant, the
radio aerial is turning in space although you are going straight.

Example 4.2.8 The shoe surface Consider the surface M with equation z = x2 + y3 and
parametrization X(u, v) = (u, v, u2 + v3). Taking u and v as functions of t we obtain a curve γ on
M . Non-unit tangent T̃ and non-unit surface normal Ñ are given by

T̃ = (u′, v′, 2uu′ + 3v2v′), Ñ = (−2u,−3v2, 1).
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Writing down the condition for κn = 0, that is T̃ · Ñ′ = 0, we get u′2 + 3vv′2 = 0. To solve
this, note that v must be negative, so try v = −3t2; then u′ = ±12t2 and u = ±4t3+ constant.
The alternative sign is not significant since we can replace t by −t. The solution curves, in the
parameter space (u, v), are given by (−3t2, 4t3 + constant), which is a series of cusped curves along
the u-axis. Along the corresponding curves on M the curvature κn is zero. Unlike the example
above, these asymptotic curves really are curved!

Proposition 4.2.9 Coplanar or concurrent normals Suppose that the normal lines to M at
points of γ are all coplanar, or are all concurrent. Then γ is a principal curve.

Proof Suppose the normal lines at points γ(t) all lie in a plane, π say. This automatically implies
that the points γ(t) lie in π, since γ(t) lies on the normal line at this point. (Note that we are not
assuming here merely that all the normal vectors N are coplanar, but that the lines themselves are
coplanar.) The tangents T to γ also lie in π and it follows that U = N × T is normal to π and
hence is constant along γ. So U′ = 0 and the formulae of Proposition 4.2.4 show that κt is zero all
along γ so γ is a principal curve. Note that also κt = 0 so γ is a geodesic too.

Suppose on the other hand that the normals all pass through a fixed point, which we can take
to be the origin. Thus a non-unit normal Ñ is given by

Ñ(u, v) = λ(u, v)X(u, v),

where u, v are functions of the parameter t (γ(t) = X(u(t), v(t))) and λ is never zero. A non-unit
tangent to γ is T̃ = Xuu′ + Xvv

′, while

Ñ′ = (λuu′ + λvv
′)X + λ(Xuu′ + Xvv

′).

It is enough to show that Ñ′ · U = 0, i.e. [Ñ′, T̃, Ñ] = 0. But it is clear from the formulae just
given that these three vectors are indeed coplanar.

The following corollary is immediate from the Proposition.

Corollary 4.2.10 The meridians and parallel circular sections of a surface of revolution are always
principal curves. The circular sections of a tube surface are always principal curves.

4.3 Interpretation of normal and geodesic curvatures

The arguments below illustrate the use of a very powerful technique whereby we take our surface
M in a special position relative to (x, y, z) coordinates in space. This involves no loss of generality.
Given a point p of M , we choose the origin at p, and we choose the x, y-plane to be the tangent
plane at p. The surface then has a parametrization, valid at any rate for small u, v,

X(u, v) = (u, v, h(u, v)), (4.6)

where h is a smooth function of u and v and hu(0, 0) = hv(0, 0) = 0. When a surface is taken in
this form we say that we are using the Monge form of the surface at p.

Proposition 4.3.1 Let γ be a (regular) curve on the surface M , and let p be a point of M .
(1) The geodesic curvature κg of γ at p is, up to sign, the (ordinary) curvature of the plane curve
obtained by projecting γ orthogonally to the tangent plane to M at p.
(2) The normal curvature κn of γ at p is, up to sign, the (ordinary) curvature of the plane curve
obtained by intersecting M with the plane containing the surface normal N at p and the tangent
T to γ there.



CHAPTER 4. CURVATURE 36

On account of (2), κn is also known as the sectional curvature of M in the direction of the
tangent to γ at p: it depends only on M and the tangent vector to γ at p, once we are given a
choice of unit normal for M (it is always possible to change N to −N).

Proof We assume that M is in Monge form (4.6). Let t be a regular parameter on γ, and take
the tangent to γ at p = (0, 0, 0) to be along the x-axis (again this is no loss of generality). The
curve γ will then have the form, for small t,

γ(t) = (t, g(t), h(t, g(t))),

for a smooth function g with g′(0) = 0. The non-unit tangent T̃ to γ is

T̃ = (1, g′, hu + hvg
′), so T̃′ = (0, g′′, huu + 2huvg

′ + hvvg
′2 + hvg

′′).

Likewise a non-unit normal to the surface M is

Ñ = (−hu,−hv, 1).

Now put t = 0. We have, at t = 0,

Ñ = (0, 0, 1),

T̃ = (1, 0, 0), T̃′ = (0, g′′(0), huu(0, 0)),

Ũ = (0, 1, 0), s′ = ||γ′(0)|| = 1.

From these, we work out κg and κn at the origin from Corollary 4.2.5:

κg = g′′(0); κn = huu(0, 0).

But the projection of γ to the tangent x, y-plane is the plane curve (t, g(t)) with curvature g′′(0)
at t = 0. The intersection of M with the plane containing the surface normal and tangent to γ,
namely the x, z-plane, is the curve parametrized by (t, 0, h(t, 0)), which has curvature huu(0, 0) at
the origin. This completes the proof.

4.4 Second fundamental form

Here is another formula for the normal curvature, which is significant because it introduces the
important concept of ‘second fundamental form’.

Theorem 4.4.1 Let M be a surface with parametrization X(u, v), as usual, and let p = X(u0, v0)
be a point of M . At p, let a = a1Xu + a2Xv be a unit tangent vector. Then the normal curvature
of M at p in the direction a is

κn = Xuu · Na2
1 + 2Xuv · Na1a2 + Xvv · Na2

2,

where the derivatives are evaluated at (u0, v0).

Note that the right-hand side really does depend only on the surface, the choice of N (between two
opposite directions) and the direction of the unit tangent vector a.

Proof This is a matter of using Definition 4.1.1, where we use the unit normal N and unit tangent
T = a. Let γ(t) = (u(t), v(t)) be a unit speed curve through p with tangent vector a there. Then

T = Xuu′ + Xvv
′; T′ = (Xuuu′ + Xuvvv′)u′ + Xuu′′ + (Xuvu

′ + Xvvv
′)u′ + Xvu

′′.

Taking the scalar product κn = T′ ·N, all those nasty second derivatives of u and v disappear and
we get the stated result.
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Definition 4.4.2 We use the notation

e = Xuu · N, f = Xuv · N, g = Xvv · N.

Note that e, f and g are defined at each point of M . They are called the coefficients of the
second fundamental form. The second fundamental form II itself takes any two tangent vectors
a = a1Xu + a2Xv and b = b1Xu + b2Xv at the same point p of M and associates to them the
number

II(a,b) =
(

a1 a2

) (
e f
f g

) (
b1

b2

)
.

Notes 1. By differentiating Xu · N = 0 and Xv · N = 0 we get the following alternative formulae
for e, f and g.

e = −Xu · Nu, f = −Xu · Nv = −Xv · Nu, g = −Xv · Nv. (4.7)

2. Because the matrix in II(a,b) is symmetric, we have II(a,b) = II(b,a). The matrix itself will
sometimes be denoted by (II), so that II(a,b) = (a1, a2)(II)(b1, b2)

>.

The geometrical interpretation of II is as follows.

Proposition 4.4.3 Let γ be a curve on M with γ(t0) = p and γ′(t0) = a. Then, for any tangent
vector b at p, we have

II(a,b) = II(b,a) = −N′(t0) · b.

Thus II captures all the derivatives of the unit normal N in all directions at p.
Proof This is a matter of working out both sides using the definitions. The first equality is true
because the matrix (II) is symmetric. For the second, writing γ(t) = X(u(t), v(t)) as usual, we
have N′ = u′Nu + v′Nv and a = u′Xu + v′Xv. Also b = b1Xu + b2Xv say. Then

N′ · b = (u′Nu + v′Nv) · (b1Xu + b2Xv)

= −(b1u
′e + (b1v

′ + b2u
′)f + b2v

′g) by (4.7)

= −(b1, b2)(II)(u
′, v′)>

= −II(b,a).

Example 4.4.4 Graph surface

Suppose we are given the graph of a function h : U → R so that our parametrisation is in the form
X(u, v) = (u, v, h(u, v)). Then

Xu = (1, 0, hu), Xv = (0, 1, hv), Xuu = (0, 0, huu), Xuv = (0, 0, huv), Xvv = (0, 0, hvv).

We also have N = (−hu,−hv, 1)/
√

1 + h2
u + h2

v. It follows that

e = huu/
√

1 + h2
u + h2

v, f = huv/
√

1 + h2
u + h2

v, g = hvv/
√

1 + h2
u + h2

v.

In the case when h(u, v) = uv, that is for the hyperbolic paraboloid, we have e = 0, f =
1/
√

1 + u2 + v2, g = 0.
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4.5 Principal curvatures

For a unit tangent vector a, we have a formula for the normal curvature in Theorem 4.4.1. For
a general tangent vector a = a1Xu + a2Xv we again appeal to Corollary 4.2.5. Using the new
‘e, f, g’ notation, and the ‘E, F, G’ notation from Chapter 3, we can write for the normal (sectional)
curvature κn in the direction a

κn =
ea2

1 + 2fa1a2 + ga2
2

Ea2
1 + 2Fa1a2 + Ga2

2

=
II(a,a)

I(a,a)
. (4.8)

The denominator is simply ||a||2.
Consider a curve γ(t) = X(u(t), v(t)) on our surface M . We work at a point p = γ(t0), where

γ has a non-unit tangent T̃ = u′Xu + v′Xv. The unit surface normal N has N′ = u′Nu + v′Nv.
Suppose that N′ = −λT̃ for some real number λ. This says precisely that T̃ is a principal direction
at p. Then the normal curvature is given by (Corollary 4.2.5)

κn = −N′ · T̃
||T̃||2

= λ.

