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1 Introduction

De Bruijn sequences are sequences where each possible binary / ternary / quaternary... sequence
of length n appears exactly once. Universal cycles are generalisations of De Bruijn sequences to
other combinatorial structures such as permutations and partitions of a set. Although universal
cycles do not exist for partitions of a number, this was an interesting extension to the project.

2 De Bruijn sequences and Eulerian Graphs

For a given alphabet where each digit can take k different values, a De Bruijn sequence B(k, n) is
a sequence of numbers in which every possible set of n digits appears exactly once.
Example
In the case of a binary De Bruijn sequence of order 3 (meaning each subsequence has length 3)
where each digit is either 0 or 1:
The 8 possible sets of 3 digits are:
000, 001, 011, 111, 110, 101, 010, 100
A De Bruijn sequence B(2, 3) would be: 00011101
By running a window of length 3 along the above sequence, we can see that each of the possible
triplets appears exactly once (this includes going around the corner at the end of the sequence to
obtain the triplets 010 and 100).
A De Bruijn sequence has length =kn as each digit can take k different values and there are n

digits in each set (called an n-tuple). For the example above, the sequence has length 23 = 8.

2.1 Constructing a De Bruijn Sequence

De Bruijn sequences can be constructed from directed Eulerian Graphs.
Considering the case k = 2 and n = 3:
To find a De Bruijn sequence of order 3, we write down all the possible binary sets of length 2 and
use them as the vertices of the graph.
00, 01, 11, 10

We draw arrows from a vertex to a second vertex when the second digit of the first vertex is
the same as the first digit of the second vertex. These arrows can also start and finish at the same
vertex, as in the case of the vertices 00 and 11 as the second digit of both these vertices are the
same as the first digit. By labelling an arrow AB (travelling from vertex A to vertex B) with the
digits in vertex A as well as the last digit of vertex B or the first digit of vertex A as well as the
digits in vertex B (the same sequence of digits) and finding an Eulerian cycle around the graph, a
De Bruijn sequence can be found. For any vertex A, there are 2 arrows leaving the vertex because
the sequence is binary, meaning there are 2 choices for the next digit in the sequence (i.e. 0 and
1), which will be satisfied by joining vertex A to 2 other vertices. Similarly, there will be 2 arrows
entering vertex A because there are 2 choices for the previous digit in the sequence (i.e. 0 and 1),
which will be satisfied by joining 2 other vertices to vertex A. Therefore, the number of arrows
entering the vertex equals the number of arrows leaving the vertex – the vertices are all even.

We can write out all the binary 3-tuples by writing out each binary 2-tuple and adding the digit
0 to the end, then writing out each binary 2-tuple again and adding the digit 1 to the end. This is
effectively the same process as the one used when drawing and labelling the arrows of the graph,
so each of the arrows is distinct and represents a unique binary 3-tuple. As a result of the way we
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Figure 1: Digraph for the construction of B(2, 3)

have constructed the graph, the last 2 digits of any arrow entering a given vertex are the same as
the first 2 digits of any arrow leaving the same vertex. To write out a De Bruijn sequence from
the graph, we find a route which travels along each arrow exactly once and returns to the starting
vertex (this is called an Eulerian circuit). We write out the labels on each arrow as we travel along
it, deleting the 2 digits from the end of the first arrow that are repeated at the start of the second
arrow.
For the graph above, a suitable route would be: 000, 001, 011, 111, 110, 101, 010, 100.
This gives the De Bruijn sequence B(2, 3): 00011101

To find a De Bruijn sequence of order 4, we repeat the above process using the binary sets of
length 3 as the vertices of the graph and labelling the arrows between vertices with sequences of
4 digits. There are still 2 paths entering and 2 paths leaving each vertex, but the vertices of the
graph for B(2, 4) now have the same labels as the arrows of the graph for B(2, 3). This new graph
N∗ is formed by ”doubling” the original graph N .

In this case, an Eulerian circuit for the graph would be: 0000, 0001, 0011, 0111, 1111, 1110,
1100, 1001, 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1000.
This gives the De Bruijn sequence B(2, 4): 0000111100101101.

Similarly, the simplest graph for De Bruijn sequences for k = 2 (when n = 2) has only 2 vertices,
with each vertex labelled with just 1 digit i.e. one is labelled ‘0’ and the other ‘1’.

In this case there is only one Eulerian circuit (if the vertex from which we start does not matter):
00, 01, 11, 10.
This leads to the (only) De Bruijn sequence B(2, 2): 0011

This method can also be used when k 6= 2. For k = 3 and n = 3, the vertices of the graph are all
the possible combinations of 2 digits where each digit can take one of the 3 values 0, 1 or 2. There
are 32 = 9 such combinations so the graph has 9 vertices. The arrows are drawn and labelled in
the same way as before and an Eulerian circuit around the graph is found. The De Bruijn sequence
in this case would have length 33 = 27.

An Eulerian circuit would be: 011, 111, 112, 121, 210, 101, 012, 120, 201, 010, 102, 021, 211,
110, 100, 002, 022, 221, 212, 122, 222, 220, 202, 020, 200, 000, 001.
This gives the De Buijn sequence B(3, 3): 011121012010211002212220200.
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Figure 2: Digraph for the construction of B(2, 4)
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Figure 3: Digraph for the construction of B(2, 2)

A graph to find B(k, n) can be constructed in the same way for any k and n values and will
always have the following properties:

• kn−1 vertices

• kn arrows

• k arrows entering each vertex (in degree = k)

• k arrows leaving each vertex (out degree = k)
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Figure 4: Digraph for the construction of B(3, 3)

• each vertex is even

2.2 Eulerian Graphs

An Eulerian graph is a graph in which an Eulerian circuit can be found. To ensure that this method
works for De Bruijn sequences of any k and n values, we must prove that an Eulerian circuit can
always be found for the graphs we use to construct De Bruijn sequences.

Theorem 1 Let D be a connected digraph. Then D is Eulerian if and only if the out degree of

each vertex equals the in degree.

Proof 1. If D is Eulerian, the out degree of each vertex equals the in degree.
If D has an Eulerian circuit, we can travel along the circuit using each arrow exactly once and
return to our starting point. Whenever we pass through a vertex of G there is a contribution of 1
to both the in degree and the out degree of the vertex (meaning they are the same) - this includes
the initial vertex, which we return to at the end of the circuit. Since each in and out arrow of D

is used just once, the in and out degree of each vertex is the same.
2. If the out degree of each vertex equals the in degree, the graph is Eulerian.
Consider a connected digraph where each vertex is even:

where the in degree =
out degree for each vertex

A1 A2

Start at any vertex and follow directed paths to other vertices. When a vertex Ai is reached,
there are 2 possible situations:

1. There is an arrow out of Ai, in which case follow this arrow.
2. There is no edge out of Ai – as the in degree of each vertex equals the out degree, this vertex

Ai must have been reached before (i.e. the path started at Ai) as we have followed all edges out of
Ai. This means a directed cycle C has been formed in the graph.
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As there are a finite number of vertices, situation 2 must at some point arise, so it is always
possible to find a directed cycle C in the graph.

Let D be a graph where the out degree and in degree of each vertex are equal and the total
number of arrows = m. D contains a directed cycle C.
When m = 0, D consists of one vertex only and it is therefore Eulerian.
Assume true for any connected digraph where m < n.
Now consider a digraph with n arrows. Delete the edges of the directed cycle C from D. The
resulting digraph H has m < n and every vertex H has an in degree = out degree, therefore
each component of H is Eulerian. By following the directed cycle C, taking Eulerian trails for the
components of H when we meet them and returning to cycle C, we can find an Eulerian trail for
the graph.
This explains why De Bruijn sequences always exist for any k, n as they are formed from Eulerian
circuits of graphs where the vertices are even and of order n− 1.

