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Abstract. This is the second part of an investigation into the visual clues
in illuminated scenes, in terms of the interactions between apparent contours,
shade and cast shadow curves, boundary edges and markings, on smooth sur-
faces, pairs of surfaces meeting in a crease, and triples of surfaces meeting
in a corner. We consider both ‘stable’ and ‘codimension 1’ cases, the latter
meaning that we list events which occur in a generic ‘flypast’ of the scene.
We assume there is a single principal source of light. The first part of this
work is [DGH1]; in this second part we give details of the cases which involve
creases and corners, and the ‘multilocal’ cases where two surfaces separated in
space interact via occlusion or cast shadows. We also give some details of the
mathematical background to our work; the full mathematical treatment will
appear in [DGH].
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1. Introduction

For a scene illuminated by a single light source, a number of visual clues about
the shapes and positions of objects in the image are provided by the interaction of
the geometric features of the objects (F), the curves bounding the shade/shadow
regions on the objects (S), and the (apparent) contours (C) resulting from the
viewing direction. Typically the clues are obtained from the local configurations
which result from the interaction of one or more of these ingredients. These visual
clues then allow us to differentiate between objects and determine their shapes and
positions. In [DGH1], we gave the first part of the classification for fixed light
source of the configurations resulting from the stable interactions of any subset of
these ingredients (such configurations persist under small movements of the viewing
direction). We also gave the first part of the classification of the generic changes
which can occur as a result of movement of the viewpoint. This included the
generic transitions of apparent contours (C), and interaction of apparent contours
with either shade/shadow curves (SC) or with geometric features (FC), with the
one exception of the transitions resulting from apparent contours and corners.

In this paper we complete the classification of generic codimension 1 transitions.
These are the transitions in the configuration of features, shade curves or contours
which one would expect to see when the viewpoint changes continuously moving in
a general direction. The additional codimenions 1 cases covered here include: the
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interaction of apparent contours with corners (FC) (3.2) ; the interaction of all three
ingredients (SFC) (4.1), further detailed in (4.2) and (4.3), and the interactions for
the multilocal case (5.1), which involves interactions via cast shadows or occlusions.
The complete list of codimenions 1 transitions is given in (2.1). As one consequence
of the classification of transitions involving apparent contours and corners, we will
see that optical illusions involving corners are resolved from the transitions arising
from movement of viewpoint (see e.g. i) and ii) of Fig. 6).

Because the viewsphere is two–dimensional, at isolated viewpoint positions, spe-
cial transitions can occur which are difficult to observe. These are called “codimen-
sion 2 transitions”. To understand all the nearby configurations near such points,
the viewpoint must move in a small circle about such a special view position. In
§6, we briefly discuss the semi-swallowtail transition from Table 3 of [DGH1]. The
qualitative changes can be a subtle succession of generic transitions and for this
reason we do not attempt to give the full analyses for cases of codimension 2 which
we have listed.

Also, to be precise, when we speak of classifying either the stable configurations
or the generic codimension 1 changes under viewer movement, we mean allowing
“equivalence up to applying local diffeomorphisms” which preserve the geomet-
ric features and the shade/shadow curves. We explain in §7 how the methods of
singularity theory may be used to carry out the classifications when the local dif-
feomeorphisms preserve both geometric features and shade/shadow curves while
capturing the viewing direction.

As for the earlier parts of the classification given in [DGH1], these results are
consequences of mathematical theorems proven in [DGH].

The authors wish to express their sincere gratitude to the IMA in Minneapolis,
and its Director Doug Arnold for the generous hospitality to the first two authors
during their visits for the special year in imaging held at the IMA, which allowed
them to complete a portion of the work described here.

2. Codimension 1 Generic Transitions

In part I we gave the classification for both stable configurations of geometric
features (F), shade/shadow curves (S), and apparent contours (C) and their inter-
actions (FC), (SC), (SF), and (SFC). We also gave the codimension 1 transitions
for (F), (SC) and (FC) (excluding the (FC) corner transitions). Such codimension
1 transitions are the ‘generic transitions’ for those cases. This means that these are
the transitions we expect to see if we move our viewing position and direction along
a curve in 3–space. Here we complete this list by including the remaining generic
transitions for each of the remaining four types of configurations already listed.

In contrast with the earlier cases in [DGH1], for a number of these remaining
cases the unstable configurations strictly have codimension greater than 1 when we
consider the configurations and the way that they change up to a local diffeomor-
phism of the image. However the qualitative behaviour is simpler and is captured
by a single parameter, as with a viewpoint moving on a curve in the viewsphere.
Hence, we still refer to them as codimension 1 generic transitions.
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2.1 (Codimension 1 Generic Transitions). The codimension 1 generic tran-
sitions include: (1) - (6) already given in [DGH1], together with additional codi-
mension 1 generic transitions (FC) for corners (7); the cases (8)-(11) are generic
(SFC) transitions, and two general classes of multi-local transitions (12)-(13).

Transitions involving (SC) and (FC)
(1) Semi-Cusp: (SC) and (FC) See Statement 5.1 in [DGH1]
(2) Semi Lips/Beaks: (SC) and (FC), ibid.
(3) Boundary Cusp: (SC) and (FC), ibid.
(4) Light Direction Cusp - View Fold (SC) (see Statement 5.3 and Table 4 of

[DGH1]
(5) Nontransverse Semi-Fold (FC) (type iii) in Statement 5.6(2) of [DGH1]
(6) Fold apparent contour passing over an isolated stable geometric feature

point (FC): in Statement 5.6(3) of [DGH1].
(7) Corners Transitions (FC) (see (3.2)) : This collection of generic transitions

occur when a fold contour generator curve passes through the corner point.
The classification is based on the classification of transitions for crease
curves/contours (which initially ignores occlusions) given in (3.1). This
classification is then expanded by taking into account which possibilities
occur for each of the four corner types, and then including visibility and
illumination.
(SFC) Transitions

(8) Notch or Saddle Corner with Shadow Transitions (SFC) (see 4.1): Transi-
tions occur when a fold contour generator curve passes a (notch or saddle)
corner which has a cast shadow curve. The classification is derived from
that for corners (3.2), taking into account the extra cases resulting from
the presence of the cast shadow curve. The transitions have higher codi-
mension; however, the qualitative transition behavior is still derived from
(3.2).

