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Abstract

We investigate the vertex curve, that is the set of points in the hyperbolic region of a smooth surface
in real 3-space at which there is a circle in the tangent plane having at least 5-point contact with the
surface. The vertex curve is related to the differential geometry of planar sections of the surface
parallel to and close to the tangent planes, and to the symmetry sets of isophote curves, that is
level sets of intensity in a 2-dimensional image. We investigate also the relationship of the vertex
curve with the parabolic and flecnodal curves, and the evolution of the vertex curve in a generic
1-parameter family of smooth surfaces.

1. Introduction

This article is a contribution to the study of Euclidean invariants of surfaces, and generic families
of surfaces, in Euclidean space R3. There have been many previous such studies, involving among
others contact of surfaces with spheres (ridge curves, see for example [9, 13, 20]), right circular
cylinders [12], and, as in the present article, circles. In [4] Bruce, following on from earlier work
of [18], considers the contact of circles with surfaces, but the problems studied are different from
ours. Another approach is given in Porteous’s book [20, Chapter 15].

In [10] Diatta and the first author studied vertices and inflexions of sections of a smooth surfaceM
in R3 by planes parallel to, and close to, the tangent plane TpM at a point p. This was in the context
of families of curves which have a singular member (namely the section of M by the tangent plane
itself) and the behaviour of the symmetry sets of the curves in such a family. (The corresponding
evolution of symmetry sets of a 1-parameter family of smooth plane curves was classified in [6].)
This in turn was motivated by the fact that isophotes (lines of equal intensity) in a camera image can
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938 P. GIBLIN et al.

be regarded as level sets of a function of position in the image, namely the intensity function. The
evolution of vertices on planar sections parallel to TpM changes when p crosses a certain curve on
M, first studied in [10], and which we call the vertex curve (V-curve) in this article. Thus the V-curve
is a Euclidean invariant bifurcation set on M.

We first recall that the sign of the Gauss curvatureK distinguishes three types of points of a smooth
surface : elliptic region (K > 0), hyperbolic region (K < 0) and parabolic set (K= 0); and that a vertex
of a plane curve γ is a point where γ has higher order of contact than usual with its osculating circle
(at least 4-point contact). At a vertex the radius of curvature of γ is critical.

Vertex curve. LetM be a smooth surface in R3. The vertex curve, or V-curve, onM is the closure of
the set of points p in the hyperbolic region of M for which there exists a circle, lying in the tangent
plane TpM toM at p, having (at least) 5-point contact withM at p. Such a point p is also called a vertex
point, or V-point, ofM. (The V-curves in this article were called ‘VT-sets’, for ‘vertex transition sets’,
in [10].)

At a hyperbolic point p ∈M the tangent plane TpM cuts the surface along two smooth transverse
branches. Thus, for a circle lying in the tangent plane TpM, 5-point contact with M at p can be
expected to mean that the circle meets one branch transversely (one of the five contacts) and the other
branch at a vertex of that branch (the other four contacts); compare [10, Section 3.4(1)]. Whence the
name V-curve.

We study the structure of the V-curve and its interactions with the parabolic and flecnodal curves
for a generic smooth surface in R3 and investigate the changes which occur on V-curves during a
generic 1-parameter deformation of the underlying surface.

The article is organized as follows. In Section 2 we give two complementary methods for mea-
suring the contact between a surface M at p ∈M and a circle lying in the tangent plane to M at p.
In Section 3 we show that the V-curve is smooth on the hyperbolic region of M, and in Section 3.2
we show how to distinguish between vertices which are maxima or minima of the absolute radius
of curvature. In Section 4 we study the V-curve near a special parabolic point of M, namely a ‘cusp
of Gauss’ or ‘godron’ (defined below), showing in Proposition 4.5 that at any ‘hyperbolic cusp of
Gauss’ the V-curve has two smooth branches tangent to the parabolic curve (it is empty near an
‘elliptic cusp of Gauss’). In Section 4.1.1 we introduce a Euclidean invariant of a cusp of Gauss,
defined in two geometric ways. In Section 5 we find the interactions between the V-curve and the
flecnodal curve ofM; the various possibilities are illustrated in Figure 4. In Section 6 we investigate,
partly experimentally, the evolution of the V-curve in a generic 1-parameter family of surfaces and
finally in Section 7 we mention some further ongoing work.

1.1. A note on genericity

The word ‘generic’ occurs frequently in this article, and we pause here to give a brief explanation
and some references. Although we use the term ‘generic surface’ it is, strictly speaking, proper-
ties of (smooth, and usually closed) surfaces which are generic, not surfaces themselves. A generic
property P is one such that, if the surface M satisfies P, then so do all surfaces obtained from M by
a sufficiently small perturbation (openness), and, if M does not satisfy P, then a suitable arbitrarily
small perturbation ofM does satisfy P (density). Proofs that a given property is generic use one of the
standard ‘transversality’ results, the most basic being the transversality theorem of Thom (or Sard
and Thom).

Transversality. A smooth map f : A→ B between smooth manifolds is said to be transverse to a
submanifold C⊂ B at a ∈ A if either f(a) 6∈ C or the image of the tangent space to A at a under the
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 939

derivative f∗a together with the tangent space to C span the whole tangent space to B at f (a):

f∗aTaA+Tf(a)C= Tf(a)B.