Also u′Nu + v′Nv = −λ(u′Xu + v′Xv) gives, on taking the dot product with Xu and Xv, the
equation

(II)(u′, v′)> = λ(I)(u′, v′)>.

This says that λ is a ‘relative eigenvalue’ of the matrices (I) and (II), which is the same as being an
eigenvalue of the matrix (I)−1(II). Also (u′, v′)> is the corresponding eigenvector. This corresponds
to the tangent vector T̃ which is in a principal direction at p.

We make the following definition and immediately deduce the result which follows it.

Definition 4.5.1 The normal (sectional) curvature of M in a principal direction is called the
corresponding principal curvature of M .

Proposition 4.5.2 The principal directions at a point p are the eigenvectors of the matrix (I)−1(II)
and the corresponding eigenvalues are the principal curvatures at p.

So far we do not know that the eigenvalues of (I)−1(II) are real. (Note that this matrix is not
generally symmetric.) But it turns out that in fact the principal curvatures are precisely the
maximum and minimum normal curvatures at p, and these certainly must be real.

Since this is a general ‘principle’ we pause to state and prove it.

Proposition 4.5.3 Rayleigh’s principle Let A, B be symmetric 2×2 matrices, let x = (x1, x2)
>

and suppose that x>Bx is never zero for x 6= 0 (in particular B is nonsingular). Let

λ(x1, x2) =
x>Ax

x>Bx
.

Then the gradient ∇λ = (∂λ/∂x1, ∂λ/∂x2)
> is zero if and only if Ax = λBx.

This says that the turning points of λ are precisely the relative eigenvalues of A and B. Once this
is proved we simply have to replace A by (II) and B by (I).
Proof An easy direct verification shows that

∇(x>Ax) = 2Ax.
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Since λ(x>Bx) = x>Ax we have, differentiating with respect to x1 and x2 and putting the results
together,

(∇λ)(x>Bx) + λ(2Bx) = 2Ax.

It follows at once that ∇λ = 0 if and only if Ax = λBx.

Theorem 4.5.4 (1) The extreme values of the sectional curvature at p are the eigenvalues of the
matrix (I)−1(II), which are therefore real. They are the principal curvatures and are achieved in
the principal directions at the point p of the surface where we are working. They are denoted by κ1

and κ2.
(2) When the principal curvatures are distinct the corresponding principal directions are or-

thogonal. The eigenvalues are equal if and only if e = Eµ, f = Fµ, g = Gµ for some real number
µ, which is then equal to the common value and to the sectional curvature in any direction at p.
These points where the sectional curvatures all coincide are called umbilics.

Proof We only need to prove (2). Write κ1, κ2 for the eigenvalues of (I)−1(II) and v1, v2 for the
corresponding eigenvectors. Then

(II)v1 = κ1(I)v1, (II)v2 = κ2(I)v2.

Taking the transpose of the second equation, and using the fact that the matrices are symmetric,
we find that v2

>(II) = v2
>κ2(I) and so

v2
>(II)v1 = κ2v2

>(I)v1 = κ1v2
>(I)v1.

Since κ1 6= κ2 we deduce that v2
>(I)v1 = 0, which says that v1 and v2 are orthogonal.

The rest of (2) is proved by the following grotty calculation.
First we note that since the first fundamental form is positive definite, that is Ea2

1 + 2Fa1a2 +
Ga2

2 ≥ 0 for all a1, a2. In particular setting a1 = 1, a2 = 0 (resp. a1 = 0, a2 = 1) we see that
E > 0 and G > 0. Also completing the square gives

Ea2
1 + 2Fa1a2 + Ga2

2 = E

(
a1 +

F

E
a2

)2

+

(
G − F 2

E

)
a2

2

so we must have (G − F 2

E ) > 0, in particular EG − F 2 > 0.
The equation for λ is

(eg − f2) + λ(−Eg − eG + 2fF ) + λ2(EG − F 2) = 0.

The condition for this to have a repeated root is

(−Eg − eG + 2fF )2 − 4(eg − f2)(EG − F 2) = 0.

Since E > 0 and we can rewrite the above expression as

4
(EG − F 2)

E2
(Ef − Fe)2 +

(
Eg − Ge − 2

F

E
(Ef − Fe)

)2

.

Since EG − F 2 > 0 this horrible expression is zero if and only if

Ef − Fe = Eg − Ge − 2
F

E
(Ef − Fe) = 0
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in other words if Ef − Fe = Eg − Ge = 0, which is the same as e = Eµ, f = Fµ, g = Gµ for some
µ. However the repeated root is

Eg + eG − 2fF

2(EG − F 2)
=

EGµ + EGµ − 2F 2µ

2(EG − F 2)
= µ.

Of course, when the maximum and minimum values of the sectional curvature coincide, all of the
sectional curvatures must be equal.

Definition 4.5.5 The product κ1κ2 of the principal curvatures at p is called the Gauss Curva-
ture at p and is denoted by K or K(p). The average (κ1 + κ2)/2 of the principal curvatures is
called the mean curvature at p and is denoted by H or H(p).

If we divide the equation for the principal curvatures

(eg − f2) + λ(−Eg − eG + 2fF ) + λ2(EG − F 2) = 0

by EG − F 2 and set this equal to

(λ − κ1)(λ − κ2) = λ2 − (κ1 + κ2)λ + κ1κ2 = λ2 − 2Hλ + K

we obtain

K =
eg − f2

EG − F 2
, H =

Eg + eG − 2Ff

2(EG − F 2)
. (4.9)

We note here the following interesting interpretation of K.

Proposition 4.5.6 Let X be a parametrization of a surface. The Gauss curvature K satisfies

Nu × Nv = K(Xu × Xv). (4.10)

Remark It is fairly clear that the two vectors in (4.10) are parallel. For Nu and Nv are both
perpendicular to N and hence their vector product will be parallel to N. Of course Xu × Xv is
parallel to N too.

Proof Since Nu,Nv are perpendicular to N we can write

Nu = aXu + bXv, Nv = cXu + dXv

for some scalars a, b, c and d. Hence Nu × Nv = (ad − bc)Xu × Xv. On the other hand,

−e = Nu · Xu = aE + bF,

−f = Nu · Xv = aF + bG,

−f = Nv · Xu = cE + dF,

−g = Nv · Xv = cF + dG.

All these equations can be put into matrix form:
(

−e −f
−f −g

)
=

(
E F
F G

) (
a c
b d

)
.

Taking determinants and using the formula for K in (4.9) we get

ad − bc =
eg − f2

EG − F 2
= K

as required.
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4.6 Examples

(1) We shall start with the right circular cylinder, parametrised as X(u, v) = (cos u, sinu, v).
Here

Xu = (− sin u, cos u, 0), Xv = (0, 0, 1), Xuu = (− cos u,− sinu, 0), Xuv = (0, 0, 0), Xvv = (0, 0, 0)

so that one finds that E = 1, F = 0, G = 1. If we set N(u, v) = Xu×Xv

||Xu×Xv || = (cos u, sinu, 0) then

we can compute the coefficients in the second fundamental form. For e = Xuu · n(u, v) = −1, f =
Xuv ·n(u, v) = 0, g = Xvv ·n(u, v) = 0. Now it is easy to see that the principal curvatures are 0 and
−1, the principal directions Xu = (− sinu, cos u, 0), Xv = (0, 0, 1), the Gaussian curvature is 0, the
mean curvature −1/2. Note that if we had chosen the other collection of normals (− cos u,− sinu, 0)
then the coefficients e, f, g are all multiplied by −1, as are the principal curvatures. So there is
always an ambiguity of sign in these quantities. The Gaussian curvature on the other hand is
clearly unchanged.

(2) We next consider the sphere which we parametrise as

X(u, v) = (cos u cos v, cos u sin v, sinu), −π

2
< u <

π

2
.

We calculate as follows

Xu = (− sinu cos v,− sinu sin v, cos u), Xv = (− cos u sin v, cos u cos v, 0)

so
Xuu = (− cos u cos v,− cos u sin v,− sinu),

Xuv = (sinu sin v,− sinu cos v, 0), Xvv = (− cos u cos v,− cos u sin v, 0).

We have already seen that E = sin2 u cos2 v + sin2 u sin2 v + cos2 u = 1, F = 0, G = cos2 u sin2 v +
cos2 u cos2 v = cos2 u. Now to determine the second fundamental form we need the unit normal
vectors, so we need to normalise

Xu(u, v) × Xv(u, v) = (− cos2 u cos v,− cos2 u sin v,− sinu cos v)

which yields N(u, v) = (− cos u cos v,− cos u sin v,− sinu) (we would expect ±X(u, v), in fact the
minus sign in this case).

Now

e = N · Xuu = cos2 u cos2 v + cos2 u sin2 v + sin2 u = 1,

f = N · Xuv = − cos u sinu cos v sin v + cos u sinu cos v sin v = 0,

g = N · Xvv = cos2 u cos2 v + cos2 u sin2 v = cos2 u.

We now see that E = e, F = f, G = g so that every direction is principal, and the sectional
curvatures are all 1. Compare Example 4.2.1.