(9) Apparent Contour Passing Isolated Stable (SF) Point (see 3) of (4.1)): Such
a point will be where a shade curve meets a marking curve, crease or edge
curve. The transition occurs when a fold contour generator curve passes
over the isolated point in a generic way. This means that the contour
generator is not tangent to the crease/edge/marking curve and also the
latter curve is smooth in all the views near the transition moment.

(10) Cast Shadow Curve from an Edge or Crease (see 4), 5) of (4.1)) and (4.2)):
An edge or crease curve casts a shadow curve on the surface (or one sheet)
which it bounds, ending at an edge or crease. A fold apparent contour
generator on the same sheet passes the meeting point on the edge or crease.

(11) Apparent Contours and Shade Curves on Opposite Sheets of Crease, (see
5) of (4.1) and (4.2)): A shade curve meets a crease on one sheet of a crease
and a contour on the other sheets passes the meeting point.
Multilocal Transitions

(12) Multi-Local case for cast shadows (see 1) of (5.1)) : An isolated point results
from stable cast shadow for either a V-point or from a cast shadow curve
transversally meeting an edge, marking curve, ridge crease or shade curve.
The transition involves a fold contour curve moving over the isolated point.

(13) Multi-Local case for occlusions (see 2) of (5.1)). There are two general types:
(i) the curve of an occluding object (edge, crease, or apparent contour)
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passes over a stable isolated point for (SF)); (ii) the occluding curve becomes
tangent to a shade or feature curve, and the transition occurs as it passes
through the tangent point.

We shall make occasional reference to codimension 2 in what follows, and one ex-
ample is touched on in §6. However, from now on, unless explicitly stated otherwise,
the term ‘generic transition’ will always refer to ‘codimension 1 generic transition’.

3. Classification of Generic Transitions for Corners and Contours (FC)

First, we complete the list of generic (FC) transitions by considering the case
where the features are the three creases meeting at a corner. Then, we are consid-
ering the interaction of these creases with an apparent contour on one of the three
sheets of the corner. We note that while apparent contours can occur on more than
one sheet which meet in a corner, it is a consequence of the analysis that when a
generic transition occurs, the apparent contour on only one of sheets interacts with
the corner.

Call the three smooth surface sheets which meet at a corner P,Q and R. They
meet at a common point, the corner point, and P,Q,R meet pairwise in three crease
curves which themselves meet at the corner. As explained in [DGH1, §1], there are
four basic types of corners: concave, convex, saddle and notch, as illustrated in
figure 1. We will denote them respectively by: Cc, Cv, S, and N.

a) b) c) d)

Figure 1. General (curved version) Corner Types: a) is a convex
corner (Cv); b) is a concave corner (Cc); c) is a saddle corner (S); and
d) is a notch corner (N).

The surface sheets divide space around the corner point into two regions, thought
of as a region occupied by an object and the other as ‘empty space’. A convex or
notch corner has this empty space occupying more than a hemisphere of solid angle
around the corner point whereas a concave or saddle corner has it occupying less
than a hemisphere.

Also, we first consider the case where the illumination is assumed to be uniform
on each sheet, which means that a sheet is either entirely lit or entirely in shadow;
this is the case of (FC) (later in §4 we consider the transitions where there is a cast
shadow from one of the creases onto one of the sheets). By the illumination of a
corner we mean the assignment to each sheet of being entirely lit or in shadow. For
example, the possible stable configurations of corners with illuminations are given
in figures 13, 14, and 15 of [DGH1].

Third, there is the issue of visibility. Suppose the object is viewed so that we
can see the corner, that is we can see the point where the three creases meet
(even though some of the creases and sheets themselves may not be visible). If the
object were transparent, then we would see all of the crease curves and apparent
contours. We refer to this as the crease curves/contours configuration. Changing
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the direction of view to the opposite direction may alter the visibility of some of
the creases and sheets, even though the crease curves/contours configuration would
remain unchanged.

Fourthly, for the classification of codimension 1 transitions for corners (FC) we
need only consider the case where one of the three surface sheets, say R, has an
apparent contour in the direction of view (this is the case of a “C-semi-fold” in
[Ta1, Ta2]). The properties of this apparent contour can change as we move the
viewpoint along a curve in space. A fourth fundamental distinction among these
transitions can be explained with reference to the surface R and its two crease
curves (where it meets P and Q, see figure 2). We can extend R to be part of a
smooth surface, and the contour generators on R can be extended to curves in the
smooth surface which also projects in the viewing direction with contour generators
given by the extended curves. We obtain a different corner by replacing R by its
complement in the smooth surface as illustrated in figure 2. The complement then
has its contour generator curves which are the complements of those in the initial
R. We shall refer to this process as taking the complementary contour curves in
the complementary sheet. The contour generators can meet the crease curves of R
in two different ways as illustrated in figure 2. Together with the complementary
contours, this leads to one of the four situations illustrated schematically in figure 2.

( a ) ( b ) ( c ) ( d )

Figure 2. A schematic diagram of one of the three sheets, R say,
making up a corner. The dark grey lines are the crease curves where
the sheet R meets the other two sheets, P and Q, and the corner point
where all three sheets meet is marked with a dot. The thin black lines
are representations of contour generators on R which slide across R as
the viewpoint moves. In (a) and (b) the contour generators meet both
creases, and then neither crease. Each intersection of crease and contour
generator produces a ‘crease semi-fold’, in the image. In (c) and (d),
on the other hand, the contour generators meet one crease at a time,
throughout the viewer movement. The pair (a) and (c) represents a
concave or convex corner and (b) and (d), a saddle or notch corner.
(a) and (c) are referred to as ‘one quarter sheet’ and (b) and (d) as
‘three-quarter sheet’.

Hence, for a given crease curves/contours configuration for a corner, there are
four factors which will alter the possible image of the corner: corner type, illu-
mination, visibility, and complementary contours. The proceedure for classifying
transitions for corners in the case (FC) is to first classify the possible transitions
for the crease curves/contours configurations, and then to further refine the clas-
sification by taking into account the four additional characteristics: corner type,
illumination, visibility, and complementary contours.
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Classification of Corner Transitions (FC) via Crease Curves/Contours
Configurations. We separate (FC) transitions for corners into eight distinct cases
by means of the following three properties.

Contour/Crease Number: In figure 2 we show abstractly the two different ways
in which a contour generator can move across a surface which forms one of the
three sheets of a corner. We observe that the contour generators can meet the
crease curves in either two points or zero points in cases a) and b), and then during
the transition this number changes, or in exactly one point as in (c) and (d), and
this number does not change during the transition. Also these numbers do not
change if we replace R by its complementary sheet. We refer to the maximum
number of meeting points as the contour/crease number for the transition. This
number will be 1 or 2.