The map f is said to be transverse to C if it is transverse to C at every point of A.
In practice transversality is used to show that two submanifolds do not meet because they are

transverse and the sum of their dimensions is less than that of the ambient space. The following is
easy to prove from the implicit function theorem:

If f : A→ B is transverse to C then f−1(C) is a smooth submanifold of A whose codimension in A
is the codimension of C in B.

k-jet extension. The k-jet extension jkf of a smooth map f : A→ B is the map jkf : A→ Jk(A,B),
x 7→ jkx f, which associates to each x ∈ A the k-jet of f at x.

ThomTransversality Theorem. If A is a closed manifold and C is a closed submanifold of Jk(A,B),
then the set of maps f : A→ B, whose k-jet extension is transverse to C, is an open everywhere dense
set in the space of all smooth maps from A to B.

To quote [1, p.38] (this book is a general reference for transversality results and applications): ‘This
theorem means that by a small shift of a smooth map it is possible to put it into general position not
only with respect to an arbitrary submanifold in the target space but also with respect to an arbitrary
condition placed on the derivatives up to some finite order.’

In practice f is a local embedding of a parameterized surface M in R3 and C represents either (i)
some geometrical structure which we wish to avoid as being ‘non-generic’ (C is of codimension > 2)
or (ii) a geometrical structure such that f−1(C) is a set (of the surface) which we wish to study (C is
of codimension 1 or 2).

In our case, C can be a hypersurface given by a polynomial of low degree in the coefficients
of some finite jet space, and then f−1(C) is a curve of our surface. The k-jet extension of f is a
2-dimensional surface which, for almost any f, is transverse to C. Since transversality is always
stable, the above curve is a stable feature of the surface.

Naturally when global questions about surfaces are involved, such as statements about the evo-
lution of parabolic curves in a ‘generic 1-parameter family of surfaces’ then the transversality
arguments become more technical. Full details of this case, which we use in Section 6, are given
in [8]. Our concern in this article is chiefly with local configurations, and in Section 6 the results are
largely experimental in nature.

Other references to generic geometry proofs are [14, 5] (an elementary exposition of the method)
and [3], particularly Section 8; the main technical result is proved in [19].

2. Contact function and contact map

Here, we describe two alternative ways to calculate the contact between a circle and the surface M.
For the majority of this article we adopt the ‘standard calculation’ below, in which we parameterize
the circle and use a local equation z= f(x,y) for M. But for some purposes in Section 6 we have
found another useful approach in Section 2.2: we parameterize the surface and use two equations for
the circle. Two equations are also used in [18], defining the circle as an intersection of two spheres,
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940 P. GIBLIN et al.

whereas we use a plane and a sphere centred on the plane. This has the advantage of uniqueness. The
general theory of contact between submanifolds is contained in [17].

2.1. Computing the contact by the contact map

We assume M to be locally given in Monge form z= f(x,y), where f and its partial derivatives fx, fy
vanish at the origin (0,0), so that the tangent plane toM at the origin is the coordinate plane z= 0. In
this method, we calculate the contact by composing a parameterization of the circle with the equation
z= f(x,y). Consider a circle or line through the origin in, say, the (x1, y1)-plane, given by

r(x21 + y21)+ sx1 + y1 = 0, with curvature
2r√
1+ s2

and centre

(
− s

2r
,− 1

2r

)
, r 6= 0. (1)

The fact that this can represent a line (r= 0) will be useful later.
We shall map this circle isometrically to a circle in the tangent plane Tp at p ∈M by choosing

an orthonormal basis for R3 as follows. Write p= (x0, y0, f(x0, y0)) and let fx, fy stand for the partial
derivatives of f at x= x0, y= y0.

e1 =
(1+ f2y ,−fx fy, fx)

||(1+ f 2y ,−fx fy, fx)||
, e2 =

(0,1, fy)
||(0,1, fy)||

, e3 =
(−fx,−fy,1)

||(−fx,−fy,1)||
. (2)

Thus e1,e2 span the tangent plane at p and e3 is a unit normal to M at p. For p= (0,0) the three
vectors form the standard basis for R3. We map a point (x1, y1) of the circle (1) to

(X,Y,Z) = (x0, y0, f(x0, y0))+ x1e1 + y1e2,

which lies on an arbitrary circle through p, lying in the tangent plane to M at p. When x0 = y0 = 0
the map takes the circle in the (x1, y1)-plane identically to the same circle in the (x, y)-plane which is
the tangent plane to M at the origin.

We shall parameterize the circle (1) by x1 close to the origin in the (x1, y1) plane; then the contact
function between the corresponding circle in Tp and the surface M is

G(x1, x0, y0, r, s) = Z− f(X,Y), (3)

where on the right-hand side y1 is written as a function of x1. The vertex curve is the locus of points
(x0, y0, f(x0, y0)) for which the contact is at least five, and we shall need to find this curve close to
the origin (x0, y0) = (0,0). The contact is at least five provided the first four derivatives of G with
respect to x1 vanish at (0, x0, y0, r, s).

An important observation is that x21 is a factor of the function G, that is G(0, x0, y0, r, s)≡
0, Gx1(0, x0, y0, r, s)≡ 0. This is because the circle (1) always has at least 2-point contact with the sur-
face for x1 = 0, at the point (x0, y0, f(x0, y0)), since it passes through the intersection of the two curves
in which the surface is met by its tangent plane (or, at a parabolic point, through the corresponding
singularity of the intersection).
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 941

Definition 2.1 The smooth function H determined by the equality

G(x1, x0, y0, r, s) = x21H(x1, x0, y0, r, s)

will be called the reduced contact function.

