
Journal of Geometry and Physics 192 (2023) 104920
Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Bitangent planes of surfaces and applications to 

thermodynamics

Peter Giblin a, Graham Reeve b,∗
a Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL, United Kingdom
b School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Liverpool L16 9JD, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 March 2023
Received in revised form 4 July 2023
Accepted 5 July 2023
Available online 13 July 2023

MSC:
58K05
53A05
53B50
80A10

Keywords:
Binary fluid
Binodal
Bitangent
Criminant
Helmholtz free energy
Van der Waals equation

The classical van der Waals equation, applied to one or two mixing fluids, and the 
Helmholtz (free) energy function A yield, for fixed temperature T , a curve in the plane 
R2 (one fluid) or a surface in 3-space R3 (binary fluid). A line tangent to this curve in two 
places (bitangent line), or a set of planes tangent to this surface in two places (bitangent 
planes) have a thermodynamic significance which is well documented in the classical 
literature. Points of contact of bitangent planes trace ‘binodal curves’ on the surface in 
R3. The study of these bitangents is also classical, starting with D.J. Korteweg and J.D. 
van der Waals at the end of the 19th century, but continuing into modern times. In this 
paper we give a summary of the thermodynamic background and of other mathematical 
investigations and then present a new mathematical approach which classifies a wide 
range of situations in R3 where bitangents occur. In particular, we are able to justify 
many of the details in diagrams of binodal curves observed by Korteweg and others, using 
techniques from singularity theory.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The origins of this work are twofold. Firstly, on the mathematical side, Giblin and Zakalyukin ([10,11]) have studied 
so-called centre symmetry set (CSS) of a pair of smooth surfaces in real euclidean 3-space (or two disjoint regions on a single 
surface). A part of this work ([10, §4], [11, §3]) concerns two local surface patches M, N having a common tangent plane: 
for the CSS we consider all pairs of parallel tangent planes to M and N and the ‘chords’ joining their points of contact. 
This 2-parameter family of chords has, in suitable circumstances a real local envelope, that is a real surface S tangent to 
all the chords (regarded here as infinite straight lines). The generally singular surface S is the CSS of M and N . Within 
this family of chords there may be a 1-parameter family for which the corresponding parallel planes actually coincide—we 
say the plane is a ‘bitangent plane’—and the corresponding chords play a special role within the CSS. The contact points of 
the bitangent planes trace binodal curves [19] on M and N (also called coexistence curves [3] and conodal curves or connodal 
curves [26,25]). The local structure of these curves will depend on the geometrical properties of M and N . The straight line 
joining points of contact of bitangent planes is called a tie line or bitangent chord, and these lines form a ruled surface.
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In part we are responding to a suggestion on page 85 of [25]: ‘It would be interesting to compare Korteweg’s method of 
continuous deformation of surfaces with the methodology of catastrophe theory’. But the major part of our mathematical 
contribution is to give a complete list of normal forms of singularities up to codimension 1 (generic 1-parameter families of 
surfaces) occurring in the bitangent plane context, extending the lists in [10] and [23].

Secondly, the work of D.J. Korteweg on thermodynamic stability of mixtures of two fluids, as recounted in [25], neces-
sitates a study of bitangent planes of surfaces. For Korteweg, the surface in question is the isothermal surface defined by 
the ‘Helmholtz (free) energy function’ A(V , x). In Section 3 we shall briefly describe this function, and give some details of 
the role that bitangent planes play, first describing the simpler situation where a surface is replaced by a plane curve and 
bitangent planes by bitangent lines. References for Helmholtz free energy include [3,4].

In this article we shall not explicitly study thermodynamic stability or the consequent need for surfaces which are 
convex (see for example [24]) but instead place the study of binodal curves and related surface geometry in the context 
of modern singularity theory, combining geometrical information which is invariant to affine transformations of 3-space 
with more qualitative results invariant to local diffeomorphisms of the ambient space. The latter results are obtained by 
reducing families of functions to normal forms using appropriate equivalence relations—these preserve essential structure 
such as cusps, but do not necessarily preserve all geometrical features. In fact it is the ability to use appropriate equivalence 
relations on families of functions, and then to invoke the tools of singularity theory to reduce to normal forms, which 
distinguishes our work from that of Korteweg, and also from the work of the authors mentioned in §2. From a singularity 
point of view, this work also extends the work of [10,11] to include a classification of centre symmetry sets for 1-parameter 
of surfaces in 3-space in the vicinity of one the surfaces.

In more detail, the structure of this article is as follows. In §2 we briefly describe some other work in the same area as 
our article. In §3 we give a sketch of the thermodynamic background, starting with the simpler situation of a single fluid 
and continuing with the two fluid case. In §4 we give two mathematical approaches to the study of binodal curves, the 
first a direct approach which allows us to describe the local geometry of the surface patches in the various cases, and the 
second a more general method via ‘generating functions’ which leads to normal forms and in addition to a more precise 
description of singularities for generic 1-parameter families of surfaces. The local geometry is further explained in §5. In 
§6 we use the normal forms method to make pictures of the binodal curves and of the ruled surface of tie lines which 
preserve singularities up to local diffeomorphism, but not the local geometry of the surfaces and curves such as curvature 
and inflexions. Calculations and sample proofs are in §7 and we make some concluding remarks in §8.

We restrict ourselves in this article to the ‘bilocal’ case, that is bitangent planes having contact with two separated 
surface patches, which could nevertheless be part of the same larger surface. The ‘local’ case, typified by bitangent planes 
both of whose contact points are in an arbitrarily small neighbourhood of a cusp of Gauss (plait point, godron) on a single 
surface patch (see for example [1]), gives a number of additional cases and we hope to cover these elsewhere.

2. Other work in this area

A.N. Varchenko in [27] considers a different thermodynamic potential from the Helmholtz potential, one which is a 
function of pressure P , temperature T and proportion of two fluids x. (The main results are for a 2-component mixture 
with a single variable x, but there is also a general treatment for larger numbers of components.) For a fixed pressure and 
temperature the thermodynamic potential of each homogeneous phase has its own graph as a function of x; these graphs 
are convex downwards and generally intersect. For a given x thermodynamic stability requires that the actual value of the 
potential follows the convex hull of the homogeneous phase graphs. Varchenko therefore studies the evolution of these 
convex hulls of graphs in the plane, varying in a 2-parameter family (parameters P and T ).

P.H.E. Meijer in [19] investigates the evolution of tie lines and binodal curves by means of differential equations, and his 
article contains a clear statement of the underlying physics. In particular he identifies the evolution of binodal curves which 
we call ‘lips’ in §5 (he gives the typical ‘lips’ diagram the equally descriptive name ‘Napoleon’s hat’).

Ricardo Uribe-Vargas in [26] undertakes a detailed investigation of the behaviour of binodal curves close to cusps of 
Gauss and their relationship with other curves such as the parabolic curve. In this case the binodal and the parabolic 
curves are tangent at the cusp of Gauss and this creates a region between them in which the surface is convex but not 
thermodynamically stable on account of the double tangencies. The author also studies the evolution of these curves, and 
others, during deformations of the surface.

In an unpublished Master’s thesis [20] (see also [7]), W.E. Olsen, a student of Daniel Dreibelbis, studies bitangent lines 
and planes to two surface patches M, N by considering the corresponding subsets of M × N and finds geometrical conditions 
for singularities of their projections to the two factors. He also gives examples of 1-parameter deformations of the surfaces 
and considers the more degenerate case of double-points, that is points of intersection of M and N .

Determination of plait points (cusps of Gauss, godrons) on surfaces connected with thermodynamic equilibrium continues 
to be of practical interest; see for example [17].

The situation considered in this article, that is where we consider singularities in the vicinity of one of the surfaces, is 
also called ‘on shell’, and various applications for this have been explored including for example in semiclassical physics, 
see [5,6].
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Fig. 1. Van der Waals isotherms in the P V -plane (reproduced with permission from math24.net [18]). (The outer boundary through F , K , J is the binodal 
curve and the inner boundary through G, K , I is the spinodal curve. For interpretation of the colours in the figure, the reader is referred to the web version 
of this article.)

