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Introduction

For objects in images which are illuminated by a single light source, our visual
system is able to take advantage of a number of visual clues involving the interaction
of the geometric features of the objects, the shade/shadow regions on the objects,
and the (apparent) contours resulting from viewer direction to differentiate between
objects and determine their shapes and positions. Typically the clues are obtained
from the local configurations resulting from the interaction of one or more of these
ingredients. Furthermore, these configurations may change as a result of movement
of light source(s), the objects in the image (including change in geometric shape as
e.g. resulting from human movement), and viewer movement. Then, there are the
following general goals.
General Goals :

(1) Understand what types of local configurations of geometric features, shade/
(cast) shadow curves, and apparent contours “we expect to see” in a static
image and relate these local configurations to the underlying 3-dimensional
shape and positions of objects in an image.

(2) When there is movement for one or more of these ingredients, the configura-
tions will undergo a number of changes. Determine the changes in terms of
basic “generic transitions” in local configuration structure and relate them
to 3-dimensional structure and position.

In this paper we shall achieve the first goal, and establish the second for the
important case where viewer movement occurs. In fact, the ability of a viewer to
integrate the local clues to distinguish objects and their shapes involves a use of
small movement in the viewer direction to decide among ambiguities in the local
clues. We will determine the local possible “generic transitions” when the light
source and objects are fixed.

Specifically, we will give the classification of the local configurations for the case
of a fixed single light source and objects having generic local geometric features.
The classification includes both the stable views, in which the configurations do not
change under small viewer movement, and the generic transitions in local configura-
tions, which a viewer can expect to see under viewer movement. The classification
is obtained by applying a rigorous mathematical analysis using methods from sin-
gularity theory; the full mathematical details are contained in [DGH].
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tional Science Foundation grants DMS - 0405947 and DMS-0706941.
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A very early work which considers the interpretation of line drawings as 3D ob-
jects is that of Clowes [Cl]; for other early references see the book by Horn [H].
In the book by Sugihara [S] single-view line drawings of polyhedral objects are
considered. Many more recent authors are concerned with line drawings, interpret-
ing them as 3D objects from single views, for example see the work of Varley and
others, [VSM].

Refinements of these results are for: transitions of apparent contours for smooth
surfaces due to Koenderink, and van Doorn[KvD], Arnold [A1], and Gaffney-Ruas
[Gaf]; polygonal surfaces with shade and movement Huffman [Hu], Mackworth
[Mkw], line drawings with several geometric features but without shade/shadow
nor movement Malik [Mlk], piecewise smooth surfaces, Rieger [Ri], aspect graphs
of curved surfaces and polyhedral surfaces, Petitjean, Ponce, and Kriegman [PPK],
[KrP], Kanizsa figures, Cassalles et al [CCM] [CCM2], and apparent contours for
smooth surfaces with shade/shadow, Demazure, and Henry-Merle, [DHM] [HM],
Donati-Stolfi [DS], and Donati [Di] (where we correct a number of aspects of the
classification given there) and preliminary work of Fitzgerald [F].

In this work we shall subsume (and in several cases complete or correct) these
earlier special cases which involve apparent contours without geometric features or
without shade/shadows. However, we emphasize that we concentrate on the local
structure and local transitions, and do not consider global aspect graphs as were
considered in several of the above works.

We consider the interaction of three ingredients: the geometric features of sur-
faces, shade curves and cast shadow curves, and the apparent contours resulting
from viewer direction. The objects in the image are fixed in position with generic
geometric features. The precise assumptions about the boundary surfaces of objects
in the image, their possible geometric features (such as edges, corners, etc.), and
the fixed single light source will be explained in §1. Several of the many possibilities
for the generic interactions between shade/shadow curves, geometric features, and
apparent contours are illustrated in the images in figure 1.

For a collection of objects with generic geometric features, “almost all” choices
of light direction will yield resulting configurations of shade/shadow curves with
the geometric features which are “stable”, i.e. they do not change their form under
small changes in light direction (here we are not yet speaking of views of these
configurations). After an arbitrarily small change, any light direction will have
this property, and we suppose our light direction does. We consider the situation
where the fixed light direction and object positions are such that the interaction of
shade/shadow curves (S) and geometric features (F) are generic (i.e. stable under
small movement of light direction).

Then, using singularity theory, we first give the classification of the possible sta-
ble configurations of shade/shadow curves by themselves (S) and their interaction
with geometric features (SF). These all give rise to stable views by taking “regu-
lar images” of these configurations (for (S) see figure 9, for (SF) see figures 10 for
edges, figure 12 for creases, and figures 15 and 16 for corners). Here “regular im-
ages” means each surface and curve is projected diffeomorphically onto its image.
For just geometric features, we first consider the case of “uniform light/shade”, by
which we mean near a point of interest each sheet of the surface is either entirely in
light or shade, so no additional geometric information is gained from shade/shadow
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(a) (b) (c)

(d) (e) (f)

Figure 1. Images exhibiting creases, corners, marking curves and
shade/shadow curves. Interactions involve: (a) apparent con-
tours and shade/shadow; (b) shade/shadow curves with creases;
(c) crease, contours, and shade/shadows; (d) shade/shadow curves
with corners and creases; (e) shade/shadow curves with contours
and creases; and (f) cast shadow curves with creases and marking
curves.

curves. Again regular images of such configurations (F) give the next class of stable
views (see figures 10, 11, figures 14, 15, and 16 for corners).

Then, in addition to (S),(F), (SF), the complete classification involves the in-
teraction of apparent contours (C) with the stable shade/shadow–geometric fea-
ture configurations, in all possible additional combinations (C) (SC), (FC), (SFC)
(summarized by figure 2). Taken together the classifications for each of the seven
configuration possibilities give all possible stable configurations. These classifica-
tions are given in (3.1), including the remaining possibilities shown: for (C) and
(SC) see figure 9, for (FC) (with uniform shade light) see figure 13. Surprisingly
there are no stable interactions of all three ingredients (SFC), but these do occur
prominently in the generic transitions for viewer movement.

Fourthly, we determine the multilocal stable configurations of these ingredients.
This means that local features from different objects or different parts of the same
object interact. The interaction can occur from either occlusion, allowing as possi-
bilities occluding edges, ridge creases, and apparent contours, or from cast shadows
from a distance. The shadow is either cast by a geometric feature, or there is
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Figure 2. The possible local interactions between shade/shadow
curves (S), geometric features (F), and apparent contours (C).

a smooth cast shadow curve which intersects an edge, ridge crease, or apparent
contour.

These many possibilities can be concisely summarized by the resulting config-
uration of curves representing the shade/shadow curves, the curves representing
geometric features, crease, edge, and marking curves, and curves representing ap-
parent contours. We divide these curves into two types: “hard curves” and “soft
curves”. The soft curves consist of the shade/shadow curves, and are not sharply
defined curves but must be detected using a Canny-type edge method based on in-
tensity change. The hard edges are all of the remaining curves for geometric features
and apparent contours. The entire classification of stable local and multilocal in-
teractions is summarized by the “alphabet” of nineteen stable curve configurations
given in figure 3. These include the sixteen curve configurations corresponding to
local stable interactions explained in figures 18 and 19, and five curve configurations
corresponding to multilocal stable interactions in figures 20, with two overlapping
cases.

Second, considerably more information about object shape and position can be
deduced from the generic changes occurring in the configurations as a result of small
changes in viewer direction. In our case, three of the seven possibilities for con-
figurations, (S), (F), and (SF) are stable under small viewer movement. However,
changes in viewer direction can cause transitions in the remaining configurations
(C), (SC), (CF), and (SCF). We will provide a complete classification of generic
transitions for each of these configuration types, making use of a combination of
earlier abstract classifications from singularity theory and extending them as ap-
propriate. In this first paper, we give an overview of the general classification in
(5.1). We give the specific classifications for (C), (SC), and (CF) (excluding transi-
tions for corners) in (5.4) and (5.6). The classifications of transitions for: corners,
for interactions of all three ingredients (SFC), and for the multilocal cases will be
given in Part II [DGH2].