We can now re-interpret the conditions that the first four derivatives ofGwith respect to x1 vanish
at x1 = 0 in terms of the function H, as follows.

Gx1 = 2x1H+ x21Hx1 ,

Gx1x1 = 2H+ 4x1Hx1 + x21Hx1x1 ,

G3x1 = 6Hx1 + 6x1Hx1x1 + x21H3x1 ,

G4x1 = 12Hx1x1 + 8x1H3x1 + x21H4x1 .

Thus we now require H= Hx1 = Hx1x1 = 0 at x1 = 0, that is we consider the map

H̃ : (R4,0)→ (R3,0),

(x0, y0, r, s) 7→ (H(0, x0, y0, r, s),Hx1(0, x0, y0, r, s),Hx1x1(0, x0, y0, r, s)). (4)

The projection to the (x0, y0)-plane of H̃−1(0,0,0) is the set of points onM, near the origin, at which
there is a circle in the tangent plane having 5-point contact or higher with the surface.

2.2. An alternative approach

Instead of parameterizing the circle and using an equation z= f(x,y) for the surfaceM we can param-
eterize the surface by (x,y) 7→ (x,y, f(x,y)) and write down two equations for the circle. We can
specify a plane, namely the tangent plane to M at a given point P0 = (x0, y0, f(x0, y0)), and a sphere
centred at a point of this plane and passing through P0. This gives a contact map R2 → R2, which
we can reduce using contact equivalence (K-equivalence). We shall use this method in Section 6 as
it makes the direct computations much easier.

With the notation above, let (u,v,w) be a point in the tangent plane to M at P0. The equation of
this tangent plane is G1(x0, y0;x,y, z) = 0, given by the inner product

G1 = 〈(x− x0, y− y0, z− f(x0, y0)) , (−fx,−fy,1)〉= 0 ,

and the partial derivatives are evaluated at P0. Thus w= (u− x0)fx+(v− y0)fy+ f(x0, y0). The
equation of the sphere centred at (u,v,w) and passing through P0 is G2(x0, y0,u,v;x,y, z) = 0
where G2 = (x− u)2 +(y− v)2 +(z−w)2 − (x0 − u)2 − (y0 − v)2 − (z0 −w)2, w being substituted
as above. The intersection of this sphere with the tangent plane is the circle whose contact withM at
P0 we wish to calculate.

To calculate the contact we must parameterizeM close to P0. Thus let (x0 + p,y0 + q) be param-
eters forM, where p and q are small. The contact map, with variables p,q and for fixed x0, y0,u,v, is

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/3/937/6550916 by guest on 22 N
ovem

ber 2023



942 P. GIBLIN et al.

then the composite of the parameterization

(x0, y0;p,q) 7→ (x,y, z) = (x0 + p,y0 + q, f(x0 + p,y0 + q))

with the map

(x0, y0,u,v;x,y, z) 7→ (G1(x0, y0;x,y, z), G2(x0, y0,u,v;x,y, z)) .

We shall call the components of this composite map (H1(x0, y0,p,q),H2(x0, y0,u,v,p,q)). Note that
when we use a polynomial approximation to f both H1 and H2 are polynomial functions.

For fixed x0, y0,u,v it is a map (germ) H : R2,0→ R2,0 and its K-class is an alternative way of
measuring the contact between a circle in the tangent plane toM and the surfaceM. The parameter-
ization of the V-curve consists of those x0, y0 for which, for some u,v, this map has the contact type
A4 or higher at p= q= 0.

3. Vertex curve properties in the hyperbolic domain

We start with some basic background. A generic smooth surfaceM in R3 has three (possibly empty)
parts: (H) an open domain of hyperbolic points: at such points there are two tangent lines having
greater than 2-point contact with M, called asymptotic lines; (E) an open domain of elliptic points:
at such points there is no such line; and (P) a smooth curve of parabolic points: at such points the
two asymptotic lines of H have coincided to give a unique such line.

IfM is generic and locally given in Monge form z= f(x,y) around p, then p is hyperbolic, elliptic
or parabolic if and only if the quadratic part of f, called second fundamental form of M at p, is
respectively indefinite, definite or degenerate. The zeros of this quadratic form (for p hyperbolic or
parabolic) are the asymptotic tangent lines at p.

The integral curves of the fields of asymptotic tangent lines are called asymptotic curves.

Left and right. Fix an orientation in R3. A regularly parameterized smooth space curve is said to
be a left (right) curve on an interval if its first three derivatives at each point form a negative (resp.
positive) frame. Thus a left (right) curve has negative (resp. positive) torsion and twists like a left
(resp. right) screw.

Fact At each hyperbolic point p one asymptotic curve is left and the other is right (cf. [21]).

Proof. A point of a curve is right, left or flattening if the torsion at that point satisfies τ > 0,τ < 0
or τ = 0, respectively. The Gaussian curvature K of a smooth surface is negative on the hyperbolic
domain. The Beltrami–Enneper Theorem states that the torsion of the two asymptotic curves passing
through a hyperbolic point with Gaussian curvature K has the values τ =±

√
−K. So one is left and

the other is right. □

The respective tangents L`, Lr, called left and right asymptotic lines, are tangent to the smooth
branches of the section M∩TpM. We call them left and right branches, respectively.
This left-right distinction depends only on the orientation of R3, but not of the surface.