Crease Direction: In the image, two of the three creases (and also the apparent
contour) will become tangent at the moment of transition. This is because the
view direction lies in the tangent plane to the sheet R and therefore this plane is
viewed as a single line in the image. Any curve in that tangent plane through the
corner point will therefore therefore be seen as tangent to this line. This includes
the two crease curves which lie in the sheet R. The two creases in the image either
approach the corner point from the same direction or the opposite direction. The
crease direction is then denoted respectively by s or o.

Apparent Contour Position: Consider the property of whether the three creases
in the image create a ‘reflex angle’ (> 180 degrees). When two creases as above are
tangent from the same direction this property will hold throughout the transition;
when they are tangent from opposite directions the property will hold only on one
side of the transition. Now follow this region through the transition and ask: is the
apparent contour in the image entirely in this region throughout the transition? If
‘yes’ the Apparent Contour Position will be denoted by y and if ‘no’, by n.

Together, these three invariants provide a triple of values (1/2, s/o, y/n) with
eight distinct possibilities. In figure 3 is given eight “basic” configurations which
correspond to all eight possible triples. For any triple (a, b, c), we then have an
associated configuration, which we denote by (a, b, c)∗, obtained using the comple-
mentary contour curve configuration to that associated to (a, b, c). This comple-
mentary configuration will have the same invariants. Then, these configurations
yield a complete classification of the crease/contour configurations.

3.1 (Classification of Crease Curves/Contours Configurations for (FC)
Corner Transitions). The classification of the 14 crease curves/contours config-
urations for generic (FC) corner transitions is given as follows.

(1) The classification of “basic” crease curves/contours configurations for cor-
ner transitions (FC) corresponds exactly to the eight possible combinations
of the triple of invariants (1/2, s/o, y/n). They are illustrated in figure 3.

(2) The four complementary contour configurations corresponding to basic ones
with contour/crease number 2 are the configurations which have apparent
contours with two components (see e.g. figures 4, 5).
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(3) For those basic configurations with contour/crease number 1 and the same
crease direction (1, s, y/n) (which is the same direction as the shown appar-
ent contours), the complementary contour configuration will have apparent
contours with opposite direction from the creases.

(4) For those basic configurations with contour/crease number 1 and the oppo-
site crease direction (1, o, y/n), the complementary contour configurations
are equivalent to the original configurations.

( 2 , s , y ) ( 2 , s , n )

( 2 , o , n )( 2 , o , y )

( 1 , s , y )

( 1 , o , y ) ( 1 , o , n )

( 1 , s , n )

Figure 3. The eight basic crease curves/contours configurations for
corner transitions. Creases are represented by grey curves and appar-
ent contours by black curves corresponding to the triples given in (3.1).
Open circles represent tangential contact and squares represent trans-
verse crossings. Transitions occur in each horizontal sequence. We do
not take account here of corner type, illumination, nor visibility; and
each case has a ‘complementary’ version, where the apparent contour
is replaced by the complementary contour curve. One case, (2, s, y), is
given in full detail in figures 4, 5. The complete set is available at [C].

We can then combine the classification of the crease curves/contours configura-
tions for corner transitions given in (3.1) together with the additional three char-
acterizing properties of corners, namely, corner type, illumination, and visibility, to
give a classification of the generic transitions for corners and contours (FC).

3.2 (Generic Transitions for Corners and Apparent Contours (FC)). The
generic transitions for local configurations involving corners and apparent contours
(FC) can be classified as follows.
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Crease Curve/Contour Corner Type Illustrated
Configuration

(2, s, y) Cv, S, N Cv fig. 5
(2, s, n) Cv, S, N
(2, o, y) Cv, S, N Cv fig. 7
(2, o, n) Cv, Cc, N Cc fig. 6

(2, s, y)∗ S, N N fig. 5
(2, s, n)∗ S, N
(2, o, y)∗ N N fig. 7
(2, o, n)∗ S, N N fig. 6

(1, s, y) Cv, S, N
(1, s, n) Cv, S, N

(1, o, y) = (1, o, y)∗ Cv, S, N
(1, o, n) = (1, o, n)∗ Cc, Cv, S, N

(1, s, y)∗ N
(1, s, n)∗ S

Table 1. Corner types having transitions corresponding to crease
curve/contour configurations.

(1) For each of the 14 crease curves/contours configurations, the corner types
having transitions with the configuration are given in Table 1.

(2) Convex corner types occur for all of the eight basic crease curves/contours
configurations, however, they do not occur for the complementary contour
configurations (except the self-complementary (1, o, y/n)).

(3) Concave corner types only occur for the crease curves/contours configura-
tions (2, o, n)) and (1, o, n)).

(4) Saddle corner types occur for all eight configurations, though in the case
of type (2, o, n) only for the complementary configuration (2, o, n)∗, and in
types (2, o, y) and (1, s, y) only for the standard configuration.

(5) Notch conrner types occur for all eight configurations, though in the case
of type (1, s, n) only for the standard configuration, not for (1, s, n)∗.

(6) The number of cases is large and we have not attempted to illustrate all
of them here. However a table of all cases of visibility, together with some
more examples of actual surfaces, is available in [C]. The full list of visibility
cases for type (2, s, y) appears in figure 4 with illustration in figure 5; other
cases are illustrated more shortly in figures 6, 7. See Table 1.

See Section 7 for an indication of how we arrive in [DGH] at this exhaustive list
by means of realization of abstract forms of singularities.

Remark 3.3. The cases of concave corners were originally classified by Tari, who
concentrated on analyzing one type of transition (for the case of crease/contour
number 1) and gave the normal forms for the equations. That classification extends
here to the four types of corners, yielding the classification given in (3.2).
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V i s i b i l i t y :  C o n v e x

( i )

( i i )

B a s i c  p i c t u r e  ( 2 ,  s ,  y )

( 2 ,  s ,  y ) *

S a d d l e : ( i ) ,  ( i i ) ,  t o g e t h e r  w i t h  ( i i i )  a n d  ( i v * )  b e l o w

( i i i )

( v )

( v i * )

( i v * )

N o t c h  ( i i i ) ,  ( i v * )  t o g e t h e r  w i t h

Figure 4. Complete list of transitions on corners of type (2, s, y),
showing visibility. The grey lines are the creases and the black line
is the apparent contour. The asterisk * indicates that the apparent
contour is of the ‘complementary’ type.