(3) Now for a general class of surfaces, namely the surfaces of revolution. As usual we consider
first a regular plane parametrised curve γ : I → R3, and a line in the plane which does not meet
that curve. Using coordinates (x1, x2, x3) in R3, we take γ to lie in the plane given by x2 = 0 and
spin γ about the x3-axis. The resulting parametrisation of a surface of revolution is of the form

X(u, v) = (γ1(u) cos v, γ1(u) sin v, γ2(u))
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where the plane curve γ is given by γ(u) = (γ1(u), 0, γ2(u)). The first derivatives are

Xu = (γ′
1(u) cos v, γ′

1(u) sin v, γ′
2(u)), Xv = (−γ1(u) sin v, γ1(u) cos v, 0).

The second derivatives are

Xuu = (γ′′
1 (u) cos v, γ′′

1 (u) sin v, γ′′
2 (u)),

Xuv = (−γ′
1(u) sin v, γ′

1(u) cos v, 0),

Xvv = (−γ1(u) cos v,−γ1(u) sin v, 0).

Also a suitable collection of unit normals is given by

N(u, v) = (−γ′
2(u) cos v,−γ′

2(u) sin v, γ′
1)/

√
(γ′

1(u))2 + (γ′
2(u))2.

We can now compute the coefficients occuring in the first and second fundamental forms. So

E = (γ′
1)

2 + (γ′
2)

2, F = 0, G = (γ1)
2

while
e = (−γ′′

1γ′
2 + γ′

1γ
′′
2 )/

√
(γ′

1)
2 + (γ′

2)
2, f = 0, g = γ1γ

′
2/

√
(γ′

1)
2 + (γ′

2)
2.

It is now easy to see that since the matrices associated to each of the fundamental forms are both
diagonal the principal curvatures are the quotients e/E and g/G and the corresponding principal
directions are Xu and Xv respectively. In the first case e/E = (−γ′′

1γ′
2 + γ′

1γ
′′
2 )/((γ′

1)
2 + (γ′

2)
2)3/2 is

just the curvature of the meridian curve (the plane curve we started with).
Consider the torus of revolution obtained by rotating a circle of radius b about a line distance

a from its centre, with a > b > 0. This is obtained from the above by taking

γ1(u) = a + b cos u, γ2(u) = b sinu

the coefficients involved are

E = b2 sin2 u + b2 cos2 u = b2, F = 0, G = (a + b cos u)2, e = b, f = 0, g = cos u(a + b cos u).

The principal curvatures are 1/b and cos u
(a+b cos u) . The first is the maximum curvature, which is

attained along the meridian, that is the circles v = constant obtained by rotating our original
circle of radius b. The minimum curvature varies along a meridian. It takes on its maximum value
1/(a + b) on the outside parallel u = 0, and is zero on the parallels u = π/2, u = −π/2. It has its
minimum value −1/(a − b) on the inside parallel u = π. The Gaussian curvature is

K = κ1κ2 =
cos u

b(a + b cos u)

which is > 0 for −π/2 < u < π/2 (the ‘outer’ part of the torus) and < 0 for π/2 < u < 3π/2 (the
‘inner’ part).

(4) We finish with a very important set of examples, namely those of the form X(u, v) =
(u, v, au2 + bv2) for some constants a and b.

The reason that this is an especially interesting set is the following. Given a surface and a point p on
that surface we can move it, by a rigid motion, so that the point sits at the origin. By a rotation we can then
arrange for the tangent plane to the surface to be given by x3 = 0. Now suppose without loss of generality
that the parametrisation is in the form X(u, v) = (x1(u, v), x2(u, v), x3(u, v)), with X(0, 0) = (0, 0, 0). We
set U = x1(u, v), V = x2(u, v). We claim that these equations locally can be inverted, in other words we
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can write u = y1(U, V ), v = y2(U, V ) for some smooth functions y1, y2 with y1(0, 0) = y2(0, 0) = 0. This
follows from the inverse function theorem, for the matrix

(
∂x1/∂u ∂x1/∂v
∂x2/∂v ∂x2/∂v

)

has rank 2 at u = v = 0. The reason is that the matrix whose rows are Xu(0, 0) and Xv(0, 0) is made up of
this matrix plus a column of zeros; for these vectors span the tangent space, which is given by x3 = 0.

Now the surface can be written (U, V, F (U, V )) where F (U, V ) = x3(y1(U, V ), y2(U, V )). Since the
derivatives of x3 are both zero at (0, 0), the function F starts out with quadratic terms. So near to (0, 0),
that is for (u, v) small the surface rather looks like one of the type (u, v, a1u

2 + a2uv + a3v
2). Now by a

rotation about the x3−axis we can kill off the uv-term. In other words if we replace u and v in the third
component by (cos θu + sin θv,− sin θu + cos θv) then for some θ we can make the uv term disappear (we
need a1 sin 2θ + a2 cos 2θ − a3 sin 2θ = 0, i.e. tan 2θ = a2/(a1 − a3)). We then really do have a surface of the
type above.

We consider what happens at the origin. Note that

Xu = (1, 0, 2au), Xv = (0, 1, 2bv), Xuu = (0, 0, 2a), Xuv = (0, 0, 0), Xvv = (0, 0, 2bv)

the first two of which are, in turn, (1, 0, 0), (0, 1, 0) when evaluated at (0, 0, 0). For the normals we
choose (−2au,−2bv, 1)/

√
1 + 4a2u2 + 4b2v2 = (0, 0, 1) when evaluated at u = v = 0. Now a short

calculation shows that

E = 1, F = 0, G = 1, e = 2a, f = 0, g = 2b

from whence it follows that the principal curvatures are 2a, 2b, the Gauss curvature is 4ab and the
mean curvature a + b. Clearly the principal directions those of the first two coordinate axes.

From this we can see that the second fundamental form at a point essentially determines the
surface at that point to second order. Now note that if a and b have the same sign the surface
is bowl-shaped, while if they have opposite signs it is saddle-shaped. This distinction is made by
the Gaussian curvature. If a or b is zero then we do not have enough information to determine
the shape of the surface locally. Note also that when ab < 0 there are two straight lines in the
surface, namely those given by ax2

1 + bx2
2 = x3 = 0. These are in fact in the directions for which

the corresponding sectional curvature is zero.

4.7 Elliptic, hyperbolic and parabolic points

Definition 4.7.1 (1) A point p of a surface M is elliptic (resp. hyperbolic) if the Gaussian
curvature K > 0 (resp. K < 0) at p. A point where K = 0 is called a parabolic point.

There is one classical theorem concerning curvature we should prove.

Theorem 4.7.2 (Euler) The normal curvature at a point of a surface in the direction of a line L
is

κn = κ1 cos2 α + κ2 sin2 α

where κ1 and κ2 are the principal curvatures at the point, and α is the angle between the line L
and the principal direction corresponding to κ1.

Proof Let a1Xu + a2Xv be the direction corresponding to κ1 and b1Xu + b2Xv be the direction
corresponding to κ2, and suppose these are unit vectors. Then (a1 cos α + b1 sin α)Xu + (a2 cos α +
b2 sin α)Xv will be a unit direction corresponding to L. So the value of the curvature is

e(a1 cos α + b1 sinα)2 + 2f(a1 cos α + b1 sinα)(a2 cos α + b2 sinα) + g(a2 cos α + b2 sinα)2.



CHAPTER 4. CURVATURE 44

Multiplying out we find that this reduces to

{ea2
1 + 2fa1a2 + ga2

2} cos2 α+

{eb2
1 + 2fb1b2 + gb2

2} sin2 α+

+2{ea1b1 + f(a1b2 + a2b1) + ga2b2} cos α sinα.

Now we know that

ea1 + fa2 = κ1(Ea1 + Fa2), fa1 + ga2 = κ1(Fa1 + Ga2)

so that the final term above can be written (ignoring the factor 2)

κ1(Ea1 + Fa2)b1 + κ1(Fa1 + Ga2)b2 = κ1(Ea1b1 + F (a1b2 + a2b1) + Ga2b2)

= κ(a1Xu + a2Xv) · (b1Xu + b2Xv)

= 0,

since the principal directions are orthogonal.

We have as a corollary

Proposition 4.7.3 At a hyperbolic point there is one asymptotic direction, at a parabolic point
there is one and at an elliptic point there is none. In the hyperbolic case the principal directions
bisect the asymptotic directions. If κ1 = κ2 = 0 then all directions are asymptotic.

Proof Clearly κ1 cos2 α + κ2 sin2 α = 0 has solutions as an equation in α only if K = κ1κ2 ≤ 0,
and has two real solutions if and only if K < 0 and one if and only if K = 0. If α corresponds to a
solution then so too does −α, whence the result.

Finally we establish the following result.

Theorem 4.7.4 Let X : U → R3 be a parametrisation of a regular injective patch (= ‘surface’)
M , with U connected, and suppose that every point of M is an umbilic. Then M is contained in a
sphere, or a plane.

Proof Since every point of M is an umbilic, every direction on M is principal, and every curve is
a principal curve. In particular this is true for the parameter curve u =constant and v =constant.
So Nu = λXu and Nv = λXv for some smooth function λ(u, v) (the unique sectional curvature at
X(u, v)). We now show that λ is constant. For differentiating the first of the above two equations
with respect to v and the second with respect to u we obtain Nuv = λvXu +λXuv = λuXv +λXuv

and so λvXu = λuXv. But Xu and Xv are linearly independent, so λu = λv = 0, and hence λ is
constant on all of U since U is connected.