To be precise, when we speak of classifying the stable configurations and the
generic changes under viewer movement, we mean allowing “equivalence up to
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Figure 3. Classification of the “alphabet” of possible configura-
tions of hard curves (solid black) and soft curves (dashed grey) cor-
responding to the local configurations of features-shade/shadow-
apparent contours resulting from the classification and the mutilo-
cal classification . Also indicated are the configuration-types based
on figure 2.

applying local diffeomorphisms ” which preserve the geometric features and the
shade/shadow curves. These classifications are consequences of the mathematical
theorems proven in [DGH]. We briefly explain in §2 how the methods of singular-
ity theory allow us to carry out the classifications. For an interested reader who
does not wish to read the full mathematical treatment in [DGH], a more detailed
explanation of the specific singularity theoretic methods will be given to Part II
[DGH2]. We shall further explain the relation of our classification with the earlier
work on these questions in the appropriate sections.

The authors wish to express their sincere gratitude to the IMA in Minneapolis,
and its Director Doug Arnold for the generous hospitality to the first two authors
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during their visits for the special year in imaging held at the IMA, which allowed
them to complete a portion of the work described here.

1. Viewing Illuminated Surfaces with Geometric Features

We begin by explaining what exactly we assume about the surfaces, their geo-
metric features, and the light sources.producing shade and shadows.

Lighting and Viewer Direction. We allow multiple light sources; however, we
suppose that all but one source contributes only as diffuse background light, and
one light source is principally responsible for the shade and cast shadows. We
suppose that this light source is fixed and sufficiently distant that the light rays
are parallel and from a single direction. When we use equations to describe the
surface, we will assume that the light rays are parallel to the y–axis and come from
the direction of the positive y–axis.

Likewise we consider the case where the viewing direction is not in direct line
with the light direction. Because of the properties of the shade/shadow, geometric
features and apparent contours, we may, after a linear change of coordinates, sup-
pose that the viewing direction is along the x-axis from the positive x–direction.
We suppose that the view is along parallel light rays from the object, as opposed to
central projection. It will follow from the genericity properties of the configurations
that this restriction does not alter the local configuration properties that we obtain.

Shade/Shadows and Specularity. We will only consider perfectly diffuse sur-
faces, for which incident light is reflected equally in all directions. This class includes
Lambertian surfaces. These surfaces do not have specular highlights. Because the
nature of the specular highlights depend on both the material of the surface and
upon the viewing direction (in particular the BRDF function of the material, see
e.g. Koenderink-Pont [KP] or in the book of Horn-Brooks [HB]), we shall ignore
specular effects at this time in order to not overly complicate the discussion.

The shade curves on a surface theoretically arise from where the light rays meet
the surface tangentially. However, in fact, on shade curves there is a gradual tran-
sition from light to dark. In reality, the shade curve lies in this band where we go
from light to dark. Such a curve is a “soft curve” and is more precisely captured
by a type of Canny-edges method applied to intensity.

In addition, there are also cast shadow curves where these tangential rays con-
tinue until they meet the surface again. Although these cast shadow curves will
be sharper than the shade curves, they still are subject to diffraction. and so are
not as sharp as curves defining various geometric features. For this reason we will
also refer to them as “soft curves”. For local configurations, we consider local
cast shadows. Cast shadows from a distance are included among the multilocal
configurations; and, in fact, the interaction with hard edges (edges, ridge creases,
and apparent contours) of cast shadows from distant objects behave like marking
curves.

Geometric Features. We allow the boundary surfaces of objects in the image
to have geometric features which may consist of: creases (either ridges or valleys),
corners (of various types), boundary edges (as for thin surfaces such as sheets of
paper or leaves), and marking curves. Marking curves will generally mean either
actual curves, or implied curves such as separating regions with e.g. different color
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or texture. We understand each of these as local features, even though the local
features usually fit together to give global features.

We explain what exactly we mean by these local geometric features. In each
case, the general form of the feature is obtained from a standard model for the
feature by applying a local diffeomorphism of R

3 but otherwise are not restricted.
Then, diffeomorphisms applied to these standard models allow geometric features
with curved surfaces and curves (see figures 4, 5, and 6). .

The features and their local models are given as follows.

(1) A (boundary) edge of a surface is modeled by the boundary edge of a half
plane;

(2) A (ridge or valley) crease is modeled by a standard crease formed from two
half planes in the x-z and y-z planes joined along the z–axis, which is their
common edge. The union of these half planes divides R

3 into two regions as
shown in figure 4. Each choice of region corresponds to the two possibilities
of ridge or valley creases.

(3) A corner is modeled by the union of parts of the x-z, y-z, and x-y planes
with edges on the x, y, and z axes and which divides R

3 into two regions,
as in figure 5. There are four essentially distinct possibilities which we list
as convex, concave, saddle and notch corners as shown in figure 6.

(4) A marking curve can be on a smooth surface, a surface with edge, or a
surface with crease, where the marking curve is on just one sheet of the
crease or cuts across the crease and is on both sheets. Depending on the
case, the marking curve is either modeled by a line in a plane, or by a line
on the model for an edge or crease as shown in figure 7.

a) b) c) d)

Figure 4. Models for creases and the general curved versions:
a) and c) ridge creases, and b) and d) furrow (valley) creases.

We summarize the descriptions of the different geometric features in Table 1.

Genericity of Shade/Shadow. We suppose that the objects in the image are in
fixed positions with generic geometric features as just described. Since the light
direction is also fixed, the relation between the shade/shadow curves and the geo-
metric features will also be fixed. For a collection of objects with generic geometric
features, “almost all” choices of light direction will yield resulting configurations of
shade/shadow curves with the geometric features which “are stable”, i.e. they do
not change their form under small changes in light direction (here we are not yet
speaking of views of these configurations). This statement has a well-defined math-
ematical sense and this is a consequence of a mathematical result of John Mather
[Ma2]. We briefly explain the underling mathematics in §2.

After an arbitrarily small change, any light direction will have this property, and
we suppose our light direction does. We consider the situation where the fixed light
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a)a) b)

y
x

z y

x

z

Figure 5. Models for corners: a) is the model for convex and
concave corners, depending on whether the region is within the first
octant or the complement; b) is the model for saddle and notch
corners, depending on whether the region in behind and below or
in front and above the model faces.

a) b) c) d)

Figure 6. General curved versions of corners: a) is a convex
corner; b) is a concave corner; c) is a saddle corner; and d) is a
notch corner.

a) b) c) d)

Figure 7. Models for marking curve: a) on smooth surface; b)
at edge point of surface; c) at crease point, on one sheet; and d)
at crease point, on both sheets. There are also versions of c) and
d) for valley creases.

direction and object positions are such that the interaction of shade/shadow curves
(S) and geometric features (F) are generic (i.e. stable under small movement of
light direction).

Multilocal Considerations. Multilocal configurations of these ingredients occur
when local features from different objects or widely separated parts of the same
object interact. The interaction can occur from either occlusion or cast shadows.