3. Thermodynamic background

3.1. One fluid

For a fixed temperature T , the Van der Waals equation(
P + a

V 2

)
(V − b) = RT , (1)

where a, b are constants depending on the substance and R is an absolute constant, describes the relation between pressure 
P and molar volume V of a single fluid. In the (P , V )-plane, this dependence is represented as a family of isotherms, that 
is curves of constant temperature T ; see Fig. 1.

For a given system, if we change the volume, or the pressure, of the fluid under some isothermal process (where the 
temperature stays constant) the pressure will be given by following one of these isotherms. Typically an isothermal process 
occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to 
allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange.

For temperatures below the so called critical temperature (the red (thicker) curve through K in Fig. 1), the isotherms 
have an undulating shape. A portion of such an isotherm between its local minimum and local maximum has a positive 
derivative P V > 0, which corresponds to an unstable state of the substance. (Here and below we use suffices to denote 
partial derivatives.) Any small positive perturbation of the pressure dP > 0 causes an increase in the fluid volume (since 
dV > 0), which in theory would lead to an explosive expansion of the fluid. If the curve slopes downwards, that is P V < 0, 
then increasing the pressure would result in a decrease in volume (dV < 0). In reality, a liquid-gas phase transition occurs 
in this part of the P V -diagram. This transition is accompanied by a significant change in the volume V at constant pressure 
P and constant temperature T . Such a transition is represented by a straight horizontal line, called a tie line, in the P V -
diagram (the segment line F J in Fig. 1). For example, an isothermal process would follow the tie line F H J , rather than 
F G H I J , along which the two phases liquid/vapour coexist in varying proportions in the container at this moment.

The location of the horizontal section F H J is determined from thermodynamic considerations, resulting in the so-called 
Maxwell equal area rule. This states that the areas of the curved shapes F G H and H I J should be equal (see [3], page 238 
for details).

The set of start and end points of the horizontal segment lines at different temperatures form a curve, which is called the 
binodal curve. The curve passing through the local minima and maxima of all the isotherms is called the spinodal curve. The 
unstable states (for which P V > 0) are within the region bounded by the spinodal curve. The part of the diagram between 
the spinodal and binodal curves in principle satisfies the stability criterion P V < 0; the states in this region are called 
metastable states. The left half of the indicated region represents the superheated liquid, and the right half corresponds to 
the supercooled vapour. Superheated liquid is familiar to anyone who has heated a liquid in a microwave to above boiling 
point, only to have it suddenly boil after inserting a spoon or some other nucleation site.

The Helmholtz energy A is a thermodynamic potential that measures the useful work obtainable from a closed thermo-
dynamic system. For a single fluid it is defined by

A = −RT ln(V − b) − a
2

so that AV = − RT + a
2

= −P (2)

V V − b V

3
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Fig. 2. The P V curve versus the AV curve where A is the Helmholtz energy, AV = −P , for three values of the temperature, increasing from top to bottom. 
The middle curve is the critical P V curve, with a horizontal inflexion (at the square), corresponding to an ‘undulation’ on the AV curve—a ‘very flat’ point 
where the tangent line has 4-point contact with the curve. Decreasing the temperature ‘resolves’ this undulation to a curve with increasing (negative) 
gradient and increasing temperature to a curve with two inflexions, marked by dots. This permits the formation of a double tangent. All the AV curves 
must be decreasing as V increases, since P > 0.

from Van der Waal’s equation (1). See Fig. 2 and §3.2 below for further discussion. The existence of maxima and minima on 
the P V curve implies inflexions, given by AV V = 0 on the AV curve and hence a double tangent. In fact the conditions on 
the contact points of the double tangent line can be interpreted as saying the pressure P and the ‘thermodynamic potential’ 
μ are the same at these points. We give more details of this in §3.2.

3.2. Binary fluids

Thermodynamic theory has a concept of ‘internal energy’ E , which is a function of the ‘extensive variables’ S, V , N1, ...Nr . 
Here S is entropy, V is molar volume and the Ni are measures of the molar quantities of the substances present. From 
this function other ‘intensive variables’ are determined, in fact these can be regarded as definitions: Temperature T = E S , 
pressure P = −E V and ‘chemical potentials’ μi = E Ni . Let us assume the Ni are constant, so that E is a function of S and 
V . By means of ‘Legendre transformations’—essentially representing surfaces by their duals—E can be regarded, at any rate 
locally, as a function of any pair of variables among S, V , P , T . Helmholtz energy A is defined in this context by A = E − T S
and it measures the amount of energy needed to create a system in the absence of changes in temperature and volume, 
when account is taken of spontaneous transfer of energy from the environment.

In general, given a function f (x, y) where x = x(a, b) and y = y(a, b) then the chain rule says, for example, that fb|a =
fx|y × xb|a + f y |x × yb|a, where fb|a for example says that f is regarded as a function of a and b and a is held constant in 
the differentiation with respect to b. Applying this to f = E, x = S, y = V , a = T and b = V gives, after rearrangement and 
using E S |V = T , E V |S = E V |T − T S V |T . We then obtain the fact that the Helmholtz energy A = E − T S has the important 
property

−P = E V |S = (E − T S)V |T = AV |T . (3)

On the other hand we can find P from the Van der Waals equation (1) which, for two fluids in the proportion x : 1 − x, 
becomes(

P + a(x)

V 2

)
(V − b(x)) = RT ,

where a and b now depend on x. Keeping x fixed and solving this for P then integrating with respect to V gives

P = RT

V − b(x)
− a(x)

V 2
, A = −RT ln(V − b(x)) − a(x)

V
+ function of T .

This function of T is known as the ‘entropy mixing term’ and for two fluids it is −R(x ln x + (1 − x) ln(1 − x)) (see for 
example [4, p.432]). It is also called the ‘Gibbs mixing term’ in [25, p.49]. Hence

A(V , x) = −RT ln(V − b(x)) − a(x)

V
+ RT (x ln x + (1 − x) ln(1 − x)).

This is the family of isothermal (constant T ) surfaces in (AV x)-space which is the generalisation of the isothermal AV
curves in Fig. 2. We recover the plane curve case (2) by substituting x = 1, remembering that (1 − x) ln(1 − x) → 0
as x → 1.

A normal vector to the isothermal surface at u = (V 0, x0, A(V 0, x0)) is (AV (V 0, x0), Ax(V 0, x0), −1). Writing down the 
equation of the tangent plane at u and substituting V = x = 0 shows that the intercept of the tangent plane at u with the 
4
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A-axis is A(V 0, x0) − V 0 AV (V 0, x0) − x0 Ax(V 0, x0). The condition for two tangent planes, at u1 and u2 say, to be identical is 
therefore that AV (V 0, x0), Ax(V 0, x0) and this intercept should coincide for u = u1 and u = u2. According to ([25, p.50]) this 
can be interpreted as saying that the two points u1 and u2 share the same pressure P and the same chemical potentials 
μ1, μ2 of the two components.

For our mathematical investigation we are interested in studying the ruled surface of tie lines joining points of contact 
of bitangent planes (called the criminant surface below) to the surfaces M and N and reducing the configuration of M , N
and this ruled surface to ‘normal forms’ under local diffeomorphism in order to examine its basic structure.

4. The mathematical setup

We consider two surface patches M, N in R3 with coordinates (x, y, z), having a common tangent plane z = 0 at the 
points (0, 0, 0) ∈ M, (0, 1, 0) ∈ N . The surfaces will be defined locally by M : {(u, v, f (u, v))}; N : {(x, 1 + y, g(x, y))} where 
u, v, x, y are small and f , g have no constant or degree 1 terms, that is they have zero 1-jets. We expand the functions f , g
by Taylor series about the base points (0, 0):

f (u, v) = f20u2 + f11uv + f02 v2 + f30u3 + f21u2 v + f12uv2 + f03 v3 + + f40u4 + ...

g(x, y) = g20x2 + g11xy + g02 y2 + g30x3 + g21x2 y + g12xy2 + g03 y3 + ... (4)

where the subscripts i j indicate that the corresponding monomial is ui v j or xi y j .
Sometimes we have to consider a generic family of surfaces in which case the local parametrizations will vary according 

to a local parameter τ say, taken as close to 0. In that case we call the surfaces in the family Mτ and Nτ and write them 
locally as

f (u, v, τ ) = f20u2 + f11uv + f02 v2 + f30u3 + f21u2 v + f12uv2 + f03 v3 + + f40u4 + ...