4. Classifications of Generic Transitions for Triple Interactions (SFC)

Next, we give in (4.1) the local classification for the interactions of all three
ingredients. This will be further divided into subclassifications in terms of the
distinct geometric features.

4.1 (Generic Transitions for Configurations involving all three Geometric
Features, Shade/Shadow curves and Apparent Contours (SFC)).

First, the configuration of geometric features and shade/shadow curves are stable
and are given by figures 9, 10, 12, 15 and 16 in [DGH1]. Second, if we ignore the
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t h r e e - q u a r t e r  s h e e t

Figure 5. Top row: a transition on a convex corner of type (2, s, y)(ii)
(see figure 4). Note that it is the arrangement of crease edges and
contour which is important, not their shapes, when comparing actual
examples with the schematic diagrams in figure 4. The right-hand figure
is a wireframe view of the figure to its left, showing the occluded self-
intersection of creases in the image. Bottom row: transition on a notch
corner of type (2, s, y)(iv*).

shade shadow curves, the underlying interaction of geometric features and appar-
ent contours belongs to the classification in Statement 6.6 of [DGH1]. Third, this
classification is then refined by taking into account the shade/shadow curve config-
uration. The classification of generic transitions for local configurations involving
all three geometric features, shade/shadow curves, and apparent contours is given
as follows.

(1) Marking Curve: The marking curve stably intersects a shade curve trans-
versely (i.e. nontangentially). The view projection is a fold mapping at
the intersection point, whose tangential and kernel directions are distinct
from the tangent lines for the other two curves. The generic transition cor-
responds to movement of the fold curve from the intersection point. See
figure 8.

(2) Edge Curve: The stable configurations involve a shade/cast shadow curve
meeting the edge curve transversely ((this is illustrated in g) and h) of
figure figure 10 of [DGH1]). A codimension 1 transition occurs when a fold
contour generator curve moves over the meeting point of the edge with the
shade/shadow curve (figure 8); this can also occur on one sheet of a crease
(see the analogous (4) below and (4.2)).

(3) Crease Curve Meeting a Shade/Shadow Curve: The stable (SF) interac-
tions involving creases are given in figure 12 of [DGH1]. In each of these
cases there is a distinguished point on the crease where a shade/cast shadow
curve meets the crease (and in d) of that figure 12 both occur). The generic
transitions for the shade curve on one sheet correspond to the possible cases
where a fold apparent contour generator on either sheet passes the distin-
guished point (the other cases, listed in Statement 6.6(2) of [DGH1], will
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h i d d e n  c o r n e ra p p a r e n t  c o n t o u r

( 2 , o , n ) ( 2 , o , n ) *

(i) (ii) (iii) (iv) (v)

Figure 6. (i)-(ii): indicate a concave corner transition with crease
curve/contour configuration (2, o, n), together with the corresponding
schematic diagram from figure 3, but with visible parts only indicated.
Notice that it is not possible to determine from (i) whether the corner
is concave or convex, but (ii) settles that it must be concave. (iii) is a
wireframe view of (ii) showing the hidden corner. (iv) shows a notch
corner of type (2, o, n)∗ at the transition moment. obtained by replacing
the curved ‘quarter-sheet’ in (i) with a ‘three-quarter sheet’. Note that
all creases are visible, but both parts of the broken apparent contour
are occluded. (v) is a wireframe view of (iv).

have higher codimension in the presence of the shade/shadow curve). These
possible transitions are given in (4.2) and are illustrated in figures 9, 10 and
11.

(4) Corner: The stable (SF) cases for corners occur when for a notch or saddle
corner, one of the crease curves casts a shadow on one of the sheets meeting
at the corner. These include the cases for saddle corners, e), f), and g) of
figure 15 in [DGH1] and for notch corners, i), k) and l) of figure 16. The
generic transitions occur for these cases when a fold contour generator on
one of the sheets moves across the corner point. The classification of these
possibilities is given in (4.3) and involves a refinement of the classification
of corner transitions involving notch or saddle corners given in (3.2) and
Table 1. See figures 12 and 13. A complete list of the visibility possibilities
for the notch and saddle cases is available in [C].

4.2 (SFC Generic Transitions involving Crease Curves). The Generic (SFC)
transitions involving a crease curve and shade/cast shadow curve are obtained from
the stable (SF) interactions involving creases given in figure 12 of [DGH1]. The
generic transitions correspond to the possible cases where a contour generator on
one of the crease sheets, which gives a fold contour in the image, moves over the
distinguished point on the crease where a shade/cast shadow curve meets the crease.
The cases are distinguished by whether there is a shade curve or casr shadow curve,
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a p p a r e n t
c o n t o u r

( 2 , o , y )

a p p a r e n t
c o n t o u r

a p p a r e n t
c o n t o u r

( 2 , o , y ) * ,  n o t c h

 s h e e t34

(i) (ii) (iii) (iv)

( 2 , o , y ) * ,  n o t c h

 s h e e t3
4

a p p a r e n t
c o n t o u r

(v) (vi) (vii)

Figure 7. The schematic diagrams, from figure 3, show only the vis-
ible creases and contour. Parts (i) and (ii) are opposite views of the
same convex corner involved in the transition for (2, o, y); this transi-
tion cannot occur for concave corners. Parts (iii) and (iv), which are
also opposite views, show a notch corner of type (2, o, y)∗ (saddle corners
cannot be of this type). They are obtained from (i) and (ii) respectively
by replacing the ‘one-quarter’ curved sheet with a ‘three-quarter sheet’.
Parts (v)–(vii) show a transition on a notch of type (2, o, y)∗; note that
(v) is qualitatively the same as (iv), with all creases and both parts of
the broken contour visible.

or both, and whether the apparent contour generator is on the same sheet as the
shade/shadow curve. The cases are then given as follows.

(1) Contour Generator and Shade Curve on Different Sheets (Ridge Crease):
For ridge creases a) and b) [DGH1, Fig. 12], there are two cases for each
where the contour generator is on the sheet without the shade curve. For
one of these the apparent contour is visible, and for the other it is not visible
(see Cases (2) and (3) respectively in figures 9, 10).