Because the light source and object are fixed, we assume the cast shadow from
a distance meets any other geometric feature generically, which means it intersects
any geometric curve non-tangentially and does not intersect isolated points such as
corner points. If the shadow is cast by a geometric feature such as a V point (see
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Geometric
Feature

Definition Physical Examples

Ridge crease Outward curve along which two
surfaces meet transversely

Edges of tables, bookcases, etc;
the sharp arête-like ridges formed
on sand dunes

Furrow (valley) crease Inward curve along which two
surfaces meet transversely

The join between two pages of an
open book

Boundary edge Points on the boundary of a sur-
face

Edges of knife blade, leaf, sheet
of paper

Marking curve Differentiable curves on a smooth
surface or surface with edge or
crease. See figure 7

Stripes on an animal (e.g. Zebra);
curves delineating sharp changes
in texture or color on a surface

Corners The meeting point of three edges
(i.e. where three smooth surfaces
meet at a point)

Four different cases:

Convex corner figures 5 a) and 6 b) Corners of tables, bookcases etc.
Concave corner figures 5 a) and 6 a) Corners of a room, or inside a

box.
Saddle corner figures 5 b) and 6 c) The corner at point where dorsal

fin of a shark meets its body, the
inner corner at a level join of two
pieces of wood

Notch corner figures 5 b) and 6 d) Corner of a closed mouth

Table 1. Geometric features of surfaces.

figure 3), the cast shadow of the vertex of the V lies in a smooth part of a surface,
that is, not on a crease or edge curve, nor on a marking curve.

For occlusion, any geometric curve can be occluded, including edges, ridge
creases, and apparent contours, with the occluding surface being bounded at the
occlusion point by an edge, ridge crease, or an apparent contour.

We do include the stable curve configurations for the multilocal case so that we
provide in one location Fig. 3 the complete classification of stable curve configura-
tions (which consists of both local and multilocal configurations, see Figs. 18 and
19, and Fig. 20 for the multi-local cases). However, the detailed analysis of the
multilocal case will be postponed until part II of this paper.

Other Considerations. We have avoided a number of considerations which would
have allowed an essentially unending series of complexities. We have stayed with
geometric features that are “generic”. Thus, generically, exactly three surfaces meet
at a corner. However, certain constructions, such as e.g. church steeples, do not
follow this. Likewise, marking curves on surfaces may meet in special ways as a
result of designs. Consequently, what we consider is not meant to be all inclusive
but rather only includes generic features. However, most objects in images do have
generic properties.

Second, the light source is fixed; as a result only certain configurations of shade/shadow
curves occur generically. If we allow the light source to move, then for fixed generic
viewpoint, we can list the generic transitions in the configurations of geometric
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features and shade/shadow curves which occur. These differ from those changes
resulting from change in viewpoint. However, they are derived from the list of tran-
sitions for (FC) by using the view direction as the light direction and appropriately
giving the shade/cast shadow curves.

2. Explanation of How Singularity Theory Yields the Classifications

We briefly expain how the methods of singularity theory may be applied to
obtain the classsifications of both the stable views and the generic transitions which
occur for configurations of geometric features, shade/shadow curves, and apparent
contours.

The method we use reduces the analysis of the interactions to the classification of
view projection maps while preserving the configurations of geometric features and
shade/shadow curves. This classification is actually for abstract smooth mappings
while preserving the configurations as subsets. Then, it is determined whether cases
of the classification can be realized by geometric projections with shade/shadow
configurations as explained in §6.

Because the light source is fixed, we first classify the singularities of the light
direction projection map to obtain the stable configurations of shade/shadow curves
with geometric features of the object surface. Such configurations consist of specific
configurations of curves on surfaces with geometric features. Second, we allow
movement of the view direction. We classify the stable view projection mappings, for
which the interaction of apparent contours with the stable configurations of shade-
shadow and geometric features does not change under sufficiently small changes
in view direction. We also classify the generic changes in interactions resulting
from small movements of view direction involving no more than two parameters
(corresponding to movement in the view sphere).

A basic contribution of our method is to show that the equivalences of abstract
mappings whch preserve the stable configurations of curves on surfaces with geomet-
ric features satisfy a collection of mathematical properties which can be summarized
by saying the equivalences form a “geometric subgroup of A or K” as defined in
[D1] (or [D1a]) and extended in [D2]. This implies that all of the basic theorems
of singularity theory apply, allowing us to fully carry out the classifications. In
carrying out these classifications, we are able to benefit from earlier classifications
[BG2], [Ta1], and [Ta2] which have used special cases of this method of equivalence.

An alternate approach was proposed for studing the interaction of apparent
contours with just shade-shadow by Demazure, Henry, Merle, [DHM], [HM] and
Donati-Stolfi in [Di] and [DS]. They proposed classifying the pairs of mappings
(view projection, light direction projection) from the smooth object surface. There
is an intrinsic problem with this approach because such a pair forms a “divergent
diagram” of mappings in the sense of Dufour [Du]. Although Dufour has classified
in certain low dimension ranges the “stable singularities”, the basic theorems of
singularity theory do not apply to this case. Hence, the classification of generic
transitions cannot be carried out; nor is there an extension to include geometric
features.

Classifying Stable Interactions. First, the stable configurations of shade-shadow
curves with geometric geometric features are determined. The equivalences of light
direction projection mappings (i.e. projecting the surface onto the plane perpen-
dicular to the light direction) using nonlinear changes of coordinates preserving the
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geometric features form a geometric subgroup of A. Then, the “versal unfolding
theorem”characterizes by an infinitesimal algebraic criterion the stable mappings
under this equivalence. Furthermore, yet another theorem, the “finite determinacy
theorem”, provides models using polynomial equations. This provides the list of
stable interactions of shade-shadow with geometric features. This list is obtained
from Whitney’s original classification of abstract stable mappings of surfaces to the
plane [Wh], the stable mappings on surfaces with boundary due to Bruce-Giblin
[BG2], applied as well to marking curves, and the stable mappings on surfaces
with crease curves and corners Tari [Ta1], [Ta2], where we allow more possibili-
ties for corners. These correspond to the “regular”stable configurations (F), (S),
and (SF) given in (3.1). Already in the case of (SC) a new phenomenon occurs
because regular projections of stable configurations involving shade-shadows and
corners or creases are stable in a weaker “topological sense”where the equivalence
is differentiable in the complement of the central point of interest (by results in
[D2]).

Given this classification of stable shade-shadow-geometric feature configurations,
we then classify the view projection mappings under the equivalences preserving
each of these stable shade-shadow-geometric features configurations. By the explicit
structure of the stable shade-shadow-features configurations, the equivalences of the
view projection mappings preserving these configurations again form a geometric
subgroup of A, so all of the basic theorems of singularity again apply. We again
use the infinitesimal algebraic criterion to classify the stable mappings, yielding
the stable interactions of the apparent contours with the stable configurations (3.1)
given for (C), (FC) (in the case of uniform lighting), (SC) and (SFC). Again for
(C), (FC) this is a consequence of the classifications of Whitney and Tari. For (SC),
we obtain an extra stable case given as figure 9 f). This was earlier obtained by
Donati [Di] [DS]. Surprisingly, there are no stable (SFC) interactions; however, to
conclude this requires the analysis given for the transitions in (SFC).

The multilocal classification is based on the specific local classifications and the
multilocal equivalences again form geometric subgroups for which all of the basic
theorems again apply. For completeness, the stable multilocal configurations are
provided here by the “alphabet” of curve configurations given in figure 20. However,
we postpone the analysis to obtain them along with their generic transitions until
part II [DGH2].

