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Abstract

We discuss the behaviour of vertices and inflexions of one-parameter families of plane
curves which include a singular member. These arise a sectons of smooth surfaces by families
of planes parallel to the tangent plane at a given point. We cover all the generic cases, namely
elliptic, umbilic, hyperbolic, parabolic and cusp of Gauss points. This work is preliminary
to an investigation of symmetry sets and medial axes for these families of curves, reported
elsewhere.

1 Introduction

Let M be a smooth surface, and p be a point of M . We shall consider the intersection of M
with a family of planes parallel to the tangent plane at p. This family of plane curves contains
a singular member, when the plane is the tangent plane itself; generically the other members of
the family close to the tangent plane are nonsingular curves.

The motivation for this work comes from computer vision, where the surface is the intensity
surface z = f(x, y) corresponding to the intensity function f of a two-dimensional image, and
the plane curves are level sets of this function, that is isophotes. A great deal of information
about the shape of these level sets and the way they evolve through the singular level set is
contained in the family of so-called symmetry sets and medial axes of the level sets (see for
example [9]). These sets in turn take some of their structure from the pattern of vertices and
inflexions (curvature extrema and zeros) of the level set.

In this article we concentrate on the vertices and inflexions, and apply this and other results
to the study of symmetry sets in articles to appear elsewhere [6, 7]. Besides the patterns of
vertices and inflexions we also study the limiting curvatures at the vertices as the level set
approaches the singular member of the family.

The contact between a surface and its tangent plane at p is an affine invariant of the surface.
Likewise the inflexions on the intersections with nearby planes are affine invariants, but we are
also interested in the curvature extrema on these sections, and these are euclidean invariants.
For a generic surface M , the contact between the surface and its tangent plane at a point p, as
measured by the height function in the normal direction at p, can be of the following types. See
for example [11] for the geometry of these situations, and [4, 5, 10] for an extensive discussion
of the singularity theory.
• The contact at p is ordinary (‘A1 contact’), at an elliptic point or at a hyperbolic point
(occupying regions of M). The intersection of M with its tangent plane at p is locally an
isolated point or a pair of transverse smooth arcs. (As regards contact there is no distinction
between ‘ordinary’ elliptic points and umbilics, where the principal curvatures coincide. But as
we shall see there is a great deal of difference when we consider vertices of the plane sections.)
• The contact is of type A2 at parabolic points (generically forming smooth curves on M),
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where the asymptotic directions coincide. The intersection of M with its tangent plane at p is
locally a cusped curve.
• The contact is of type A3 at a cusp of Gauss, where the parabolic curve is tangent to the
asymptotic direction at p (these are isolated points of M). There are two types, the elliptic cusp
and the hyperbolic cusp. The intersection with the tangent plane is locally an isolated point or
a pair of tangential arcs.

Other authors have considered the A1 cases, using different techniques and with slightly
different motivations from ours. Vertices in the A1 case are studied by Uribe-Vargas in [14] and
inflexions in the same case by Garay in [8], using more sophisticated techniques of singularity
theory aimed at finding normal forms up to an appropriate equivalence. Our very detailed results
on the other hand combine vertices and inflexions and apply to all three cases A1, A2, A3 above.
They are obtained by direct calculation: our motivation, as above, is to facilitate investigation
of the symmetry sets of surface sections, and we do not as yet know how to fit this into a more
general theory.

Here is a simple example. Consider a round torus in 3-space, obtained by rotating a circle
about an axis in the plane of the circle but not intersecting it. This consists of elliptic and
hyperbolic points, separated by two circles of parabolic points along the ‘top’ and ‘bottom’ of
the torus. (The parabolic curves are far from generic but we shall stay clear of them.) We
can take sections by planes parallel to the axis of rotation, as in Figure 1. The sections pass
from a connected curve through a nodal curve (a ‘figure eight’) to two ovals. In the figure
we have drawn the evolutes of the nonsingular sections: these have cusps at the centres of
curvature of the vertices. As the connected curve splits, two vertices (maxima of curvature)
come into coincidence at the crossing. After the transition, when there are two components of
the curve, three vertices (one maximum and two minima of curvature) emerge from the crossing
on each component. This transition, two local vertices becoming six local vertices, is written
‘1 + 1 ↔ 3 + 3’. As regards transitions on vertices this is one of two generic situations at a
hyperbolic point on a surface. However as regards inflexions it is special since the figure-eight
level curve itself has an inflexion on each branch at the crossing point (in the terminology of [11,
p.282] the crossing point is a flecnode for both asymptotic directions). This allows a transition
on the inflexions of the plane sections whereby 2 + 2 ↔ 0 + 0: two inflexions on each branch
becomes none. Taking into account both vertices and inflexions this becomes one of the types
‘H7’ below. If we take a hyperbolic point on the torus at which the tangent plane is not parallel
to the axis of rotation, then it can be shown that neither branch of the nodal curve has an
inflexion. While the transition on vertices remains as 1 + 1 ↔ 3 + 3, the inflexions become
2 + 0 ↔ 1 + 1 or 1 + 1 ↔ 2 + 0; this is one of the ‘H1’ cases in the notation below, which occur
in regions of the surface.

The paper is organized as follows. In §2 we state the main results in the various cases. In §3
we describe the various patterns which arise in the hyperbolic case, and the limiting curvatures.
The hyperbolic region of our surface M is divided into subregions according to the possible
patterns, separated by a set which we call the vertex transition (VT) set. This set consists of
those hyperbolic points p in M for which one of the smooth local components of the intersection
between M and the tangent plane at p has a vertex. The VT set is difficult to calculate in
particular cases but in §3.3 we give some examples and explain how the VT set approaches the
parabolic curve on M . In §4 we turn to the elliptic case, concentrating on umbilic points since
the general elliptic case is very simple. In §5 and §6 we cover the remaining cases, parabolic
point and cusp of Gauss respectively. Finally in §7 we summarize and add some remarks on the
material of the paper.
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Figure 1: Two plane sections of a torus close to a singular section, together with their evolutes. One
connected component becomes two ovals, and four inflexions disappear while, locally, two vertices become
six.
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2 The vertex and inflexion sets

We always assume that our surface is locally given by an equation z = f(x, y) for some smooth
function f , with the tangent plane at the origin given by z = 0. Thus our family of curves is
f(x, y) = k for constants k close to 0, and (x, y) close to (0, 0). (In some cases the set f(x, y) = k
is non-empty only for one sign of k.) We also take the x and y axes to be in principal directions
at the origin, so that the surface M assumes the local Monge form

f(x, y) = 1
2(κ1x

2 + κ2y
2) + b0x

3 + b1x
2y + b2xy2 + b3y

3

+ c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4

+ d0x
5 + d1x

4y + d2x
3y2 + d3x

2y3 + d4xy4 + d5y
5 + h.o.t. (1)

where κ1, κ2 are the principal curvatures at p. We often scale the surface (multiply x, y and z
by the same nonzero constant) so that κ1 = 2 and the coefficient of x2 is therefore 1.

We use subscripts to denote partial derivatives: fx = ∂f
∂x etc.