Left and right vertex curve. The left (right) vertex curve V` (resp. Vr) of a surface M consists of
the points p for which the left (resp. right) branch of M∩TpM has a vertex. We must clarify that
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 943

the curve formed by the ‘left’ (resp. ‘right’) vertices is not a left (resp. right) curve. We use this
terminology just to associate V` and Vr to the left and right asymptotic directions.
We study the behaviour of the V-curve close to the parabolic curve in Section 4. For more information
on the behaviour of asymptotic curves close to the parabolic curve see for example [2, Chapter 3],
[14, Chapter 6].

At an elliptic point p ∈M the intersection with the tangent plane consists of two complex conjugate
curves. In principle one can ask whether a complex circle in that tangent plane could have 5-point
contact with M at p. A calculation shows that this imposes two conditions on the point p, which
implies that it is only possible at isolated points of a generic surfaceM. The two conditions imposed
on the (real) coefficients in theMonge form of the surface do not appear to have any other geometrical
meaning.

3.1. Smoothness of the vertex curve at a hyperbolic point

We shall take a surface in local Monge form at a hyperbolic point p so that one asymptotic tangent
line at p is the x-axis y= 0 and the other one is the line x= ay :

f(x,y) = xy− ay2 + b0x
3 + b1x

2y+ b2xy
2 + b3y

3 + c0x
4

+ c1x
3y+ c2x

2y2 + c3xy
3 + c4y

4 + d0x
5 + . . . , (5)

where, if they are needed, the degree 5 terms will have coefficients d0, . . . ,d5, and so on.
In what follows, we shall consider the asymptotic direction along the x-axis.

Proposition 3.1 In a generic smooth surface M, each branch (the left V` and the right Vr) of the
V-curve is nonsingular on the hyperbolic domain.

Proof. Applying Section 2.1 to x0 = y0 = 0, we clearly need s= 0 for the circle to be tangent to the
branch of f = 0 tangent to the x-axis (for f given in (5)). The contact function then becomes

(r− b0)x
3
1 +(ar2 + b1r− c0)x

4
1 +(r3 − b2r

2 + c1r− d0)x
5
1 + higher terms,

so that for 4-point contact we need r= b0 and for exactly 5-point contact we add

ab20 + b1b0 − c0 = 0, and A 6= 0 with A := b30 − b2b
2
0 + c1b0 − d0 . (6)

The condition r= b0 ensures that the circle osculates the branch of f = 0 tangent to the x-axis, that is
b0(x2 + y2)+ y= 0 is the equation, in (x, y)-coordinates in the plane z= 0, of the osculating circle of
this branch, with centre (0,− 1

2b0
) and curvature 2b0. The additional condition ab20 + b1b0 − c0 = 0

ensures that the origin is a V-point, while the condition A 6= 0, with A as given in (6), ensures that the
corresponding circle has exactly 5-point contact with the surface.

Referring to (4), we need to study H̃−1(0,0,0) and its Jacobian matrix at (0,0, r0, s0) for suitable
values of r0 and s0, that is for values which correspond to those for a circle which does have 5-point
contact with the surface at the origin. Of course this requires the origin on the surface M to be a
vertex point. As we shall see, for a hyperbolic point on the surface this gives a single condition on
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944 P. GIBLIN et al.

the point, meaning that vertex points generically lie on a curve on the surface. Thus for a smooth
vertex curve—the locus of vertex points—at p we require that

(1) H̃(0,0, r0, s0) = (0,0,0) for some r0, s0; this is the same as (6), that is r0 = b0, s0 = 0 and ab20 +
b1b0 − c0 = 0,

(2) the 3× 4 Jacobian matrix of H̃ at (0,0, r0, s0) has rank 3, and
(3) the third and fourth columns of the Jacobian matrix are independent.

The second condition ensures that H̃−1(0,0,0) is smooth at (0,0, r0, s0) and the third condition
ensures that the projection of this set to the (x0, y0)-plane is also smooth at p= (0,0).

From now on in this section we assume condition (6) on c0. The Jacobian matrix J of H̃ at
(0,0,b0,0) takes the form (from a direct calculation)

J=

 −3b0 −b1 0 1
−4ab20 − 2b0b1 2b0b2 − c1 1 2ab0 + b1

−2b20b2 + 6b0c1 − 10d0 −6b20b3 + 4b0c2 − 2d1 4ab0 + 2b1 4b20 − 4b0b2 + 2c1

 .

The last two columns of J are always independent, so that provided one of the minors consisting of
columns 1,3,4 or 2,3,4 is nonzero, the whole matrix has rank 3 and the vertex curve is smooth in
a neighbourhood of our point p. Putting both these minors equal to zero gives formulas for d0 and
d1 in terms of b0,b1,b2, c1, c2, bearing in mind that c0 = ab20 + b0b1. This imposes two additional
conditions on the point, and hence does not occur on a generic surface. □

A generic surface may have isolated points at which the circle has higher contact :

Bi-vertex. A point of the surface where a circle in the tangent plane has 6-point contact withM, that
is where one branch of the curveM∩TpM has a degenerate vertex, is called a bi-vertex.