Classifying Generic Transitions. Third, we consider transitions arising from
movement of viewer direction (but with the light source and objects remaining
fixed). In general, the changes which occur in the configurations as a result of viewer
movement are given by a series of “generic transitions”. We give a classification of
these generic transitions. From a given viewing direction, there are two independent
directions to move the view direction and observe changes in the local configuration
(moving directly toward the point where the local view is directed does not change
the local configuration). By a configuration being non-stable we mean that although
the configuration of geometric features with the shade/shadow curves is stable, the
view direction projection of this configuration changes under small movement of
view direction. An example of this is illustrated in figure 8 Although there is a
single image of the road, we see that for the parallel marking lines on the road,
there is a transition involving breaking as the lines move from left to right. This
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a) b) c) d)

Figure 8. Semi-cusp Transition (a): as the lines on the road
move across they encounter a cusp of an apparent contour and
the lines appear to break; this is equivalent to moving our view
direction so the cusp moves across the road. In b) - d), we see
the same transition which results from change of viewpoint of a
marking curve for the “semi- cusp”. In figure 26, we see a second
version of the semi-cusp transition where the visible part of the
marking curve points and the apparent contour at the cusp point
form a C1–parabola.

transition is modeled by one of the two semi-cusp transitions seen in b) - d) of the
figure.

Methods of singularity theory for geometric subgroups allow us to both clas-
sify these unstable view direction projections, and to determine whether the small
movement of viewer direction from the particular one will result in seeing all possi-
ble small changes in configuration. The mathematical terminology for this property
of capturing all possible small changes by view direction movement is that change
in viewer direction “provides a versal unfolding” of the unstable view projection
map. There is a way to investigate properties of versal unfoldings without ever
considering view specific projection maps, so we know in advance what properties
to expect.

For the equivalence of abstract mappings preserving the stable configuration
of shade-shadow curves and geometric features, there is a number which we can
associate to the view projection map, its codimension, which indicates how many
parameters are necessary to capture all possible small changes in the configuration,
resulting from perturbations of the mapping (not necessarily given by movement
of viewpoint). For example, the codimensions for the appropriate equivalences are
denoted by Ae-codim in Table 2, XAe-codim in Table 3 , and Se-codim in Table 4.
We need only classify those whose codimensions are at most two.

Codimension 1 versus Codimension 2 Transitions. There is a fundamental differ-
ence between the transitions for codimension 1 cases versus those of codimension
2. The viewsphere of possible viewing directions will contain curves representing
codimension 1 transitions and these curves will meet or self-intersect in isolated
points representing codimension 2 transitions.

In the codimension 1 case, changing the view direction so that such a curve is
crossed at any nonzero angle will produce the transition, while moving the view
direction along the curve will leave the view qualitatively unchanged. Thus, for
the generic transitions which occur from the one-parameter movement of viewpoint
(such as movement in time), only codimension one transitions will be seen gener-
ically. This is the predominant method of observing transitions, and we shall pay
special attention to the codimension 1 transitions.
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Surface z = f(x, y) Name Ae-codim
x regular map 0
x2 fold 0
x3 + yx cusp 0
x3 + y2x “lips” 1
x3 − y2x “beaks” 1
x4 + yx swallowtail 1

x4 + yx2 + y2x beaks to swallowtail 2
x4 + y3x “goose” 2
x5 + yx3 + yx 2 swallowtails 2
x5 − yx3 + yx 2 swallowtails 2

Table 2. Classification of view projections for a smooth surface
up to A–codimension 2. The equations are model equations for
surfaces which when viewed from the initial view direction along
the positive x–axis, exhibit the indicated behavior.

By contrast in the codimension 2 case, change can occur in different ways as
the view direction moves away from the initial direction corresponding to a codi-
mension 2 point. To describe all the changes which occur, a “clock diagram” is
used to show configurations of features as the view direction moves in a small circle
around its initial position. Because we typically consider transitions as a path in
the viewsphere, such a path may pass near a codimension 2 transition point but
generically not through it. Thus, the path will cut through a succession of different
codimension 1 transitions which occur near the codimension 2 point. We will defer
any detailed consideration of codimension 2 transitions until part II.

Generic Transitions for (C), (FC), and (SC). The classification of such “generic
transitions” begins with classification of generic transitions for apparent contours
for views of a smooth surface in uniform light under viewer movement. This was
begun by Koenderink and Van Doorn [KvD] and completed independently by math-
ematicians V. Arnold [A1], and T.Gaffney and M. Ruas [Gaf] (also see [Gi]). Here
the equivalence is called “A–equivalence”. The classification is given in table 2,
where a surface is viewed from the positive x–axis, so the projection mapping of
z = f(x, y) sends (x, y) to (f(x, y), y). Furthermore, for each of these types, viewer
movement provides a versal unfolding, so all possible small changes are attained.

The classifications of Bruce-Giblin and Tari extend this classification to abstract
mappings of codimension at most two for the equivalences preserving geometric
features. The classification of generic projections require that we use these classifi-
cations, refining them to allow for visibility, other curves on surfaces, and additional
types of corners. In addition, the classification again requires that we use the weaker
topological equivalence to classify a number of the transitions. Together these give
the generic transitions for (C) and (FC). Because of the large number of cases for
codimension one transitions for corners, we present them in Part II.

For the configurations which involve both shade-shadow curves or these curves
together with geometric features, the transitions are of type (SC) or (SFC). In these
cases, we must expand the classifications to allow more general configurations of
curves on surfaces possibly with creases and corners.
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The interactions of apparent contours with stable shade-shadow configurations
(SC) are obtained by classifying view projection mappings while preserving shade/shadow
configurations (S–equivalence). The classification of generic transitions is given by
Table 4 and are explained in (5.4). These correct in a number of ways the list given
by Donati [Di]. Furthermore, there is a new property which occurs here which does
not occur earlier in the classification. Even if a configuration defined by an abstract
mapping can be realized by a projection of a smooth surface with shade-shadow
curves, it need not follow that the the transitions given by the versal unfolding can
all be realized using only movement of view direction. In §6, we explain that there
are geometric criteria for a smooth surface to exhibit specific shade-shadow and
apparent contour configurations which prevent certain abstract transitions from
occurring.

Common Models for Generic Transitions across Types. Furthermore, For the re-
maining three types of configurations (FC), (SC), and (SFC), there are quite a
number of different stable configurations for geometric features or shade/shadow.
In principle, a different classification of transitions of view projections would have
to be carried out for each stable configuration. For practical purposes, this would
quickly become both unmanageable and very unhelpful for computer imaging under-
standing. However, a basic principle is at work that allows certain basic abstract
classifications to contribute in multiple repeated ways (with slight variations) to
many of the classifications which occur.

For example, in table 2, those view projections of Ae–codimension at most one.
also contribute to the classifications which involve a stable configuration which is
either: a smooth curve for a geometric feature, namely, edge curve, crease curve
(where the singularity only occurs on one sheet) or marking curve, or a smooth
shade/shadow curve. The classification of Bruce-Giblin [BG2] of singularities of
abstract local mappings on the edge of a surface extends to the classification of
local abstract mappings from the plane to itself, where a smooth curve in the
source plane must be preserved (alternately see [Go]). This classification can be
viewed as describing how the singularities in table 2 interact with the smooth curve,
and how the curve itself projects onto the plane. It can be applied to any of the
above configurations, provided we take into account visibility and whether we can
realize the mapping as a projection of a surface having the given configuration. This
turns out to be an issue only when the curve is a shadow curve; see §6. Then, the
classification of codimension 1 generic transitions of types semi-cusp, semilips/semi-
beaks, and boundary cusps are given by (4.1). These transitions occur for: edges,
marking curves, a single sheet at a crease, and for “fold shade curves”. These are
listed in Table 3 along with the underlying apparent contour singularity from Table
2. Hence, a single classification for the view projection map is transformed into
common classifications for multiple configurations.