+ τ ( f031 v3 + f121uv2 + ...) + τ 2( f032 v3 + f122uv2 + ...) + ...

g(x, y, τ ) = g20x2 + g11xy + g02 y2 + g30x3 + g21x2 y + g12xy2 + g03 y3 + ... (5)

+ τ (g101x + g011 y + g201x2 + g111xy + g021 y2 + g301x3 + ...)

+ τ 2(g102x + g012 y + g202x2 + g112xy + ...) + ...

where the subscripts i jk indicate that the corresponding monomial is τ kui v j or τ kxi y j , and for brevity, the subscripts i j are 
used when k is zero. Here the 2-jet of f has been retained by applying a smooth family of affine transformations. A point 
of Mτ is (u, v, f (u, v, τ )) and a point of Nτ is (x, y + 1, g(x, y, τ )). When τ = 0 we recover the base surfaces M0 = M and 
N0 = N of the family.

4.1. Equations defining binodal curves

To make explicit calculations of binodal curves using jets we can use the inverse image of (0, 0, 0) under the map 
H = (H1, H2, H3) : (R4, 0) → (R3, 0) given by

H(u, v, x, y) = ( fu − gx, f v − g y, (x − u) fu + (1 + y − v) f v + f − g), (6)

where subscripts representing variables, as opposed to subscripts representing coefficients as in (4) and (6), stand for par-
tial derivatives. Functions are evaluated at (u, v) or (x, y) as appropriate. Vanishing of the first two components of H says 
that the normal vectors to M and N are parallel and vanishing of the third says that the line joining the points (u, v, f )

and (x, 1 + y, g) is perpendicular to the normal to M . Altogether H−1(0) selects the points of M and N for which tan-
gent planes coincide. Projecting H−1(0) to the first two coordinates gives the binodal curve on M and projecting to the 
last two coordinates gives the binodal curve on N . Studying these projections can give geometrical information on the 
binodal curves; an example is given below and in §5 we shall show how this direct method can be used to obtain such 
information.

Proposition 4.1. Suppose that
(i) The surface N is parabolic at (0, 1, 0), but does not have a cusp of Gauss at that point. This amounts to saying that the unique 

asymptotic direction at N is not a root of the cubic terms of g,
(ii) The unique asymptotic direction for N at (0, 1, 0) is not along the tie line x = 0, that is x is not a factor of the quadratic terms of 

g,
(iii) The origin is not a parabolic point on M, that is f 2

11 − 2 f20 f02 �= 0 in (4).

Then the binodal curve on M at the origin has an ordinary cusp. In addition, the limiting tangent to this cusp is conjugate to the tie line.
5
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An ordinary cusp is locally diffeomorphic to {(t2, t3)} for small t . Writing the quadratic terms of g as (ax + by)2, (i) says 
that a3 g03 − a2bg12 + ab2 g21 − b3 g30 �= 0 and (ii) says that b �= 0.

Remark 4.2. The conclusion of the proposition above is essentially Korteweg’s assertion called K2 in [25, p.76]; proofs by 
Korteweg and others are in [12–16].

The proof of Proposition 4.1 amounts to using the jets of H as in (6) to solve for x and y as functions of u. The 1-jet of 
the second component H2 of H at u = v = x = y = 0 is

f11u + 2 f02 v − 2abx − b2 y

so that using b �= 0 we can use H2 = 0 to solve locally for y = y(u, v, x). We can then substitute for y in H1 = 0 and 
H3 = 0; these then have leading terms in u, v, x given by

−(af11 − 2bf20)u/b − (2af02 − bf11)v/b, and f11u + 2 f02 v, respectively.

The second of these can be solved locally for u(v, x) or v(u, x) since f11, f02 are not both zero. In either case we substitute 
in H1 = 0 and solve for u(x) and v(x). These have the form u(x) = px2 + qx3 + ... and v(x) = rx2 + sx3 where

ps − qr = 6(a3 g03 − a2bg12 + ab2 g21 − b3 g30)

b6( f 2
11 − 4 f20 f02)

,

which is nonzero by assumption. This proves that the curve in M (strictly the projection of this curve on to the tangent 
plane at the origin) has an ordinary cusp. Finally the limiting tangent direction (p, r) of the cusp is a nonzero multiple of 
(−2 f02, f11), which is a vector conjugate to the tie line direction (0, 1) in the tangent plane. �
4.2. Generating families

The direct method above is hard to apply to the situation where the surfaces M and N vary in a 1-parameter family 
Mτ , Nτ , though Korteweg, as reported in [25], produced many interesting diagrams of the evolution of binodal curves and 
other surface features such as parabolic and flecnodal curves. We shall adopt here a more general approach, based on the 
idea of generating families.

Following the method used in [11, p.44-45], [23], we use the generating family, for each fixed τ near 0,

F(n, u, v, x, y, λ,q, τ ) = 〈λ(u, v, f (u, v, τ )) + μ(x, y + 1, g(x, y, τ )) − q,n〉.
Here, the angle brackets 〈, 〉 denote inner product in 3-space, λ, μ are barycentric coordinates on a real line (that is λ +μ =
1), n = (n1, n2, n3) and q = (q1, q2, q3) are vectors in R3 and u, v, x, y, τ are as above. For a single generic surface the family 
parameter τ will be absent.

The criminant of F , for a fixed τ , is the ruled surface created by the tie lines and is given by

�F =
{

q : for some (n, u, v, x, y, λ), (F =)
∂F
∂u

= ∂F
∂v

= ∂F
∂x

= ∂F
∂ y

= ∂F
∂λ

= ∂F
∂n

= 0

}
,

where ∂F
∂n stands for 

(
∂F
∂n1

, ∂F
∂n2

, ∂F
∂n3

)
. In the definition of �F the term ‘F =’ is bracketed since F is automatically equal to 

zero given the three equations ∂F/∂n = 0. Suppose λ �= 0 and λ �= 1. Then �F is the set of points q ∈ R3 which are on a 
straight line joining a point of Mτ to a point of Nτ (from ∂F/∂n = 0), and the line joining these points lies in a bitangent 
plane to Mτ and Nτ with common normal n (from the other conditions). When λ = 0, q is a point of Nτ (and n is parallel 
to the normal to Nτ there and perpendicular to the line joining the two points of Mτ and Nτ ); likewise λ = 1 gives points 
of M . The surfaces Mτ and Nτ are usually called the redundant components of �F . The closure of the part of �F for 
λ �= 0, 1 consists exactly of the (infinite) straight lines joining points which share a common tangent plane, that is the ruled 
surface containing these lines. The projection to (u, v) or to (x, y) gives the binodal curve in Mτ or Nτ respectively.

Remark 4.3. The caustic �F is the set of q for which first partial derivatives with respect to u, v, x, y are 0 and the 4 × 4
matrix of second partial derivatives is singular. The centre symmetry set is the union of �F and �F . It is discussed in detail 
in [10,11].

The point of these definitions is that up to local diffeomorphism in R3 the sets �F and �F are invariant under 
appropriate changes of coordinates (to be introduced below), allowing us to reduce the family F to a normal form and 
deduce the local structure from that. For geometrical information such as conjugate and asymptotic directions we still need 
to make explicit calculations, as in §4.1.
6
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We shall make use also of stabilisation which means that, if a family contains a nondegenenerate quadratic form in ‘extra’ 
variables not occurring elsewhere in the family, then this form can be removed without affecting the diffeomorphism type 
of the criminant (or the caustic). This is because the zero partial derivatives with respect to those extra variables ensures 
that their values are zero.

In order to study the binodal curves we need to work in a neighbourhood of a point of M or N , that is with λ as 
above close to 1 or 0. In principle any base value λ = λ0 can be chosen and then we write λ = λ0 + ε. The ‘base point’ 
on the second coordinate axis in R3 is then (0, 1 − λ0, 0) and to work with small coordinates we write q = (q1, q2, q3) =
(q1, ̃q2 +1 −λ0, q3). For the following proposition we take λ0 = 0 so that we are ‘working near to N ’ and q = (q1, ̃q2 +1, q3). 
Thus the overall base point from which we expand our functions is given by x = y = u = v = 0, q1 = q̃2 = q3 = 0, ε = 0 (λ =
0), n1 = n2 = 0, n3 = 1.