(2) Contour Generator and Shade Curve on Same Sheet (Ridge Crease): The
transition occurs when the apparent contour generator moves past the dis-
tinguished point where the crease curve meets the shade curve. Since the
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I n  t h e  f o r m e r  c a s e  t h e  m i d d l e  a n d  r i g h t - h a n d  f i g u r e s  h a v e  b a c k g r o u n d  i l l u m i n a t i o n  o n l y .

E d g e
L i g h t

R e g i o n  i n
s h a d o w

C o n t o u r

C
E

C S

E d g e ,  c a s e  3 :  t h e  e d g e  t h r o w s  a  c a s t  s h a d o w  o n  t h e  s u r f a c e .  I n  t h e  s c h e m a t i c  d i a g r a m  
o f  t h e  t r a n s i t i o n  C  =  c o n t o u r ,  E  =  e d g e ,  C S  =  c a s t  s h a d o w .  V i e w i n g  f r o m  t h e  o p p o s i t e
d i r e c t i o n ,  a l l  o f  t h e  e d g e  i s  s e e n  a n d  t h e  v i s i b l e  a n d  o c c l u d e d  p a r t s  o f  C S  a r e  r e v e r s e d .

C a s t  S h a d o w

Figure 8. SFC Transition involving the interaction of a mark-
ing or edge curve and a shade/cast shadow curve with an ap-
parent contour. The marking curve (M) or edge curve (E) is grey,
the contour (C) is black and the shade curve (S) or cast shadow (CS) is
also black. Dashed curves denote occluded curves. The top row shows
the marking curve case and the other rows the three edge cases, with
the last row for a cast shadow curve.

second sheet does not play a role except possibly to occlude the whole tran-
sition, this is covered by the corresponding Edge case Theorem 4.1(2); see
figure 8.

(3) Contour Generator and Cast Shadow Curve on Different Sheets (Ridge
Crease): For ridge crease e) [DGH1, Fig. 12], the crease casts a shadow on
one of the sheets. The contour generator can occur on the sheet without the
cast shadow. The contour generator can be either visible for case e) or not
visible for case f) (see (1) and (4) in figures 9 and 10; also the cast shadow
can be invisible as in (5) of figure 10.
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(4) Contour Generator and Cast Shadow Curve on Same Sheet (Ridge Crease):
The contour generator occurs on the same sheet as the cast shadow. As in
(2) above this is essentially an ‘Edge’ case since the second sheet of the
crease plays no role. See figure 8.

(5) Shade Curve on Sheet Casts Shadow Curve on Different Sheet (Valley
Crease): For valley crease d) [DGH1, Fig. 12], a shade curve on one sheet
casts a shadow on the other sheet. There are two cases depending on the
visibility of the cast shadow (see figure 11).

Next we give the corresponding generic (SFC) transitions for corners.

4.3 (SFC Generic Transitions involving Corners). The stable (SF) cases
for corners occur when for a notch or saddle corner which has a cast shadow
on one of the sheets, an apparent contour generator on one of the sheets moves
over the corner point, as stated in (4.1). For a notch or saddle corners the types
(2, o, n), (1, o, n), (1, s, n) and (1, o, y) can all give rise to this transition. The visi-
bility diagrams for the saddle case are in figure 13 and illustrations of three notch
cases are in figure 12. Full visibility diagrams for the saddle case are available in
[C].

5. Classifications of Generic Transitions: the Multilocal Case

Stable Multilocal Classification: Before considering the generic transitions in
the multilocal cases, we first refer to the classification of stable multilocal configu-
rations. These were given in figure 20 in [DGH1] to provide a complete list of stable
configurations and were briefly discussed in §2.5 of that paper. These arise from
two distinct occurences: the occlusion of one geometric feature or apparent contour
by one from a distant object (or part of the same object) and the intersection of
a cast shadow (from a distant object or part of the same object) with a geometric
feature or apparent contour.

The occlusion results from the partial occlusion of a marking curve, edge curve,
crease curve, fold apparent contour, or shade/shadow curve by a region of an object
bounded at the occlusion point by either an edge, ridge crease, or apparent contour.
Genericity implies that the occluding and the occluded curves meet nontangentially.
This is the “Hard T” in [DGH1, Fig. 20] and is traditionally referred to as a “T-
junction”.

Because the light source and object are fixed, we assume the cast shadow from
a distance meets any other geometric feature generically. There are two general
classes of possibilities. One is that the cast shadow is a smooth curve which cuts
across non-tangentially a marking curve (the “Hard-Soft X” [DGH1, Fig. 20]),
both surfaces meeting in a crease curve (the “Hard-Soft Broken X” [DGH1, Fig.
20]), edge curve, one surface of a crease curve, or apparent fold contour (all “Soft
T” [DGH1, Fig. 20]). Also, generically the cast shadow curve does not intersect
isolated points such as corner points. The second possibility is that the shadow is
cast by a geometric feature such as a V point from a corner or cast shadow curve
intersecting a shade/shadow curve (“Soft V” [DGH1, Fig. 20]). The cast shadow of
the vertex of the V lies in a smooth part of a surface, that is, not on a crease, edge
curve, nor marking curve, with the shaded region filling the interior or exterior of
the V . These possibilities lead to the classification given in [DGH1, Fig. 20].
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( 1 )

( 2 )

Figure 9. SFC Generic Transitions for a Ridge Crease, Cases
(1) and (2) The schematic diagrams of each case illustrate the tran-
sition, as the cast shadow of the crease (SCr, Case (1)) or the shade
curve (S, Case (2)) moves across the point where the crease (Cr) meets
the apparent contour (C). The shaded figures illustrate, for the transi-
tional moment, the possible illuminations of the regions on the crease.
The cast shadow and shade curve are artificially emphasized in white in
these shaded figures.

Generic Multilocal Transitions: With the knowledge of the stable multilocal
configurations, we then complete the catalogue of generic transitions by giving those
for the multilocal cases. These arise as transitions for the two distinct classes of
occurences involving occlusion or cast shadows. These are given by the following
classification.