It follows that (N−λX)u = (N−λX)v = 0, so for some constant vector a we have N = λX−a.
If λ = 0 then the normal is constant, and equal to −a, so the derivatives of X · a = 0 are zero, and
X · a = c for some constant c. So M lies in a plane. If λ 6= 0 then ||N||2 = 1 = ||λX − a||2, and
dividing by λ2 we see that M lies in the sphere centred at a/λ of radius 1/|λ|.
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4.8 Exercises

1. Consider the open subset of the plane x3 = 0 parametrised by

X(r, θ) = (r sin θ, r cos θ, 0)

where r > 0 and 0 < θ < 2π. Find the coefficients of the first and second fundamental form
E, F, G, e, f, g in terms of r and θ.

2. Find the second fundamental form for the hyperbolic paraboloid

X(u, v) = ((u + v)/2, (u − v)/2, uv).

3. Find the second fundamental form for the surface

X(u, v) = (u − v, u + v, 2(u2 + v2)).

Find its principal directions and principal curvatures at (0, 0, 0).

4. Find the second fundamental form for the surface

X(u, v) = (
√

1 − u2 cos v,
√

1 − u2 sin v, u),

with −1 < u < 1 and −π < v < π. Find its principal directions and principal curvatures at
the point corresponding to the parameter values (u, v) = (0, 0).

5. Find the second fundamental form for the cone X(u, v) = p + v.β(u) where v > 0, β(u) is a
unit vector for all u and it is assumed that X is injective. What is the Gaussian curvature
of this surface? Calculate the principal curvatures in the case when p = (0, 0, 0) and β(u) =
(cos u, sinu, 1)/

√
2.

6. Let U be an open subset of R2 and φ : U → R a smooth function. Show that the graph of
φ, namely

X : U → R3, X(u, v) = (u, v, φ(u, v)),

is a regular and injective surface patch.

Write down a unit normal to this surface and compute the first and second fundamental form
coefficients in terms of φ and its derivatives. Deduce an expression for the Gauss curvature
of this surface.

Consider now the case when φ(u, v) = au2v + buv2 with a, b constants. Show that the Gauss
curvature is ≤ 0 on this surface.

7. Find the second fundamental form for the ruled surface X(s, t) = γ(s) + tB(s) generated by
the binormals to a unit speed space curve γ whose curvature κ never vanishes.

8. Let γ be a regular curve on a sphere whose geodesic curvature is constant. Show that the
torsion τ of γ is zero at all points. It follows that γ is a plane curve (by Proposition 1.6.7),
and hence must be a circle. [Hint. Using equation (4.4) and the Example 4.2.1, κ is constant,
and non-zero, for γ. Also P = (κg/κ)U + (κn/κ)N. Differentiating, you will find that P′ is
parallel to T.]

9. For the surface X : R2 → R3 given by X(u, v) = (u, v, u2 + v2) find the normal curvature of
the curve γ(t) = X(t2, t) at t = 1.
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10. Let X(u, v) = (u, v, au2 + bv2) where a, b are constants and a 6= b, a 6= 0, b 6= 0. Let γ(t) =
X(t cos θ, t sin θ) where θ is a constant. Find γ′ = T̃, Ñ = Xu ×Xv, T̃′ as functions of t, and
show that

T̃′ · Ũ = 4t(b − a) cos θ sin θ(a cos2 θ + b sin2 θ).

How many values of θ are there (between 0 and 2π) for which γ is a geodesic?

11. (January 1999 exam) (i) Given a unit speed curve α on a (regular, injective) surface M
parametrized by X, define the three standard vectors T,N,U associated with α at the point
α(s). Define the geodesic curvature κg of α at this point.

Explain briefly why, for any regular curve γ on M , and any non-zero vectors T̃, Ũ in the
directions T, U respectively,

κg = 0 ⇔ T̃′ · Ũ = 0.

(ii) Now let X(s, t) = (x(s), y(s), t) be a surface patch, where x and y are functions of s with

x′2 + y′2 = 1

for all s. Show that X is regular. You may assume that X is injective.

Let k be a real constant. Consider the curve

γ(s) = X(s, ks) = (x(s), y(s), ks),

on the surface M parametrized by X. Find suitable vectors T̃, Ũ for γ and show that κg = 0
for all s, that is, γ is a geodesic.

Sketch the surface and the geodesic γ for the special case x(s) = cos s, y(s) = sin s, k = 1.

12. Show that the Gaussian curvature of the tangent developable surface of a space curve is
identically zero. (Thus the setup here is a regular space curve γ with curvature never zero,
and the surface X(u, v) = γ(u) + vT(u), with v > 0 to ensure regularity of X. Show that
f = g = 0 for this surface.)

13. Consider a surface of revolution of the form

X(u, v) = (h(u) cos v, h(u) sin v, u)

with h(u) > 0 for all u. Show that the Gaussian curvature of this surface is identically zero
if and only if it is a right circular cylinder h(u) = b, or a cone h(u) = au + b where a and b
are constants.

14. (January 1999 exam) Let X be a parametrization of the surface of revolution obtained by
rotating the regular curve α(u) = (α1(u), 0, α2(u)) about the z-axis, namely

X(u, v) = (α1(u) cos v, α1(u) sin v, α2(u)).

We shall assume that α1(u) is never zero and that X is injective.

Find a unit normal N to this surface and calculate the coefficients of the first and second
fundamental forms. Show that the principal directions at every point are given by Xu and
Xv.
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Now let α(u) = (2 + u2, 0, u). Sketch this curve in the (x, z) plane. Show that the resulting
surface of revolution has Gauss curvature

K =
−2

(2 + u2)(4u2 + 1)2
.

(State without proof any general formula you use for K.)

15. Show that the Gaussian and mean curvatures on the surface

X(u, v) = (u + v, u − v, uv)

at u = v = 1 are K = −1/16 and H = 1/8
√

2.

16. Show that the mean curvature is zero at every point of the surface of revolution

X(u, v) = (coshu cos v, cosh u sin v, u).

17. In the same way as Proposition 4.5.6, show that for a regular surface X with mean curvature
H,

Xu × Nv + Nu × Xv = −2H(Xu × Xv).

(Use the formula in equation (4.9) for H.)

18. Let X be a regular surface and let Xr be the parallel surface to X at distance r, defined by

Xr(u, v) = X(u, v) + rN(u, v).

Use the formulae for K and H in Proposition 4.5.6 and the previous question to show that

Xr
u × Xr

v = (1 − 2rH + r2K)(Xu × Xv).

Deduce that Xr is regular provided r is not equal to a principal radius of curvature at any
point of X. (A principal radius is 1/κ where κ is a principal curvature.)

19. Prove that the sum of the normal curvatures at a point on a surface in any pair of orthogonal
directions is constant.

20. Show that the principal curvatures of the surface

X(u, v) = (u cos v, u sin v, v)

are ±1/(1 + u2).

21. Define the terms principal curvature and principal direction at a point of a (regular) surface X.
(You need not define first and second fundamental forms.) Consider the surface of revolution

X(u, v) = (u cos v, u sin v, φ(u)), u > 0,

obtained by rotating the curve z = φ(x) in the x, z plane about the z axis. Show that X is
regular, and find the principal curvatures and principal directions at each point. [Answers:
principal curvatures are

φ′′

(1 + φ′2)3/2
,

φ′

u(1 + φ′2)1/2
.

The principal directions are Xu and Xv, that is eigenvectors of (I)−1(II) are (1,0) and (0,1).]
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22. Consider the parametrised surface (Enneper’s surface)

X(u, v) = (u − 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2).

Show that

(i) The coefficients of the first fundamental form are

E = G = (1 + u2 + v2)2, F = 0.

(ii) The coefficients of the second fundamental form are

e = 2, g = −2, f = 0.

(iii) The principal curvatures are

κ1 =
2

(1 + u2 + v2)2
, κ2 = − 2

(1 + u2 + v2)2
.

[When finding N remember that ||Xu × Xv||2 = EG − F 2. ]

(iv) The principal curves are the co-ordinate curves u = constant, v = constant.

(v) The asymptotic curves are given by u + v =constant, and u − v =constant. [The usual
criterion T̃′ · Ñ = 0 gets a bit complicated here. Instead, consider say the curve γ(v) =
X(c− v, v), which is u + v = c, c being constant. Then γ′ = −Xu +Xv. Find the value of κn

for this curve using equation (4.8), and check that it is zero. Similarly with γ(v) = X(c+v, v).]

23. (January 1999 exam) (i) Let M be a (regular, injective) surface with parametrization X,
and let α be a unit speed curve on M . What does it mean to say that the unit tangent T to
α at a point p is (a) a principal direction at p, (b) an asymptotic direction at p? What is an
asymptotic curve on M?

(ii) Let X(u, v) = (u, v, u3 − 3uv2), which is a parametrization of the ‘Monkey saddle’ M .
Find a (non-unit) normal Ñ to M .

Consider a curve γ(v) = X(u(v), v) on M , where u(v) is a smooth function of v with u(0) = 0
so that γ passes through the origin. Show that

T̃ = (u′, 1, (3u2 − 3v2)u′ − 6uv),

where the prime means d/dv, is a (non-unit) tangent vector to γ and that γ is an asymptotic
curve on M if and only if

uu′2 − 2u′v − u = 0

for all v. (State without proof the criterion you use for a curve to be asymptotic.)

By differentiating the last equation with respect to v, or otherwise, show that there are exactly
three values for u′(0).