Proposition 4.4. Using stabilisation, the family F can be reduced, near to the surface N, to the following family, where q̃2 = q2 − 1, 
q = (q1, q2, q3).

�(u, v, ε,q, τ ) = ε f (u, v, τ ) + (1 − ε)g

(
q1 − εu

1 − ε
,

q̃2 − εv + ε

1 − ε
, τ

)
− q3,

in variables (u, v) ∈R2 and parameters ε ∈R, q ∈R3 in a neighbourhood of ε = 0, q1 = q̃2 = q3 = 0, τ = 0.

Proof. Writing the family F in the coordinate form we get

F = An1 + Bn2 + Cn3

where

A = εu + (1 − ε)x − q1,

B = εv + (1 − ε)(y + 1) − q̃2 − 1

and

C = ε f (u, v) + (1 − ε)g(x, y) − q3

For ε small the functions A and B are regular with respect to x and y and so can be chosen as the coordinate functions 
instead of x and y, that is

x = A + q1 − εu

1 − ε
, y = B + q̃2 − ε(v − 1)

1 − ε
.

So in the new coordinates we have

F = An1 + Bn2 + C(A, B, u, v, ε,q)n3

where the function C does not depend on n1 and n2. Applying Hadamard’s lemma to the function C we get

C(A, B, u, v, ε,q) = C(0,0, u, v, ε,q) + Aϕ1 + Bϕ2,

where ϕ1 and ϕ2 are smooth functions in A, B, u, v, ε, q which vanish at A = B = ε = q1 = q̃2 = q3 = 0. (This is because, g
having no linear terms, ∂C/∂ A = ∂C/∂ B = 0 at the base point.)

Now the function F takes the form

F = A(n1 + ϕ1n3) + B(n2 + ϕ2n3) + C(0,0, u, v, ε,q)

where the first two terms represent a non degenerate quadratic form in the independent variables A, (n1 + ϕ1n3), B and 
(n2 + ϕ2n3). Therefore, the function F is stably-equivalent to the function � = C(0, 0, u, v, ε, q) being the restriction of the 
function C to the subspace A = B = 0. This completes the proof. �
4.3. Space-time contact equivalence

To study the local structure of the criminant (ruled tie line) surface in the vicinity of the surface, and hence also the 
local structure of the binodal curve, we reduce the generating function � to a normal form up to an appropriate equivalence 
relation which preserves the surface up to local diffeomorphism. The relevant equivalence relation is the following notion 
of space-time equivalence, adapted for 1-parameter families of surfaces from [10], (see also [8,9]):
7
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Definition 4.5. Two germs of families F1 and F2 with variables u ∈R2, (time) parameter λ ∈R, (space) parameter q ∈R3, 
and (family) parameter τ ∈R are called space-time contact equivalent if there exists a nonzero function φ(u, λ, q, τ ) and a 
diffeomorphism θ :R2 ×R1+3+1 →R2 ×R1+3+1, of the form

θ : (u, λ,q, τ ) �→ (U (u, λ,q, τ ),�(λ,q, τ ), Q (q, τ ), T (τ ))

such that φF1 = F2 ◦ θ .

Remark 4.6. Space-time contact equivalence allows us to reduce a generating function F to one of a finite list of cases, each 
of which produces a ‘model’ of the criminant and the binodal curves. Thus we obtain a finite list ‘diagrams’ or ‘pictures’ 
which represent the essential features of the various cases which arise. This representation does not, however, preserve all 
the geometrical properties of the surfaces and curves involved. Cusps are preserved on the binodal curves but inflexions are 
not. To study inflexions requires a different technique (‘duals’ of surfaces and curves) and we hope to pursue this elsewhere. 
Surface singularities such as cuspidal edges, swallowtail points, Whitney umbrellas and the like are preserved. This is what 
we mean by ‘essential features’. There is more information about the geometry of the different cases in §5, and about 
drawing the criminant and binodal curves in §6.

4.4. Expanding the generating function

We now proceed by expanding the generating function as a power series, and consider the lowest degree terms. First 
redefine q3 so that � (as in Proposition 4.4) becomes divisible by ε: q̃3 = q3 − g(q1, ̃q2, τ ), an allowable change of variable 
according to Definition 4.5. We denote by �0(u, v, ε, ̃q3) = �(u, v, ε, 0, 0, ̃q3, 0), the organising centre of the family, which 
has first few terms of the power series in ε at the origin as

�0 = −q3 + ( f02 v2 + f11uv + f20u2 + f30u3 + ...)ε

+(g02 − 2g02 v − g11u + g02 v2 + g11uv + g20u2)ε2 + (g02 + g03 + ...)ε3 + ...

where the dots denote higher degree terms.

Notation 4.7. From this point we shall revert to the notation (q1, q2, q3) for coordinates in R3 , all of these quantities being understood 
to be close to 0.

Consider the space W of function germs of the type F = −q3 +εH(u, v, ε, q1, q2, τ ). Following [10,21] we show stability 
of the generating function inside this space W .

The transversality theorem implies that since the base points of the two surfaces already share a bitangent plane (one 
condition) at μ0 = 0 only one extra conditions can be imposed on the derivatives of the surfaces. It follows that there are 
three distinct generic singularity types that can occur on the surfaces. In particular we shall prove the following propositions.

Proposition 4.8 (See Proposition 7.1). For a generic pair of surfaces M and N near (0, 1, 0) ∈ N the generating family germ � is 
space-time contact equivalent to one of the following normal forms and is stable inside the space W . The Cases refer to §5 below.

Case 1 B̂2 : F = −q3 + ε(u2 ± v2 + ε + q1)

Case 2 B̂3 : F = −q3 + ε(u2 ± v2 ± ε2 + q2ε + q1),

Case 3 Ĉ3 : F = −q3 + ε(u3 + uε + ε + q2u + q1 ± v2).

When we consider 1-parameter families of surfaces we are permitted to impose one extra condition on the derivatives 
of the surfaces. This gives rise to the following six additional cases:

Proposition 4.9 (See Proposition 7.3). For a generic one-parameter family of pairs of surfaces Mτ , Nτ near (0, 1, 0) ∈ N0 , in addition 
to the list of cases from Proposition 4.8 the affine generating family germ � is space-time contact equivalent to one of the following 
normal forms and is stable inside the space W .

Case 2a B̂4 : F = −q3 + ε(u2 ± v2 + ε3 + τε2 + q2ε + q1),

Case 3a/3e Ĉ∗
3 : F = −q3 + ε(u3 + uε + ε + (τ ± q2

2)u + q1 ± v2),

Case 3b Ĉ4 : F = −q3 + ε(u4 + τu2 + uε + ε + q2u + q1 ± v2),

Case 3c Ĉ3,1 : F = −q3 + ε(u3 + u(τε ± ε2) + ε + q2u + q1 ± v2),

Case 3d F̂4 : F = −q3 + ε(u3 + uε ± ε2 + τε + q2u + q1 ± v2),
8
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Fig. 3. An adjacency diagram of the various singularity types.

and the non-simple

Case 2b B̂∗∗
3 : F = −q3 + ε(u2 ± v2 ± ε2 + a(q1,q2)ε ± q2

1 ± q2
2 + τ )

where a(q1, q2) is a functional modulus.

See Fig. 3 for an adjacency diagram of these singularities.

Remark 4.10. The notation used for these normal forms varies in the literature (compare [10] and [22]). Some of these 
here are new classes, but we opt to follow the naming convention used in [22]. The ̂ indicates that the singularity occurs 
in the vicinity of the surface N or N0, which is the case for all singularities considered in this article. For the unstarred 
singularities, the numerical subscripts refer to the codimension of the singularity. In each case the signs of the ± are 
independent and correspond to different singularity types. Occasionally we distinguish two distinct sub-cases of Ĉ∗

3 as Ĉ∗+
3

or Ĉ∗−
3 (see Proposition 7.3). In all cases the sign of v2 gives different singularity types but does not affect the criminant up 

to local diffeomorphism. The ∗ indicates that the singularity of the same name fails to be versally unfolded in the ‘standard’ 
way by terms linear in qi and τ . See Remark 7.5 for a note about the apparently missing B̂∗

3 which fails to occur in our 
geometrical context.