5.1 (Generic Transitions for Multilocal Configurations). The generic transi-
tions for multilocal configurations involving some combination of geometric features,
shade/shadow curves, and apparent contours are given as follows:

Occlusion:

1 Configuration Curves Meeting Tangentially: The image of a smooth con-
figuration curve, namely, an edge curve, ridge crease curve with one sheet
visible, or apparent contour curve, for an object meets tangentially the im-
age of another smooth configuration which may also be a marking curve.
As the tangency disappears, one curve occludes a segment of the other as
in Fig. 14 (this is analogous to the semi-lips transitions for the local case
in Table 3 of [DGH1]).
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o n e  i l l u m i n a t i o n  o n l y
S C r

Figure 10. SFC Generic Transitions for a Ridge Crease, Cases
(3)–(5). In these cases there is no visible change since either the con-
tour is occluded (cases (3) and (4)) or the cast shadow of the crease is
occluded (case (5)). For the notation, see figure 9.
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S
C
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S S ,  o c c l u d e dC r
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S S  p a r t l y  v i s i b l e  m a k i n g
a  s m a l l  d a r k  r e g i o n

S S

S

C
C r

Figure 11. SFC Generic Transitions for a Valley Crease. The
shade curve (S) (here artificially emphasized in white) on one sheet of
the valley crease casts a shadow curve (SS) on the other sheet. The
crease (Cr) is again the grey curve. Again the transition results from
the movement of the apparent contour passing the meeting point of (S)
and (SS) with (Cr).
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C S

C S
A C

( 2 , s , y ) , ( i i i )

( 2 , s , n )

C S
C r

C S

( H i d d e n  p a r t s  o f  c a s t  s h a d o w  a n d  c r e a s e  a r e
d r a w n  d a s h e d  f o r  t h e s e  t w o  e x a m p l e s )

Figure 12. Two examples of notch corners with cast shadow transi-
tions, of types (2, s, y) and (2, s, n). CS = cast shadow of a crease, AC =
apparent contour, Cr = Crease. The label (2, s, y)(iii) refers to figure 4.
A complete list with visibility indicated is available at [C].

2 Configuration Curve Moving Across Isolated Configuration Point: A con-
figuration curve which is an edge curve, ridge crease curve with one sheet
visible, or apparent contour curve moves over (and in front of) an isolated
configuration point which can be any isolated type point in [DGH1, Fig. 3]
(this only excludes the “separating curves”). At the point where it meets
the isolated point its tangent line is distinct from the tangent lines of any
of the curves the isolated point. For each type of isolated point, there are
distinct transition types depending on the relative positions of the tangent
lines and the side of the configuration curve on which the front object lies.
This is illustrated in a) of Fig. 15.

3 Isolated Configuration Point Moving Across Configuration Curve: An
isolated configuration point on an object which does not fill a neighborhood
of the image of the point can be any of the stable types: (SC) semifold,
(SF) edge curve of type c) - h) in [DGH1, Fig. 10], (SF) ridge crease of
type c) in [DGH1, Fig. 12], (FC) creases of type a), a’), d), or d’ ) in
[DGH1, Fig. 13], (F) onvex corner of type e) - i) in [DGH1, Fig. 14], (SF)
notch corner of types g), h), l) in [DGH1, Fig. 16], or (FC) or (F) marking
curve of types a), c), d), e), in [DGH1, Fig. 17]. Such a point moves past
(and in front of) a smooth configuration curve of any type. Again there are
different transitions depending on the relative positions of the tangent lines,
as illustrated in b) of Fig. 15.
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 ( 2 , o , n )  
C S

 ( 1 , o , y )   
C S

 ( 1 , o , n )  
C S

 ( 1 , s , n )  C S

Figure 13. Schematic pictures of all the saddle corners with cast
shadow transitions, showing visibility. CS = cast shadow of a crease,
and the creases are grey, the apparent contour black. The labels refer
to figure 3.

Cast Shadow from a Distance:

4 Configuration Curve Tangent to Cast Shadow Curve: A configuration
curve which is edge curve, ridge crease curve, or fold apparent contour for
one object becomes tangent to the image of a smooth cast shadow curve on
another object (or distant part of the same object). As the configuration
curve moves past the tangent point, either the cast shadow breaks into two
components or two components join together (see Fig. 14).

5 Configuration Curve moving across a V-point: A configuration curve which
is edge curve, ridge crease curve, or fold apparent contour for one object
moves across the image of a V-point, formed as a cast shadow so the V-point
becomes occluded or unoccluded.

6. A codimension 2 example

Codimension 2 phenomena are those which are visible only from special isolated
directions: in a general ‘fly-past’ an observer will not see these phenomena since
a general path in the viewsphere will miss the isolated points. Such phenomena
are therefore hard to realize, and for this reason we do not provide an extensive
classification here. The usual way to describe them is to ‘circle round’ one of the
special directions and observe all the codimension 1 transitions which occur during
the circuit, showing the result on a ‘clock diagram’.

Here is one brief example to illustrate the ideas. The ‘semi-swallowtail’ is in-
cluded in Table 3 of [DGH1] for surfaces with boundary edges (among other config-
urations). figure 16 shows two views of a surface with boundary edge, one of them
with the view in the special ‘semi-swallowtail’ position and the other slightly moved.
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b)

a)

Figure 14. Abstract representation of the tangency transitions 1) and
4) in (5.1), where.for 4) the configuration curve which is behind would
denote the cast shadow curve. The transitions can occur in either di-
rection. They are analogues of the lip–beaks transitions given in [DGH1].

a)

b)

Figure 15. Two examples of the transitions involving a configuration
curve meeting and moving past and occluding an isolated configuraton
point 2) given by a), or an isolated configuration point moving across a
configuration curve 3) given by b) in (5.1). The transitions can occur in
either direction.

Other slight movements around the initial direction will reveal other configurations
of apparent contour and boundary edge.

7. Explaining How Singularity Theory Yields the Classifications

We explain in this section how we apply the methods of singularity theory to
obtain the classsifications of both the stable views and the generic transitions occur-
ring for configurations of geometric features, shade/shadow curves, and apparent
contours.

We assume that for a fixed light source the shade/shadow curves form a stable
configuration with any geometric features of M (without involving the viewpoint).
First, we carry out a classification of the stable configurations that are possible.
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a )

b )

C
E

a ) b )

c o n t o u r
e n d i n g

Figure 16. a): a surface with a boundary edge E and apparent con-
tour C viewed in the special ‘semi-swallowtail’ direction. Geometrically
this means that the view direction is asymptotic and has higher (‘4-
point’) contact with the surface at the point where E and C meet. b):
the view is slightly moved to reveal a contour ending point (cusp on
the apparent contour). The ‘clock diagram’ above illustrates the way in
which the configuration of boundary edge and apparent contour changes
as the viewpoint is moved around the ‘swallowtail’ direction in the cen-
tre. The views a) and b) are illustrated schematically at the centre and
one point of the clock.