To such f we assign two functions Vf and If whose zero-level sets Vf = 0 and If = 0 are
respectively the sets of all vertices and inflexions of the plane curves f(x, y) = k for constants
k. We shall consider both the ‘vertex function’ Vf and the ‘vertex set’ Vf = 0. In fact for each
of the generic cases of elliptic, hyperbolic, parabolic and cusp of Gauss points of M we shall go
through the following steps.

• Calculate Vf = 0 and f = 0 and their Taylor expansions at the origin. In each case there will
be several branches, some of which may be singular. (The same also applies to If .)
• Decide the possible relative positions of the branches of f = 0 and Vf = 0 (and If = 0).
These can be indicated on diagrams.
• For k small, the level sets f = k are close to the zero level set f = 0. We can read off the
pattern of vertices (and inflexions) from the diagrams above.
• Calculate the limiting curvature at vertices of the section f = k, when k → 0.

To obtain the function Vf we argue as follows. We want to find the vertices on a smooth curve
f(x, y) = k. For this purpose we may assume that locally the curve is given by y = h(x) for a
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smooth h, that is f(x, h(x)) = k is an identity. Then the vertex condition is simply κ′(x) = 0

where κ(x) = h′′(x)

(1+(h′(x))2)3/2
is the curvature of y = h(x). Working out the derivatives of h in

terms of those of f and clearing denominators we arrive at the following. The vertices of any
smooth curve f(x, y) = k will be at the intersections with the set Vf = 0, where

Vf = (f2
x + f2

y )(−f3
y fxxx + 3fxf2

y fxxy − 3f2
xfyfxyy + f3

xfyyy)

+3fxfy(f
2
y f2

xx + (f2
x + f2

y )fxxfyy − f2
xf2

yy)

+6fxfyf
2
xy(f

2
x − f2

y )

+3fxy(fxxf4
y − 3f2

xf2
y (fxx − fyy) − fyyf

4
x). (2)

The square of the curvature, κ2, of the curve f(x, y) = k at (x, y) is

κ2 =
(fxxf2

y − 2fxyfxfy + fyyf
2
x)2

(f2
x + f2

y )3
, (3)

so that the inflexion condition is If = 0 where

If (x, y) = fxxf2
y − 2fxyfxfy + fyyf

2
x (4)

is the usual Hessian determinant of f .
The following result gives the number of intersections of the level set f(x, y) = k with Vf = 0

and If = 0, as k passes through 0.

Theorem 2.1 Let f = k be a section of a generic surface M by a plane close to the tangent
plane at p, k = 0 corresponding with the tangent plane itself. Then for every sufficiently small
open neighbourhood U of p in M , there exists ε > 0 such that f = k has exactly v(p) vertices
and i(p) inflexions lying in U , for every 0 < |k| ≤ ε, where v(p) and i(p) satisfy the following
equalities. We also use ↔ to indicate the numbers of vertices or inflexions on either side of a
transition, local to the singular point on f = 0, when f = k has two branches. The notation
m + n indicates the numbers of vertices or inflexions on the two branches.

(E) If p is an elliptic point, then for one sign of k the section is locally empty; in the non-
umbilic case, for the sign of k yielding a locally nonempty intersection we have v(p) = 4,
i(p) = 0. Likewise if p is a generic1 umbilic point, then v(p) = 6, i(p) = 0. (This is
already well-known: see for example [13, §15.3].)

(H) If p is a hyperbolic point v(p) satisfies one of the following.

For p lying in open regions of M we have
2 + 2 ↔ 2 + 2 or 1 + 1 ↔ 3 + 3.
In other cases, occurring along curves or at isolated points of M , we can have in addition
3 + 2 ↔ 2 + 1 or 3 + 1 ↔ 2 + 2.
See §3.1 for an explanation of the different cases.

Also using the same notation, i(p) satisfies: 1 + 1 ↔ 0 + 2 or 1 + 2 ↔ 0 + 1; the full list
is in Table 2.

(P) If p is a parabolic point but not a cusp of Gauss, v(p) = 3, i(p) = 2.

1The genericity assumption can be stated explicitly: the quadratic terms of f should not divide the cubic

terms. See §4.
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(ECG) If p is an elliptic cusp of Gauss, v(p) = 4 , i(p) = 2 for one sign of k, and the level set
is empty for the other.

(HCG) If p is a hyperbolic cusp of Gauss, we have:
v(p) : 1 + 3 ↔ 4 + 4 or 2 + 2 ↔ 4 + 4, and for each of these, we can have any of
i(p) : 1 + 1 ↔ 0 + 0 or 2 + 2 ↔ 0 + 2 or 1 + 1 ↔ 0 + 4

We split the proof of Theorem 2.1 into different cases discussed in the relevant sections, in
which we also carry out a closer investigation of the geometry of the sets Vf = 0 and If = 0.

3 Hyperbolic case

Recall that at a hyperbolic point p of a surface, the principal curvatures κ1, κ2 are not zero and
have opposite signs. After scaling, f can be taken in (1) to have quadratic part x2 − a2y2 where
a > 0. We shall write Vh for Vf in this case, and likewise Ih for If .

3.1 Patterns of vertices and inflexions on the level sets

Proposition 3.1 (i) The vertex set Vh = 0 has exactly four smooth branches V H1, V H2, V H3,
V H4 through (0, 0), where V H1 is tangent to the principal direction x = 0, V H2 is tangent to
the principal direction y = 0, V H3 is tangent to the asymptotic direction x − ay = 0 and V H4

is tangent to the asymptotic direction x + ay = 0.

(ii) The level sets f = 0 and Ih = 0 have exactly two smooth branches in a neighbourhood of
(0, 0), one of them being tangent to x − ay = 0 and the other one to x + ay = 0.

The proof for Vh can be done in several ways. We can use the technique exemplified in §5.1, that
is, blowing up combined with the implicit function theorem, or, in the present case, we can even
prove that Vh is R-equivalent as a function to its lowest terms, which are 192a4(1 + a2)xy(x −
ay)(x + ay). The functions f and Ih are Morse functions, hence equivalent to their quadratic
parts.

In order to verify the conclusions of Theorem 2.1 in the hyperbolic case we need to determine
the relative positions of the branches of f = 0 and Vf = 0 (and If = 0) which are tangent to
one another at the origin. To do this we need the higher terms of the Taylor expansions of those
branches with the same tangents. The branches V H1 and V H2 present no problems since they
are always transverse to the branches of the level set f = 0. For the branches V H3 and V H4

we use Proposition 3.1 and substitute for example x = ay + x2y
2 + x3y

3 + higher terms into the
expression the vertex set Vh, for the branch V H3.

Notation Certain expressions occur often in our formulae so we introduce some notation for
them.
f (n)(a) means the result of substituting x = a, y = 1 in the homogeneous part of degree n in
the Taylor expansion of f . (We write this rather than the more precise f (n)(a, 1).) For example,
f (3)(a) = b0a

3 + b1a
2 + b2a + b3, and

f (4)(a) = c0a
4 + c1a

3 + c2a
2 + c3a + c4.