5. Geometrical properties

Here we consider the local geometry of M at (0, 0, 0) and N at (0, 1, 0), but the singularity that we refer to below is 
the one that occurs on N . We relate the different cases to the normal forms listed in Propositions 4.8 and 4.9. The tie line 
corresponding to the base points on M and N is the second coordinate axis in R3, joining the points (0, 0, 0) ∈ M and 
(0, 1, 0) ∈ N .

The calculations for generic surfaces M, N (Proposition 4.8) are performed using the direct method of §4.1. For generic 
families Mτ , Nτ (Proposition 4.9) the direct method is used to analyse the geometry of the base surfaces M0, N0 but for the 
evolution of criminant and binodal curves for τ �= 0 we need the method of normal forms; see §6. The details of a sample 
reduction to normal form are given in §7.

Case 1: B̂2. The simplest case, where M is not parabolic at (0, 0, 0) and g02 �= 0, so that the tie line is not an asymptotic 
direction on N at (0, 1, 0). Both binodal curves are smooth.

Case 2: B̂3. Suppose M is not parabolic at (0, 0, 0) but we impose the single condition g02 = 0. We require g03 �= 0, g11 �= 0, 
that is the tie line is asymptotic at (0, 1, 0) ∈ N but (0, 1, 0) is not a flecnodal point of N; also N is not parabolic at (0, 1, 0). 
Both binodal curves, in M and in N , are smooth and the tangent to the binodal curve in N is along the tie line. (If an 
asymptotic direction on M is along the tie line then also the tangent to the binodal curve in M is along this line.)

Case 2a: B̂4. Suppose M0 is not parabolic at (0, 0, 0), but g02 = g03 = 0, g04 �= 0, that is (0, 1, 0) is a flecnodal point of 
N0 with asymptotic direction along the tie line, but this does not have 5-point contact with N0. As this is two differential 
conditions it is stable only in a generic 1-parameter family of surface pairs Mτ and Nτ , and for genericity here we also 
require g11 �= 0 (equivalently, (0, 1, 0) is not a parabolic point of N0) and g021 �= 0. Both binodal curves, in M0 and in N0, 
are smooth (hence this remains true for Mτ and Nτ ) and the tangent to the binodal curve in N0 is along the tie line. (If 
an asymptotic direction on M0 is along the tie line then also the tangent to the binodal curve in M0 is along this line.) The 
criminant in this case is a swallowtail surface but the binodal curve is the intersection of the criminant with N0 and this 
curve is smooth as in Case 2. The criminant, that is the ruled surface of tie lines, is of course tangent to N0 and Nτ along 
the binodal curve.

Case 2b: B̂∗∗
3 . Suppose M0 is not parabolic at (0, 0, 0), but g02 = g11 = 0, thus (0,1,0) is parabolic on N0 and the asymptotic 

direction there is along the tie line. We assume also g20 �= 0, g03 �= 0, so that (0, 1, 0) is not a flat umbilic on N0 and also is 
9
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not a flecnodal point, which here is equivalent to saying that it is not a cusp of Gauss. Using the direct method of §4.1 it can 
be checked that the binodal curve on M0 is either an isolated point or two curves having 3-point contact (that is having the 
same 2-jet), while on N0 there is respectively an isolated point or a transverse crossing of two smooth curves. This method 
does not allow us to determine the behaviour as τ passes through 0 in a generic family. For the evolution of the binodal 
curve on Mτ see Case 3e. Examples suggest that the evolution on Nτ is a Morse transition: an isolated point will disappear 
or evolve into a smooth curve, while a crossing resolves into two smooth curves (e.g. by moving the asymptotic direction 
away from the tie line, giving Case 2a). Compare [2, Prop.2.7].

Case 3: Ĉ3. Suppose M is parabolic at the origin, but not a cusp of Gauss, and the asymptotic direction at the origin is 
not along the tie line. Thus writing the quadratic terms of M as (au + v)2, the linear form au + v is not a factor of the 
cubic terms of M . Suppose also that g02 �= 0, so that the tie line is not an asymptotic direction for N , that (0, 1, 0) is not 
a parabolic point on N and that f11 g02 �= f02 g11. Then the binodal curve on M is smooth, that on N has an ordinary cusp 
(locally diffeomorphic to {(t2, t3)}) with the limiting tangent at the cusp not along the asymptotic direction at (0, 1, 0).

Case 3a: Ĉ∗
3 . Suppose M0 is parabolic at (0, 0, 0), N0 is parabolic at (0, 1, 0), neither has a cusp of Gauss, neither has the 

asymptotic direction along the tie line (that is f02 and g02 are both nonzero), and these asymptotic directions are not 
parallel (in the presence of the two previous conditions this is equivalent to f11 g02 − f02 g11 �= 0). This is a symmetrical 
situation between M0 and N0, and occurs generically in a 1-parameter family. Here we distinguish two sub-cases as Ĉ∗+

3
and Ĉ∗−

3 (see Proposition 7.1). On M0 and N0 the binodal curve consists of two branches having exactly 3-point contact 
(Ĉ∗−

3 ), or else is an isolated point (Ĉ∗+
3 ). Writing the quadratic terms for M0 as (au + v)2 and those for N0 as (cx + y)2 the 

condition for two real branches is

( f30 − f21a + f12a2 − f03a3)(g30 − g21c + g12c2 − g03c3) > 0. (7)

In a generic family two real branches separate as a ‘beaks’ transition and an isolated point evolves as a ‘lips’ transition. See 
§7. The criterion (7) above for a two real branches coincides with the condition c3 < 0 for a beaks transition in §7. The 
criminant is locally diffeomorphic to a folded Whitney umbrella.

Case 3b: Ĉ4. Suppose M0 has a (nondegenerate) cusp of Gauss at (0, 0, 0), N0 is not parabolic at (0, 1, 0), g02 �= 0 (that 
is the tie line is not in an asymptotic direction) and f11 g02 − f02 g11 �= 0. The binodal curve in M0 is then smooth, with 
tangent the asymptotic direction which is also the tangent to the parabolic curve on M0. The binodal curve in N0 has a cusp 
locally diffeomorphic to (t3, t4), in a generic family this evolves as a ‘swallowtail transition’. The extra feature in this case is 
a ‘local binodal curve’ on M0: there are bitangent planes of M0 whose contact points tend to coincidence on M0, forming 
a smooth curve passing through the cusp of Gauss and tangent to the parabolic curve there. This ‘local binodal curve’ lies 
in the hyperbolic region of M0, but the bilocal binodal curve defined by bitangent planes having contact points one on M0
and the other on N0 need not.

The relative positions of the local binodal curve, the bilocal binodal curve and the parabolic curve depend on the local 
geometry of M0. In fact taking the surface M0 to have local form z = y2 + f21x2 y + f12xy2 + f03 y3 + ... + f40x4 + . . . the 
leading terms in the expressions for these three curves on M0 are:

Local: y = −2 f40

f21
x2, Bilocal : y = − f21

2
x2, Parabolic y = −6 f40

f21
x2.

A nondegenerate cusp of Gauss in these coordinates has f 2
21 �= 4 f40. If f40 < 0 the cusp of Gauss is automatically elliptic 

( f 2
21 > 4 f40), the bilocal binodal curve is in the hyperbolic region of M0 (locally f21x + h.o.t. in x, y is < 0 for hyperbolic 

points of M0) and the local curve separates it from the parabolic curve. The situation if f40 > 0 is more complicated.

Case 3c: Ĉ3,1. Suppose (0, 0, 0) is a parabolic point of M0 (not a cusp of Gauss), (0, 1, 0) is not a parabolic point of N0, the 
tie line is not in an asymptotic direction on N0 (that is g02 �= 0) and f11 g02 = f02 g11. Then on N0 the binodal curve has an 
ordinary cusp with the limiting tangent to the cusp parallel to the asymptotic direction on M0. The binodal curve on M0 is 
smooth with tangent also parallel to the asymptotic direction.