2.3 Fleury’s Algorithm

Fleury’s algorithm is a way of finding an Eulerian circuit in an Eulerian graph. In the case of De
Bruijn sequences, this will be a directed graph with arrows instead of edges connecting the vertices.

1. Choose a starting vertex u.

2. At each stage, traverse any available edge, choosing a bridge (an edge whose removal discon-
nects a vertex from the rest of the graph) only if there is no alternative.

3. After traversing each edge, erase it (also erase any vertices of degree 0 which result) and then
traverse another available edge.

4. Stop when there are no more edges - an Eulerian circuit has been found.

2.4 The number of De Bruijn sequences

There is more than one De Bruijn sequence when n > 2 or k > 2 and these can be found by taking
different Eulerian circuits in the appropriate digraph. The number of distinct binary sequences,
where the reverse of a sequence is counted as a different sequence but cyclic permutations are
regarded as the same, is Pn = 22n−1−n.

Let the number of different Eulerian circuits in an Eulerian graph N be denoted by | N |.
Similarly, the number of Eulerian circuits in N∗ (the doubled graph of N) is denoted by | N∗ |.

It was proved by N.G. de Bruijn in [2] that

| N∗ |= 2m−1· | N |

where m is the order of N (N has m vertices and 2m arrows).
This result can be used to prove the number of De Bruijn sequences for any value of n when

k = 2.

Theorem 2 The number of binary De Bruijn sequences Pn = 22n−1−n

Proof When n = 1, P1 = 1(this is evident from the graph)
Using the formula: P1 = 221−1−1 = 20 = 1
Therefore the formula is true for n = 1.
Assume true for n ≤ y.
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We must now prove it is true for n = y + 1, i.e. Py+1 = 22y−y−1

A De Bruijn sequence of order n can be found from an Eulerian graph of order 2n−1, so for a De
Bruijn sequence where n = y + 1 we must consider an Eulerian graph of order 2y.
Ny−1 has order 2y−1 and can can be used to construct a De Bruijn sequence of order y

Ny has order 2y and is therefore the ‘doubled’ version of Ny−1

P =| Ny |=| N∗y−1 |= 2m−1· | Ny−1 |

= 22y−1−1 · 22y−1−y

= 22·2y−1−y−1

= 22y−y−1

We have shown that the formula for P is correct for n = 1 and that if it is true for n = y, then
it is also true for n = y + 1. Therefore it is true, by induction, for all n ≥ 1.

This result was extended by T. van Aardenne-Ehrenfest and N. G. de Bruijn in [1] and there is
now a formula for the number of distinct De Bruijn sequences for any values of k and n:

P = k!k
n−1−n

2.5 Construction using Modular Arithmetic

An alternative way of finding a De Bruijn sequence when k = 2 was given in [6]. For a given n and
starting with a1 = 2n − 1, a sequence of numbers can be generated by repeatedly substituting the
previous number in the sequence into the formula:

ai+1 ≡ 2ai (mod 2n)

If for some i ≤ j, ai = 2aj , then in this case:

ai+1 ≡ 2ai + 1 (mod 2n)

This means that if the first formula gives a number already generated, then add 1 to this number to
obtain the next number in the sequence, substituting this new number back into the first equation
to obtain further numbers in the sequence. All these numbers of the sequence should be written
in binary form (to base 2 with 3 digits - put 0s before the number if there are fewer than 3 digits)
and consecutive numbers in the sequence will join together to form a De Bruijn sequence B(2, n).
For n = 3, we have mod 23 = 8. This means that if the number ≥ 8, we take the remainder when
it is divided by 8. Another way to think of this would be a clock with 8 hours on the face - when
it is 9 o’clock the clock face looks the same as it does when it is 1 o’clock i.e. 9=1 (mod 8).
a1 = 23 − 1 = 8− 1 = 7 = 111(in binary form) a2 = 2× 7 = 14 = 6 = 110
a3 = 2×6 = 12 = 4 = 100 (here we can do 2×6 instead 2×14 as it is simpler and both calculations
give the same answer mod 8)
a4 = 2× 4 = 8 = 0 = 000 a5 = 2× 0 = 0 which has already been generated ⇒ a5 = 0 + 1 =
1 = 001
a6 = 2×1 = 2 = 010 a7 = 2×2 = 4 which has already been generated⇒ a7 = 4+1 = 5 = 101
a8 = 2× 5 = 10 = 2 which has already been generated ⇒ a8 = 2 + 1 = 3 = 011
We can now stop as we have obtained the first 2n numbers in the sequence needed to form a De
Bruijn sequence. Putting these numbers together and omitting the overlapping digits between
consecutive numbers (including the last 2 digits which overlap with the first 2 digits) gives the
sequence B(2, 3): 11100010.
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Why does this method work?

Effectively, for a given n, we are generating the numbers 0 to 2n− 1 in a special order which means
that when they are written in binary form, the first n − 1 digits of a number are the same as
the last n − 1 digits of the number generated before it. This property must hold in order for the
construction of a De Bruijn sequence to be possible. When using this method only the first 2n

numbers need to be generated as the De Bruijn sequence will have length 2n. Because we are using
modular arithmetic mod 2n and do not allow repeated numbers to be counted in the sequence, this
means the first 2n numbers generated must be the numbers 0 to 2n − 1. Multiplying ai by 2 to
find ai+1 shifts the last n − 1 digits of ai one place to the left (like multiplying by 10 in base 10),
so consecutive numbers generated by the first formula always overlap by n − 1 digits. The first
formula alway results in a number ending in ‘0’ so to obtain alternative endings i.e. a last digit of
‘1’ we add ‘1’ to 2ai (formula 2). This does not affect the first n− 1 digits of the number, so it still
overlaps with the previous number generated.

We must be careful with the choice of a1 because otherwise we may need to add ‘1’ twice
consecutively to ai to get a number which has not previously been generated. This would mean the
number generated would not overlap with the previous number in the sequence. Let us consider
the largest number to be generated: 2n− 1, which is a number consisting of n ‘1’s when written in
binary form. If the integer 2n − 1 is not at the beginning, then it must be preceded by 2n−1 − 1
(binary form: a ‘0’ followed by n − 1 ‘1’s) and 2n − 2 (binary form: n − 1 ‘1’s followed by a ‘0’)
must have already occurred in the sequence so that we add ‘1’ using formula 2. However, the
number 2n − 2 must be preceded by either 2n − 1 or 2n−1 − 1. This means that for this method
of construction to work, we must have a1 = 2n − 1 or a1 = 2n − 2. If we were to start with the
second option for a1 rather than the first, we would obtain the same sequence of numbers, except
that the number 2n − 1 would be the last number generated as opposed to the first. Both values
for a1 therefore give the same De Bruijn cycle.