Similarly f (n)(−a) is the result of substituting x = −a, y = 1 in the same homogeneous polyno-
mial of degree n.
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Proposition 3.2 (i) The branches V H3, V H4 of the vertex set have the following 3-jets:

V H3 :

x = ay − 1

2a
f (3)(a)y2

+
1

4a3(1 + a2)

(

f (3)(a)(3b0a
5 + b1a

4 + (5b0 − b2)a
3 + (3b1 − 3b3)a

2 + b2a − b3)

− 4a2(1 + a2)f (4)(a)

)

y3

= ay + x+
2vy

2 + x+
3vy

3 say,

V H4 : x = −ay + x−
2vy

2 + x−
3vy

3(obtained by replacing a with −a in the above.)

(ii) The branches of f = 0 have the following 3-jets:

x = ay − 1

2a
f (3)(a)y2

+
1

8a3

(

f (3)(a)(5b0a
3 + 3b1a

2 + b2a − b3) − 4a2f (4)(a)

)

y3

= ay + x+
2vy

2 + x+
3fy3 say, and

x = −ay + x−
2vy

2 + x−
3fy3 obtained by replacing a with −a in the above.

It is evident from (i) and (ii) of the above Proposition that the branches of vertex set and
those of the curve f = 0 have at least 3-point contact at the origin: their Taylor expansions
agree up to order two. This also means that they have the same osculating circle (circle of
curvature) at the origin. The condition for them to have (at least) 4-point contact is that the
terms in y3 agree also. After some manipulation, this 4-point contact condition comes to the
following.

Proposition 3.3 Four-point contact condition The condition for the vertex branch V H3

to have (at least) 4-point contact with the corresponding branch of f = 0 at the origin is

f (3)(a)(b0a
5 − b1a

4 + (5b0 − 3b2)a
3 − (5b3 − 3b1)a

2 + b2a − b3) − 4a2(1 + a2)f (4)(a) = 0. (5)

The condition for V H4 to have (at least) 4-point contact with the corresponding branch of f = 0
is obtained by replacing a by −a:

−f (3)(−a)(b0a
5 + b1a

4 +(5b0 −3b2)a
3 +(5b3 −3b1)a

2 + b2a+ b3)−4a2(1+a2)f (4)(−a) = 0. (6)

For a generic surface M , (5) or (6) then imposes one condition on the point p and can
therefore be expected to hold for points p along one or more curves on M . We call this the
vertex transition set (VT set) on M .

Remarks 3.4 (1) The apparently rather complicated conditions in the above proposition
actually state that one or other of the branches of the curve f = 0 itself—the intersection
between the surface M : z = f(x, y) and its tangent plane—has a vertex. In fact we have the
general result:

For any f giving a hyperbolic point at the origin, a branch of the curve f = 0 and
the corresponding branch of the vertex set have the same order of contact with their
common osculating circle.
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Thus at a point of the VT set, the corresponding branches of f = 0 and of the vertex set
both have vertices. We shall not use this fact here, but discuss the result and its consequences
elsewhere.

(2) Note in particular that (5) holds if x−ay is a factor of both the cubic and quartic terms
of the expansion of f . This is a biflecnode in the terminology of Koenderink [11, p.296]. As a
special case, one of (5), (6) will hold at every point of a ruled surface, since the whole line in
one of the asymptotic directions lies on the surface. From the point of view of the VT set, both
ruled surfaces and surfaces of revolution (see §3.3) are highly non-generic.

Note that the 4-point contact condition can be regarded as a formula for f (4)(±a) in terms of
the lower degree coefficients of the expansion of f . It can therefore be regarded as a formula for
any of the degree 4 coefficients ci in terms of the other cj and lower degree coefficients of f . In a
similar way we can write down the additional condition for V H3 or V H4 and the corresponding
branch of f = 0 to have 5-point contact. This can be written in the form f (5)(±a) = a polynomial
in the lower degree coefficients, but it is complicated and we shall not display it here. (As noted
above, this is equivalent to the branch of f = 0, or of the vertex set, having a higher vertex.)

Analysing in a similar way the Taylor expansions of the inflexion function Ih we find the
following.

Proposition 3.5 The branches of the inflexion curve Ih = 0 have the following 3-jets:

x = ay +
1

8a3

(

− 3f (3)(a)(3b0a
3 + b1a

2 − b2a − 3b3) + 8a2f (4)(a)

)

y3

= ay + x+
3iy

3 say,

and

x = −ay + x−
3iy

3 obtained by replacing a with −a in the above.

Note that there are no quadratic terms in these expansions: the branches of the inflexion
curve Ih = 0 themselves have inflexions at the origin. Accordingly the branches of Ih = 0 and
f = 0 tangent to x = ay, say, have 2-point contact unless the branch of f = 0 also has an
inflexion (that is, f (3)(a) = 0).

Altogether the possibilities for contact between branches of the vertex and inflexion sets and
the branches of f = 0 in the present hyperbolic cases are as follows.

Notation
V1 A branch of f = 0 and of Vh = 0 have the minimum 3-point contact,
V2 A branch of f = 0 and of Vh = 0 have 4-point contact; see (5) or (6),
V3 A branch of f = 0 and of Vh = 0 have 5-point contact,

I1 A branch of f = 0 and of Ih = 0 have the minimum 2-point contact,
I2 A branch of f = 0 and of Ih = 0 have 3-point contact.
I3 A branch of f = 0 and of Ih = 0 have 4-point contact.

The possible ways of combining these at the two branches of f = 0 tangent to x = ±ay
are therefore as shown in Table 1. Here ‘codim’ refers to the codimension of the locus of these
points in the hyperbolic region.

For the ‘most generic’ case H1, we give in Figure 2 the three possible ways (up to rotation
or reflexion of the diagram) in which the different elements can intersect. We use the notation
2 + 2 ↔ 2 + 2 and 1 + 1 ↔ 3 + 3 to indicate the numbers of vertices on the pair of branches
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Symbol x = ay branch x = −ay branch ‘codim’ Comment

H1 V1I1 V1I1 0 the most generic case

H2 V2I1 V1I1 1 along curves in the VT set

H3 V2I1 V2I1 2 self-intersections of the VT set

H4 V3I1 V1I1 2 isolated points of the VT set

H5 V1I2 V1I1 1 curves in the hyperbolic region

H6 V2I1 V1I2 2 isolated points

H7 V1I2 V1I2 2 isolated points

H8 V2I3 V1I1 2 V2I2 and V1I3 do not occur

Table 1: The possibilities for contact between f = 0 and the vertex and inflexion curves. See Proposi-
tions 3.3 and 3.6, and Lemma 3.7 for further information.

of f = k for small k first of one sign and then of the other. The inflexions in the first case
follow the pattern 2 + 0 ↔ 1 + 1 whereas in the second case the two patterns 2 + 0 ↔ 1 + 1 and
1 + 1 ↔ 2 + 0 occur. Examining cases we find the following.

Proposition 3.6 (i) In the case H1, the vertex transition 2 + 2 ↔ 2 + 2 occurs when the left
hand sides of (5) and (6) have opposite signs.
(ii) The vertex transition 1 + 1 ↔ 3 + 3 occurs when the left hand sides of (5) and (6) have the
same sign.
(iia) The inflexion transition 1+1 ↔ 2+0 occurs when, in addition to (ii), ‘left hand sides both
< 0’ is accompanied by f (3)(a)f (3)(−a) > 0 and ‘left hand sides both > 0’ by f (3)(a)f (3)(−a) < 0.
(iib) The inflexion transition 2+0 ↔ 1+1 occurs when, in addition to (ii), ‘left hand sides both
< 0’ is accompanied by f (3)(a)f (3)(−a) < 0 and ‘left hand sides both > 0’ by f (3)(a)f (3)(−a) > 0.