24. Let λ1, . . . , λm be the normal curvatures at p ∈ M along directions making angles

0, π/m, 2(π/m), . . . , (m − 1)(π/m)

with a principal direction. Prove that

λ1 + λ2 + . . . + λm = mH

where H is the mean curvature of M at p.
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25. Consider the ‘funnel surface’ parametrized by X(u, v) = (u cos v, u sin v, ln(u)) where ln is the
natural logarithm and u > 0. This is the surface of revolution obtained by rotating the graph
of the logarithm function, in the x, z-plane, about the z-axis. Find a non-unit normal Ñ. Let
γ(t) = X(u(t), v(t)) be a curve on M . Show that Ñ′ · T̃ = 0 if and only if u′/u = ±v′. Hence
show that the asymptotic curves on M are given by u = Ae±v for any constant A. Find the
particular asymptotic curves which pass through the point X(1, 1).

26. For the funnel surface of Exercise 25 find the principal curvatures κ1, κ2 and the Gauss
curvature K. [Do this by a direct calculation of E, F, G, e, f, g rather than quoting the general
result for a surface of revolution.]

27. Show that the co-ordinate curves u = constant and v = constant are principal curves on any
(regular) surface if and only if F and f are identically 0.

28. Two tangent vectors a and b at a point p are called conjugate if N′ in the direction of a
is perpendicular to b. Show that this is equivalent to II(a,b) = 0 and hence by symmetry
of II it is also equivalent to the condition that the derivative of N in the direction of b is
perpendicular to a. Show that a is an asymptotic direction at p if and only if a is conjugate
to itself (a ‘self-conjugate’ direction).

Show that conjugate directions are determined by the following limiting procedure. Take
a curve γ on M with γ(t0) = p and γ′(t0) = a. Consider tangent planes to M at points
γ(t0), γ(t0 + h). Show that as h → 0 the line of intersection of these planes tends to the
conjugate direction to a.

What can you say about conjugacy at parabolic points (where the determinant of (II) is
zero)?

29. Use Euler’s Theorem to prove the following. The mean curvature H at a point p of a surface
M is given by

H =
1

π

∫ π

0
κn(θ)dθ

where κn(θ) is the normal curvature at p in the direction making an angle with a fixed
direction. (In other words H is the average sectional curvature of M at p.)

30. Assume that the osculating plane of a principal curve C in a surface M makes a constant
angle with with the tangent plane, and that C is nowhere tangent to an asymptotic direction.
Prove that C is a plane curve. (Hint: the condition about the planes meeting at a constant
angle is best interpreted as the normals being inclined at a constant angle.)

31. Prove the following theorem of Beltrami-Enneper. The torsion τ of an asymptotic curve,
whose curvature is nowhere zero, is given by

τ2 = −K

where K is the Gaussian curvature of the surface at the given point.

32. Suppose that the surface M1 intersects the surface M2 along the regular curve C. Show that
the curvature κ of C at p ∈ C is given by

κ2 sin2 θ = λ2
1 + λ2

2 − 2λ1λ2 cos θ

where λ1 and λ2 are the normal curvatures of C at p on M1 and M2 respectively, and θ is
the angle between the normal vectors to M1 and M2 at p.
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33. Suppose that M1 and M2 intersect along a regular curve C and make an angle θ(p) at p ∈ C.
Assume that C is a principal curve of M1. Prove that θ(p) is constant if and only if C is a
principal curve on M2.

A surface is said to be minimal if its mean curvature vanishes at every point. The next
few problems concern minimal surfaces. According to equation (4.9), this is the same as
Eg + eG − 2Ff = 0.

34. Let M be the surface of revolution given by

X(u, v) = ((1/a) cosh(au + b) cos v, (1/a) cosh(au + b) sin v, u).

Show that M is minimal. M is called a catenoid.

35. Let M be the surface X(u, v) = (v cos u, v sinu, cu) where c is a real constant. Show that M
is minimal. M is called the helicoid.

The next few problems concern ruled surfaces. So let α : I → R3 be a space curve, which
we take to be unit speed for convenience, and β : I → R3 a family of unit vectors. The ruled
surface is given by X(s, t) = α(s) + tβ(s).

36. Prove that a straight line which lies on any surface is necessarily a geodesic and an asymptotic
curve. [Hint. What is T′ for a straight line?] Deduce that the curvature of a ruled surface is
always ≤ 0.

37. Suppose that β′(s) is never zero. Prove that there is a unique function r(s) such that the
curve γ(s) = α(s) + r(s)β(s), which in general is not unit speed, satisfies γ′ · β′ = 0. This
curve γ is called the line of striction of the ruled surface.

38. (January 1999 exam, part question) Let α : I → R3 be a regular space curve, and let β be
a smooth family of unit vectors with β′ never zero. Let

X(s, t) = α(s) + tβ(s)

be the corresponding ruled surface.

Show that there is a unique function r(s) such that, with γ(s) = α(s) + r(s)β(s), we have
γ′(s) · β′(s) = 0 for all s. (Thus γ is the line of striction on the ruled surface.)

Now let α(s) = (cos s, sin s, 0). Show that, for all s, the straight line through α(s), in the
direction of the unit vector

β(s) =
1√
2
(− sin s, cos s, 1),

lies on the surface with equation x2 + y2 − z2 = 1. Show that, for this ruled surface, α itself
is the line of striction.

39. If γ is the line of striction of the ruled surface X(s, t) = α(s) + tβ(s) show that Y(u, s) =
γ(s) + uβ(s) parametrises the same ruled surface.

Show that the parameterisation Y fails to be regular (i.e. the jacobian matrix has rank < 2)
precisely when u = 0 and γ′(s) is a multiple of β(s).
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40. Let X(s, t) = (t cos(s/c), t sin(s/c), s) where c > 0 is constant. Writing X as tβ(s) + α(s)
find the line of striction on this ruled surface.

A ruled surface is developable if along each line X(s0, t) of the ruling the tangent planes are
all equal. Note that the whole line s = s0 on any ruled surface X lies in the tangent plane to
X at X(s0, t), for any t. So the tangent planes to X at points X(s0, t) all contain the point
α(s0) = X(s0, 0). This means that the tangent planes coincide if and only if their normal
vectors N(s0, t) are all equal.

41. Prove that X(s, t) = α(s) + tβ(s) is developable if and only if the triple scalar product
[α′, β, β′] is identically 0.

42. Prove that each ruling X(s0, t) on a developable surface is a principal curve (as well as being
a geodesic and an asymptotic curve, which happens for any straight line on a surface).

43. Let Y be a regular surface and let α be a curve on it, which you can take to be unit speed.
Consider the ruled surface X(s, t) = α(s) + tN(s), where N(s) is the unit normal to the
surface Y at the point α(s). This is the ruled surface formed by the normal lines to Y along
the points of the curve α. Show that the ruled surface is developable if and only if the curve
α is a principal curve on Y.

44. Let X(s, t) = α(s) + tα′(s) be the tangent developable of a unit speed space curve α. Show
that this surface is developable. (Thus our earlier use of the phrase ‘tangent developable’ is
consistent with the present use of ‘developable’ !)

45. Show that a surface of revolution generated by a straight line (not crossing the axis of revo-
lution) is developable.

46. Let α be a unit speed space curve with κ never zero. Under what conditions is

X(s, t) = α(s) + tP(s)

developable? (P is the principal normal to the curve α.)

47. When is Y(s, t) = α(s) + tB(s) developable? (B is the binormal to the curve α.)

48. Show that a developable surface (assumed regular) has Gaussian curvature equal to zero.

49. Let M be a developable surface without umbilics. Let γ(s) be a unit speed line of curvature,
corresponding to the nonzero principal curvature. Show that γ is orthogonal to each line of
the ruling.

50. Let γ be chosen as in the previous problem, and parametrise the developable surface M by

Y(s, t) = γ(s) + tβ(s)

with β(s) a unit vector. Show that β′(s) = λ(s)γ′(s) for some function λ(s).

51. If λ(s) is as in the previous problem, show that

(i) λ ≡ 0 implies that M is a cylinder.

(ii) If λ is constant, but not zero, then all lines of the ruling have a point in common, and in
this case that point is the line of striction. (M is a cone, but not necessarily circular.)

(iii) If λ and λ′ are both non-zero then M is the tangent developable of its line of striction.



Chapter 5

Gauss Curvature and Geodesic
Curvature are ‘Intrinsic’

Both Euler and Gauss proved results about curvature; we have already seen Euler’s result (Theo-
rem 4.7.2). The theorem of Gauss is much deeper, and much more important, and it is this we will
investigate here.

We first recall that the principal curvatures for the right circular cylinder were ±1 and 0. On
the other hand for the plane every point is an umbilic, and the sectional curvature in any direction
is 0. Now we know that the plane and cylinder both have first fundamental form coefficients
E = 1, F = 0, G = 1, so that from the point of view of their intrinsic geometry—measuring
distances in the surface itself—the plane and the cylinder are indistinguishable. So we find (not
surprisingly) that the principal curvatures of a surface are not intrinsic quantities. Clearly, bending
a surface without stretching it does not alter distances but can affect curvatures drastically. Note
however that the Gaussian curvature, the product of the principal curvatures, in both cases is zero!
Could it be that the Gauss curvature only depends on the intrinsic properties of the surface? At
first sight this looks a fairly preposterous suggestion. After all the Gauss curvature is simply the
product of the principal curvatures. Nevertheless it turns out to be true! If we think of a surface as
a soap film, a 2-dimensional universe in which 2-dimensional beings float, unaware of the enveloping
3-space, then the Gauss curvature is a quantity that the beings can measure. (Just as we might
measure the curvature of the space in which we live.) The proof of Gauss’ result is rather long, and
we first need to discuss the Gauss Weingarten equations. Before that, here is an explicit simple
example.