For n = 4, we have mod 24 = 16.
a1 = 24 − 1 = 16 − 1 = 15 = 1111 a2 = 2× 15 = 30 = 14 = 1110
a3 = 2× 14 = 28 = 12 = 1100 a4 = 2× 12 = 24 = 8 = 1000
a5 = 2× 8 = 16 = 0 = 0000 a6 = 2× 0 = 0⇒ a6 = 0 + 1 = 1 = 000
a7 = 2× 1 = 2 = 0010 a8 = 2× 2 = 4 = 0100
a9 = 2× 4 = 8⇒ a9 = 8 + 1 = 9 = 1001 a10 = 2× 9 = 18 = 2⇒ a10 = 2 + 1 = 3 = 001
a11 = 2× 3 = 6 = 0110 a12 = 2× 6 = 12⇒ a12 = 12 + 1 = 13 = 110
a13 = 2× 13 = 26 = 10 = 1010 a14 = 2× 10 = 20 = 4⇒ a14 = 4 + 1 = 5 = 010
a15 = 2×5 = 10⇒ a15 = 10+1 = 11 = 1011 a16 = 2×11 = 22 = 6⇒ a16 = 6+1 = 7 = 011
We now have the 2n numbers needed to form a De Bruijn sequence B(2, 4): 1111000010011010.

Does this method work for k ≥ 3?
To see if modular arithmetic could be used to construct De Bruijn sequences with larger alphabets
i.e. k ≥ 3, I tried using this method to construct B(3, 2) by starting with a1 = 3n − 1, writing
numbers generated in the sequence in ternary form and adapting the previous formulae:

ai+1 ≡ 3ai (mod 3n)

If for some i ≤ j, ai = 3aj , then in this case:

ai+1 ≡ 3ai + 1 (mod 3n)
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For k = 3, n = 2, we have mod 32 = 9.
a1 = 32 − 1 = 9− 1 = 8 = 22 a2 = 3× 8 = 24 = 6 = 20
a3 = 3× 6 = 18 = 0 = 00 a4 = 3× 0 = 0⇒ a4 = 0 + 1 = 1 = 01
a5 = 3× 1 = 3 = 10 a6 = 3× 3 = 9 = 0⇒ a6 = 0 + 1 = 1⇒ a6 = 1 + 1 = 2 = 02
a7 = 3× 2 = 6⇒ a7 = 6 + 1 = 7 = 21 a8 = 3× 7 = 21 = 3⇒ a8 = 3 + 1 = 4 = 11
a9 = 3× 4 = 12 = 3⇒ a9 = 3 + 1 = 4⇒ a9 = 4 + 1 = 5 = 12
We now have the 3n numbers needed to form a De Bruijn sequence B(3, 2): 220010211. Therefore
the method has been successful in producing a De Bruijn sequence when k 6= 2. Note how in this
example, we were able to add ‘1’ twice consecutively, whereas in the previous example we only
added ‘1’ once to obtain a particular number in the sequence. This is because in this example
we wrote the numbers in base 3, so could add ‘1’ or ‘2’ after multiplying by 3 without changing
the first 2 digits of the final number generated. This meant that the first 2 digits of this number
would still overlap with the final 2 digits of the previous number in the sequence. Adding 3 in this
situation would have changed the second digit in the sequence, meaning it would no longer fully
overlap with the previous number (a property required for the formation of a De Bruijn sequence),
but there was no need to do this.

Remark 3 I believe that this method could be extended for all values of k, with a1 = kn− 1 and:

ai+1 ≡ kai (mod kn)

Unless for some i ≤ j, ai = kaj, then in this case:

ai+1 ≡ kai + 1 (mod kn)

However, a disadvantage of this method is that only one De Bruijn sequence for a given n and
k can be formed, whereas the method of construction using Eulerian graphs can be used to find all
possible distinct De Bruijn cycles by finding all the different Eulerian circuits around the graph.

2.6 Applications of De Bruijn sequences

De Bruijn sequences have many uses, including in the positioning of robots. If a robot is moving
along a track marked with a De Bruijn sequence e.g.B(2, 3), then by looking at the nearest 3
numbers in the sequence, the robot can determine its location on the track as each triplet is
unique.

Eulerian graphs were used to solve the famous problem the Seven Bridges of Konigsberg. The
Russian city of Konigsberg is located on the River Pregel. The city has 2 large islands, which were
connected to the mainland area by 7 bridges. The people of the city often wondered whether it was
possible to cross each of the 7 bridges exactly once on a single route, but Leonhard Euler proved
that this was impossible. By drawing each land mass as a vertex of a graph and the bridges as
edges of the graph, he showed that the resulting graph was not Eulerian and so crossing each bridge
exactly once was not possible.

De Bruijn sequences can be used to minimise the effort needed to guess a code in locks that
do not have an ‘enter’ key but instead accept the last n digits entered. For example, to try all the
possible combinations of a 4 digit PIN like code, a De Bruijn sequence B(10, 4) could be used. This
universal cycle would have length 104 and entering digits in the order given by the cycle would
require only 104 + 3 = 10003 presses, whereas trying all the possible combinations for the code
separately would take 104 × 4 = 40000 presses.
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De Bruijn sequences also have applications in generating sequences in DNA, with an alphabet
consisting of the 4 types of nucleotide which make up DNA: adenine(A), thymine(T), cytosine(C),
guanine(G).

The uses of De Bruijn sequences in card tricks are given in the section on multiplying universal
cycles.

3 Permutations

When considering permutations, it is the relative size of each digit which we are concerned with
rather than the actual value of a digit. For example, for permutations of 3 digits, we can think
of each of the 3 digits as being low (L), medium (M) or high (H). In this case the number of
permutations would be 3! = 6 and can be expressed by the letters above as LMH, LHM, MLH,
MHL, HLM, HML, which correspond to the number permutations 123, 132, 213, 231, 312, 321. For
permutations of n objects, there are n! distinct permutations as we have a choice of n values for
the first digit, n − 1 values for the second digit and so on until there is only one possible number
left for the nth digit.

3.1 Universal Cycles for Permutations

We say that the n-tuples a and b are order-isomorphic, written ā ∼ b̄ if ai < aj ⇔ bi < bj .
Universal cycles for permutations are cycles of length n! where each of the n! permutations of n

distinct integers is order-isomorphic to exactly one n-tuple in the cycle. That is to say, any n

consecutive digits in the cycle will have a distinct relative size order.
A universal cycle for permutations of n digits where n ≥ 3 will consist of at least n + 1 digits. This
is because if, for example, we try constructing a universal cycle for n = 3 using just 3 digits:
123 ← the next digit must be 1 as each symbol in a window of length 3 must be different
1231 ← the next digit must be 2
12312 ← the next digit must be 3, but this means we have repeated the first window of 3 symbols,
so this is not a universal cycle.
The same problem arises if we try constructing a universal cycle for any n ≥ 3 with just n symbols
– the sequence always ends up repeating itself, so this cannot be done. It was proved in [5] that for
n ≥ 3, it is always possible to find a universal cycle for permutations using exactly n + 1 symbols.

The method of construction of universal cycles for permutations is similar to that used to form
De Bruijn sequences as graphs are used. This time we use the n! permutations of n integers as the
vertices of the graph. This graph is called a transition graph. Next we work out which vertices
are connected by drawing arrows from each vertex to the vertices where the last n− 1 digits of the
original vertex and the first n− 1 digits of the second vertex are order-isomorphic.
When n = 3, there are 3! = 6 permutations and so the graph has 6 vertices. We can start with any
3 numbers (even non-integers) as we are only concerned with the relative size of the integers. e.g.
679, 679 ∼ 123. We consider the possible size of the next digit by looking at the last n−1 = 3−1 = 2
digits: 79x. x could lie in n− 1 + 1 = n = 3 different ranges:
1. x < 7 < 9→ 79x ∼ 231
2. 7 < x < 9→ 79x ∼ 132
3. 7 < 9 < x→ 79x ∼ 123
This means there are n arrows leaving and n arrows entering each vertex and a total of n ·n! arrows

10



in the transition graph.