Case 3d: F̂4. Suppose (0, 0, 0) is a parabolic point of M0 (not a cusp of Gauss), (0, 1, 0) is not a parabolic point of N0, 
the tie line is in an asymptotic direction on N0 but not at a flecnodal point, that is g02 = 0, g03 �= 0. Finally suppose 
f11 g02 �= f02 g11, that is f02 g11 �= 0. Geometrically this is the same as (3c): on N0 the binodal curve has an ordinary cusp 
with the limiting tangent to the cusp parallel to the asymptotic direction on M0. The binodal curve on M0 is smooth with 
tangent also parallel to the asymptotic direction. The criminant is locally diffeomorphic to an open swallowtail.

Case 3e: Ĉ∗
3 . This is the same as Case 2b, with Mτ and Nτ reversed, and the singularity referring as always to the point 

(0, 1, 0) ∈ N0. Thus N0 is not parabolic at (0, 1, 0), f02 = f11 = 0, while f20 and f03 are nonzero. On N0 the binodal curve 
is an isolated point or two curves with 3-point contact and the evolution of the binodal curve as τ passes through zero is 
via respectively a lips or beaks transition.
10



P. Giblin and G. Reeve Journal of Geometry and Physics 192 (2023) 104920
5.1. Two proofs

There follow two sample proofs of the geometrical statements above.

Case 3a Since we are looking at the single surface N0 we can use the forms (4) and because of the assumptions in this case 
we can write

f (u, v) = (au + v)2 + f30u3 + f21u2 v + f12uv2 + f03 v3 + . . .

g(x, y) = (cx + y)2 + g30x2 + g21x2 y + g12xy2 + g03 y3 + . . .

where a �= c since the asymptotic directions on M0 and N0 are not parallel. We shall also assume a �= 0 and c �= 0: these 
assumptions are not necessary to the argument and in any case are generic assumptions.

The conditions for the tangent planes at (u, v, f (u, v)) ∈ M0 and (x, y + 1, g(x, y)) ∈ N0 to be identical are (subscripts 
denoting partial derivatives)

(i) fu(u, v, f (u, v)) = gx(x, y, g(x, y))

(ii) f v(u, v, f (u, v)) = g y(x, y, g(x, y))) (8)

(iii) (x − u) fu(u, v, f (u, v)) + (y + 1 − v) f v(u, v, f (u, v))

+ fu(u, v, f (u, v)) − g(x, y, g(x, y)) = 0

The first two equations state that the normals to M0 and N0 are parallel, so that the tangent planes are parallel. The 
third equation states that the line joining the two points on M0 and N0 is perpendicular to the normal to M0, and therefore 
also to the normal to N0. The two tangent planes are therefore identical.

Solving (i) for u as a function of v, x, y and substituting in (ii) and (iii) gives equations with linear terms

2c(c − a)

a
x + 2(c − a)

a
y and

2c2

a
x + 2c

a
y

respectively. Because these are proportional we cannot use them to solve for x and y as functions of v but instead solve (ii) 
for x as a function x(v, y) and substitute further in (iii). The result is an expression of the form

x = − y

c
+ αv2 + β y2 + . . .

for certain values of α and β and an equation in v and y with 2-jet

3(a3 f03 − a2 f12 + af21 − f30)

a2(a − c)
v2 − 3(c3 g03 − c2 g12 + cg21 − g30)

c2(a − c)
y2.

Neither coefficient is zero since neither surface has a cusp of Gauss: the condition for this is that respectively (au + v) and 
(cx + y) should be a factor of the cubic terms of f and g . If the two coefficients of v2 and y2 have opposite sign then the 
locus in v, y has an isolated point, so the same applies to the locus in x, y which we are studying here, so we assume the 
signs are the same and write the 2-jet as A2 v2 − B2 y2 where A > 0, B > 0. The two branches in the v, y plane therefore 
have the form say

v1 = B

A
y + v12 y2 + v13 y3 + . . . and v2 = − B

A
y + v22 y2 + v23 y3 + . . . .

These can then be substituted into x(v, y) as above to obtain x as a function of y alone for the two branches of the binodal 
curve in the x, y plane. To show that the branches in the x, y plane have at least 3-point contact we do not need to calculate 
further for substituting for v = v1 and v = v2 yields

x = − y

c
+ α

(
B

A
y + v12 y2

)2

+ β y2 + . . . and x = − y

c
+ α

(
− B

A
y + v22 y2

)2

+ β y2 + . . .

respectively, which clearly have the same 2-jet.
It takes a little more effort to show that the contact is exactly 3-point but calculating v12 and v22 and remembering the 

definitions of A and B the difference between the coefficients of y3 in the branches of the binodal curve in the x, y plane 
comes to a nonzero multiple of

(a − c)(a3 f03 − a2 f12 + af21 − f30)
2(c3 g03 − c2 g12 + cg21 − g30)

which is known to be nonzero. �

11
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Cases 2b and 3e We shall use the notation of Case 2b but the singularity on N0 for Case 3e is the same as that on M0 for 
Case 3e and the calculation will find both. The calculation below is less detailed than Case 3a above.

From the conditions of Case 2b the functions f and g as in (4) take the form

f (u, v) = f20u2 + f11uv + f02 y2 + f30u3 + f21u2 v + f12uv2 + f03 v3 + . . .

g(x, y) = g20x2 + g30x2 + g21x2 y + g12xy2 + g03 y3 + . . .

where f 2
11 − 4 f20 f02, g20 and g03 are all nonzero. We shall also assume for the calculation that f11 �= 0: this condition can 

be avoided by taking a different route.
The three equations (8) allow us to first express u as u(v, x, y) using (i), then x as x(v, y) using (ii); we end up with a 

relationship between v and y without linear terms, of the form

pv2 + qv y + ry2 + higher terms, where q = g12( f 2
11 − 4 f20 f02)

f11 g20
, r = 3g03. (9)

Here p is a much more complicated expression in the second and third order terms of f and g; however p is not in fact 
needed for the calculation here.

We assume that (9) has two distinct real branches, that is p2 − 4qr > 0, otherwise the corresponding binodal curves in 
the (u, v) and (x, y) planes will be isolated points. The case of tangential branches is ruled out as non-generic. Write

y = yi(v) = αi v + βi v2 + . . . , i = 1,2 (10)

for these two branches, where α1 �= α2. We want to deduce, from the locus (9) in the (v, y) plane, the corresponding loci 
in the (u, v) plane (for M0) and in the (x, y) plane (for N0).

For M0, that is in the (u, v) plane, the expression for u(v, y) has the form

−2 f02

f11
v + av2 + bv y + cy2 + higher terms, where b = g12( f 2

11 − 4 f20 f02)

f 2
11 g20

, c = 3g03

f11
(11)

and a is more complicated but does not in fact enter the calculation. Thus the coefficients of v in the expressions for 
u(v, y1(v)) and u(v, y2(v)) will be equal, so the branches in the (u, v) plane will be tangent. The coefficients of v2 in these 
two branches are a + bα1 + cα2

1 and a + bα2 + cα2
2 . These are equal if and only if (α1 −α2)(b + c(α1 +α2)) = 0. But α1 and 

α2 satisfy the equation p + qα + rα2 = 0, by (9), so α1 + α2 = −q/r, and equality of the 2-jets requires qc = br, which is 
easily checked to be true. Hence the branches in the (u, v) plane have (at least) 3-point contact. The condition for exactly 
3-point contact is too complicated to reproduce here. This completed the proof for M0.

For the binodal curve on N0 let us write the two branches in the (v, y) plane, assumed real, as in (10) above. Now 
x as a function of v and y has linear term Av where A = 4( f 2

11 − 4 f20 f02)/2 f11 g20. Thus the linear terms of the (x, y)

curve, parametrised by v , are (Av, α1 v) and (Av, α2 v) The branches therefore form a transverse crossing since α1 �= α2. 
This completes the calculation for N0 and therefore for Cases 2b and 3e. �
6. Representation of the criminant surface and the binodal curves using normal forms for the generating functions F

In §7 we present explicit calculations and derive the normal forms for Case 3 and Case 3a (see Propositions 4.8 and 4.9, 
and §5). In the present section we use the normal forms to draw the criminant surface and the binodal curves (see Figs. 
4-6).