Remark 3.2

(1) On a generic surface, the condition A 6= 0 holds along the V-curve, except at the bi-vertices.
Since the equality A= 0 (implying 6-point contact) does not affect the proof for the V-curve to
be smooth (Proposition 3.1), the V-curve is still smooth at a bi-vertex.

(2) The above proof shows that the tangent vector to the vertex curve at p depends on the terms
b0,b1,b2, c1, c2,d0 and d1. This tangent vector comes to

(4a2b20b1 + 4ab20b2 + 4ab0b
2
1 − 2ab0c1 − 2b20b1 + 3b20b3 + 4b0b1b2 + b31 − 2b0c2 − 2b1c1 + d1,

−4a2b30 − 4ab20b1 + 6b30 − 7b20b2 + b0b
2
1 + 6b0c1 − 5d0). (7)

(3) If the second component of (7) is 0 and the first is nonzero then the V-curve is tangent to the
corresponding branch of the intersection ofM with its tangent plane at the origin.

A generic surface may have also the following isolated points :

Vertex-crossing or V-crossing. A point of transverse intersection of V` and Vr, the left and right
(smooth) branches of the V-curve, is called vertex-crossing or V-crossing.

Thus, at a vertex-crossing each of the two smooth curves comprisingM∩TpM has a vertex.
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 945

Assuming c0 = ab20 + b0b1 forM locally given in Monge form (5) so that the branch ofM∩TpM
tangent to the x-axis has a vertex, the additional condition for the branch tangent to x= ay to have a
vertex is the following, which can be regarded as a condition on c4 :

b2b3 − c4 +(2b1b3 + b22 − 2b23 − c3)a+(3b0b3 + 3b1b2 − 3b2b3 − c2 − c4)a
2+

(4b0b2 + 2b21 − 2b1b3 − b22 − c1 − c3)a
3 +(4b0b1 − b0b3 − b1b2 − c2)a

4+

(2b20 − c1)a
5 = 0.

The osculating circle of this branch at the origin is of the form (1) with

r=−a3b0 + a2b1 + ab2 + b3
a(a2 + 1)

and s=−1
a
,

provided a 6= 0. (The form (1) is not adapted to circles whose centre is on the x-axis.)

3.2. Maximum and minimum points

We now seek to distinguish between maximum and minimum points. This means: consider the inter-
section X=M∩TpM at a hyperbolic point, where p belongs to the V-curve. Then one branch of X,
say X`, has a vertex at p. Does this vertex correspond to a maximum or a minimum of the (absolute)
radius of the osculating circle at points of X`?

Proposition 3.3 Let p ∈M be a hyperbolic point of the V-curve, and take A as in (6).

(a) The absolute radius of curvature (that is the reciprocal |κ−1| of the absolute curva-
ture) of the corresponding branch of M∩TpM has a minimum (maximum) if and only if
rA> 0(resp. rA< 0).

(b) The corresponding branch of M∩TpM has a degenerate vertex (having greater than 4-point
contact with the osculating circle) if and only if A= 0. In this case, p is a bi-vertex and locally
separates the V-curve into a half-branch of maxima and a half-branch of minima (See Figure 1,
left).

Proof.

(a) The curvature of the local branch of X which is tangent to the x-axis comes to

κ=−2b0 + 12Ax2 + . . . where A= b30 − b20b2 + b0c1 − d0, as in (6). (8)

This implies the absolute radius of curvature |κ−1| has a minimum (maximum) at x= 0 if and
only if b0A> 0 (resp. b0A< 0). Furthermore, as (6), b0 is the value of r at p. To find A we
consider the next derivative of the reduced contact function H (Definition 2.1). We get

∂3H
∂x31

(0,0,0,b0,0) = 6A,

which is zero if and only if the branch of the intersection M∩TpM tangent to the x-axis has a
degenerate vertex : a circle in the tangent plane has 6-point contact with the surface (a bi-vertex;
see Remarks 3.2(1)).
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946 P. GIBLIN et al.

(b) In a generic surface, the function A has only simple zeros on the V-curve (at the bi-vertices).
Thus a bi-vertex p locally separates the V-curve into two half-branches: in one branch A> 0 and
in the other A< 0. Item (b) follows from item (a) because r does not change sign at p. □

3.3. Flecnodal curve and biflecnodes

Flecnodal curve. In the closure of the hyperbolic domain ofM there is a smooth immersed flecnodal
curve F formed by the points satisfying any of the equivalent conditions (F1)–(F4):

(F1) An asymptotic line (left or right) exceeds 3-point contact withM at p.
(F2) An asymptotic curve through p ∈M (left or right) has an inflexion—that is, for a regular

parameterization the first two derivatives are dependent (proportional) vectors.
(F3) A smooth branch (left or right) of the tangent section M∩TpM at p has an inflexion.
(F4) In terms of the Monge form (5), b0 = 0 and c0 6= 0.

To see why (F4) is equivalent to both (F2) and (F3), note that, in (5), the asymptotic curve through
p, whose asymptotic direction is y= 0, has degree 3 expansion (as a space curve)

x 7→
(
x,− 3

2b0x
2 + 1

2 (6ab
2
0 + 5b0b1 − 4c0)x

3 + . . . , 0
)

and the corresponding branch of the plane curveM∩TpM has expansion

x 7→
(
x,−b0x2 +(ab20 + b0b1 − c0)x

3 + . . .
)
.