Then, to classify the interactions of apparent contours with these stable configura-
tions, we introduce the equivalence relation for view projections which will allow
local changes of coordinates on the viewplane and on M which preserve the stable
shade/shadow–geometric feature configuration.

Reduction to an abstract classification of local mappings. We let M denote
a surface in 3-space R

3 which at a point p has one of the geometric features we have
already introduced. The geometric features consist of sheets of the surface, their in-
tersection along crease curves or corner points, or edge curves, and surface marking
curves. These make up a configuration which we shall denote by Xg. See [DGH1],
Table 1. The shade and shadow curves (if present) make up a configuration on M
which we shall denote by Cg.
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To model the directions for light and viewpoint, we consider two projection
mappings near p ∈M as in (7.1). Here, ϕ is the orthogonal projection of M in the
view direction (“towards the viewer”), and ψ is the projection of M in the direction
“towards the light”. By translation we may assume p projects to the origin 0 in
both the light and view directions.

(7.1)

R
3,p ⊃M,p

ψ
−−−−→ R

2, 0

ϕ





y

R
2, 0

One way to understand the geometric features of (7.1) is to classify such diagrams
of mappings allowing nonlinear change of coordinates for M and each of the R

2

representing planes perpendicular to the light and view directions. This was the
approach proposed by [HM] and used by Donati in [Di] and [DS]. There is a funda-
mental problem with this approach if we hope to use all of the tools of singularity
theory; namely, such a diagram is an example of a “ divergent diagram of mappings”
and a basic theorem needed for singularity theory does not apply (see DuFour [Du]).
We take an alternate approach which extracts the essential features of the stable
interactions of shade/shadow with geometric features. This yields either a subspace
Xg or pair of subspaces (Xg, Cg) of M . Then, we introduce an equivalence among
local mappings on M where we allow a local change of coordinates for the view-
plane R

2 and also for M , except we require that we preserve the configuration Xg,
resp. (Xg, Cg). We call this S–equivalence (which differs from the more restrictive
notion of S–equivalence used in [HM] and [Di]).

In order to make these concepts precise and to carry out the calculations we need
to parametrize the surface M locally, say by χ : R

r, 0 → R
3,p. For a single smooth

surface r = 2 and R
2 is the “parameter plane” of the surface. For surfaces with

creases or corners we use r = 3 and the local models explained in §1 of [DGH1]
would provide a parametrization. For example, for a corner, the three sheets are
parametrized by appropriate parts of the three coordinate planes in R

3; and if the
corner is convex, the region bounded byM is parametrized by the first octant where
all coordinates are ≥ 0. We then define a configuration C in R

r corresponding to
Cg via χ. In general for r = 3, we have a pair (X,C) where X , which corresponds
to Xg via χ, consists of the appropriate parts of the coordinate planes in R

3, whose
images under χ make up the sheets of M , together with curves corresponding to
any surface markings.

Because we are concerned only with local classifications of view projections near
p, we classify local mappings f0 : R

r, 0 → R
2, 0 under arbitrary local diffeomor-

phisms in the target and local diffeomorphisms in the source preserving C for r = 2
or the pair (X,C) for r = 3. This equivalence is called CA or X,CA equivalence.
It is a specialized form of the A–equivalence used for apparent contours. These
equivalences can be viewed in terms of the groups of diffeomorphisms which give
the equivalences, which are denoted by the same symbols.

If now we move our viewer direction, we can locally identify the new viewer plane
with the original y-z plane, but the local mapping will have changed and depending
on the surface, the point p need no longer go to 0 under the identification of planes.
Because we can move viewer direction in two independent directions u = (u1, u2)
orthogonal to the x axis, we obtain a family F1(x,u) : R

r+2, 0 → R
2, 0 such that
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when u = 0, then we recover f0. Such a family is called a (2–parameter) unfolding
of f0. Along with determining f0 we also wish to determine the form of these
unfoldings. We give further details of all of these reductions in [DGH].

Methods of Singularity Theory. To classify both the local mappings and their
unfoldings we now will employ methods from singularity theory. Corresponding to
the equivalences are analogous equivalences of the unfoldings. These equivalences
of both local mappings and unfoldings are what singularity theory allows us to
analyze. We think of these in terms of groups G applied to a space of local mappings
F and their unfoldings. These groups and spaces can be thought of as infinite
dimensional manifolds and there is a specific way to determine their tangent spaces.
Provided their tangent spaces have a certain special algebraic structure and the
groups and unfoldings satisfy several natural conditions, then the basic theorems of
singularity theory apply for the equivalence defined by them, see e.g. [D1] (or the
more expository (but still very mathematical) [D1a]). Equivalence groups which
satisfy these conditions are usually referred to as geometric subgroups of A or K. In
our case, for stable configurations of geometric features with shade/shadow, the C
or (X,C) form a special semianalytic set, or special semianalytic pair, as explained
in [DGH]. This provides the conditions needed to ensure that both CA and X,CA

are geometric subgroups of A so the basic theorems of singularity theory are valid.
What are these theorems and how do they allow us to carry out the classifications

which we have given? From the tangent spaces to the groups we can compute the
tangent spaces to the subspace formed from the local mappings which are equivalent
to each other (these form “orbits of the group action”). Although both the space
of local mappings and the equivalence class are each infinite dimensional, it is
possible to determine a dimension measuring by how much the full space is larger
than the subspace formed by the equivalence class. This number is called the G–
codimension and is the same for any local mapping in the equivalence class (here
G denotes one of our equivalence groups). The first major theorem of singularity
theory, the finite determinacy theorem, asserts that if f0 has finite G–codimension,
then it is equivalent under G–equivalence to a finite part of its Taylor expansion.
The original finite determinacy theorem for the groups A (and several others) was
due to Mather [MaIII]; and a form which is applicable for geometric subgroups is
given in [D1].

This theorem is what allows us to give, as in [DGH1], Tables 2 and 4, local models
which are polynomial but represent an entire equivalence class of local mappings.
Moreover, together with a further argument of Mather [MaIV], it allows us to re-
place the problem of classifying local mappings within the infinite dimensonal space
by that of classifying finite parts of Tayor expansions, reducing to problems involv-
ing finite dimensional Lie groups. This approach allows the further introduction
of other extended Lie group methods in [BDW] and [BKD], which allow symbolic
computations to be carried out on a computer.