123 132 213

231312321

Figure 5: Transition graph for n = 3

To form a universal cycle, we would need to take a Hamiltonian circuit in the graph (a path
which visits each vertex exactly once, returning to the starting vertex). However, Hamiltonian
circuits are difficult to find, especially for more complicated graphs and there is no way of knowing
if such a path exists without trying out all the possible paths. To avoid this problem, we convert
the transition graph to an Eulerian graph by grouping together permutations where the first n− 1
digits are order-isomorphic into new larger vertices. There should be (n − 1)! vertices in the new
graph.

123

132

213

231

312

321

Figure 6: Eulerian graph for n = 3

In the Eulerian graph, an arrow from a permutation to a vertex means that it is possible to
travel from that permutation to all the permutations in the vertex.

Next we find an Eulerian circuit in the graph, e.g. 231, 312, 123, 132, 321, 213, 231. Clearly, the
maximum number of symbols we would need for a sequence of length n! is n! and for this example
we will use the 3! = 6 letters: abcdef . By running windows of length n along the sequence of
letters and comparing this to the permutations of length 3 in the Eulerian circuit, inequalities can
be written down to compare the relative sizes of the letters.
abc : 231→ c < a < b

bcd : 312→ c < d < b

cde : 123→ c < d < e

def : 132→ d < f < e

efa : 321→ a < f < e

fab : 213→ a < f < b

Combining these inequalities together gives:
a and d can be combined and b and e can be combined whilst still satisfying all the inequalities,
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so only 4 symbols were needed for the permutation cycle (which is the least possible number as we
need at least n + 1 = 3 + 1 = 4 symbols). Finally we write down the numbers corresponding to the
sequence abcdef to obtain the universal cycle for permutations of length 3: 241243.
This combining of letters is not always possible and sometimes we are forced to use more than n+1
symbols. For the Eulerian circuit: 312, 231, 213, 123, 132, 321, 312 we have the inequalities:
abc : 312→ b < c < a

bcd : 231→ d < b < c

cde : 213→ d < c < e

def : 123→ d < e < f

efa : 132→ e < a < f

fab : 321→ b < a < f

Combining these inequalities together gives:
d < b < c < e < a < f

so in this case none of the letters can be combined and we get the universal cycle: 523146.

Remark 4 I found several Eulerian circuits in the graph and converted these into universal cycles
for permutations when n = 3 and an interesting pattern began to emerge. As has already been
mentioned, the number of symbols used in a universal cycles for n = 3 is a minimum of 4 and a
maximum of 6. However, I noticed that there did not seem to be any cycles consisting of exactly
5 different symbols.

Looking at this problem in more detail, I found that the Eulerian circuits which led to a
cycle using 4 symbols had 4 of what I thought of as ‘good’ connections and circuits with 4 ‘good’
connections always led to a cycle with 4 symbols. These ‘good’ connections occurred when the
final 2 digits of the first permutation were exactly the same as the first 2 digits of the second
permutation as opposed to being just order-isomorphic. These ‘good’ connections seemed to lead
to fewer symbols being needed for the cycle as it meant some of the 6 letters initially used could
be combined. I also found that the Eulerian circuits which led to a cycle using 6 symbols had only
1 ‘good’ connection and circuits with 1 ‘good’ connection always led to a cycle with 6 symbols. I
thought that perhaps Eulerian circuits with 2 or 3 ‘good’ connections would lead to a universal
cycle with 5 symbols. However, I was unable to find such a circuit in the graph and therefore
think that perhaps it is not possible to obtain a 5 symbol cycle for permutations (obviously this
excludes the case where one of the number 4s in a cycle with 4 symbols is simply changed to a
bigger number).

In the transition graph below, the ‘good’ connections are those with dashed arrows.

This method can be used to construct universal cycles for permutations of 4 or more objects. For
n = 4, the transition graph has 3! = 6 vertices and the permutations where the first n−1 = 4−1 = 3
digits are order-isomorphic are grouped in the same vertex. Arrows are drawn in the same way as
before, with a single arrow to a vertex representing paths to all the permutations in that vertex. In
this case, an Eulerian circuit would be: 1234, 2341, 2314, 3142, 1423, 4231, 3421, 3214, 2143, 1432,

12



123

132 213

231312

321

4321, 4213, 2134, 1243, 2431, 4312, 3124, 1342, 2413, 4132, 1324, 3241, 3412, 4123, 1234. Using
this to write inequalities gives:

a b c d

e
f

g h

I
j

k

l

m

n

o p

q

r

s t

u v

w x

a b

c

1 2 3 4 5

This in turn gives the universal cycle: 123415342154213541352435. This cycle using the smallest
possible number of different symbols for n = 4: 5.

[5] gave an alternative method of constructing universal cycles for permutations which guaran-
teed that the resulting cycle had the smallest possible number (n + 1) of different symbols. This
involves constructing sub cycles where the permutations had what I previously called ‘good’ con-
nections. These sub cycles are then connected together to form a cycle of n! permutations which
can then be converted into a universal cycle of length n!.

4 Multiplying Universal Cycles

Multiplying together 2 universal cycles x and y which have lengths R and S respectively is possible
when one of the cycles with window length k finishes with a block of k repeated symbols. The
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method for doing this was given in [4]. The 2 universal cycles being multiplied together need
not have the same window length but in most cases they do. Multiplying these cycles together
gives a cycle of ‘pairs’ of length RS, with values from x on the top row and values of y on the
bottom. If both universal cycles have window length k, each k consecutive pairs in the product
cycle will be unique (i.e. a unique combination of the top and bottom rows). The cycles multiplied
together can be of different types, e.g. a De Bruijn sequence can be multiplied with a universal
cycle for permutations. When a permutation cycle for 3 objects: 241243 is multiplied by a De
Bruijn sequence for binary strings of length 3: 11101000, we get:

2 4 1 2 4 3 2 4 1 2 4 3 2 4 1 2 4 3 2 4 1 2 4 3
1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1

2 4 1 2 4 3 2 4 1 2 4 3 2 4 1 2 4 3 2 4 1 2 4 3
1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0

Running a window of length 3 along the product cycle gives a unique coupling of a low, medium,
high permutation with a binary string of length 3. This product cycle can be used in card tricks. It
has a length of 48 so the 4 kings must be removed from a deck of 52 cards. Next, the permutation
cycle for window length k on the top row of the product is ‘lifted’ so that it contains 6 distinct
symbols rather than just 4 (lifting is the process of increasing the alphabet of a universal cycle
whilst retaining the cycle’s properties). This is done by finding the highest digit (it may appear
several times) and changing one appearance of this digit to the number k!. Then we take the next
highest digit (not including the k! digit) and change it to the digit k! − 1. This process continues
until there are as many distinct digits in the cycle as required.

For example, a universal cycle for permutations of 3 objects is: 241243. Working from left
to right in the case of the same digit appearing more than once, we get: 261243 → 261253 →
261254 → 361254 (which now contains 6 different digits). We now look at 2 adjacent copies of this
cycle: 361254361254. Each digit ‘1’ can be assigned either ‘1’ or ‘2’, each digit ‘n’ can be assigned
either the number ‘2n-1’ or the number ‘2n’ up until the digit ‘6’ can be assigned either ‘11’ or
‘12’. Choosing the lower number first in each case gives:

3 6 1 2 5 4 3 6 1 2 5 4
5 11 1 3 9 7 6 12 2 4 10 8

(We can change whether we choose the lower or higher of the 2 numbers to make the sequence
look more random.) In the product cycle above, this pattern is repeated 4 times so each of the 12
cards in each suit is included exactly once, with red cards (Hearts and Diamonds) for ‘1’s in the
De Bruijn sequence on the bottom row and black cards (Clubs and Spades) for ‘0’s in the bottom
row. An example of a sequence which could be used for a card trick would be:

5 11 1 3 9 7 6 12 2 4 10 8 5 12 2 3 9 8 6 11 1 4 10 7
D H H S D C C C D D D S H S S C H D H C D S S D

6 12 1 4 10 8 5 11 2 3 9 7 5 11 2 3 10 8 6 12 1 4 9 7
D H C H C C S D H H S H C S C D H H S D S C C S

By asking people to choose 3 adjacent cards in the sequence and finding out which cards are red,
as well as which cards are the highest and lowest, we can deduce the value and suit of each of the
3 cards chosen by referring to the original product sequence and then the lifted sequence.