Left and Right Flecnodal Curve. The left (right) flecnodal curve F` (resp. Fr) ofM consists of the
points of F at which the over-osculating asymptotic line is of left (resp. right) type.

A generic surface may have isolated points of transverse intersection of the left and right branches
of the flecnodal curve, called hyperbonodes. The presence of hyperbonodes is necessary for the
metamorphosis of the parabolic curve in generic 1-parameter families of surfaces [22]. A detailed
study on the geometry of hyperbonodes was done in [23, 15]. We can also find isolated points of the
flecnodal curve at which the asymptotic line exceeds 4-point contact :

Biflecnode. A point at which a line has 5-point contact with the surface is called biflecnode.
Hence a biflecnode is a V-point with r= 0 (a circle of infinite radius). Therefore a biflecnode is

a point of transverse intersection of the left (or right) branches of the flecnodal and vertex curves.
At a biflecnode both the asymptotic curve and the intersection curve M∩TpM have a second order
inflexion.

Remark 3.4 We obviously get a biflecnode from (5) by taking b0 = c0 = 0, d0 6= 0.

Proposition 3.5 A left (right) biflecnode locally separates the left (resp. right) V-curve into a half-
branch of maxima and a half-branch of minima.

Proof. The statement follows from Proposition 3.3 (a) because at a biflecnode p of a generic surface
we have A 6= 0 and the value of r (that is, of b0) changes sign at p (cf. Remark 3.4). □

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/3/937/6550916 by guest on 22 N
ovem

ber 2023



CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 947

Figure 1. A left bi-vertex, a vertex crossing (with Vℓ-Max, Vr-min) and a left biflecnode.

3.4. Stable isolated vertex points in the hyperbolic domain

Some of the different possibilities for the above isolated vertex points are shown in Figure 1 (see
Proposition 3.3 and 3.5). A bi-vertex may be left or right; there are four types of V-crossings (the
branches V` and Vr may consist of maxima or of minima); a biflecnode may be left or right.

A corollary of Proposition 3.3 (b) and Proposition 3.5 is

Theorem 3.6 On each parametric closed component of the V-curve of a compact generic surface
M in R3 the number of bi-vertices plus the number of biflecnodes is even.
If, moreover, M is orientable, then on each parametric closed connected component of the V-curve

there is an even number (possibly 0) of bi-vertices and an even number (possibly 0) of biflecnodes.

4. Vertex curves at a cusp of Gauss

One of the most remarkable points of a generic surfaceM is a

Cusp of Gauss. Assume that the parabolic curve of M is smooth. A cusp of Gauss is a parabolic
point at which the unique (but double) asymptotic line is tangent to the parabolic curve.

Note on terminology. Two other common names for a cusp of Gauss (that is, a cusp of the Gauss
map) are ‘godron’, favoured by René Thom, and ‘ruffle’, used in J.Koenderink’s well-known book
[16]. These names have the advantage that they do not suggest a Euclidean setting, and indeed the
cusp of Gauss is actually a projectively invariant concept; see Section 4.1.1. This article is about
Euclidean concepts so we shall stick to ‘cusp of Gauss’, except in circumstances where this would
prove unwieldy, as in ‘flecgodron’ (Section 6.5).

4.1. Some basic properties of cusps of Gauss

Cusps of Gauss have lots of interesting properties (see for example [2, 16]). Let us mention two of
them :
All curves on M tangent to the parabolic curve at a cusp of Gauss g have torsion zero at g, [21].

Therefore the space of 2-jets of such tangent curves, J2g := {(t, 12ct
2,0) : c ∈ R} ≈ R, is identified

(up to a factor 1
2 ) with the set of their curvatures {c ∈ R}.

Separating 2-jet Lemma ([21]).Given a cusp of Gauss g ∈M, there exists a unique 2-jet (curvature)
σ in J2g (called separating 2-jet at g) satisfying the following properties :

(a) The images, by the Gauss map Γ :M→ S2 ⊂ R3, of all curves of M tangent to the asymptotic
line at g and whose curvature at g is different from σ are semi-cubic cusps of S2 sharing the
same tangent line at Γ(g).
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948 P. GIBLIN et al.

(b) Separating property : The images underΓ of any two curves tangent to the asymptotic line at g,
whose 2-jets (curvatures) are separated by σ, are cusps pointing in opposite directions.

Separating invariant. The number σ given in the above lemma is a Euclidean invariant of the cusp
of Gauss g ∈M that we call the separating invariant.

Monge form. Let p ∈M be a parabolic point. We shall take p as the origin and the asymptotic line
at p as the x-axis. Then the (degenerate) quadratic part of the Monge form is y2 :

z= y2 + b0x
3 + b1x

2y+ b2xy
2 + b3y

3 + c0x
4 + c1x

3y+ c2x
2y2 + c3xy

3 + c4xy
4 + d0x

5 + . . . . (9)

Lemma 4.1 Assume as before that the parabolic curve is smooth. A parabolic point of a surface in
Monge form (9) is a cusp of Gauss if and only if b0 = 0 and b1 6= 0. (We will see below that −b1 is
the separating invariant of the given cusp of Gauss).

Proof. The local equation of the parabolic curve P, fxx fyy− f2xy = 0, starts with the terms

3b0x+ b1y+ . . .= 0 .