The other cases also require an analysis of the order of branches of f = 0, Vh = 0, Ih = 0
around each of the lines x = ±ay. In Figure 3 the principal cases for a single branch tangent
to x = ay are illustrated. By putting these together with similar information at x = −ay, and
including the other branches of Vh = 0 tangent to the two coordinate axes (see Proposition 3.1)
we arrive at the classification in Table 2.

Here is an indication of the calculations which allow us to draw the cases in Figure 3.

Lemma 3.7 (i) The condition for V1I2 on the branch tangent to x = ay is f (3)(a) = 0, f (4)(a) 6=
0 and the configuration of f = 0, Vh = 0, andIh = 0 is determined by the sign of f (4)(a), as in
Figure 3.
(ii) The conditions for V2I2 or V1I3 on the branch tangent to x = ay are f (3)(a) = f (4)(a) =
0, f (5)(a) 6= 0, and this situation is in fact V2I3. The configuration of f = 0, Vh = 0 and Ih = 0
is determined by the sign of f (5)(a), as in Figure 3.

Proof For (i), note that we require the branches of Ih = 0 and f = 0 tangent to x = ay to
have the same 2-jet, and using the formulae of Propositions 3.2 and 3.5 this requires f (3)(a) = 0.
They have different 3-jets provided f (4)(a) 6= 0, since the coefficients of y3 in the two Taylor
series are then 1

af (4)(a) and − 1
2af (4)(a) respectively. Since the coefficient of y3 in the Taylor

series of Vh is − 1
a we find the two orderings of the branches depicted in Figure 3.

For (ii) we use the same Propositions, noting that I2 together with V2 imply f (3)(a) = f (4) = 0
which in turn imply that the 3-jets of the branches of Vh = 0 and f = 0 agree. Further
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Symbol Vertex transitions Inflexion transitions Comment

H1 (i) 2 + 2 ↔ 2 + 2 2 + 0 ↔ 1 + 1 Figure 2(i)

(iia) 1 + 1 ↔ 3 + 3 1 + 1 ↔ 2 + 0 Figure 2(iia)
(iib) 2 + 0 ↔ 1 + 1 Figure 2(iib)

H2 3 + 2 ↔ 2 + 1 1 + 1 ↔ 2 + 0
2 + 0 ↔ 1 + 1
0 + 2 ↔ 1 + 1
1 + 1 ↔ 0 + 2

H3 3 + 1 ↔ 2 + 2 2 + 0 ↔ 1 + 1
1 + 1 ↔ 2 + 0
0 + 2 ↔ 1 + 1

H4 As for H1

H5 (i) 2 + 2 ↔ 2 + 2 1 + 2 ↔ 1 + 0

(ii) 1 + 1 ↔ 3 + 3 1 + 2 ↔ 1 + 0

H6 3 + 2 ↔ 2 + 1 1 + 0 ↔ 2 + 1

H7 (i) 2 + 2 ↔ 2 + 2 1 + 1 ↔ 1 + 1

(ii) 1 + 1 ↔ 3 + 3 2 + 2 ↔ 0 + 0 Torus, Figure 1

H8 3 + 2 ↔ 2 + 1 1 + 1 ↔ 0 + 2
0 + 2 ↔ 1 + 1

Table 2: The transitions on vertices and inflexions in the hyperbolic case.

calculations then show that the coefficients of y4 in the three branch expansions are f = 0 :
− 1

2af (5)(a), Vh = 0 : − 5
2af (5)(a) and Ih = 0 : 5

2af (5)(a) from which the results now follow.

3.2 Extrema of curvature and limiting curvature

In order to analyse the vertices further, we need to decide which vertices correspond to maxima
and which to minima of curvature on the curve. (This is of significance when we apply the
results to the symmetry set and the medial axis, since only minima—indeed absolute minima—
can contribute to the latter.) We proceed as follows. The different branches of the vertex set
locally divide the plane into regions where the derivative κ′ of the curvature κ (with respect to
any regular parametrisation of the curve) has a constant sign, the vertex branches being the
loci of points where this derivative vanishes. Note that the sign of κ′ does not depend on the
orientation of the curve. However κ′ has the same sign as the vertex condition Vh(x, y).

To decide the sign of κ′, for instance in the (local) region between the vertex branches tangent
to y = 0 and x − ay = 0, let us then check the sign of Vh(x, y) along the line x = 2ay, which
is inside this region. Along this line, the sign of the vertex condition is positive, at least for y
small, as the Taylor expansion of the vertex condition is: Vh(2ay, y) = 1152(a7 + a9)y4 + O(y5)
and a > 0.

We can complete the sign of κ′ in all other regions by just alternating it before and after a
vertex branch. This completely describes the growth of κ on the level sets of f in the plane. We
shall always orient the branches of f = k as indicated in Figure 4, and in this orientation κ will
have a definite maximum or a minimum at a given vertex.

Proposition 3.8 In the notation of Proposition 3.1, the limiting curvature of the level curves
f = k, k → 0 at vertices on the various branches is, up to sign,

9



H  ( i )

V e r t i c e s :  2 + 2       2 + 2
I n f l e x i o n s :  1 + 1       2 + 0

1

M i n i m u m  o f  c u r v a t u r e
M a x i m u m  o f  c u r v a t u r e
I n f l e x i o n

f  =  0  o r  f  =  k
v e r t e x  c u r v e s
i n f l e x i o n  c u r v e s

H  ( i i a )

V e r t i c e s :  1 + 1       3 + 3
I n f l e x i o n s :  1 + 1        2 + 0

1 H  ( i i b )

V e r t i c e s :  1 + 1        3 + 3
I n f l e x i o n s :  2 + 0        1 + 1

1

Figure 2: Arrangements of vertices and inflexions on the level sets of f , hyperbolic case H1 (see Table 2).
In each case, we show, above, the vertex and inflexion curves—that is, the loci of vertices and inflexions
on the level sets of f—and, below, a sketch of the level curves for f < 0, f > 0, showing the positions of
these vertices and inflexions. The orientation chosen for the branches of f = k is shown in Figure 4.

• infinite, along V H1 and V H2

• f (3)(a)/a(1 + a2)3/2, along V H3

• −f (3)(−a)/a(1 + a2)3/2, along V H4.

To prove this, we use the Taylor expansions of the branches of the vertex set, given above
in Proposition 3.2, and the formula (3) for the square of the curvature of a plane curve. For
the branch V H1 we find the numerator and denominator of κ2 come to 64a8y4 + O(y5) and
64a12y6 + O(y7) respectively, so that as y → 0 the limiting curvature is infinite. The situation
for V H2 is similar.
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f     ( a )  <  0( 4 ) f     ( a )  >  0( 4 )

V  I 21 V  I 32

f     ( a )  <  0( 5 ) f     ( a )  >  0( 5 )

V  I2 1

Figure 3: The arrangements of branches tangent to x = ay: thick line f = 0, thin solid line the vertex
curve Vh = 0 and dashed line the inflexion curve Ih = 0. Three cases are illustrated here, the notation
being that of Table 1.