14



Consider 2 cycles x and y of lengths R and S. If R and S are relatively prime (have a highest
common factor of 1), then to multiply the 2 cycles, simply write down x S times and below write
down y R times. For example, to multiply a universal cycle for partitions of set of 4 numbers
(x): daabbbbcbccbadb (R = 15) with a De Bruijn sequence for binary strings of length 4 (y):
1111001011010000 (S = 16), we simply write out x 16 times and y 15 times as 15 and 16 are
co-prime. This gives the product consisting of 15× 16 = 240 pairs:

d a a b b b b c b c c b a d b d a a b b b b c b c c b a d b . . .

1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 . . .

Running a window of length 4 along this product gives a unique partition of a set of 4 elements
plus binary string of length 4 combination.

If R and S are not relatively prime, and their highest common factor is d (d 6= 1), then we have:
R = rd and S = sd where r and s are co-prime. To obtain a cycle of RS pairs:

1. write down x S times

2. write down y r times

3. remove the last repeated digit in the repeated y sequence, forming the sequence y∗

4. write down y∗ a total of d times below the repeated sequence of x

5. add d of the digit removed to the end of the repeated y∗ sequence

This gives a sequence of length: (Sr − 1) · d + d = Srd− d + d = Srd = RS as required.
For example, to multiply a De Bruijn sequence for binary strings of length 2: 0011 by itself,

R = S = 4, d = 4, R = S = 1× d. First, we write down x 4 times:

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Next, write down y once and remove the last ‘1’ to form y∗:

0 0 1

Finally, write down y∗ 4 times below the repeated sequence of x and add 4 ‘1’s at the end to give
the product sequence:

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1

Running a window of length 2 along the product gives 16 unique 2× 2 squares.

This process can be continued and the product cycle can be multiplied by another universal
cycle, for example multiplying the De Bruijn sequence for n = 1: 01 by itself gives:

0 1 0 1
0 0 1 1

15



Multiplying the product by 01 again gives:

0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 0 0 1 0 1 1

Multiplying the product by 01 again gives:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1
0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1

and so on.

5 Partitions of a Set

A partition of any set A consisting of n elements {1 2 3 4 . . . n} is formed when A is divided into
subsets which are mutually exclusive (have no elements in common) and collectively contain all
the elements in the set. Each subset must be non-empty (must contain at least 1 element from
the set). A partition of a set can be expressed by using vertical bars to show the separation of
elements of the set into subsets. The subsets are independent of order, meaning the order in which
the separate subsets of a partition are written and the order of the elements within a subset do not
matter. For example, the set A{1 2 3 4} has 15 partitions, which can be written as:

1 |234 1 |2 |34 1 |2 |3 |4 1234
2 |134 1 |3 |24
3 |124 1 |4 |23
4 |123 2 |3 |14
12 |34 2 |4 |13
13 |24 3 |4 |12
14 |23

The number of partitions of a set with n elements is given by the Bell numbers Bn.

5.1 Universal Cycles of Partitions of a Set

Universal cycles of partitions of a set with n elements can be formed. These universal cycles are
very different from those formed for permutations and De Bruijn sequences. They usually consist
of a sequence of Bn letters. When a window of length n is moved along the sequence, we number
each letter in the window 1 to n from left to right. If the letters of 2 or more numbers are the
same, this means these numbers are in the same subset in the partition. This means that if 2
numbers correspond to different letters in the sequence, these 2 numbers are in separate subsets.
The method used to construct these universal cycles is similar to that used to produce universal
cycles of permutations and De Bruijn sequences as we must again use Eulerian graphs.

First, we construct a transition graph by writing down the partitions of the set as the vertices
of the graph. Arrows are drawn from one vertex to another vertex when the relationship between
the numbers 2 to n of the first vertex is the same as the relationship between the numbers 1 to
n−1 in the second vertex (in terms of whether or not they are in the same subset of the partition).

16



For the case where n = 3, we are constructing a cycle for partitions of the set {1 2 3}. There
are 5 partitions of this set:
1 |23 1 |2 | 3
2 |12 123
3 |12

These partitions are the 5 vertices of the transition graph. The vertex 123 would be represented
by the letters aaa as all 3 numbers are in the same partition and when drawing arrows from this
vertex we look at the the numbers 2 to n = 3 which are represented by aa. This can be followed
by either aaa or aab which correspond to the vertices 123 and 12 |3 so arrows can be drawn from
the original vertex to these vertices. It is important to note that the actual letters that represent
a partition are not of great importance - it is whether these letters are the same or different that
matters. For example, an arrow could be drawn from 1 |2 |3 (abc) to 1 |23 (abb).

123 1 23

2 13 3 12

1 2 3

Figure 7: Transition graph for partitions of a set with 3 elements

This transition graph is then converted to another graph by grouping together partitions where
the first n − 1 numbers have the same relationship to form a large single vertex. This means the
new graph will have Bn−1 vertices. Once again an arrow from a partition to a vertex means that
it is possible to travel from that permutation to all the permutations in the vertex.

123

2 131 23

3 12

1 2 3

Figure 8: Eulerian graph for partitions of a set with 3 elements

Next, we must find an Eulerian circuit in this graph. For n = 3 the only 2 possible circuits are:
123, 3 |12, 2 |13, 1 |2 |3, 1 |23, 123 and
123, 3 |12, 1 |2 |3, 2 |13, 1 |23, 123.
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Finally we need to ‘lift’ the Eulerian circuit to a universal cycle. This is done by assigning
xBn

symbols to the numbers in the partitions and writing equalities to show whether or not these
symbols are equal (i.e. whether they are in the same subset of a partition). For each partition, the
numbers are rearranged in increasing order, then we look at whether or not their corresponding
symbols should be equal.

x1 x2 x3 x4 x5 x1 x2

1 2 3

3 1 2

2 1 3

1 2 3

1 2 3

x1 x2 x3 x4 x5 x1 x2

1 2 3

3 1 2

1 2 3

2 1 3

1 2 3

Figure 9: ‘Lifting’ Eulerian circuits for n = 3

For the first Eulerian circuit, we obtain the following set of equalities:
x1 = x2 = x3

x2 = x3 6= x4

x3 = x5 6= x4

x4 6= x5 x5 6= x1 x1 6= x4

x1 = x2 6= x5

However, this leads to a contradiction, as we can deduce that x5 6= x1 = x3 = x5. Therefore
we conclude that this particular Eulerian circuit cannot be ‘lifted’ successfully to form a universal
cycle.