To complete the classification of generic transitions for (SFC), we refine the
classification of transitions for (FC) by adding the additional stable shade shadow
curve configurations, and then refining the classifications to take into account the
preservation of the additional curve configurations. We also postpone the details
to part II.
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3. Classification of Stable Views of Configurations

We give the classification of stable views involving the interaction of geometric
features, shade/shadow, and apparent contour. The stable views involve both local
and the multilocal stable configurations. The stable local configurations involve the
seven types of interactions under the situations that we described in the previous
section. Furthermore, we also give the mutlilocal classification which allows the
interaction of different objects seen from a common viewpoint as a result of either
occlusion or cast shadow from a distant object.

The classification we give subsumes, extends, and in some cases corrects, the
partial classifications in the references given earlier.

a) b) c)

d) e) f)

Figure 9. Stable apparent contours (C): a) regular image, with
no apparent contour. b) fold , and c) cusp. Stable shade/shadow
configurations (S): d) fold shade and e) cusp shade, and f) the
one additional stable view of a fold shade curve with apparent
contour (SC); this is called a semifold. For e), the shade/shadow
curve consists of two pieces, a shade curve on the right and a cast
shadow curve on the left, which meet to form a C1 curve (a “C1

parabola”).

3.1 (Stable Interactions for Shade/Shadow - Geometric Features - Ap-
parent Contours). The stable interactions of geometric features, shade/shadows,
and apparent contours are given by the local interactions and the multilocal inter-
actions.

The stable local interactions are given by the seven classes consisting of those in-
volving either one ingredient: apparent contours (C), shade/shadow curves (S), or
geometric features (F), or the interaction of two of these ingredients: shade/shadow
and geometric features (SF); shade/shadow and apparent contours (SC); or geomet-
ric features and apparent contours (FC). The interaction of all three ingredients
(SFC) does not occur stably. The following are the classifications for each type,
where in the figures, the local configuration is around the blackened point.

(1) The stable views for (C), (S), and (SC) are given by stable projections
(regular, fold or cusp) in the light or view directions, with one case of fold
projections for both. These are shown in figure 9.
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(2) The stable views for (F) are regular projections of generic geometric features
(edges, marking curves, creases, and corners) with uniform shade/light: for
edges, figure 10 a) and b); for marking curves, figure 17 b) - i); for creases,
figure 11; and for convex/concave corners, figures 14, for saddle corners,
figure 15 a) - d), and notch corners, figure 16 a) - h).

(3) The stable views for (SF) are: for edges, figure 10 g) and h); for creases,
figure 12; for saddle corners, figure 15 e) - g); and for notch corners, figure
16 i) - l).

(4) The stable views for (FC) with uniform shade light are : for edges, figure
10 c) - f); for marking curves, figure 17 a); and for creases, figure 13.

Second, the stable multilocal classification consists of either an occlusion or a
cast shadow from a distant object (or part of the object). The occlusion results from
the partial occlusion of a marking, edge, crease, apparent contour, or shade/shadow
curve by either a region of an object bounded at the occlusion point by an edge, ridge
crease, or apparent contour. The cast shadow is either a smooth curve which cuts
across a marking, edge, crease, apparent contour, or shade/shadow curve, or the
cast shadow which forms a V on a smooth surface, with the shaded region filling
the interior or exterior of the V .

Thirdly, for each stable view, the collection of curves forms a configuration which
belongs to one of the cases in the “alphabet” of possibilities given in figures 18 and
19. The corresponding “alphabet” for the multi-local cases is given in figure 20.

Finally, there are specific mathematical conditions for each of the stable views
which can be given in simplified form by the equations for the abstract mappings in
the appropriate classifications, taking into account visibility. The full list is given
in [DGH], and we illustrate several of the cases as the codimension 0 cases in Table
2 and Table 4.

Remark 3.2. There are several Important consequences of this classification the-
orem for designing algorithms which detect features in natural images. These will
be discussed in §7.

a)

b)

c) d)

e) f)

g)

h)

Figure 10. Edges: (F) a) and b); (FC): edges with apparent con-
tours and uniform shade/light c) -f); and (SF) with shade/shadow
curves: g) shade fold curve,and h) cast shadow curve.
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a) b) c)

f) g)
d) e)

Figure 11. Creases with uniform shade/light (F)

b)a) c) d) e)

Figure 12. Creases (SF): creases with shade/shadow curves: a)
and b) and c) shade fold curve; with c) one sheet visible; d) shade
fold and cast shadow curve; and e) just cast shadow curve. There
is also case f) where the sheet in e) without cast shadow is hidden
and the image is the same as h) of Figure 10.

4. The Classification of Generic Transitions

The general results described in §2 are used to carry out the classification of
generic transitions. The starting point is the classification of generic transitions for
apparent contours under viewer movement given in table 2 which give the generic
transitions for (C). We first give a partial classification of codimension 1 transitions
(4.1) for (FC) and (SC) given by the transitions of type semi-cusp, semi-lips/semi-
beaks, and boundary cusp for edges, marking curves, crease curves, and “fold shade
curves”. These are the common model transitions of codimension 1 in table 3, where
each row represents instances of the single projection behavior for various meanings
for the distinguished smooth curve.

4.1 (Codimension 1 Transitions in Table 3). The feature curve is any of: a
marking curve on smooth surface, a surface with a boundary edge or crease, or a
surface with a (fold) shade curve. The transitions occur when the feature curve
interacts with the contour generator, which is the curve on the surface that maps
under view projection to the apparent contour as follows.
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a) c) d)b)

a' ) c' ) d' )b' )

Figure 13. Creases with apparent contours (and uniform
shade/light) (FC): a) visible crease and apparent contour; b) visible
crease with invisible apparent contour; c) and d) partially visible
crease with visible apparent contour - c) with both sheets visible
or d) only one sheet visible.

a) b) c) d)

e) f) g) h) i)

Figure 14. Convex and Concave Corners with uniform
shade/light (F). Note that only a) and d) can occur for concave
corners.

d)

a) b)

c)

e)

f) g)

Figure 15. Saddle Corners: with uniform shade/light (F) a) -
d); and with cast shadows (SF) e) - g).

(1) Semi-Cusp: It occurs when the geometric feature curve and contour genera-
tor are transverse at the point but that the initial view direction is along the
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a) b) c)

d) e) f)

g) h)

i)

j) k)

l)

Figure 16. Notch Corners: with uniform shade/light (F) a) -
h); and with cast shadows (SF) i) - l).

f) g) h) i)

a) b) c) d) e)

Figure 17. Marking Curves (with uniform shade/light, here
shown with light) : a) fold apparent contour on smooth surface
(FC) and the remaining without apparent contours (F): b) regular
image on smooth surface; c) meeting edge curve of surface ; and
meeting crease curve of surface, d), f) and h) on one sheet, and e),
g) and i) on two sheets. There are also other uniform shade/light
cases with some sheets in shade as in figures 10 a) and b) and 11.

tangent to the contour generator. In the initial view, the apparent contour
has a cusp, and this cusp is tangent (at a ‘C1 parabola point’ or a ‘λ junc-
tion’) to the feature. There are two visually distinct semi-cusp transitions
depending on which side of the tangent to the apparent contour at the cusp
point the geometric feature curve lies. Compare figures 8 and 26.

(2) Semi Lips/Beaks: One of these occurs when a contour generator becomes
tangent to the surface feature curve. The transition either causes a feature
curve not intersecting the contour, to break after meeting it (Semi-Beaks);
or an invisible part of the feature curve becomes visible along the contour
(Semi-Lips). Examples are illustrated in figures 21, 22.
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F, C

S

S

C

F, C

SF

F

F Hard Y :  convex, concave, or notch corner

Separating curve (hard) :  edge curve, crease curve, 
                             marking curve,  apparent contour

Separating curve (soft)  :   shade/shadow curve

End of curve : cusp point of apparent contour

Hard T :  marking curve meeting edge or 
               ridge crease

Soft T :  shade or shadow curve meeting 
               edge curve or ridge crease curve 

Hard V :  convex , saddle or notch corner

Soft C   -parabola :  shade curve meets 
                                 cast-shadow curve

1

Figure 18. First part of the “alphabet” of possible configura-
tions of hard curves (solid black) and soft curves (dashed grey) cor-
responding to the local configurations of features-shade/shadow-
apparent contours resulting from the classification. Also indicated
are the possible configurations yielding each curve configuration.