+

+

+

+

-

-

-

-

x  =  a y + . . .
x  =  -  a y  +  . . .

M a x

M a x m i nm i n

H  ( i i a )

V e r t i c e s :  1 + 1       3 + 3
1

M a x i m u m  o f  c u r v a t u r e
M i n i m u m  o f  c u r v a t u r e

Figure 4: Case H1(iia) (compare Figure 2). The sign of κ′: following the indicated orientations on f = k,
before the curve f = k intersects a vertex branch ‘Max’, the derivative κ′ of κ is positive, then vanishes
at the vertex branch and becomes negative afterwards. So the intersections of the vertex branches ‘ Max’
and the curves f = k are the vertices on f = k where κ reaches a local maximum; likewise the ‘min’
describes the patterns of the local minima of curvature of f = k when k goes through zero. The diagram
on the right takes into account inflexions on f = k.

For V H3 the numerator and denominator come to 64a4f (3)(a)2y6 + O(y7) and 64a6(1 +
a2)3y6 + O(y7), which gives the required result. Note that this limiting curvature is zero pre-
cisely for a flecnodal point, at which the quadratic and cubic terms have a common factor
x − ay. The limiting curvatures for both branches V H3 and V H4 are zero when the whole of
the quadratic terms are a factor of the cubic terms, that is for the intersection of two flecnodal
curves corresponding to different asymptotic directions on the surface M .
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3.3 The vertex transition (VT) set

Given a generic surface M , we can apply our analysis to any point p of the surface: we are
then looking at the family of plane sections of the surface close to the tangent plane section.
The ‘4-point contact condition’ (5) or (6) is generically expected to hold for points p along a
set of curves on M , the vertex transition (VT) set. Of course the VT set lies entirely in the
hyperbolic region, though it may have limit points on the parabolic set (see below); it separates
those points where the family of sections parallel to the tangent plane exhibits behaviour H1(i)
in Table 2 from those exhibiting H1(ii).

It is clearly of interest to determine, for a given surface M , the subregions into which the
hyperbolic region is separated by the VT set. This set can self-intersect, when both local branches
of f = 0 have 4-point contact with the corresponding local branches of the vertex set Vh = 0:
this is H3 in Table 1. Also there are special points on the VT set where a branch of the vertex
set and f = 0 have 5-point contact: this is H4 in Table 1. Although the local conditions are
quite easy to calculate—see the above formulae—it is not so easy to take a global surface and
determine the VT set. We consider below the case of a surface of revolution M , which turns
out to be non-generic in the sense that a point of M lies on both branches of the VT set or
on neither. We also consider the limit points of the VT set on the parabolic curve of a general
surface M .

Torus and surface of revolution Consider a torus of revolution M in R
3, obtained by

rotating a circle about a line in its plane, not intersecting the circle. Naturally the VT set will
be one or more circular ‘latitude parallels’ of the torus in view of the circular symmetry. In
fact, for a circle of radius r rotating so that its centre describes a circle C of radius R > r, the
two latitude parallels in the hyperbolic region of the torus making an angle cos−1(r/R) with the
plane of C lie on both branches of the VT set. Thus for points p on these two latitude parallels,
both branches of the local intersection of M with its tangent plane have 4-point contact with the
corresponding branches of the vertex set at p (or equivalently both branches of the intersection
of M with its tangent plane have a vertex at p). At other hyperbolic points of M neither branch
has these properties. Crossing the VT set we therefore cross it twice, so that, apart from points
p on the VT set itself, the pattern of vertices on sections of M parallel to the tangent plane
at p is always the same. In fact we find that, in the expansion of the torus in Monge form at
any hyperbolic point, the coefficients b1, b3, c1, c3 are all zero. It is clear that, in this situation,
the two expressions in Proposition 3.3 become identical so that, in the case H1 of Theorem 2.1,
only (ii) is possible. Thus all hyperbolic points away from the VT set exhibit the same pattern
of vertices. Interestingly, when we consider inflexions, then both possibilities in Table 2 occur.
In fact let p be a point of the torus of the form (r sin t, 0, R + r cos t) (where the axis of rotation
is the x-axis and we can without loss of generality take p to be in the xz-plane). Then using
Proposition 3.6 we find that if −r/R < cos t < 0 then the inflexion transition is 1 + 1 ↔ 2 + 0
but if −1 < cos t < −r/R it is 2 + 0 ↔ 1 + 1. Note that cos t < 0 since p is hyperbolic, and
t = π gives the symmetrical case H7(ii) of Table 2 and Figure 1.

The same happens in fact for any surface of revolution generated by rotating a plane curve,
say in the x, z-plane, about the z-axis. We find that b1, b3, c1, c3 are all zero and the conclusion
follows as before. If we rotate the curve y = 0, x = a + bz + cz2 + dz3 + ez4 + · · · about the
z-axis then the condition for the point (a, 0, 0) to be hyperbolic is ac > 0 and the condition for
this point to lie on the VT set determines e uniquely in terms of a, b, c, d. For example, the
curve x = a + cz2 − (c2/2a)z4 has the latter property, as does x = 4 − 2z + 2z2 + z3.

The VT set and the parabolic curve The analysis of sections parallel to the tangent plane
at a parabolic point and at a cusp of Gauss is given in §§5, 6. Here we are concerned with the
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hyperbolic region near a parabolic point and we ask which type, H1(i) or H1(ii), the points of
this region can be.

Suppose we consider a sequence of hyperbolic points tending to a parabolic point p of M .
If we let a → 0 in (5) and (6), the left-hand sides both tend to −b2

3, since f (3)(0) = b3. Hence, if
b3 6= 0 at a point p of the parabolic curve, then all hyperbolic points sufficiently close to p are
of type H1(iia), by Proposition 3.6(ii). In particular the VT set cannot have a limit point on
the parabolic curve except where b3 = 0, that is at the cusps of Gauss. It is possible to calculate
the local form of the VT set at cusps of Gauss; we find the following.
• At an elliptic cusp of Gauss p (in (1) p = (0, 0, 0) and κ2 = 0, b2

2 < 2κ1c4 or, scaling κ1 to 2,
b2
2 < 4c4), there is locally no VT set.
• At a hyperbolic cusp of Gauss p (the previous inequalities are reversed), there is either locally
no VT set, or locally a VT set consisting of two curves tangent to the parabolic curve at p
and having inflexional contact with each other (equivalent by a change of coordinates in the
parameter plane of M to (x − y3)(x + y3) = 0). The criterion separating these cases is the sign
of a polynomial in coefficients of the Monge form of M at p of order ≤ 4, together with d5.
When d5 = 0 a VT set exists if and only if c4 lies between 0 and 20b2

2c3(b1b2 − c3)/(4b1b2 + c3)
2.

There is a similar, slightly more complicated formula, for general d5.

4 Elliptic points

We sketch this case for completeness; the chief interest for us lies in the symmetry set and medial
axis in the umbilic case as in [6].