Thus the asymptotic line at p (y= 0) is tangent to the parabolic curve at p if and only if b0 = 0 and
b1 6= 0 (because the parabolic curve is smooth). □

4.2 Simple and special cusps of Gauss

(a) The condition for the image of the Gauss map at the origin to be an ordinary (semi-cubical)
cusp, using the above form (9), is b21 − 4c0 6= 0. When this holds, we say the cusp of Gauss is
simple (sometimes called nondegenerate). On a generic surface all cusps of Gauss are simple.

(b) The condition b21 − 4c0 6= 0 is also the condition for the height function z(x,y) in the normal
direction (0,0,1) at the origin, that is the contact function between M and its tangent plane at
the origin, to have type exactly A3.

(c) The height function can degenerate in two ways: to type A4 or toD4. Both these are non-generic
for a single surface but occur generically in 1-parameter families; we explore such families in
Section 6.
In the case of A4, also called a double cusp of Gauss, or bigodron, the parabolic curve remains
smooth (b1 6= 0), and b21 − 4c0 = 0, b21b2 − 2b1c1 + 4d0 6= 0. This can be regarded as the col-
lapse of two simple cusps of Gauss, one elliptic and one hyperbolic. See Section 6.3. (This is
also sometimes called a degenerate cusp of Gauss but the term is ambiguous and ‘double’ is a
more descriptive term.)
In the case of D4, also called a flat umbilic, the parabolic curve becomes singular. See
Section 6.2.

(d) There is also the possibility that the parabolic curve undergoes a ‘Morse transition’, becoming
singular at the moment of transition. See Section 6.1.

We now show the following. The only common points of the vertex curve and the parabolic curve
are cusps of Gauss :

Proposition 4.2 If a parabolic point p of a generic surface is a vertex point, then p is a cusp of
Gauss.
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 949

Proof. Let p be a parabolic point ofM, forM is locally given in Monge form (9). If p is also a vertex
point, it is easy to check that the contact function (3) at p= (0,0) takes the form

b0x
3
1 +(r2 − b1r+ c0)x

4
1 + . . . .

Referring to the circle given by (1), we must have s= 0 to ensure that the 5-point contact circle is
tangent to the intersection curveM∩TpM. This implies

Lemma 4.3 There is 5-point contact at (x0, y0) = (0,0) if and only if b0 = 0, r is a real solution of
r2 − b1r+ c0 = 0, and s= 0. The curvature of this circle is 2r.

Lemma 4.1 and Lemma 4.3 imply that p is a cusp of Gauss for which b21 − 4c0 > 0. □

Definition 4.4 A cusp of Gauss is said to be hyperbolic if the intersection with the tangent plane
is two tangential curves, that is b21 − 4c0 > 0. A cusp of Gauss is said to be elliptic if the intersection
with the tangent plane is an isolated point, that is b21 − 4c0 < 0.

(In [21] there are five other geometric characterizations of elliptic and hyperbolic cusps of Gauss.)

A cusp of Gauss belongs to the vertex curve if and only if it is hyperbolic. (By Lemma 4.3.)

Remark 4.5 At a hyperbolic cusp of Gauss neither of the two tangential curves comprisingM∩TpM
has a vertex at p, but their respective osculating circles have 5-point contact with the surface (3-point
contact with the osculating branch and 2-point contact with the other tangent branch).

Projective and Euclidean invariants of cusps of Gauss
Cusps of Gauss are projectively invariant. Platonova’s (projective) normal form of the 4-jet of a
surface at a cusp of Gauss g is z= 1

2y
2 − x2y+ 1

2ρx
4, where ρ is a projective invariant defined in [21]

as a cross ratio. A cusp of Gauss g is hyperbolic (resp. elliptic) if and only if ρ< 1 (resp. ρ> 1), and
simple if and only if ρ 6= 1. Computing the cross-ratio invariant ρ in Monge form (9) (with b0 = 0),
we get ρ= 4c0/b21.

In our Euclidean case, other coefficients of (9) will also play a role. For example,

(Uribe-Vargas, unpublished) At a cusp of Gauss, the curvature of the line of (zero) principal curva-
ture is equal to the separating invariant σ. In Monge form (9), with b0 = 0, this curvature is equal
to −b1.

Then the coefficient −b1 represents the geometric and purely Euclidean invariant σ (the above
separating invariant). Thus we shall write

b1 =−σ, c0 = 1
4σ

2ρ. (10)

4.2. Tangency of the parabolic and vertex curves at a cusp of Gauss

‘Naturally’ oriented coordinates. At each elliptic point p the surface lies locally on one of the two
half-spaces determined by its tangent plane at p, called the positive half-space at p. By continuity, the
positive half-space is well defined at parabolic points. At a cusp of Gauss g, direct the positive z-axis
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950 P. GIBLIN et al.

to the positive half-space at g, the positive y-axis towards the hyperbolic domain, and the positive
x-axis in such way that any basis (ex, ey, ez) of x,y, z forms a positive frame of the oriented R3.

Using the local Monge form of M at a cusp of Gauss (see (10))

z= f(x,y) = y2 −σx2y+ b2xy
2 + b3y

3 + 1
4σ

2ρx4 + c1x
3y+ c2x

2y2 + c3xy
3 + c4y

4 + . . . (11)

we find that, when b1 < 0, the elliptic domain is on the side y< 0 of the tangent line y= z= 0 to
the parabolic curve at the origin and the positive z-axis is the limit of normals to M directed into
the positive half-space supporting M at these elliptic points. Therefore the x,y, z axes are naturally
oriented as above.
We therefore assume b1 =−σ < 0 from now on.