For the second Eulerian circuit, we obtain the following set of equalities:
x1 = x2 = x3

x2 = x3 6= x4

x3 6= x4 x4 6= x5 x5 6= x3

x4 = x1 6= x5

x1 = x2 6= x5

However, this also leads to a contradiction, as we can deduce that x4 = x1 = x3 6= x4. We
conclude that this Eulerian circuit cannot form a universal cycle. As there are only 2 Eulerian
circuits for the graph of partitions of a set of 3 elements and we have shown that neither can be
used to form a universal cycle, we have proved by exhaustion that no universal cycles exist for
partitions of a set of 3 elements.

Universal cycles for partitions of a set of 4 elements do exist and can be constructed by skipping
the transition graph and drawing the Eulerian graph straight away and combining the partitions
in which the numbers 1 to n− 1 = 4− 1 = 3 have the same relationship into a single large vertex.
Drawing arrows between the vertices in the same way as in the previous example gives an Eulerian
graph with 5 vertices and 15 arrows.

In [3] it was stated that in order to prevent equalities leading to a contradiction and to guarantee
an Eulerian circuit can be ‘lifted’ to form a universal cycle, a sequence of partitions called a ‘breaker’
must occur in the Eulerian circuit. Using the ‘breaker’ they gave: 1 |4 |23, 12 |34, 1 |234, 1234, 4
|123, I found an Eulerian circuit for the graph and used it to produce a universal cycle for n = 4.
The Eulerian circuit was:
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1234

1 234

2 134

3 124

4 123

12 34

13 24

14 23

1 2 341 3 24

1 4 23

2 3 14

2 4 13

3 4 12

1 2 3 4

Figure 10: Eulerian graph for partitions of a set with 4 elements

1 |4 |23, 12 |34, 1 |234, 1234, 4 |123, 3 |124, 13 |24, 2 |134, 14 |23, 3 |4 |12, 1 |2 |3 |4, 2 |3 |14, 1 |3
|24, 2 |4 |13, 1 |2 |34, 1 |4 |23.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x1 x2 x3

1 4 2 3

1 2 3 4

1 2 3 4

1 2 3 4

4 1 2 3

3 1 2 4

1 3 2 4

2 1 3 4

1 4 2 3

3 4 1 2

1 2 3 4

2 3 1 4

1 3 2 4

2 4 1 3

1 2 3 4

Figure 11: ‘Lifting’ an Eulerian circuit for n = 4

This gave the set of equalities:
x1 6= x2 = x3 6= x4 x1 6= x4

x2 = x3 6= x4 = x5

x3 6= x4 = x5 = x6

x4 = x5 = x6 = x7

x5 = x6 = x7 6= x8

x6 = x7 = x9 6= x8

x7 = x9 6= x8 = x10

x8 = x10 = x11 6= x9

19



x9 = x12 6= x10 = x11

x10 = x11 6= x12 6= x13 x10 = x11 6= x13

x11 6= x12 6= x13 6= x14 x11 6= x13 x11 6= x14 x12 6= x14

x12 = x15 6= x13 6= x14 x12 = x15 6= x14

x13 6= x14 = x1 6= x15 x13 6= x15

x14 = x1 6= x15 6= x2 x14 = x1 6= x2

x2 = x3 6= x15 6= x1 x2 = x3 6= x1

I assigned a letter to each group of x symbols which were equal:
a : x2 = x3

b : x4 = x5 = x6 = x7 = x9 = x12 = x15

c : x8 = x10 = x11

d : x14 = x1

e : x13

I found that e could be combined with a whilst still satisfying all the equalities. This meant that
the universal cycle for n = 4 would only contain 4 letters as opposed to 5. Finally, I wrote out the
letters corresponding to each x symbol when the x symbols were arranged in order. This gave the
universal cycle: daabbbbcbccbadb.

Remark 5 Based on the properties of the ‘breaker’ given in [3], I tried to construct a different
‘breaker’ for n = 4.
The original ‘breaker’ has the properties:

x1 x2 x3 x4 x5 x6 x7 x8

1 4 2 3

1 2 3 4

1 2 3 4

1 2 3 4

4 1 2 3

Figure 12: Properties of the original ‘breaker’

x1 6= x2 = x3 6= x4 x1 6= x4

x2 = x3 6= x4 = x5

x3 6= x4 = x5 = x6

x4 = x5 = x6 = x7

x5 = x6 = x7 6= x8

In [3], it is claimed that the inclusion of such a ‘breaker’ in an Eulerian circuit will always lead
to a circuit which can be ‘lifted’ to form a universal cycle. The reason given for this is that a x

symbol occurring before x1 e.g. x15 cannot be forced to be either equal or unequal to an x symbol
after x7. This is true when looking at the ‘breaker’ alone. However, the partitions form a circuit, so
when the full circuit of partitions are written out, it will be possible to deduce whether or not most,
if not all the x symbols are equal or unequal. For example, in the construction of a universal cycle
for n = 4 above, it was possible to deduce from the full set of equalities that x15 6= x8. Therefore
it would seem that this claim is not true.
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I constructed the following ‘breaker’ which has the same properties as the original ‘breaker’,
except the equalities are reversed:
1 |234, 1234, 4 |123, 12 |34, 1 |4 |23

x1 x2 x3 x4 x5 x6 x7 x8

1 2 3 4

1 2 3 4

4 1 2 3

1 2 3 4

1 4 2 3

Figure 13: Properties of different ‘breaker’

x1 6= x2 = x3 = x4

x2 = x3 = x4 = x5

x3 = x4 = x5 6= x6

x4 = x5 6= x6 = x7

x5 6= x6 = x7 6= x8 x5 6= x8

This ‘breaker’ was successful when used in the Eulerian circuit:
1 |234, 1234, 4 |123, 12 |34, 1 |4 |23, 3 |124, 13 |24, 2 |4 |13, 1 |3 |24, 2 |134, 14 |23, 3 |4 |12, 1 |2 |3
|4, 2 |3 |14, 1 |2 |34, 1 |234
giving the universal cycle: daaaabbcbcaccab.
However, when put in the Eulerian circuit:
1 |234, 1234, 4 |123, 12 |34, 1 |4 |23, 3 |4 |12, 2 |3 |14, 1 |2 |3 |4, 1 |3 |24, 2 |4 |13, 1 |2 |34, 14 |23,
3 |124, 13 |24, 2 |134, 1 |234
this circuit could not be ‘lifted’ successfully.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x1 x2 x3

1 2 3 4

1 2 3 4

4 1 2 3

1 2 3 4

1 4 2 3

3 4 1 2

2 3 1 4

1 2 3 4

1 3 2 4

2 4 1 3

1 2 3 4

1 4 2 3

3 1 2 4

1 3 2 4

2 1 3 4

Figure 14: Failure using the new ‘breaker’

Which gave the equalities:
x1 6= x2 = x3 = x4
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x2 = x3 = x4 = x5

x3 = x4 = x5 6= x6

x4 = x5 6= x6 = x7

x5 6= x6 = x7 6= x8 x5 6= x8

x6 = x7 6= x8 6= x9 x6 = x7 6= x9

x7 = x10 6= x8 6= x9 x7 = x10 6= x9

x8 6= x9 6= x10 6= x11 x8 6= x10 x8 6= x11 x9 6= x11

x9 6= x10 = x12 6= x11 x9 6= x11

x10 = x12 6= x11 6= x13 x10 = x12 6= x13

x13 = x14 6= x11 6= x12 x13 = x14 6= x12

x12 = x15 6= x13 = x14

x13 = x14 = x1 6= x15

x14 = x1 6= x15 = x2

x1 6= x15 = x2 = x3

However, this leads to the contradiction that x5 6= x6 = x7 = x10 = x12 = x15 = x2 = x3 =
x4 = x5. We conclude that this Eulerian circuit cannot form a universal cycle. The reversal of
equalities compared to the original ‘breaker’ should not affect the ‘breaker’s’ effectiveness, yet in
this case it failed to work. This casts further doubt on the effectiveness of ‘breakers’ and it would
seem that ‘breakers’ need to be defined in more detail to guarantee they always work.