At an elliptic point, say p = (0, 0, 0) on a surface z = f(x, y), the two principal curvatures
are of the same sign, say positive: κ1 > 0, κ2 > 0. Using (1), the function f , after scaling of the
variables x, y, z, is of the form fe(x, y) = x2 + a2y2 + b0x

3 + b1x
2y + b2xy2 + b3y

3+ h.o.t., where
we may assume a > 0. We can distinguish two cases here: the generic case where a 6= 1 and
the case a = 1 of umbilic points, where the principal curvatures are equal. Umbilic points are
isolated points in the elliptic region of a surface. See Figure 5 for the vertex set and some level
curves fe(x, y) = k in the umbilic case.

4.1 Proof of Theorem 2.1: elliptic case

The results on vertices in this case are well-known; to deduce them from the function Ve note
that it has 4-jet

−192a4xy(a2 − 1)(x2 + a2y2)

so that, when a 6= 1, there can be only two real branches of Ve = 0, with tangents x = 0 and
y = 0.

The inflexion condition Ie has 2-jet 8a2(x2 + a2y2), hence the set Ie = 0 contains no real
points apart from the origin.

The sections fe = k will therefore have four vertices for small k > 0, just as in the case of
an ellipse.

The umbilic case. Let us consider the case a = 1. The vertex set Vu = 0 is now given by

1

192
Vu = px5 − 3qx4y − 2px3y2 − 2qx2y3 − 3pxy4 + qy5 + h.o.t.,

= (x2 + y2)(px3 − 3qx2y − 3pxy2 + qy3) + h.o.t.,
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where p = b3 − b1, q = b2 − b0. The discriminant of the form of degree 3 is

108(p2 + q2)2,

so that, unless p = q = 0 (which amounts to saying that x2 + y2 is a factor of the cubic terms),
the discriminant is > 0 and the branches of Vu = 0 through the origin are distinct and exactly
three of them are real. It follows that there are always six vertices on the section fu = k for
small k > 0. (Compare [13, §15.3].) Not surprisingly, there are no inflexions on fu = k. The
inflexion set has equation Iu = 0, which has the form 8(x2 + y2)+h.o.t.

Naturally, the curvature at the vertices tends to infinity as k → 0 through positive values;
in fact the curvature behaves like that of a circle of radius

√
k.

Figure 5: Loci of vertices in a 1-parameter family of level sets f = k (closed curves), in the umbilic case.
The vertex curve has three branches through the origin, giving rise to six vertices on the level set for all
small k.

5 Parabolic case

At a parabolic point p the contact of the surface M with its tangent plane is of type A2 at least;
we consider the case of ordinary parabolic points where the contact is exactly A2 in this section.
One of the principal curvatures vanishes. After scaling of the variables x, y, z in (1) f can be
written

fp(x, y) = x2 + b0x
3 + b1x

2y + b2xy2 + b3y
3 + higher order terms (7)

where b3 6= 0. (The case b3 = 0 is that of a cusp of Gauss; see §6.)

Proposition 5.1 (i) The vertex set Vp = 0 has three branches, one being smooth and the other
two having ordinary cusps.
(ii) The inflexion set Ip = 0 has two branches, one smooth and one having an ordinary cusp.
(iii) The zero level set fp = 0 has one branch, having an ordinary cusp.

See §5.1 for the proof.
By the same method as in Proposition 3.5 we can show the following.

Proposition 5.2 Suppose that b3 > 0 (see the Remark below for the contrary case b3 < 0).
(i) The smooth branch V P1 of the vertex set has the following 3-jet:

• V P1: (−1
2b2t

2 + b2(b1−3b3)−c3
2 t3, t).

The two cusped branches of the vertex set have the following 4-jets:
• V P2: (x′

3t
3 − 1

2b2t
4,−t2),
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x

y

Figure 6: Left: a schematic picture of the vertex set Vp = 0 (thin solid line), the inflexion set Ip = 0
(dashed line) and the zero level set fp = 0 (thick line) in the parabolic case. The vertex set has two
cuspidal branches and one smooth branch, the inflexion set has one cuspidal branch and one smooth
branch, and fp = 0 has one cuspidal branch. The level set fp = k then evolves so that the number of
vertices remains as 3 and the number of inflexions as 2 for both signs of k, with k small. Centre: a sketch
of the level curve fp = k for k 6= 0, marking vertices (circles) and inflexions (squares). Right: the Newton
polygon for the parabolic case; see §5.1.

• V P3: (x′′
3t

3 − 1
2b2t

4,−t2),

where 2x′
3 =

√

9 + 3
√

3
√

b3, and 2x′′
3 =

√

9 − 3
√

3
√

b3.
(ii) The branches of the inflexion set can be parametrized as
• (3b3t,−b2t + · · · ) (recall b3 6= 0)
• (1

2

√
3b3t

3 − 3
8b2t

4 + · · · ,−t2).
(iii) The level set fp = 0 has the following 5-jet:

• (
√

b3t
3 − 1

2b2t
4 +

b2
2
+4b1b3−4c4

8
√

b3
t5, −t2).

Comparing the coefficients of the t3-terms of the cuspidal branches in (i), (ii) and (iii) we have
1
2

√
3b3 < x′′

3 <
√

b3 < x′
3. It follows that the branch of fp = 0 is always between the two cusped

branches of the vertex set, and also the cusped branch of the inflexion set is inside all these
three cusps. See Figure 6.

Hence each level curve fp = k has only three vertices, near the origin, for small k. Thus,
when k passes though 0, the number of vertices of the curves fp = k remains unchanged: 3 ↔ 3,
as claimed in Theorem 2.1. The number of inflexions does not change as k passes through 0:
each curve f = k has two inflexions near the origin. Hence the transition of inflexions is 2 ↔ 2.

Remark If b3 < 0, then in Proposition 5.2 we use y = t2 instead of y = −t2 and replace
√

b3

by
√
−b3 wherever it occurs. The two cases ′ and ′′ in (i) are then reversed.

5.1 Proof of Proposition 5.1

In this section we show briefly how we are able to deduce that the vertex and inflexion sets have
branches as claimed above. We do so by looking at the Newton polygon and then applying the
well-known techniques of blowing-up combined with the implicit function theorem. We give this
example in detail; all the other cases encountered in this article can be dealt with similarly.

The Newton polygon for the function Vp contains the following monomials with coefficients:
192b3x

5 + 864b2
3x

3y3 + 648b3
3xy6 + 324b2b

3
3y

8. Since b3 6= 0 all but the last term are definitely
present. The last term is absent when b2 = 0, which means that the parabolic curve is tangent
to the other principal direction at the origin. When this is the case, there is a term 324b3

3c3y
9,

which will be present unless c3 = 0. Generically b2 = c3 = 0 will not happen anywhere on our
surface M . Thus the Newton polygon has terms x5, x3y3, xy6 and either y8 or y9; see Figure 6.
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Let us write the above as g(x, y) = ax5 + bx3y3 + cxy6 + dy8 and consider the case where
d 6= 0. Note that a, b, c and b2 − 4ac = 248832b4

3 are all nonzero. The function Vp will then be of
the form g + terms above the Newton polygon; we can think of the latter as linear combinations
of monomials xmyn where 3m + 2n > 15 and (m, n) 6= (0, 8). We first blow up by x = ty, so
that the ‘blow-down’ transformation is (t, y) → (ty, y) and y = 0 is the exceptional divisor. The
result after cancelling y5 is

at5 + bt3y + cty2 + dy3 + linear combination of monomials tmym+n−5.