5.1 Example: E = 1, F = 0, G = 1

Suppose we only know that a surface has first fundamental form coefficients E = 1, F = 0, G =
1. Examples are the plane, parametrized X(u, v) = (u, v, 0), and the unit circular cylinder,
parametrized X(u, v) = (cos u, sinu, v). From this alone can we deduce the Gauss curvature?

Here is the pattern, which will be followed in the general case too.

(i) Express Nu,Nv in terms of Xu,Xv.

Now Nu and Nv are certainly perpendicular to N, since N is a unit vector. Since E = 1, F =
0, G = 1 we know that Xu and Xv are perpendicular unit vectors, so that

Nu = (Nu · Xu)Xu + (Nu · Xv)Xv = −eXu − fXv,

52
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by equation (4.7). Similarly
Nv = −fXu − gXv.

(ii) Express Xuu,Xuv,Xvv in terms of Xu,Xv,N.

We know that the component of Xuu in the N direction is e, by the definition in §4.4. So Xuu =
λXu + µXv + eN for some λ, µ. Using again E = 1, F = 0, G = 1 we get

λ = Xu · Xuu =
1

2
(Xu · Xu)u =

1

2
Eu = 0.

Next

Xu · Xuv =
1

2
(Xu · Xu)v =

1

2
Fv = 0.

Finally
0 = Fu = (Xu · Xv)u = Xuu · Xv + Xu · Xuv = µ + 0,

using the previous equation. Hence Xuu = eN and similarly Xuv = fN, Xvv = gN.

(iii) Express third derivatives two ways and equate coefficients of Xu or Xv.

We have

Xuuv = evN + eNv = evN + e(−fXu − gXv) by (i)

Xuvu = fuN + fNu = fuN + f(−eXu − fXv) by (i).

But these mixed third derivatives are equal since the function X(u, v) is assumed smooth; we can
therefore compare the coefficients of Xv: −eg = −f2, giving K = eg − f2 = 0. So the Gauss
curvature has magically appeared from the calculations, despite the fact the e, f, g themselves
cannot be found knowing only E, F, G.

Of course it is not so easy in the general case when E, F, G are functions which vary with u, v.
But nevertheless the same pattern holds. First we shall deduce the general equations as in (i), (ii)
above for Nu,Nv,Xuu,Xuv,Xvv.

5.2 Gauss Weingarten Equations

The Gauss Weingarten equations are the analogues for surfaces of the Serret Frenet formulae for
curves. Recall that at each point we have three linearly independent vectors Xu, Xv, N. The
basic idea is to express the derivatives of these (with respect to u and v) in terms of Xu, Xv, N
themselves. (Just as we expressed the derivatives of T, P, B in terms of T, P, B themselves.)
We write

Xuu = Γ1
11Xu + Γ2

11Xv + eN

Xuv = Γ1
12Xu + Γ2

12Xv + fN

Xvv = Γ1
22Xu + Γ2

22Xv + gN

Nu = β1
1Xu + β2

1Xv

Nv = β1
2Xu + β2

2Xv.

Note that we already know the coefficients of N in the first three equations, by definition of e, f, g as
in §4.4, and we know that Nu and Nv, being perpendicular to N, are combinations of Xu,Xv alone.
The other coefficients βj

i , Γk
ij are to be determined. The rather elaborate notation is traditional,

and is designed to cover the case of higher dimensions. The coefficients Γij are called the Christoffel
symbols.
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Theorem 5.2.1 The coefficients βj
i , Γk

ij , are given by

β1
1 =

Ff − Ge

EG − F 2
, β2

1 =
Fe − Ef

EG − F 2
, β1

2 =
Fg − Gf

EG − F 2
, β2

2 =
Ff − Eg

EG − F 2

Γ1
11 =

GEu − 2FFu + FEv

2(EG − F 2)
, Γ1

12 =
GEv − FGu

2(EG − F 2)
, Γ1

22 =
2GFv − GGu − FGv

2(EG − F 2)
,

Γ2
11 =

2EFu − EEv − FEu

2(EG − F 2)
, Γ2

12 =
EGu − FEv

2(EG − F 2)
, Γ2

22 =
EGv − 2FFv + FGu

2(EG − F 2)
.

The expressions obtained for Xuu,Xuv,Xvv,Nu and Nv using these formulae are called the Gauss-
Weingarten equations for the surface parametrized by X. Note that according to these equations
the Γk

ij only depend on the first fundamental form.

Proof Since N is unit length we deduce that Nu and Nv are orthogonal to N, so N·Nu = N·Nv =
0, and since Xu · N = Xv · N = 0 we deduce that Nu and Nv are combinations of Xu,Xv alone.

−e = Xu · Nu = β1
1Xu · Xu + β2

1Xu · Xv = β1
1E + β2

1F

−f = Xv · Nu = β1
1Xv · Xu + β2

1Xv · Xv = β1
1F + β2

1G

−f = Xu · Nv = β1
2Xu · Xu + β2

2Xu · Xv = β1
2E + β2

2F

−g = Xv · Nv = β1
2Xv · Xu + β2

2Xv · Xv = β1
2F + β2

2G

and we can now solve for the β’s.
Next, observe that

Xu · Xuu = (Xu · Xu)u/2 = Eu/2,Xu · Xuv = (Xu · Xu)v/2 = Ev/2

Xv · Xuv = (Xv · Xv)u/2 = Gu/2,Xv · Xvv = (Xv · Xv)v/2 = Gv/2

while
Fu = (Xu · Xv)u = Xuu · Xv + Xu · Xuv = Xuu · Xv + Ev/2

Fv = (Xu · Xv)v = Xuv · Xv + Xu · Xvv = Xu · Xvv + Gu/2

hence
Xv · Xuu = Fu − Ev/2, Xu · Xvv = Fv − Gu/2.

Now we deduce

Eu/2 = Xu · Xuu = Γ1
11Xu · Xu + Γ2

11Xu · Xv = Γ1
11E + Γ2

11F,

Fu − Ev/2 = Xv · Xuu = Γ1
11Xv · Xu + Γ2

11Xv · Xv = Γ1
11F + Γ2

11G.

If we solve these equations for Γ1
11, Γ2

11 we get the required expressions. There are two other similar
sets of equations

Ev/2 = Xu · Xuv = Γ1
12Xu · Xu + Γ2

12Xu · Xv = Γ1
11E + Γ2

11F

Gu/2 = Xv · Xuv = Γ1
12Xv · Xu + Γ2

12Xv · Xv = Γ1
12F + Γ2

12G.

Fv − Gu/2 = Xu · Xvv = Γ1
22Xu · Xu + Γ2

22Xu · Xv = Γ1
22E + Γ2

22F

Gv/2 = XvXvv = Γ1
22Xv · Xu + Γ2

22Xv · Xv = Γ1
22F + Γ2

22G.

These yield similar expressions for the remainder of the Γi
jk.
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5.3 Another example: E = G = α(v), F = 0

Let us use the above equations to determine the Gauss curvature in the case when E and G are
the same function α(v) of v only, and F = 0. We assume that α(v) > 0 for all v since this will
always be the case when E, F, G come from a genuine surface. There is an interesting special case,
the Poincaré half plane, which we shall meet again in the next chapter.

Using the Gauss-Weingarten equations we deduce that

Xuu = − α′

2α
Xv + eN, Xuv =

α′

2α
Xu + fN, Xvv =

α′

2α
Xv + gN,

Nu = − e

α
Xu − f

α
Xv, Nv = −f

α
Xu − g

α
Xv.

Now we proceed to calculate a third derivative in two ways:

Xuuv =
α′2 − αα′′

2α2
Xv −

α′

2α

(
α′

2α
Xv + gN

)
+ evN + e

(−f

α
Xu − g

α
Xv

)
,

where we have used the Gauss-Weingarten equations again to substitute for Xvv and for Nv.
Similarly

Xuvu =
α′

2α

(
− α′

2α
Xv + eN

)
+ fuN + f

(
− e

α
Xu − f

α
Xv

)
.

But Xuuv = Xuvu and comparing coefficients of Xv we get

αα′′ − α′2

2α2
=

eg − f2

α
.

Finally

K =
eg − f2

EG − F 2
=

α′2 − αα′′

2α3
.

Again the Gauss curvature has magically appeared from the calculation.

5.4 The intrinsic nature of the Gauss curvature

The same method as above can be applied in the general case, though the details are naturally
very much more complicated. We shall only indicate the argument here.

Theorem 5.4.1 Theorema Egregium The Gauss curvature depends only on the first funda-
mental coefficients, i.e it is an intrinsic quantity.

Proof The Gauss-Weingarten equations show us how to compute second derivatives of X in terms
of the first. We can then write the third derivatives by differentiating both sides, and replacing
the second derivatives on the right hand side using the Gauss-Weingarten equations again. Now
some of these derivatives can be done in two ways e.g. (Xuu)v = (Xuv)u and (Xuv)v = (Xvv)u. So
we can compare coefficients of Xu,Xv as in the examples above. The resulting expressions can be
manipulated to give the following wonderful formula for K.

K =
1

(EG − F 2)2




∣∣∣∣∣∣∣

−1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣∣∣∣∣∣∣


 .
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A different expression for the same thing is

K =
−1

4W 2

∣∣∣∣∣∣

E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣∣
− 1

2W

(
∂

∂v

Ev − Fu

W
− ∂

∂u

Fv − Gu

W

)

where W =
√

EG − F 2.