(3) Boundary Cusp: It occurs when the apparent contour is a fold, hence ap-
pears smooth in the image, but the view projection mapping of the surface
feature curve is singular (it exhibits a cusp). The transition changes the
side that the apparent contour curve meets the feature curve in a semi-fold,
see figures 23, 24, and 25.

Notation : In the figures which follow, we indicate the stable types appearing
under transitions, using the following convention for junction points: T-junction -
�; cusp or endpoint - •; C1-parabola point or a λ-junction - ◦.
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Soft Tλ : shade curve meeting furrow crease
              and a cast shadow curve

Hard C  -parabola : apparent contour meeting 
                                 furrow crease or edge

1

Soft λ :  shade meeting apparent contour

Hard λ : edge curve with a bend or
       apparent contour  meeting ridge crease

Hard W :  convex, saddle, or notch corner

Soft  W :  saddle or notch corner

Soft  VW :  saddle or notch corner

Broken  X :  marking curve crossing 
                     a crease

SF

SF

SF

SC

FC

FC

F

F

Figure 19. Second part of the “alphabet” of possible configura-
tions of hard curves (solid black) and soft curves (dashed grey) cor-
responding to the local configurations of features-shade/shadow-
apparent contours resulting from the classification.

5. Classification of Generic Transitions in Configurations

We give in this section the general form of the classification of generic transitions
(5.1). This is further expanded in the more detailed classifications for (FC) given
in (5.6) and (SC) given in (5.4). The detailed classifications for (SFC) and the
multilocal cases are postponed until Part II [DGH2].
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Hard T : occlusion involving edges, ridge 
              crease, or  apparent contours

Soft T :  cast shadow curve meeting edge 
              curve or crease curve or occlusion of
              a shade/shadow curve by an edge, 
              ridge crease, or  apparent contour

Hard-Soft Broken  X : A cast shadow   
                    curve crossing a  crease curve 

Hard-Soft  X : A cast shadow curve crossing  
                    a  marking curve 

Soft V :   A cast shadow, with shade on 
               one side of the V

F, C

SF

SF

SF

SF

Figure 20. The “alphabet” of possible multilocal configurations
of hard curves (solid black) and soft curves (dashed grey) - involv-
ing either occlusion of one object by another (involving edge, ridge
crease, or apparent contours;or a cast shadow curve from a distant
feature and an edge, marking curve, ridge crease, or apparent con-
tour.

5.1 (Generic Transitions for Configurations of Geometric Features, Shade
or Shadow, and Apparent Contours). We consider the case of a single fixed
light source and fixed objects in the scene and generic transitions involving geometric
features, shade/shadow curves, and apparent contours. The generic transitions
under viewer movement occur for both the local and multilocal configurations. First,
the local generic transitions are given as follows.

(1) (C) The possible generic transitions for apparent contours on a smooth
surface with uniform light/shade are given by Table 2. We do not consider
this well-known case further in this paper. See [Ko].

(2) (SC) The possible generic transitions for configurations of shade/shadow
curves with apparent contours are given by Table 4 and are explained in
(5.4) .

(3) (FC) This classification is deduced from the abstract classifications of map-
pings to the plane preserving one of: marking curve, edge curve, crease,
or corner. Except for corner transitions, the classification is explained in
(5.6). The classification of generic transitions for corners will be given in
Part II [DGH2].
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A Classes XA Classes XAe Edge Sings Crease Sings Fold Shade
(smooth (marking –codim (surface on one sheet Curve
surface) curve) with edge) of crease

reg. map reg. image reg. edge reg. crease reg.shade
fold semifold 0 Y Y Y
” semi lips/beaks 1 Y Y Y
” semi-goose 2 Y Y NV

cusp semi-cusp 1 Y Y Y
swallowtail semi-swallowtail 2 Y Y Y
lips/beaks lips/beaks on 3 TV TV N

boundary

fold boundary cusp 1 Y Y Y
fold boundary 2 Y Y Y

rhamphoid cusp
cusp double cusp 3 TV TV N

Table 3. Transitions of view projections for smooth surfaces with
geometric features: Abstract transitions for mappings preserving a
smooth curve X , denoted “XA–equivalence”, yield common tran-
sitions for view projections on marking curves, boundary edges,
crease curves, and fold shade curves (of the same type across a
horizontal row). These yield the families of codimension 1 transi-
tions in (4.1) with different geometric interpretations depending on
the cases as illustated in Figures 26, 21, 22, 23, 24, and 25. Here Y
indicates that both the singularity is realized by a projection of a
surface with appropriate feature and moreover its versal unfolding
is realized by viewer movement; N indicates the singularity cannot
be realized; NV indicates the singularity can be realized but the
versal unfolding cannot be; and TV indicates that the topologically
versal unfolding can be realized by viewer movement (see §2).

(4) (SFC) This classification is a refinement of that for (FC) taking into ac-
count the additional configuration structure resulting from the classification
of stable interaction of shade/shadow curves with geometric features. The
classification will be explained in detail in Part II [DGH2].

Likewise, the multilocal generic transitions will be given in Part II [DGH2].

Remark 5.2. Just as with the classifcation for stable local configurations, there
are also consequences of (5.1) for detecting features in Images by identifying implied
relations between different local configurations. We expain these consequences in
§7.

The complete classification includes both codimension 1 and 2 transitions. We
first identify the remaining codimension 1 transitions before giving the complete
classifications for the types of configurations.

5.3 (Additional Codimension 1 Transitions for (SC) and (FC)). In addition
to the three types of transitions given by Table 3, there are the following codimension
1 transitions for (SC) and (FC) which do not involve corner transitions.
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a) a′) b) b′)

Figure 21. Semi-Lips and Semi-beaks Transitions (SC) in-
volving Apparent Contours and Shade Curves. Lighting is
from the right. a), a′) shows a semi-beaks transition where the
shade curve (and the band of light) is broken by the apparent
contour. b), b′) shows a semi-lips transition (same as a), a′) but
viewed from the opposite direction). A sliver of shade appears as
the view changes. These transitions also occur with the roles of
light and shade interchanged.

4 Light Direction Cusp–Fold View (SC) (see Table 4): This occurs for a
cusp point of the light projection map. The contour generator for the fold
apparent contour meets the shade/shadow curve transversally at the C1

point. The transition moves the contour generator off of the C1 point. See
figure 27.

5 Nontransverse Semi–Fold (FC) (type iii) in (2) of (5.6)) : Five visually
different transitions can occur when apparent contours from both sheets of
a crease pass through the same point in the image, having a C1-tangency.
They occur for a surface with crease only when the two tangent planes
to the smooth sheets coincide for one point along the crease. The surface
sheets at that point are non-transverse and a valley crease turns into a ridge
crease. The transitions occur as the semifold points on the two sheets come
together and cross over at the non-transverse point on the crease. These
are illustrated in figure 28.

6 Fold apparent contour passing over isolated stable geometric feature point
(FC) (see (3) of (5.6)) : An isolated geometric feature point is a stable (F)
type which differs from the other stable (F)-types within a neighborhood of
it. The transition occurs when a fold contour generator curve passes in a
generic way through the isolated point, such as a marking curve intersecting
a crease. This is illustrated in figure 29.