Note that m + n > 5 for all monomials above the Newton polygon. Hence intersecting with
y = 0 gives five coincident points at the origin t = y = 0 (and there are no points sent to infinity,
that is y = tx produces no points on the exceptional divisor, using a 6= 0).

For the second blow-up we use y = ut, with blow-down map (t, u) → (t, ut); we find after
cancelling t3

at2 + but + cu2 + du3 + linear combination of monomials um+n−5t2m+n−8,

and 2m + n − 8 > 0 for all monomials above the Newton polygon. This meets t = 0 in
cu2 + du3 = 0, that is a cusp at the origin and a transverse crossing of the u-axis at u = −c/d,
since d 6= 0. The transverse crossing provides us with a smooth branch of the blown-up curve
Vp = 0, parametrized by t, using the implicit function theorem, and by blowing-down we obtain
one of the branches of our curve Vp = 0 (in fact also a smooth branch). No further points are
obtained from the alternative blow-up t = uy.

Blowing up the origin a third time, using t = uw, with blow-down map (w, u) → (uw, u), we
obtain after cancelling u2,

aw2 + bw + c + du + linear combination of monomials u3m+2n−15w2m+n−8,

and again 3m + 2n − 15 > 0 for all points above the Newton polygon. Finally this meets the
exceptional divisor u = 0 in distinct points, since b2 6= 4ac, each of which gives a transverse
crossing of u = 0 so that the two branches of the blown-up curve can be locally parametrized
smoothly by u, using the implicit function theorem. These branches blow-down to the remaining
two branches (actually ordinary cusps) of Vp = 0.

5.2 The limiting curvature of fp = k, at vertices.

Here again, we would like to evaluate the curvature κ of fp = k at a vertex. Then we will take
the limit of κ, as one approaches the parabolic point p= (0, 0, 0), along that vertex branch.

Proposition 5.3 The limiting curvature of the level curves f = k is infinite as k → 0, at
vertices on any of the branches of the vertex set.

We substitute the parametrizations of the branches of Vp = 0 given in Proposition 5.2 into the
expression for κ2 given in (3). The result is (in all cases using b3 6= 0) for the branch V P1,
κ2 ∼ t−4, while for V P2 and V P3, κ2 ∼ t−2. The result follows.

6 Non-degenerate cusps of Gauss

For a non-degenerate cusp of Gauss the Monge form (1) can be written, after scaling the vari-
ables, as

fg = x2 + b0x
3 + b1x

2y + b2xy2 + c0x
4 + c1x

3y + c2x
2y2 + c3xy3 + c4y

4 + h.o.t
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where b2
2 − 4c4 6= 0, that is, the lowest degree terms in the weighted sense, namely the x2, xy2

and y4 terms, are non-degenerate. Since cusps of Gauss are isolated we can assume generically
that other conditions on the coefficients are avoided. By changing the sign of x if necessary we
can assume b2 > 0. There are two broad cases:
Elliptic cusp of Gauss: b2

2 − 4c4 < 0. Then the curve fg = k is locally a closed loop for k > 0
and empty for k < 0.
Hyperbolic cusp of Gauss: b2

2 − 4c4 > 0. Then fg = k has two local branches for k 6= 0 and two
tangential branches for k = 0.
Note that the principal direction x = 0 is tangent to the parabolic curve at a cusp of Gauss.
See [1] for an extensive discussion of cusps of Gauss, and [11, pp.245,276] for further geometrical
information.

6.1 Vertices and inflexions on level sets at a cusp of Gauss

In a neighbourhood of a cusp of Gauss, the vertex condition now reads

Vg = 192(c3 − b1b2)x
6 + 192(4c4 − b2

2)x
5y + h.o.t.

Since b2
2 − 4c4 6= 0, there will be a nonzero coefficient of x5y here.

Proposition 6.1 (i) In the case of an elliptic cusp of Gauss i.e. b2
2−4c4 < 0 (the closed curve

intersection), there are two smooth real branches of the vertex set Vg = 0 through the origin, one
of which is tangent to the axis x = 0, and the other one to (b2

2 − 4c4)y = (c3 − b1b2)x.

(ii) In the case b2
2 − 4c4 > 0 (hyperbolic cusp of Gauss), the vertex set has six smooth real

branches V Gi for i = 1, · · · 6. All except V G6 are tangent to x = 0 while V G6 is tangent to
(b2

2 − 4c4)y = (c3 − b1b2)x.

(iii) If in addition to b2
2 − 4c4 > 0, we have b2

2 − 8c4 > 0, then the inflexion set has three smooth
branches (see Figures 9 and 10), whereas when b2

2 − 8c4 < 0, there is only one smooth branch
(see Figure 8).

The claimed number of branches can be deduced from the Newton polygon in the same way
as §5.1; the present case is easier. The Newton polygon for Vg is illustrated in Figure 7, right.
The terms on the Newton polygon are

192(c3 − b1b2)x
6 − 192(b2

2 − 4c4)x
5y − 480b2(b

2
2 − 4c4)x

4y3

−48(b2
2 − 4c4)(7b2

2 + 12c4)x
3y5 − 24b2(b

2
2 − 4c4)(b

2
2 + 36c4)x

2y7

+24(b2
2 − 4c4)(b

4
2 − 10b2

2c4 − 16c2
4)xy9 + 24b2c4(b

2
2 − 4c4)(b

2
2 − 8c4)y

11.

The key fact is this: ignoring the first term and then cancelling y, the remaining terms form a
quintic polynomial in x and y2 which has distinct roots; in fact it factorizes as
(b2

2 − 4c4)(2x + b2y
2)(x2 + b2xy2 + c4y

4)(4x2 + 4b2xy2 − (b2
2 − 8c4)y

4). The discriminant is a
nonzero constant times (b2

2 − 4c4)
18 and the number of real roots is 1 for an elliptic cusp and 5

for a hyperbolic cusp. Two blow-ups x = ty and y = tu suffice to find the real branches of the
singular point Vg = 0.

We can parametrize the branches of the inflexion set as follows. Substitute x = x1y+x2y
2+. . .

in the inflexion condition Ig = 0; this gives the solution x1 = 0, implying that the inflexion
branches are all tangent to the y-axis. Then the coefficient z of y2 is a solution of a cubic
equation I(z) = 0 where

I(z) = −4c4(b
2
2 − 8c4) − 6b2(b

2
2 − 8c4)z + 48c4z

2 + 8b2z
3 (8)
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f  =  k
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Figure 7: Left: Vertices and inflexions in the case of an elliptic cusp of Gauss: the curves marked V
are the vertex set, those marked I are the inflexion set and f = k is one level set of f . As k increases
through 0, the curve passes from empty to one with four vertices and two inflexions. Right: the Newton
polygon for a hyperbolic cusp of Gauss; compare §6.1.

with discriminant D = 6912(b2
2 − 8c4)(b

2
2 − 4c4)

4. So D > 0 , giving 3 solutions for z, if and only
if b2

2 − 8c4 > 0. However, if b2
2 < 4c4 (elliptic cusp) then c4 > 0 so automatically b2

2 < 8c4 and
the 3 solutions case applies only to hyperbolic cusps.