5.2 Bell Numbers

We already know that the number of partitions of a set with n elements is given by the Bell numbers
Bn. Consider a set of n + 1 numbers: {1 2 3 . . .n+1}.
If n + 1 is on its own in a subset, there are Bn ways to partition the remaining n elements in the
set. This can be written as:

(n
0

)

Bn as by definition
(n
0

)

is equal to 1.
If n + 1 is with 1 other element in a subset, there are

(n
1

)

= n ways of choosing this other element
from the n available elements in the set and there are Bn−1 ways of partitioning the remaining
n− 1 elements in the set. This means the number of partitions which contain such a subset can be
written as:

(n
1

)

Bn−1.
If n + 1 is with 2 other elements in a subset, there are

(n
2

)

ways of choosing the other 2 elements
and there are Bn−2 ways of partitioning the remaining n− 2 elements in the set. This means the
number of partitions which contain such a subset can be written as:

(n
2

)

Bn−2.
...
There are

( n
n−1

)

B1 partitions which contain a subset where n + 1 is with n− 1 other elements in a
subset.
There are

(n
n

)

B0 partitions which contain a subset where n+1 is with n other elements in a subset.
(By definition, B0 = 1, so there is only one partition containing all the elements in a single subset.)
Therefore the Bell numbers satisfy the recurrence relation:

Bn+1 =
n
∑

r=0

(

n

n− r

)

Br =
n
∑

r=0

(

n

r

)

Br

(

due to the symmetry of combinations:

(

n

n− r

)

=
n!

r!(n− r)!
=

(

n

r

))

Using this formula, we can calculate the first few Bell numbers:
B0 = 1
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B1 = B0 = 1
B2 = B0 + B1 = 1 + 1 = 2
B3 = B0 + 2B1 + B2 = 1 + 2× 1 + 2 = 1 + 2 + 2 = 5
B4 = B0 + 3B1 + 3B2 + B3 = 1 + 3× 1 + 3× 2 + 5 = 1 + 3 + 6 + 5 = 15
B5 = B0 + 4B1 + 6B2 + 4B3 + B4 = 1 + 4× 1 + 6× 2 + 4× 5 + 15 = 1 + 4 + 12 + 20 + 15 = 52
and so on

The Bell triangle can be used to generate Bell numbers (like Pascal’s triangle can be used to
generate binomial coefficients).

1

1 2

32 5

5 7 10 15

15 20 27 37 52

The first term in each row is the
same as the last term in the
previous row.

1+1

Each term (apart from the first
in every row) is obtained by adding
the previous term in the row and
the term above the previous term

B0

B1

B2

B3

B4

52 ......B5

Figure 15: Finding Bell numbers using the Bell triangle

5.3 The Exponential Generating Function of Bell Numbers

A generating function is a formal power series where the coefficients of xn give information about
the numbers in a sequence an – an infinite series where the variable x is generally regarded as a
place holder rather than assigned an actual value. Generating functions are very useful as they can
represent sequences as functions and can be used to solve counting problems.

There are 2 main types of generating functions: ordinary generating functions and exponential
generating functions.
The ordinary generating function G(x) for an infinite sequence (a0, a1, a2, a3 . . .) would be:

G(x) = a0 + a1x + a2x
2 + a3x

3 . . .

The exponential generating function E(x) for the same sequence would be:

E(x) = a0 +
a1

1!
x +

a2

2!
x2 +

a3

3!
x3 . . .

In this case, there is an exponential generating function for the Bell numbers Bn.

Theorem 6 The exponential generating function of the Bell numbers is eex−1, i.e. the coefficient

of xn

n! in the power series expansion of eex−1 is the number of partitions of a set of n elements.
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Proof We already know the recurrence relation for Bell numbers:

Bn+1 =
n
∑

r=0

(

n

r

)

Br Bn =
n−1
∑

r=0

(

n− 1

r

)

Br

To find B1 (which is the coefficient of x), we differentiate the exponential generating function
y = E(x) and take the value of the function when x = 0.
The kth Bell number Bk should equal the kth derivative y(k) of eex−1 when x = 0.

When n = 1, we know that B1 = 1

y = eex−1

lny = ln(eex−1)

lny = (ex − 1)× 1

1

y
·
dy

dx
= ex

dy

dx
= yex

When x = 0,
dy

dx
= eex−1 · ex = ee0−1 · e0 = e0 · e0 = 1 · 1 = 1

⇒ true for n = 1
Assume true for n = k, i.e.

y(k) = ex
k−1
∑

r=0

(

k − 1

r

)

y(r)

here ex = 1 as we put x = 0 to obtain the Bell numbers We need to prove it is true for n = k + 1,
i.e.

y(k+1) = ex
k
∑

r=0

(

k

r

)

y(r)

y(k+1) =
d

dx

(

ex
k−1
∑

r=0

(

k − 1

r

)

y(r)

)

= ex
k−1
∑

r=0

(

k − 1

r

)

y(r) + ex
k−1
∑

r=0

(

k − 1

r

)

y(r+1)

= ex

[(

k − 1

0

)

y(0) +
k−1
∑

r=1

(

k − 1

r

)

y(r) +

(

k − 1

k − 1

)

y(k) +
k−2
∑

r=0

(

k − 1

r

)

y(r+1)

]

= ex

[

y(0) +
k−1
∑

r=1

(

k − 1

r

)

y(r) +
k−1
∑

r=1

(

k − 1

r − 1

)

y(r) + y(k)

]

= ex

{

y(0) +
k−1
∑

r=1

[(

k − 1

r

)

+

(

k − 1

r − 1

)]

y(r) + y(k)

}
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= ex

[

y(0) +
k−1
∑

r=1

(

k

r

)

y(r) + y(k)

]

∗

= ex
k
∑

r=0

(

k

r

)

y(r)

We have shown that the result is true for n = 1 and that if it is true for n = k then it is also true
for n = k + 1. Therefore it is true, by induction, for all n ≥ 1.

*Here the property used was:
(

k

r

)

=

(

k − 1

r − 1

)

+

(

k − 1

r

)

Proof

(

k − 1

r − 1

)

+

(

k − 1

r

)

=
(k − 1)!

(r − 1)!(k − r)!
+

(k − 1)!

r!(k − r − 1)!

=
r(k − 1)!

r!(k − r)!
+

(k − 1)!(k − r)

r!(k − r)!

=
(k − r + r)(k − 1)!

r!(k − r)!

=
k(k − 1)!

r!(k − r)!

=
k!

r!(k − r)!

=

(

k

r

)

5.4 Stirling Numbers of the Second Kind

A second way of finding the number partitions of a set are using the Stirling numbers of the second
kind.
{n

k

}

= the number of ways of partitioning a set with n elements into k non-empty subsets.
Think of an element n in a set with n elements:
If n is on its own, the number of partitions =

{n−1
k−1

}

.
If n is not on its own, it is part of one of the k subsets formed from n− 1 elements, the number of
partitions = k

{n−1
k

}

.
Therefore the Stirling numbers of a second kind have the property:

{

n

k

}

= k

{

n− 1

k

}

+

{

n− 1

k − 1

}

Bn =
n
∑

k=0

{

n

k

}
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6 Partitions of a number

A partition of a number is a way of representing a non negative integer n as the sum of positive
integers called parts, with these parts written in non increasing order. e.g. n = a + b + c where
a ≥ b ≥ c The partition function p(n) is the number of distinct ways of writing n as the sum
of positive integers, where the order of the parts does not matter. To find p(n), we can use the
generating function of partitions of a number:

∞
∏

k=1

1

1− xk

Using the binomial expansion, this can be written as:

(1 + x + x2 + x3 . . .)(1 + x2 + x4 + x6 . . .)(1 + x3 + x6 + x9 . . .) . . .