We now provide the more detailed descriptions for each of the classes of generic
transitions. First, we begin with (SC).

5.4 (Generic Transitions for Shade/Shadow - Apparent Contours (SC)).
The generic transitions for local configurations involving shade/shadow curves and
apparent contours are given in Table 4 which can be understood as follows:

(1) The possible transitions are modeled by viewer movement for the surfaces
given in Table 4 with initial view from the positive x-axis; The explicit
transitions of codimension 1 are shown in figures 21, 23 and 26.
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a) b) c) d)

e) f) g) h)

Figure 22. Semi-lips and Semi-beaks Transitions (FC).
Top row: Semi-beaks transition for marking curve (grey curve)
a) to b) to c), where in b) the marking curve is tangent to contour
generator on the surface: The view from the opposite side gives
a semi-lips transition ending in d). Bottom row: schematic repre-
sentations of semi-lips e), f), g) and semi-beaks h) transitions for
boundary edges and creases (grey curves) and apparent contours
(black curves). To visualize these, remove one of the halves of the
surfaces in a) - d) along the marking curve, which then becomes
either a boundary edge or crease curve (for one sheet). If the front
half-surface is removed, a) to b) to c) corresponds to h) (mov-
ing upward), while from the opposite view we obtain g) (moving
upward). If the back half-surface is removed, we obtain f), respec-
tively e), (moving upward). For valley creases only cases e) and
g) can occur. In case e) on a ridge crease, the section of apparent
contour can be hidden by the other sheet.

(2) Fold Shade Curve: The view projection maps correspond to the local map-
pings from surfaces with marking curve; but certain cases are not realized,
as explained in Table 3.

(3) Cusp Map for the Light Direction: The combined shade/shadow curve
defines a C1–parabola. There are two cases for the view projection maps.
See figure 27.

(4) With the one exception of the “semigoose”, viewer movement gives the ver-
sal unfoldings of the local mappings in Table 4.

Remark 5.5. The classification given by (5.4) and in table 4 corrects in a number
of respects the classification given by Donati [Di] for codimension ≤ 2. We explain
these differences in [DGH].

Next, we consider generic transitions in (FC).
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o r

Figure 23. Boundary Cusp Transition. Top row: for a
shaded surface(SC). Middle row: schematic transition for mark-
ing curve (FC) (or the shaded surface (SC) above). Occluded
curves are indicated by dashes. Bottom row: for a boundary
edge (FC); the two cases are views from opposite directions. The
transition changes a (soft or hard) λ junction into a C1-parabola.

Figure 24. A Boundary Cusp on a Crease Transition (FC)
Top row: One such transition is shown, with the corresponding
schematic representation of the transition shown on bottom row,
with crease edges (grey curves) and apparent contours on the two
sheets (thick and thin black curves), with occluded curves (dashed)
and visible T-junctions and λ-junctions indicated.

5.6 (Generic Transitions for Geometric Features - Apparent Contours
(FC)). The generic transitions for local configurations involving geometric features
and apparent contours are given as follows:
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a ) b )

c ) d )

Figure 25. Boundary Cusp on a Crease Transitions (FC)
Schematic representations of the transitions involving crease edges
(grey curves) and apparent contours on the two sheets (thick
and thin black curves), with occluded curves (dashed) and visible
T-junctions and λ-junctions indicated. Cases a) (full transition
shown in Fig. 25), b) and c) are ridge creases and d) is a valley
crease. Only for a valley crease can T-junctions occur away from
the cusp.

Surface z = f(x, y) Name Se-codim Comments
x2 + xy + y2 semi-fold 0
(x + ε1y)2 + ε2y

3 semi-lips/beaks 1 ε1, ε2 = ±1
x2 + y2 + x2y + xy2 boundary cusp 1
xy + x3 + y2 semi-cusp 1
xy + x2 + y3 cusp for light direction, 1 See (5.4: 3)

fold for view direction
(x + y)2 + y4 semi-goose 2 See (5.4: 4)
x2 + y2 + xy2 + x4y boundary rhamphoid cusp 2
xy + y2 + x4 + εx6 semi-swallowtail 2 ε = ±1 (*)

xy + x3 + y3 cusp maps for light 2 See (5.4: 3)
and view directions

Table 4. (SC) Classification up to codimension 2 of view projec-
tions and generic transitions for interactions of shade/shadow and
apparent contours. Surfaces given by the equations provide models
for each type of interaction beginning with initial view along the
positive x-axis. (*) For just qualitative properties of interactions,
there is no difference between the two cases of the semi-swallowtail

(1) Edge Curve or Marking Curve on Smooth Surface: The possible transitions
are given by the columns in Table 3 and illustrated in figures 22, 23 and 26.

(2) Crease Curves: There are three possibilities: i) there are only apparent con-
tours from one sheet; ii) the view projection of the crease has a singularity;
and iii) there are apparent contours on sheets on each side of the crease.
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e n d -
p o i n t
o f
c o n t -
o u r

e n d p o i n t  
o f  c o n t o u r

a ) b ) b ' ) b ' ' )

Figure 26. Semi-cusp Transition Top row: for (FC) marking
curve (grey) and an apparent contour (black). A curve end and a
(hard) T-junction change to a curve end and a (hard) λ-junction.
Middle row: for (SC) shaded surface, with the shade curve re-
placing the marking curve. The junctions are now soft, and in the
right-hand figure, the curve end is barely visible in the region lit
only by background light. Bottom row: for (FC) boundary edge
(grey curve) and an apparent contour (black) shown schematically.
There are two cases: boundary edge a) entirely visible or b) only
partially visible. For (one sheet of) a surface with a crease in
place of boundary edge (FC): a) can occur only for a ridge crease,
with the part above or below the grey edge occluded. (both surface
sheets are locally visible); and b) can occur for a ridge crease with
locally one surface visible, or for a valley crease with both visible.
These are shown in b′) and b′′) respectively, with the view direc-
tion moved to reveal the T-junction as in the right-hand figure of
b).
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a) b) c)

t r a n s i t i o n
t h r o u g h  b )

t r a n s i t i o n
t h r o u g h  c )

b )

c )

Figure 27. Transition for cusp map in light direction -
fold view direction (SC) (see Table 4). Top row: a) stable view
with apparent contour not touching the shade curve. The cast
shadow curve, towards the right, and shade curve, towards the
left (emphasized by white curve) together form a ‘C1-parabola’ on
the surface. In b) and c), the surface is the same but the view
map is now a fold map: this is the ‘light direction cusp - view
fold’ transition of 5.3 (5.3), with the same surface viewed from
opposite directions. The transition point is in the center of each
figure. The cast shadow line is only visible in c), and the shade
curve is only visible near the transition point in b). The lower two
rows are schematic representations of the transitions in b) and c)
for the apparent contour (black), shade curve (solid grey), and cast
shadow curve (dashed grey) as the viewpoint moves.

The cases for i) and ii) are given in column 5 of Table 3 and illustrated in
figures 22, 24, 25, and 26.

For iii), if we allow creases where the two surfaces have the same tangent
plane at a single point, then there are cases with apparent contours coming
from each sheet do occur and are given in figure 28.

(3) Marking Curve Meeting Edge Curve or Crease: The geometric configura-
tions are given in c) - i) in figure 17. The transitions are those for an edge
curve or crease, with an additional transition (and added codimension) for
each case because of the movement of the transition point relative to the
meeting point, as illustrated in figure 29.

(4) Corners: There are quite a few transitions for corners, taking into account
each of the four types of corners (given in figure 6). We postpone giving
the complete classification until part II of the paper.