Once we know the number of smooth branches we can find their Taylor expansions using the
same method of substitution of power series that was used in the previous cases. We find the
following.

Proposition 6.2 When b2
2 − 4c4 > 0 (hyperbolic cusp of Gauss), the branches of the vertex

set, tangent to the principal direction x = 0, can be parametrized as follows:

V G1: x = −1
2

(

b2 −
√

b2
2 − 4c4

)

y2+ h.o.t., V G2: x = −1
2

(

b2 +
√

b2
2 − 4c4

)

y2+ h.o.t.,

V G3: x = −1
2

(

b2 −
√

2b2
2 − 8c4

)

y2+ h.o.t., V G4: x = −1
2

(

b2 +
√

2b2
2 − 8c4

)

y2+ h.o.t.

V G5: x = −1
2b2y

2 − 1
2(c3 − b1b2)y

3+ h.o.t.

The level set f = 0 has two branches which can be parametrized as:

FG1 : x = −1
2

(

b2 −
√

b2
2 − 4c4

)

y2+ h.o.t., FG2 : x = −1
2

(

b2 +
√

b2
2 − 4c4

)

y2+ h.o.t.

This Proposition implies in particular that the vertex branch V G1 and the branch FG1 of f = 0
have at least 3-point contact at the origin. The same holds for V G2 and FG2.

The conditions for 4-point contact are given below; since cusps of Gauss are isolated on a
generic surface, only the signs of the expressions below will be of significance.

Proposition 6.3 The vertex branch V G1 and the branch FG1 of fg = 0 have at least 4-point
contact at the origin if and only if D1 = 0 where
D1 = −b1b

2
2 + b1b2

√

b2
2 − 4c4 + 2b1c4 + b2c3 − c3

√

b2
2 − 4c4 − 2d5.

The same holds for V G2 and FG2 if and only if D2 = 0 where
D2 = b1b

2
2 + b1b2

√

b2
2 − 4c4 − 2b1c4 − b2c3 − c3

√

b2
2 − 4c4 + 2d5.

The signs of the Di determine the relative positions of the branches V Gi and FGi. More
precisely, D1 > 0 if and only if, above the x-axis, the curve V G1 is to the right of FG1. (Below
the x-axis this is reversed, since they have 3-point contact at the origin.) Similarly, D2 > 0 if
and only if, above the x-axis, V G2 is to the right of FG2. Note that both D1 > 0 and D2 > 0
can be regarded as conditions on the coefficient d5.
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Figure 8: Sketch of the hyperbolic cusp of Gauss case, b2 > 0, 4c4 < b2

2
< 8c4 (so c4 > 0); see

Proposition 6.1. The left box has D1 and D2 as in Proposition 6.3 of the same sign (negative) and the
right box of opposite signs (D1 > 0). The thick lines are f = 0 on the left of each figure and f = k for
the two signs of small nonzero k on the right. The thin lines are the V Gi of Proposition 6.2, labelled by
i, and the dashed line is the single branch of the inflexion set. As before, solid circles are maxima and
open circles are minima of curvature, for the orientations indicated, and squares are inflexions.

6.2 Hyperbolic cusp of Gauss

Let x2i, i = 1, ..., 5 be the coefficient of y2 in the expansion of the branch V Gi as in Proposi-
tion 6.2, and let z0 or z1 < z2 < z3 denote the real roots of (8), as appropriate. Thus the zi are the
coefficients of y2 in the expansion(s) of the branch(es) of the inflexion set: x = ziy

2 + . . .. Recall
that we also assume b2 > 0. The following is obtained from the expressions in Proposition 6.2
and the sign of the polynomial I in (8) at the values x2i.

Proposition 6.4 (a) Suppose b2
2 − 8c4 > 0.

(1) If c4 > 0 then x24 < x22 < z1 < x25 < x21 < z2 < 0 < x23 < z3.
(2) If c4 < 0 then x24 < x22 < z1 < x25 < 0 < z2 < x21 < x23 < z3.
(b) Suppose b2

2 − 8c4 < 0. Then x24 < x22 < z0 < x25 < x21 < x23 < 0.

These are illustrated in Figures 8-10. The sign of the derivative of curvature is determined
as for the hyperbolic case; this determines the pattern of maxima and minima of curvature. The
statements of Theorem 2.1, case (HCG), follow from these diagrams.

7 Conclusion

In this article, we have derived detailed results on the pattern of vertices and inflexions on
families of plane curves of the form f(x, y) = k, which can be interpreted as the parallel plane
sections of a generic surface close to the tangent plane at a given point p. This is part of
an investigation of the symmetry sets and medial axes of 1-parameter families of plane curves
which evolve through a singular member. The symmetry set of a nonsingular plane curve γ is
the closure of the locus of centres of circles tangent to γ in more than one place (‘bitangent
circles’). It has endpoints in the cusps of the evolute, that is at the centres of curvature of
the vertices of γ. Thus the pattern of vertices has a strong influence on the branches of the
symmetry set. Inflexions have a direct effect on the evolute—it goes to infinity—and, through
the associated double tangents, an indirect effect on the symmetry set, which has a point at
infinity for every double tangent (a bitangent circle of infinite radius). The limiting curvatures
at vertices, as k → 0, determines the limiting position of the endpoints of the symmetry set as
the plane section becomes singular.
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Figure 9: Sketch of the hyperbolic cusp of Gauss case, b2 > 0, c4 < 0 (hence b2

2
> 8c4); see Proposi-

tion 6.1. The left box has D1 and D2 as in Proposition 6.3 of the same sign (negative) and the right box
of opposite signs (D1 > 0). The thick lines are f = 0 on the left of each figure and f = k for the two
signs of small nonzero k on the right. The thin lines are the V Gi of Proposition 6.2, labelled by i, and
the dashed lines are the three branches of the inflexion set. As before, solid circles are maxima and open
circles are minima of curvature, for the orientations indicated, and squares are inflexions.
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Figure 10: As for Figure 9 except that b2 > 0, b2

2
> 8c4, c4 > 0; see Proposition 6.1.
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The investigation of symmetry sets involves many other factors, such as an investigation of
circles which are tangent in three places to γ (these produce triple crossings on the symmetry
set) and circles which are circles of curvature at one point of γ and tangent elsewhere (these
produce cusps on the symmetry set). These and other matters are reported elsewhere, beginning
with [6].

We conclude with some remarks and questions about the material of this article.
1. Is it possible to calculate the VT curve for classes of global examples where the two branches
do not coincide? Compare §3.3.
2. Can the parabolic and cusp of Gauss cases be approached by more general methods of
singularity theory, as in [8, 14]?
3. For the purpose of plotting symmetry sets it is much more convenient to have a parametrized
curve rather than a level set f(x, y) = k. A method of parametrizing the level sets to arbitrarily
high accuracy is given in [7].
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