The reason for selecting these cases is that they are referred to as K2 and K3 by Korteweg in [13]; see also ‘Second 
theorem’ and ‘Third theorem’ in [25, p.76-77]. The ‘second theorem’ (K2) has already been noted in Remark 4.2. The ‘third 
theorem’ (K3) asserts that for our Case 3a, at the moment of transition τ = 0 in the family of surfaces Mτ , Nτ , the binodal 
curves on both surfaces M and N consist of two ‘real or imaginary branches’ having the same tangent and curvature. The 
case of real branches we refer to as a ‘beaks transition’ (Ĉ∗−

3 ); imaginary branches give a ‘lips transition’, Ĉ∗+
3 , where the 

real binodal curves are isolated points. As the family of surfaces evolves, the ‘lips’ becomes empty in one direction and 
in the other direction opens out in the manner shown in Fig. 7. However this figure suggests that the ‘lips’ curve has 4 
inflexions. As noted in Remark 4.6, our methods do not preserve inflexions, but according to Korteweg’s own calculations 
there are actually two inflexions, as in Fig. 8.

First we show how the normal form can be used to derive an explicit local parametrisation for the criminant surface, 
that is the ruled surface formed by the tie lines. We do the calculations for the Case 3 (Ĉ3) but the other parametrizations 
can be derived similarly. We also include figures for the two Cases 3 and 3a.

The criminant �F for a normal form F as in Proposition 4.8 is the set given by

�F =
{
(q1,q2,q3) | ∃(u, v, ε),F = ∂F = ∂F = ∂F = 0

}
.

∂u ∂v ∂ε
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Fig. 4. The criminants and binodal curves of ̂C3 and B̂3, drawn from the normal forms as in Proposition 4.8. In the left-hand figure the curved surface is 
called a ‘folded Whitney umbrella’. Note that the surface N becomes a plane in this representation, so geometric information about the curvature of N is 
lost. See Remark 4.6 for information about what is lost and what is preserved by using normal forms.

Fig. 5. The criminants and binodal curves of Ĉ∗−
3 as it evolves (left to right) in a generic 1-parameter family of surfaces, using the normal form as in 

Proposition 4.9.

The problem here is to turn this description as a zero set into a local parametrization close to the base point on N .
For the normal form

Ĉ3 : F = −q3 + ε(u3 + uε + ε + q2u + q1 ± v2)

we calculate the derivatives as

∂F
∂u

= ε(3u2 + ε + q2)

∂F
∂v

= ±2εv,

∂F
∂ε

= u3 + 2εu + 2ε + q2u + q1 ± v2.

The vanishing of ∂F
∂v = ±2εv means that either ε = 0 or v = 0 if ε �= 0.

1. If ε = 0, then ∂F
∂u is automatically zero and F = 0 implies q3 = 0. Then ∂F

∂ε = 0 gives that q1 = −u3 −2εu −2ε−q2u ∓ v2

where q2 and the other variables are arbitrary. So this component, called the redundant component, is given by the 
plane q3 = 0 and it corresponds to the surface N .

2. If ε �= 0 then ∂F
∂u = 0 gives that q2 = −3u2 − ε, and ∂F

∂ε gives q1 = 2u3 − εu − 2ε. Substituting these into F = 0 gives 
q3 = −ε2u − ε2, so we have (q1,q2,q3) = 2u3 − 2ε,−3u2,−ε2 which is a folded Whitney umbrella.

The curve along which the folded Whitney umbrella of the criminant and the surface N are tangent is given by 
(0, 2u3, −3u2). This corresponds to the binodal curve and has an ordinary cusp at the origin.
13



P. Giblin and G. Reeve Journal of Geometry and Physics 192 (2023) 104920
Fig. 6. The binodal curves during a beaks transition of Case 3a (Ĉ∗−
3 ) from Korteweg 1891 [15], also reproduced in [25, p.79]. The transitions taking place at 

both M and N are shown simultaneously. The centre pair in this diagram show two curves (full black lines) which should be tangential as well as crossing: 
they have 3-point contact in the manner of y = ±x3. The dashed lines represent the parabolic (spinodal) curve.

Fig. 7. Two views of the criminant of Ĉ∗+
3 for a small negative value of τ . The ‘lips’ figure can be seen on the right, but beware that inflexions are not 

preserved by our methods so the presence of 4 inflexions rather than 2 as in the next figure is not significant.

Fig. 8. A lips transition of the binodal curve in Case 3a (for a small negative value of τ in ̂C∗+
3 ) from Korteweg 1891 [15]. (This figure is not reproduced in 

[25].) The binodal curves at both M and N are shown simultaneously. Note that our methods in this article cannot verify the presence of inflexions in this 
figure. Compare Remark 4.6.

7. Reduction to normal forms, calculations and proofs

For Case 3 we have the following proposition:

Proposition 7.1. For a pair of surfaces M and N corresponding to Case 3, near λ = 0 the affine generating family germ � is space-time 
contact equivalent to the following normal form and is stable inside the space W :

Ĉ3 : F = −q3 + ε(u3 + uε + ε + q2u + q1 ± v2).

Corollary 7.2. If M has a parabolic point, the corresponding binodal curve on N has an ordinary cusp.

For Case 3a, where both surfaces have parabolic points, the singularity Ĉ3 fails to be versally unfolded and results in a 
singularity of type C∗+ or C∗− depending on the sign of the expression
3 3

14
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Fig. 9. The Newton diagram of Ĉ3.

c3 := −
(

f30 − f21 f11

2 f02
+ f12 f 2

11

4 f 2
02

− f03 f 3
11

8 f 3
02

)(
g30 − g21 g11

2g02
+ g12 g2

11

4g2
02

− g03 g3
11

8g3
02

)
.

In particular we have the following proposition:

Proposition 7.3. For a generic one-parameter family of pairs of surfaces Mτ and Nτ in which at the moment τ = 0 in the family, there 
exists a bitangent plane which is tangent to each surface at a parabolic point, are both parabolic, and share a near λ = 0 the affine 
generating family germ � is space-time contact equivalent to one of the following normal forms and is stable inside the space W :

Ĉ∗+
3 : F = −q3 + ε(u3 + uε + ε + (τ + q2

2)u + q1 ± v2), if c3 > 0

Ĉ∗−
3 : F = −q3 + ε(u3 + uε + ε + (τ − q2

2)u + q1 ± v2), if c3 < 0.

The previous proposition together with explicit calculations from the normal form will prove:

Corollary 7.4. The binodal curves on both M and N undergo a lips transition if c3 > 0 and a beaks transition if c3 < 0. (See (7) in §5
for a simplified version of c3 < 0 when special coordinates are used.)

Proof of Proposition 7.1. In this case since M is parabolic, we can make a change of coordinates v = v ′ − u f11
2 f02

to reduce the 
part of the generating family that is quadratic in u and v and linear in ε to give

�0(u, v ′, ε) = −q3 + ε

(
f02 v ′2 + 8 f 3

02 f30 − 4 f 2
02 f11 f21 + 2 f02 f 2

11 f12 − f03 f 3
11

8 f 3
02

u3 + ...

)

+
(

g02 v ′2 + f02 g11 − f11 g02

f02
uv ′ + 4 f 2

02 g20 − 2 f02 f11 g11 + f 2
11 g02

4 f 2
02

u2 − 2g02 v ′

− f02 g11 − f11 g02

f02
u + g02)

)
ε2 + ... + (g02 + g03 + ...)ε3 + ...

Using the lowest degree terms in u and v ′ that are linear in ε, a further change in coordinates (and dropping the prime 
′) can then remove any other terms divisible by u2ε or v ′ε to give the pre-normal form

�0(u, v, ε) = −q3 + ε

(
f02 v2 + 8 f 3

02 f30 − 4 f 2
02 f11 f21 + 2 f02 f 2

11 f12 − f03 f 3
11

8 f 3
02

u3 + ...

)

+
(

g02 − f02 g11 − f11 g02

f02
u

)
ε2 + ...

In Case 3 we assume that each of the coefficients here is nonzero, and the vanishing of the various individual expressions 
8 f 3

02 f30 − 4 f 2
02 f11 f21 + 2 f02 f 2

11 f12 − f03 f 3
11, f02 g11 − f11 g02, g02, and f02 gives the various sub-cases 3b, 3c, 3d and 3e 

respectively.
The family is infinitesimally space-time stable inside the space of functions W if any germ divisible by ε lies in the 

tangent space to the orbit restricted to q = 0

TĈ3
F = Ou,v,ε

{
F,

∂F
∂u

,
∂F
∂v

}
+Oε

{
∂F
∂ε

}
.