Remark 5.7. Cases 2i) and 2ii) were classified by Tari [Ta1], [Ta2]. We refine this
classification taking into account visibility. For iii), these cases were excluded by
Tari because they are “degenerate creases”.
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Figure 28. Non-transverse Semi-fold Transition (FC):
Five visually distinct transitions can occur on a surface with a
crease,where at one point the tangent planes to the sheets coincide
so that the crease changes from valley to ridge (see 5.3 (5.3)).
Top line: A transition where apparent contours of the two sheets
come together and crossover (with the schematic depiction below
the figures involving crease (grey curve) and apparent contours
(black curves), and occluded curves (dashed)). The view from
the opposite direction is qualitatively the same. Bottom line: the
other four transitions, with only the figures for the transition point
shown, but with the schematic depictions of the transitions below
the figures.

6. Geometric Criteria for Singularities for View or Light

In this section, we briefly explain how the geometry of a surface affects the
classifications which involve shade/shadow curves and apparent contours in the
case of a smooth surface M without boundary edge, crease or marking curve. For
the details see [DGH].

An apparent contour in the image corresponds on the surface M to a contour
generator ΣV which is the set of surface points p at which the view direction V
lies in the tangent plane to M at p. Similarly, a shade curve ΣL on M , separating
a region illuminated by the principal light source from one lit only by background
illumination, is the set of points p at which the light direction L lies in the tangent
plane to M at p. Unlike a surface marking or crease or boundary edge, curves such
as ΣV and ΣL are not arbitrary curves on M . The key property they possess has
been observed by Koenderink [Ko, pp. 230, 243]. Let U be any direction in space,
for example U = V or U = L, and let ΣU be the set of points on M at which the
tangent plane contains U.

6.1 (Characterization of Points on Contour Generators or Shade Curves).
For a smooth surface M in R

3 and a direction U in the tangent plane at p, the
tangent direction to ΣU on M at p is conjugate to U.
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Figure 29. Transition for apparent contour and meeting
of a marking curve and crease/edge (FC): , see 5.3 (29)
and compare with the stable cases in Fig. 17). Top row: marking
curve (thin grey curve) on only one sheet of the crease surface,
with crease curve (thick grey line), with apparent contour (black
curves) on the sheet (occluded curves are dashed and occluded
junctions are not marked). There are three possible cases (in the
three columns) depending on visibility. The first two can occur
only for a ridge crease but the third can occur for either a ridge or
a valley. Second row: case of marking curve on each crease sheet
(marking curve on second sheet is double grey curve) shown at
transitional point. In the third column, the ridge is the left-hand
figure and the valley is the right-hand figure. Third row: case of
marking curve meeting an edge. There are only two possibilities,
and the second one is identical with the corresponding crease case.
Bottom row: transition on a valley crease corresponding to the
schematic diagram indicated by a *.

Here, ‘conjugate’ is relative to the second fundamental form of the surface at p.
The properties of conjugacy which we need here are as follows.
(i) In an elliptic (convex or concave) region of M , every tangent direction U has
a unique conjugate, different from U, and distinct tangent directions have distinct
conjugates.
(ii) At every point in a hyperbolic (saddle-shaped) region there are two special
tangent directions called asymptotic directions, where the tangent line pierces the
surface; each of these two is conjugate to itself, but distinct tangent directions still
have distinct conjugates.
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(iii) At a point of the parabolic curve separating these regions, there is exactly
one asymptotic direction and all other tangent vectors are conjugate to this one.
Thus, by Property (6.1), all directions U apart from the asymptotic direction have
corresponding curves ΣU tangent to the unique asymptotic direction. (When U is
the asymptotic direction ΣU becomes singular, either an isolated point or a crossing
of two branches.)
(iv) From (i) and (ii) it follows that, if two distinct tangent vectors at p have the
same conjugate direction, then p is a parabolic point.

As an immediate consequence note that assuming, as we always do, V and L to
be distinct, it follows that the curves ΣL and ΣV are tangent at p if and only if p is
parabolic. Certain singularities require ΣL and ΣV to be non-tangent (transverse)
and others require them to be tangent (see [BG2]). This gives (i) and (ii) of the
following geometric constraints on interactions involving apparent contours and
shade curves and other similar considerations lead to the remaining parts (compare
Table 3).

6.2 (Geometric Constraints on Apparent Contours and Shade Curves).
(i) semi-fold, semi-cusp, semi-swallowtail, boundary cusp and boundary rhamphoid
cusp can never occur at a parabolic point;
(ii) semi-beaks and semi-goose can only occur at a parabolic point, in fact, the semi-
goose requires that p be a “cusp of Gauss”, that is a point where the asymptotic
direction is tangent to the parabolic curve;
(iii) lips or beaks on the boundary and double cusp can never occur;
(iv) viewer movement cannot “versally unfold” the semi-goose in the sense that
there are known local singularities close to a semigoose (in fact, semi-cusp singu-
larities) which viewer movement cannot achieve.

For example, here is the argument leading to (iii) in the case of a double cusp,
which means that the contour generator and the shade curve both have a cusp in
the image. If this can occur then the view direction V must be tangent to both of
these curves on the surface at p. Since they are tangent, and V 6= L, we deduce
that the point p is parabolic, and that V is the asymptotic direction at p. But
viewing a parabolic point along an asymptotic direction does not give a cusp; rather
it gives a “lips/beaks singularity” in the image since ΣV is an isolated point or a
crossing (see for example [Ko, pp. 303, 458]). This is a contradiction.

7. Comments and Summary

We have explained in this paper how the complex interactions of geometric fea-
tures, light, and viewer movement can be analyzed using the methods of singularity
theory to yield a classification of both expected local features of images and their
generic transitions under viewer movement. These provide a concise alphabet of
local curve configurations that we expect to see in images, along with the possible
geometric properties that accompany them. As well we provide a specific classifi-
cation of the generic transitions which occur in these configurations under viewer
movement. We have explicitly provided the generic transitions for interaction of
shade/shadows and apparent contours (SC) and geometric features with apparent
contours (FC) with the exception of the list of corner transitions. These along with
the classification of generic transitions for interactions of all three (SFC), and for
multi-local interactions will be presented in Part II. Together these results provide
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a catalogue which subsumes and considerably refines the earlier work of a number
of authors on special aspects of images.

There are two important consequence of the classification for detecting 3D prop-
erties of objects in images.

First, in contrast with the use of the traditional T -junction as an indicator of
occlusion, not all T -junctions indicate occlusion. Moreover, there are several other
cases apparently similar to T –junctions, but which are characterized instead by
the tangency of a curve segment to another curve (this configuration more closely
resembles the Greek letter λ than a T ). These λ–junctions occur as three different
types, with several representing a number of different cases.

Second, there are cases where two different curve segments meet tangentially,
but only agree to first order. So they can be locally modeled as C1–versions of
parabolas, a typical example being two half parabolas, say y = x2, x ≤ 0 and
y = 2x2, x ≥ 0, meeting and having the same tangent line at the origin but with a
discontinuity in the curvatures as we pass this C1–point.

These two characterizing features suggest that to detect geometric properties of
objects we must include the actual behavior of tangent lines to our various types of
curves to measure either tangency or sudden change in curvature as we approach
the special points to distinguish among the types in the alphabet.

There are additional consequences for detecting features in Images which result
from the knowledge of the generic transitions given in 5.1 even in the case of a
single fixed image. In particular, for the perturbed view on each side of the generic
transitions, there are typically several local stable features, which cannot normally
be related to each other. However, the transitions suggest that certain combinations
of the features indicate the presence of a relation which then helps identify more
easily 3D features of objects in images. These are “higher order relations” not a
consequence of purely local or even multilocal stable configuration information.
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