5.5 Geodesics revisited

A geodesic is a curve on a surface M whose geodesic curvature κg vanishes identically. This means
that the derivative of the unit tangent to the curve is always in the direction of the surface normal:
it has no component perpendicular to the direction of motion. Thus geodesics are curves which ‘go
straight ahead’ on a surface. They are also curves whose projection at each point into the tangent
plane at that point has an inflexion. (See Definition 4.1.1, Corollary 4.2.5 and Proposition 4.3.1.)

Proposition 5.5.1 (1) Let γ be a unit speed curve on a surface. Then γ is a geodesic if and only
if its acceleration γ′′ is always in the direction of the normal N.
(2) Let γ be a regular (not necessarily unit speed) curve on a surface which, as a space curve, has
non-vanishing curvature. Then γ is a geodesic if and only if the osculating plane of the curve γ at
each point contains the surface normal N.

Note that (1) says that, as far as creatures whose universe is the 2-dimension surface itself are
concerned, the acceleration is zero, since they cannot detect vectors out of the surface. Thus
motion at constant speed along a geodesic is, so far as these creatures are concerned, uniform
motion.

Proof (1) This is merely a restatement of the definition of κg. For when γ is unit speed we have
γ′ = T, γ′′ = T′ = κgU + κnN and this is in the N direction if and only if κg = 0.

For (2), as κ 6= 0 we can use the principal normal P and the binormal B of γ. The osculating
plane is always perpendicular to the binormal B, so the normal lies in this plane if and only if
B · N = 0. Further, as P, B, U and N all lie in the plane perpendicular to T,

B · N = 0 ⇔ N = ±P = ±T′/(κs′) ⇒ T′ · U = 0 ⇔ κg = 0.

On the other hand, if T′ ·U = 0, then T′ is perpendicular to U and (always) to T, and hence must
be parallel to N. This enables all the implications to go both ways.

The expressions given in Chapter 4 for the geodesic curvature are extrinsic in nature, that is
they depend on a knowledge of the normal N to the surface. Nevertheless we do have the following
important fact.

Proposition 5.5.2 (Minding, 1830) The geodesic curvature is an intrinsic quantity. In fact if
γ(t) = X(u(t), v(t)) is a regular curve on M (and ||γ′|| = s′ where s is arclength and ′ = d

dt as
usual) then

κgs
′3 =

√
EG − F 2

∣∣∣∣∣
u′ Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 + u′′

v′ Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 + v′′

∣∣∣∣∣ .
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Proof We have
Ts′ = γ′ = Xuu′ + Xvv

′

and differentiating again we find that

Ts′′ + (κgU + κnN)s′2 = γ′′ = Xuuu′2 + 2Xuvu
′v′ + Xvvv

′2 + Xuu′′ + Xvv
′′.

The formula on the left comes from (4.5). The formula on the right is obtained by straight differ-
entiation using the chain rule.

We now use Gauss’s formulae (Theorem 5.2.1) for the second derivatives of X to deduce that

γ′′ = (Γ1
11Xu + Γ2

11Xv + eN)u′2 + 2(Γ1
12Xu + Γ2

12Xv + fN)u′v′

+ (Γ1
22Xu + Γ2

22Xv + gN)v′2 + Xuu′′ + Xvv
′′. (5.1)

Removing the N component from γ′′ we get

κgs
′2U + s′′T = (Γ1

11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 + u′′)Xu + (Γ2

11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 + v′′)Xv

= AXu + BXv, (5.2)

say.
We then have

κgs
′2 = [κgs

′2U,N,T]

= [κgs
′2U + s′′T,N,T] (property of triple scalar product)

= [AXu + BXv, (Xu × Xv)/
√

EG − F 2, (u′Xu + v′Xv)/s′],

using ||Xu × Xv|| =
√

EG − F 2. Now

(u′Xu + v′Xv) × (AXu + BXv) = (u′B − v′A)(Xu × Xv),

so evaluating the triple scalar product gives

κgs
′3 = (u′B − v′A)

√
EG − F 2,

as required.

In Chapter 4 some simple examples of geodesics were calculated, e.g. on the sphere and the
circular cylinder. The general problem of finding geodesics is very hard, but we can characterise
them fairly easily in intrinsic terms as follows.

Theorem 5.5.3 Suppose that the curve γ(t) = X(u(t), v(t)), where t ∈ I and I is an interval, is
a unit speed geodesic. Then, for all t ∈ I,

Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2 + u′′ = 0, (5.3)

Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 + v′′ = 0. (5.4)

Conversely, any curve satisfying (5.3) and (5.4) is a constant speed geodesic.
There is a unique geodesic emerging from any point p of a surface in any given direction.
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Proof Assuming γ is a unit speed geodesic, we have κg = 0 and s = t, s′ = 1, s′′ = 0, so that
(5.2) implies that A = B = 0 as Xu, Xv are independent vectors.

For the converse, suppose (5.3) and (5.4) hold. Then A = B = 0 in (5.2) and, T and U being
independent vectors, we deduce that κg = 0 and s′′ = 0. The former shows that γ is a geodesic
and the latter that s′ = constant, so that γ is a constant speed.

The last part (that is the existence and uniqueness of geodesics) follows from the theory of
differential equations.

As you will appreciate this reduces the determination of geodesics to solution of second order
differential equations. As you will also appreciate generally speaking the resulting differential
equations cannot usually be explicitly solved!

Example 5.5.4 Geodesics on a general cylinder Consider a cylinder X(u, v) = α(u) + ve3

for some unit speed plane curve α : I → R2 × {0} lying in the x, y plane, and e3 = (0, 0, 1). A
unit speed curve on the surface is of the form γ(s) = α(u(s)) + v(s)e3. It is a geodesic if the
acceleration is orthogonal to the surface. Now γ′ = Tu′ + v′e3 where T is the unit tangent to
α. Thus γ′′ = κUu′2 + Tu′′ + v′′e3, where κ and U refer to the plane curve α. Note that U
is perpendicular to Xu and Xv so is normal to the surface, while T and e3 are tangent to the
surface. Thus the condition that γ′′ is normal to the surface is that u′′ = v′′ = 0, which says that
u = at + b, v = ct + d for constants a, b, c, d. Thus geodesics are the images of straight lines in the
parameter space. (We make γ unit speed by a2 + c2 = 1.)

Of course we expect this result since the cylinder is obtained by bending a vertical sheet of
paper so that one edge lies along α, and bending carries geodesics to geodesics.

Note that when α is a closed curve and we allow the surface to consist of the whole cylinder
over α (thereby violating the ‘injective’ assumption of regularity but only in a relatively harmless
way) there may be many geodesics joining two points of the cylinder.

We now give a criterion for curves v =constant to be unit speed geodesics.

Proposition 5.5.5 Let M be a surface parametrised by X : U → R3. Then the curve γ(u) =
X(u, c), for c constant, is a unit speed geodesic if and only if E = 1 and Fu = 0 along the curve.

Proof Suppose that γ is a unit speed geodesic. Since γ′ = Xu it follows that E = 1. To prove
Fu = 0, recall that γ is a unit speed geodesic provided the acceleration of the curve is normal to
the surface. Now the velocity vector is γ′(u) = Xu, so the acceleration is Xuu, which is therefore
orthogonal to the vector Xv; in other words Xuu ·Xv = 0. Differentiating Xu ·Xu = 1 with respect
to v we find Xu · Xuv = 0 so Fu = (Xu · Xv)u = Xuu · Xv + Xu · Xuv = 0.

Conversely, if E = 1 then γ is unit speed, and if Fu = 0 then Xuu · Xv + Xu · Xuv = 0, but
the second term is zero as above (by differentiating Xu · Xu = 1 with respect to v), so Xuu is
perpendicular to Xv. However, differentiating Xu · Xu = 1 with respect to u shows that Xuu is
perpendicular to Xu. Thus Xuu is perpendicular to both Xu and Xv and hence parallel to N. This
now shows that γ is a unit speed geodesic.

5.6 Riemannian (abstract) surfaces

Definition 5.6.1 A Riemannian surface is defined to be an open subset U of the plane R2

together with three functions E, F and G with the property that the quadratic form

Ea2
1 + 2Fa1a2 + Ga2

2
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is positive definite. In other words the quadratic form is ≥ 0 and equals 0 only when a1 = a2 = 0;
this is equivalent to E > 0, G > 0, EG − F 2 > 0 for all u, v.

If β : I → U, β(t) = (u(t), v(t)) is a curve then we define the length of the tangent vector β′(t) to
be

√
Eu′2 + 2Fu′v′ + Gv′2. and the length of the curve between t1, t2 ∈ I to be

∫ t2

t1

√
Eu′2 + 2Fu′v′ + Gv′2dt.

Quite generally the inner product of two vectors a = (a1, a2) and b = (b1, b2) is defined to be

(a1, a2) ∗ (b1, b2) = Ea1b1 + F (a1b2 + a2b1) + Ga2b2 = ( a1 a2 )

(
E F
F G

) (
b1

b2

)
.

We then see that the length of a vector a = (a1, a2) is
√

a ∗ a, and denote it by ||a||. We can now
define the angle α between two vectors a and b by cos α = a∗b/||a||.||b||. (This quotient does indeed
lie between −1 and 1.)

In short we treat U as a surface with E, F, G taking the place of the first fundamental form
coefficients. This enables us to define the notion of distance and angle in U . We can then agree
that the Gaussian curvature of U is given by the intrinsic version, involving only E, F, G and their
derivatives.