This expansion is only valid when −1 < x < 1, but because we do not usually assign values to x in
generating functions, we do not need to worry about the issue of convergence.
The coefficient of xk is the number of partitions of the number k.

Partitions can be represented by Ferrers diagrams which show the parts of each partition. For
example, the Ferrers diagrams below show the 22 partitions for when k=8.

8
7+1

6+2 6+1+1

5+3 5+2+1 5+1+1+1

4+4 4+3+1 4+2+2 4+2+1+1 4+1+1+1+1

3+3+2 3+3+1+1 3+2+2+1 3+2+1+1+1

3+1+1+1+1+1

2+2+2+2 2+2+2+1+1 2+2+1+1+1+1

2+1+1+1+1+1+1

1+1+1+1+1+1+1+1

Figure 16: Partitions of 8

The above partitions can be categorised:

(i) The parts are all odd i.e. each part of the partition is an odd number:
7+1, 5+3, 5+1+1+1, 3+3+1+1, 3+1+1+1+1+1, 1+1+1+1+1+1+1+1
There are 6 such partitions.
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(ii) The parts are all distinct:
8, 7+1, 6+2, 5+3, 5+2+1, 4+3+1
There are 6 such partitions.

(iii) The parts are all odd and distinct:
7+1, 5+3
There are 2 such partitions.

(iv) There are at most 2 parts:
8, 7+1, 6+2, 5+3, 4+4
There are 5 such partitions.

(v) There are at most 3 parts:
8, 7+1, 6+2, 6+1+1, 5+3, 5+2+1, 4+4, 4+3+1, 4+2+2, 3+3+2
There are 10 such partitions.

(vi) All parts are ≤ 2:
2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1
There are 5 such partitions.

(vii) All parts are ≤ 3:
3+3+2, 3+3+1+1, 3+2+2+1, 3+2+1+1+1, 3+1+1+1+1+1, 2+2+2+2, 2+2+2+1+1,
2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1
There are 10 such partitions.

We notice that:

the number of partitions with ≤ 2 parts = the number of partitions with all parts ≤ 2

and

the number of partitions with ≤ 3 parts = the number of partitions with all parts ≤ 3

These results can be proved by looking the the Ferrers diagrams. For any Ferrers diagram of a
partition of k, the rows can be turned into columns and the columns into rows by reflecting the
diagram along the diagonal from the top left of the diagram to the bottom right. This always
gives us the Ferrers diagram of another partition of k. These 2 partitions are referred to as being
‘conjugate’. Some partitions are symmetrical about this diagonal so a reflection just results in the
original partition. These partitions are called ‘self-conjugate’.
For partitions of 8, the conjugate pairs are:
8↔ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
7 + 1↔ 2 + 1 + 1 + 1 + 1 + 1 + 1
6 + 2↔ 2 + 2 + 1 + 1 + 1 + 1
6 + 1 + 1↔ 3 + 1 + 1 + 1 + 1 + 1
5 + 3↔ 2 + 2 + 2 + 1 + 1
5 + 2 + 1↔ 3 + 2 + 1 + 1 + 1
5 + 1 + 1 + 1↔ 4 + 1 + 1 + 1 + 1
4 + 4↔ 2 + 2 + 2 + 2
4 + 3 + 1↔ 3 + 2 + 2 + 1
4 + 2 + 2↔ 3 + 3 + 1 + 1
The self-conjugate pairs are:
4 + 2 + 1 + 1 and 3 + 3 + 2
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3+3+1+1

4+2+2

Figure 17: Conjugate partitions

3+3+2 3+3+2

Figure 18: A self-conjugate partition

Because the columns in a Ferrers diagram represent the value of each part and the rows represent
the number of parts, this means that when a partition with all parts ≤ l is reflected in the diagonal,
its conjugate is a partition with ≤ l parts. As all partitions can be reflected in this way, this means
that for any given n:

the number of partitions with ≤ l parts = the number of partitions with all parts ≤ l

Sometimes Ferrers diagrams can be drawn the other way around, with the columns representing the
number of parts and the rows representing the value of each part. In this case, the proof still applies.

For the partitions of 8, we can also see that:

the number of partitions with all odd and distinct parts = the number of self-conjugate parts

This can also be proved using Ferrers diagrams. For partitions with odd and distinct parts where
each part has value m, the top m+1

2 dots of each part can be ‘folded over’ 90 degrees to form an
upside down ‘L’ shape which is symmetrical about the top left to bottom right diagonal. As each
part is also distinct and is therefore a different size, these folded over ‘parts’ fit together to form a
different partition of n which due to being symmetrical about the diagonal, is self conjugate. This
proves the observation above is true for any n.
Finally, for partitions of 8 we notice that:

the number of partitions with all odd parts = the number of partitions with distinct parts

This property can be proved using the generating functions of partitions of a number. The gener-
ating function for the number of partitions with all odd parts is:

(1 + x + x2 + x3 . . .)(1 + x3 + x6 + x9 . . .)(1 + x5 + x10 + x15 . . .) . . . =
∞
∏

k=1

1

1− x2k−1
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5+3
3+3+2

Figure 19: Transforming partitions with odd and distinct parts into self-conjugate partitions

The generating function for the number of partitions with distinct parts is:

(1 + x)(1 + x2)(1 + x3) . . . =
∞
∏

k=1

(1 + xk)

This can be rewritten using the difference of two squares as:

1− x2

1− x
·
1− x4

1− x2
·
1− x6

1− x3
·
1− x8

1− x4
. . . =

∞
∏

k=1

1− x2k

1− xk

However, this simplifies for any n as the terms in the numerators with even powers of x cancel
with the every other term in the denominator, leaving just terms with an odd power of x in the
denominator and terms with powers of x greater than n in the numerator (which we can ignore as
they do not contribute to the coefficient of xn and therefore do not affect the number of partitions
with distinct parts of n). This is written as:

∏

k odd k≥1

1

1− xk

which is the same as the generating function for the number of partitions with all odd parts.
Generating functions can be applied to real life problems. For example, Bob is at a pick and

mix counter choosing n sweets:

• there can be at most 1 gobstopper

• there can be at most 3 bonbons

• the number of cola bottles must be a multiple of 4

• the number of jelly beans must be even

In how many ways can Bob choose n sweets for his pick and mix?
The generating function for gobstoppers (the number of ways of choosing gobstoppers) is:

G(x) = 1 + x

The generating function for bonbons is:

B(x) = 1 + x + x2 + x3 =
1− x4

1− x
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The generating function for cola bottles is:

C(x) = 1 + x4 + x8 + x12 . . . =
1

1− x4

The generating function for jelly beans is:

J(x) = 1 + x2 + x4 + x6 . . . =
1

1− x2

The generating function for choosing sweets is:

G(x)B(x)C(x)J(x) = (1 + x)
1− x4

1− x
·

1

1− x4
·

1

1− x2

=
1

(1− x)2

= 1 + 2x + 3x2 + 4x3 . . . nxn−1 + (n + 1)xn

This means the number of ways in which Bob can choose a selection of n sweets is n + 1.
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