We can remove the monomials corresponding to the shaded region of Fig. 9 up to space-time contact equivalence as 
follows. We have mod T̂∗F :
C3

15
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F = ε(u3 + εu + ε + v2) ≡ 0, (12)
∂F
∂u

= 3u2ε + ε2 ≡ 0, (13)

∂F
∂v

= 2vε ≡ 0, (14)

∂F
∂ε

= u3 + 2εu + 2ε + v2 ≡ 0. (15)

We can multiply relation (15) by − 1
2 ε to give

−1

2
ε
∂F
∂ε

= −1

2
u3ε − ε2u − ε2 − 1

2
v2ε ≡ 0. (16)

Firstly the relation (14) implies that monomials divisible by vε belong to the tangent space to the orbit. The relations 
(16) and (12) then imply that monomials of the form u3εk1 for some k1 ≥ 0 belong to the tangent space to the orbit. Using 
this fact, we can multiply (13) by u to show that monomials of the form uεk2+2 for some k2 ≥ 0 also belong to the orbit. 
Now, multiplying relation (15) by functions in ε only, yield that εk3+2 for some k3 ≥ 0. Now relation (13) implies that 
monomials of the form u2εk4 for some k4 ≥ 0 also belong. Finally, (13) can be used to obtain any monomial in the shaded 
region of Fig. 9. A basis for Q = εR[[u, v, ε]]/T ∗

C3
�0 is generated by the three monomials 1, ε and εu.

Up to quadratic terms in q the function � can now be written as

�(u, v, ε) = �0(u, v, ε) + φ1(u, v, ε)q1 + φ2(u, v, ε)q2 + φ3(u, v, ε)q3 (17)

for some functions φ1, φ2 and φ3 = −1.
The singularity Ĉ3 is versally unfolded if the following matrix evaluated at the origin⎛⎜⎝ φ1 φ2 φ3

∂φ1
∂ε

∂φ2
∂ε

∂φ3
∂ε

∂2φ1
∂ε∂u

∂2φ2
∂ε∂u

∂2φ3
∂ε∂u

⎞⎟⎠ =
⎛⎝ 0 0 −1

g11 2g02 0
−2g20 −g11 0

⎞⎠ , (18)

has nonzero determinant. So if N is not a parabolic point, then the singularity is versally unfolded and has normal form:

Ĉ3 : F = −q3 + ε(u3 + uε + ε + q2u + q1 ± v2)

When both M and N have parabolic points the singularity at each surface is of type Ĉ∗±
3 or type Ĉ∗

3 . We now prove this 
and derive the necessary conditions for each type. �
Proof of Proposition 7.3. To show versality and in order to classify the type of Ĉ∗±

3 we need to keep track of higher degree 
terms in q.

Decompose � as a power series in u, v by

�(u, v, ε.q1,q2, τ ) =
∑
i, j

φi j(ε,q1,q2, τ )ui v j

for some functions φi j .
Similarly to the previous case, substituting u = ξ1(u, v, q1, q2, τ ) and v = ξ2(u, v, q1, q2, τ ) for some functions ξ1 and ξ2, 

the higher degree terms can be removed, reducing the generating family � to the form

�̃ = −q3 + ε(φ̃00 + φ̃10u + φ̃01 v + φ̃20u2 + u3 ± v2)

for some functions φ̃i j in variables ε, q1, q2 and τ which vanish at the origin.
Solving as a power series reveals that the necessary functions are

ξ1(u, v, ε,q1,q2, τ ) =
(

1

φ30

) 1
3

U − 1

3

(
1

φ30

) 5
3

φ40U 2 − φ30φ50 − φ2
40

3φ3
30

U 3 + ...

ξ2(u, v, ε,q1,q2, τ ) =
(

1

φ02

) 1
2

V − φ03

2φ2
02

V 2 − 1

2
φ12

(
1

φ02

) 3
2

U V − φ21

2φ02
U 2 − 4φ02φ04 − 5φ2

03

8φ
7
2

02

V 3 + ...

Now a further change of coordinates U = u1 − φ̃20
3 and V = v1 − φ̃01

2 gives

�̂ = −q3 + ε(φ̂00 + φ̂10u + u3 ± v2)
16
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for functions φ̂00 and φ̂10 not containing u, v where

φ̂00|ε=τ=0 = 2g02q2 + g11q1 + h.o.t.

φ̂10|ε=τ=0 = −2
( f11 g20 − f20 g11)q1

f11
− ( f11 g11 − 4 f20 g02)q2

f11
+ h.o.t.

Since the surface has a parabolic point, the linear terms in q2 vanish and the necessary condition to be versally unfolded 
is that the terms

1

2

∂�̂

∂u∂q2
2

= −24g02
3 g30 − 12g02

2 g11 g21 + 6g11
2 g12 g02 − 3g03 g11

3

2g11
2 g02

and ∂3�̂
∂u∂τ are both nonzero, each of which provide independent conditions and so are avoided generically. Further space-

time contact transformations in parameters can reduce the generating family can be reduced to the normal form:

Ĉ∗±
3 : F = −q3 + ε(u3 + uε + ε + (τ ± q2

2)u + q1 ± v2),

where the ±u2 term is independent and does not affect the diffeomorphism type of the Centre Symmetry Set.
The sign of the term ±q2

2 is determined by the product of the derivatives at u = v = ε = q1 = q2 = τ = 0

∂3�̂

∂u3

∂3�̂

∂u∂q2
2

= −
(

f30 − f11 f21

2 f02
+ f11

2 f12

4 f02
2

− f03 f11
3

8 f02
3

)(
g30 − g11 g21

2g02
+ g11

2 g12

4g02
2

− g03 g11
3

8g02
3

)
multiplied by a positive factor.

If this expression is negative then there is a lips bifurcation, and if positive then a beaks bifurcation on the binodal. The 
expression is zero if and only if one of the surfaces has a cusp of Gauss which is not true for this case. �
Remark 7.5. A note about B̂3. The condition here is, as Case 2 above, g02 = 0, g03 �= 0 and M is not parabolic at (0, 0, 0). 
Analogously to (17) and (18) the singularity is versally unfolded if and only if the following matrix evaluated at the origin⎛⎜⎝ φ1 φ2 φ3

∂φ1
∂ε

∂φ2
∂ε

∂φ3
∂ε

∂2φ1
∂ε2

∂2φ2
∂ε2

∂2φ3
∂ε2

⎞⎟⎠ =
⎛⎝ 0 0 −1

g11 0 0
2g11 + 2g12 6g03 0

⎞⎠
has nonzero determinant, which is clearly the case unless g11 = 0. If this occurs (Case 2b), then to be versally unfolded as 
the more degenerate singularity

B̂∗
3 : F = −q3 + ε(u2 ± v2 ± ε2 + (τ ± q2

1)ε + q2)

we would require the first two rows of the matrix to be independent. But g11 = 0 prevents this from happening, so B̂∗
3 does 

not occur in our geometrical context and instead this case results in the singularity B̂∗∗
3 .

8. Conclusions

In this article we have applied the techniques of modern singularity theory to study the curves and surfaces occurring 
in the classical theory of thermodynamics applied to the mixing of fluids, as derived by D.J. Korteweg and expounded by 
Sengers [25]. In fact to some extent we are responding to a suggestion on page 85 of this book: ‘It would be interesting 
to compare Korteweg’s method of continuous deformation of surfaces with the methodology of catastrophe theory’. We 
have presented a complete list of ‘normal forms’ which describe the many different ‘criminant surfaces’ and ‘binodal curves’ 
which arise in this context, with proofs in selected cases. The cases selected, and the figures derived from them, are of 
particular significance in Korteweg’s work. One drawback of the methods of singularity theory used here is that certain 
geometrical information is lost in passing to a normal form; in particular the number of inflexions on the binodal curves 
cannot be predicted. For this we need to address ‘dual’ properties of the surfaces and curves and this is the subject of 
ongoing work.

Data availability

No data was used for the research described in the article.
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