Example 5.6.2 Poincaré disk Suppose we consider the open disc of radius 2 centred at the
origin in R2. Of course this is not a very interesting surface. However suppose that we assign a first
fundamental form, a notion of distance at each point which does not coincide with the Euclidean one.
We can still make sense of distance, angles, and Gaussian curvature. In fact using polar co-ordinates
we shall assign to the point (r, θ) the coefficients E = 1/(1 − r2/4)2, F = 0, G = 1/(1 − r2/4)2.
From the formula for the Gauss curvature it is not hard to see that K = −1. (Note that the
idea of principal curvatures makes no sense here. We really do have to use the fact that Gaussian
curvature is intrinsic.) This ‘surface’ is called the hyperbolic plane. It turns out that the geodesics
are circles which meet the ‘boundary’ circle orthogonally. Now suppose we interpret geodesics as
the straight lines of this geometry, and by parallel straight lines we mean lines that do not meet.
Then we have a geometry which satisfies all of the usual axioms for Euclidean geometry, except
that there are many lines parallel to a given line through a given point. On the other hand for the
ordinary 2-sphere, where geodesics are great circles, no two ‘lines’ are parallel. (Actually one has
to be a little careful here, since lines meet in two (antipodal) points and not one.)

We shall give another example in more detail. This in fact turns out to be essentially the same
as Example 5.6.2 above.

Example 5.6.3 Poincaré upper half plane For our set U we take the upper half plane {(u, v) :
v > 0} and for the first fundamental form we consider E = 1/v2, F = 0, G = 1/v2. Of course this
gives a positive definite quadratic form at all points of U . We can compute the Gaussian curvature
using the expression

K =
1

(EG − F 2)2




∣∣∣∣∣∣∣

−1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣∣∣∣∣∣∣


 .

This gives K = −1.
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It is interesting to work out the geodesics for this surface. Using the formulae in Chapter 5 for
the Christoffel symbols, we get in the present case

∣∣∣∣∣
u′ u′′ − 2

vu′v′

v′ v′′ + 1
vu′2 − 1

vv′2

∣∣∣∣∣ = 0.

Certainly u = constant is a solution of this, so straight lines in the upper half plane parallel to the
v-axis are geodesics. To find the other solutions, let v = v(u), so that ′ means d

du , and u′ = 1, u′′ = 0.
Then we have vv′ + v′2 + 1 = 0. This can be integrated directly:

d

du
(vv′) = −1 ⇔ 1

2

d

du
(v2) = vv′ = −u + a ⇔ 1

2
v2 = −1

2
u2 + au + b ⇔ (u − a)2 + v2 = 2b + a2,

where a and b are constants. These are circles centred on the u-axis, though only the top half of
the circle lies in our domain U .

Hence the geodesics are ‘vertical’ straight lines and semicircles centred on the u-axis. It is clear
that there is a geodesic through every point in every direction. Also there is a unique geodesic
joining any two points of U .

A short calculation shows that the length of the geodesic

γ(t) = (u(t), v(t)) = (u0, v1t + v0(1 − t))

joining two points (u0, v0) and (u0, v1) with the same u-coordinate is

∫ 1

0

√
Eu′2 + 2Fu′v′ + Gv′2dt = | ln(v1/v0)|.

Thus, as v0 → 0, the distance tends to ∞. The u-axis is to be thought of as ‘infinitely far away’ in
this metric.

It is also possible to calculate the length of the (circular arc) geodesic joining two points not in
the same vertical line. Suppose that the circle through (u1, v1) and (u2, v2) has centre at (c, 0) and
radius r. The geodesic is then

γ(t) = (u(t), v(t)) = (c + r cos t, r sin t), t1 ≤ t ≤ t2 say.

Thus u′(t) = −r sin(t), v′(t) = r cos(t) and writing down the integral for the length of the geodesic
gives ∫ t2

t1
cosec tdt =

[
ln

(
sin t

1 + cos t

)]t2

t1

= ln

(
sin t2(1 + cos t1)

sin t1(1 + cos t2)

)
.

But

sin t1 =
v1

r
, cos t1 =

u1 − c

r
, sin t2 =

v2

r
, cos t2 =

u2 − c

r
.

The length, which should be positive, then works out as the absolute value of

ln

(
v2(r + u1 − c)

v1(r + u2 − c)

)
.

Some exercises are in §5.7 below, and others will be done in class.
What about angles? It turns out that the angle between curves using this new fundamental

form is the same as the angle in the Euclidean sense. For if (a1, a2) and (b1, b2) are two vectors
then the angle α between them is given by

cos α =
Ea1b1 + F (a1b2 + a2b1) + Ga2b2√

(Ea2
1 + 2Fa1a2 + Ga2

2)(Eb2
1 + 2Fb1b2 + Gb2

2)
.
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Now F = 0, E = G so this reduces to

cos α =
a1b1 + a2b2√

(a2
1 + a2

2)(b
2
1 + b2

2)

which is the angle between these vectors for the Euclidean plane (where E = G = 1, F = 0).
This is another model for ‘non-Euclidean geometry’, where by taking ‘lines’ to mean geodesics,

the lines of U obey the axioms of Euclidean geometry apart from the parallel axiom. It is also
possible to define circles in this geometry, and many variants of Euclidean theorems can be estab-
lished.

5.7 Exercises

1. Let X : U → R3 be a parametrization of a regular surface for which the first fundamental
form coefficients are E = α(u, v), F = 0, G = α(u, v), where α(u, v) is a smooth function
whose values are always > 0. Use the formulae in the text to show that

Γ1
11 = αu/2α, Γ1

12 = αv/2α, Γ1
22 = −αu/2α,

Γ2
11 = −αv/2α, Γ2

12 = αu/2α, Γ2
22 = αv/2α.

Now write down the Gauss-Weingarten equations for such a surface and using these compute
(Xuu)v and (Xuv)u. Use the equality of these expressions to equate coefficients of Xv and
deduce that the Gauss curvature of the surface is

K =
α2

u + α2
v − α(αuu + αvv)

2α3
.

Suppose that a surface has E = G = eu, F = 0. Show that the Gauss curvature of this
surface is 0.

2. For α(u, v) = 1/v2 in the previous question show that the Gauss curvature is −1 everywhere.

3. Let X : U → R3 be a parametrization of a regular surface for which the first fundamental
form coefficients are E = 1, F = α(u, v), G = 1, for some function α with 1 − (α(u, v))2 > 0
for all (u, v) ∈ U . (Recall that EG − F 2 > 0 for any regular surface.) Use the formulae of
the text to show that

Γ1
11 =

−ααu

1 − α2
, Γ1

12 = 0, Γ1
22 =

αv

1 − α2
,

Γ2
11 =

αu

1 − α2
, Γ2

12 = 0, Γ2
22 =

−ααv

1 − α2
.

and give the expressions for the βj
i .

Write out the Gauss-Weingarten equations for such a surface and use these to compute (Xuu)v

and (Xuv)u. Using the equality of these expressions equate the coefficients of Xv to deduce
that the Gauss curvature is

K =
(1 − α2)αuv + ααuαv

(1 − α2)2
.

Deduce that K vanishes if α is a function of u alone.

Let γ : I → R3 be a unit speed curve and let a be a (constant) unit vector. Define X :
I ×R → R3 by X(u, v) = γ(u) + va. Deduce from the above that the Gauss curvature of X
(at regular points) vanishes.
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4. Use the formula in the Theorema Egregium to show directly, from E, F, G and their deriva-
tives, that the Gauss curvature of the surface X(u, v) = (u, v, uv) is

K = − 1

(1 + u2 + v2)2
.

Check this formula by calculating e, f, g in the usual way and using K = (eg−f2)/(EG−F 2).

5. Let M be a surface and Π a plane which meets M in a curve γ. Show that γ traces out a
geodesic if Π is a plane of symmetry of M , i.e. reflection in the plane Π leaves M fixed. Use
this to find some geodesics on the unit sphere, and the torus of revolution.

6. Suppose that M is a surface of revolution, with γ a geodesic on M . Show that r cos θ =
constant, where θ(s) is the angle between γ′(s) and the parallel (of radius r) through γ(s).
[Hints. It is enough to take M generated by a unit speed curve α, and to take γ unit speed.
This simplifies the calculation and does not in fact lose generality since curves can always
be reparametrized to be unit speed. The geodesic condition becomes γ′′ parallel to N, i.e.
γ′′ · Xu = γ′′ · Xv = 0.]

7. Let M be the surface parametrised by X(u, v) = (u, v, uv). Check that the non-unit speed
curve γ(t) = (t,−t,−t2) is a geodesic. Can you find any other geodesics on M?

8. Let α : I → R2, α(s) = (x(s), y(s)) be a unit speed plane curve. Define X : I × R → R3

by X(s, t) = (x(s), y(s), t). This gives the cylinder over the curve. Let β be a constant, and
let γ(s) = (x(s), y(s), s tan β). Prove that γ (which is not generally unit speed) traces out a
geodesic.

9. Let X : U → R3 be a parametrisation of a surface, and suppose that we have F = 0, while
E = G = a(u) + b(v) for some smooth functions a and b. Let γ(s) be a unit speed geodesic,
and let θ(s) be the angle between γ and the u-curves (i.e. between γ′(s) and Xu). Prove that

a sin2 θ − b cos2 θ = constant.

10. In the upper-half plane model of the hyperbolic plane, find the equation of the geodesic joining

(0, 1) and (
√

2
2 ,

√
2

2 ), and find the length of the geodesic joining these points.

11. The same as the previous question, for the points (−1, 1) and (1, 1).

12. The same as the previous question, for the points (0, 2) and (
√

3, 1).

13. The same as the previous question, for the points (0, 1) and (1, 1).