Second, if f0 has finite G–codimension, then it is possible to determine all possible
ways that f0 can be locally deformed. There is a special unfolding, the (uni)versal
unfolding F (x,v) of f0 which has the property that all other unfoldings F1(x,u)
of f0 are obtained from F by a mapping of the unfolding parameters v = ψ(u). A
second major theorem of singularity theory, the (uni)versal unfolding theorem, gives
a sufficient condition in terms of tangent spaces and the infinitesimal deformations
of F in the parameter directions to ensure that F is a versal unfolding. It gives a
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specific method to construct versal unfoldings of a finite codimension local mapping
f0, and shows that the codimension specifies how many unfolding parameters are
needed. Again the versal unfolding depends on the equivalence group G. It also
goes back to Mather who implicitly used it in [MaIV] and explicitly stated it for
one equivalence group in [Ma3]; it was given for A and another equivalence group
by Martinet [Mar], and again is generally valid for geometric subgroups as shown
in [D1].

This is applied in our situation for the germs of codimension ≤ 2, which we clas-
sify for the various configurations X and (X,C). (However, we have only touched
on codimension 2 here, in §6.) Once we verify that the local mappings occur as the
result of projection from a surface with geometric features, we may verify the crite-
rion and apply the versal unfolding theorem to conclude that movement by viewer
direction gives a versal unfolding of the local mapping. Because versal unfold-
ings for equivalent local mappings are themselves equivalent as unfoldings, we have
completely determined the local transition behavior as we change view direction.
Furthermore, the unfolding theorem implies that local mappings of codimension
0 are stable under viewer movement. This also allows us to identify the stable
configurations.

The same theory applies to the multilocal case, providing a classification of mul-
tilocal mappings, yielding the stable multilocal mappings, and the versal unfoldings
for multilocal mappings. These provide the corresponding stable multilocal config-
urations and the generic transitions

There is one point which distinguishes certain parts of the classifications we
obtain from the earlier classification of apparent contours given in [DGH1], Ta-
ble 2. In this table, there is a finite list of equivalences classes represented by
the polynomials. By contrast, for certain stable configurations of geometric fea-
tures and shade/shadow curves, the list of local mappings of codimension ≤ 2 is
infinite. There are families of equivalences classes described by parameters, called
moduli, which have the property that continuously changing the parameter con-
tinuously changes the equivalence classes of local mappings. To overcome this
problem and reduce to a finite classification, we have to replace the equivalence
by a corresponding topological equivalence, where diffeomorphisms are replaced by
(piecewise differentiable) homeomorphisms. Now the equivalence captures the qual-
itative properties of the configuration, which is what our visual recognition really
captures as well. The topological classification allows us to reduce to a finite number
of representative parameter values to obtain an inclusive classification. This also
reduces the codimension by the number of moduli. For example, the topological
classification already appears for “lips /beaks on the boundary” and the “double
cusp” in [DGH1], Table 3 and the “semi–swallowtail” in [DGH1], Table 4. In this
paper it appears in many cases, where the model mappings have higher codimen-
sion, but all but one of the parameters in the versal unfolding do not alter the
topological behavior. Hence, there is only one interesting transition for the model
and this is the generic transition.

There are given in [D2] analogues for topological equivalence of the main the-
orems of singularity theory for the finite determinacy, classification, and versality
theorems. These allow us to carry out the analogous steps of the classification in
these cases. This additional feature illustrates that there are many important but
subtle points in the application of singularity theory that we have had to gloss over
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in this brief explanation. A complete and thorough treatment is carried out in
[DGH].

Carrying out the Classification. To carry out the classification, we must first
classify the stable configurations of geometric features with shade/shadow curves.
We do this by applying the classification of Tari, taking into account visibility
and allowing the multiple types of corners. Then for each stable configuration
we obtain, we must carry out the classification of the abstract local mappings
by the equivalence which preserves the individual stable configurations. This is
potentially an incredibly lengthy process. Fortunately, it is considerably simplified
because, as we have already mentioned, there already exist several classifications
for abstract local mappings preserving a marking curve by Bruce–Giblin [BG2] and
creases and (convex) corners by Tari [Ta1], [Ta2]. Because of results in [DGH],
these classifications also apply to other configurations, and in addition, help in the
classifications for still more complicated configurations.

We may then apply the abstract classifications for specific stable configurations
as given in [DGH1], Table 3.

Abstract mappings versus realization. In order to apply the abstract classi-
fications to the situation of illuminated surfaces in 3-space we need to take into
account the special geometry of our situation. Consider the SC case of a single
smooth surface M without surface marking, and suppose that both the light and
view directions lie in the tangent plane at the point p ∈M . Then there is a shade
curve passing through p and also p lies on the contour generator, that is the curve
which projects in the view direction to the apparent contour. Shade curves and
contour generators are not arbitrary curves on M : they arise as critical sets of
projection maps. This has a significant consequence: setting aside the non-generic
case where the view and light directions coincide these curves can only be tangent
when p is parabolic and their tangents are both in the unique asymptotic direction
at p. This immediately gives a restriction on any singularity from the abstract
list which requires that the critical sets on the two projections are tangent: such
a singularity must occur at a parabolic point. In fact there are two cases in which
the geometrical restrictions prevent abstract singularities from being realized at all.
(These appear as ‘N’ in the right-hand column of Table 3 of [DGH1].) It is also
possible to use geometrical arguments to show that singularities are not versally
unfolded by moving the view direction; such a case appears as ‘NV’ in the same
Table.

Thus there is an important step after obtaining the abstract classifications of
maps which preserve the geometric features and shade/shadow curves: we need to
consult the geometry of the situation to discover exactly which abstract singularities
are realized and versally unfolded. Again, details are in [DGH].

Having obtained a realization there remains the consideration of visibility: for
example the view direction can be reversed, changing the occlusions of one sheet
of a crease or corner by another. In the case of corners visibility considerations are
particularly complex, as discussed above in §3 and §4.

8. Comments and Summary

We have completed in this paper the explanation of how the complex interac-
tions of geometric features, light, and viewer movement can be analyzed using the
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methods of singularity theory to yield a classification of both expected local features
of images and their generic transitions under viewer movement. Together with the
results of Part I [DGH1], these provide a concise alphabet of local curve configura-
tions that we expect to see in images, along with the possible geometric properties
that accompany them. As well we provide a specific classification of the generic
transitions which occur in these configurations under viewer movement. These re-
sults provide a catalogue which subsumes and considerably refines the earlier work
of a number of workers on special aspects of images.
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