Proposition 4.5 Let g be a simple (Section 4.2) hyperbolic cusp of Gauss of a generic smooth
surface M. In a neighbourhood of g, the V-curve consists of two smooth local branches, tangent to
the parabolic curve at g, and having at least 3-point contact with each other. For M locally given in
Monge form (11) the condition for exactly 3-point contact is c1 +σb2 6= 0.

Proof. At a hyperbolic cusp of Gauss g there are two distinct circles having 5-point contact with the
surface at g (Lemma 4.3). Thus there are two branches of the vertex curve through the cusp of Gauss
g. We shall prove that these branches are smooth and tangential there.1

Following the method of Section 2, we evaluate the Jacobian matrix J of the map H̃ at (0,0, r0,0)
(see (4)), where r0 = 1

2 (−σ+
√
σ2 − 4c0) =− 1

2σ(1−
√
1− ρ) is one of the two values of r, we

obtain a matrix whose third and fourth columns are(
0,0,−2σ

√
1− ρ

)⊤
and

(
0,−σ

√
1− ρ,2c1 − 4b2r0

)⊤
,

which are independent since ρ 6= 1 for a simple cusp of Gauss. The 3× 3 minors formed by columns
1,3,4 and 2,3,4 are respectively 0 and −2σ3(1− ρ), therefore the branch of H̃−1(0) and the cor-
responding branch of the vertex curve of the surface M at the origin are smooth and can both be
parameterized locally by x0, provided the cusp of Gauss is simple.

The first row of the Jacobianmatrix is (0,σ,0,0) and this implies that (given σ 6= 0) a kernel vector
of this matrix has the form (ξ1,0,ξ3,ξ4) for some ξ1,ξ3,ξ4 where ξ1 6= 0 since the projection of the
tangent vector to the first two coordinates is not zero. Hence the tangent to this local branch of the
vertex curve at g is (1,0) in the (x, y)-plane, or (1,0,0) in the ambient 3-space.

The same applies to the other local branch of the vertex curve, and therefore both local branches
are tangent to the parabolic curve at g.

Applying the same method as Section 3 to (11), we find the initial terms of the parameterization
of the two local branches of the vertex curve

V1 : y= 1
2σρx

2 +B1x
3 + . . . , V2 : y= 1

2σρx
2 +B2x

3 + . . . , (12)

where B1 −B2 = 8
√
1− ρ(σb2 + c1). Thus provided c1 +σb2 6= 0, the two local branches have

exactly 3-point contact, and therefore will cross tangentially at g. □

1In [10, p.86] it is stated that a V-curve does not always exist in a neighbourhood of a hyperbolic cusp of Gauss. This is
incorrect.
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 951

Remark 4.6 It is well known that at every cusp of Gauss of a generic smooth surface the flecnodal
curve F is also tangent to the parabolic curve P. Moreover, cusps of Gauss locally separate the
flecnodal curve into left and right half-branches, and the local right-to-left orientation of F, at a
hyperbolic cusp of Gauss, coincides with the negative-to-positive orientation of the x-axis in our
oriented coordinates [21]. For the V-curve we have a similar statement :

Proposition 4.7 At a hyperbolic cusp of Gauss g, each tangential local branch V1, V2 of theV-curve
is locally separated by g into left and right half-branches. The local right-to-left orientation of the
local branch V2 coincides with the negative-to-positive orientation of the x-axis (like the flecnodal
curve F) and is opposite to that of V1.

Proof. For a point p of the V-curve close to g we shall write the asymptotic directions on M at p,
projected to the plane z= 0, as (1,P). One can easily verify that the two asymptotic directions (at the
hyperbolic points near g), projected to the (x, y)-plane, satisfy that the slope of the left asymptotic
line is < the slope of the right one.

For a point (x0, y0(x0), f(x0, y0)) of V1 close to g we find that to first order in x0 the asymptotic
direction tangent to the branch of M∩TpM, having a vertex, is (1,σ(1+

√
1− ρ)x0,0), and the

respective asymptotic direction for (x0, y0(x0), f(x0, y0)) of V2 is (1,σ(1−
√
1− ρ)x0,0).

For a parabolic point near g the unique asymptotic direction, to first order in x0, is (1,σx0,0).
Then for the hyperbolic points, with fixed x= x0, near g the slope P` of their left asymptotic line

must satisfy P` < σx0. The condition for the right asymptotic lines is Pr > σx0.
Thus for points p= (x0, y0, f(x0, y0)) of the tangential local branch V1 or V2 of the V-curve close

to g we have

V1 is right at p ⇐⇒ σ(1+
√

1− ρ)x0 > σx0 ⇐⇒ x0 > 0 ,

V2 is left at p ⇐⇒ σ(1−
√

1− ρ)x0 < σx0 ⇐⇒ x0 > 0.

Therefore Proposition 4.7 is proved. □

5. Further interactions at cusps of Gauss

5.1. Configurations of geometrically defined curves at cusps of Gauss

Write T− and T+ for the two branches of the tangent section M∩TgM at g. We shall determine the
relative positions (near g) of the local branches V1,V2 of the vertex curve, the flecnodal curve F,
the parabolic curve P, the branches T± of M∩TgM, and the line C of (zero) principal curvature
through g. Since all these curves are tangent to the asymptotic line at p, their 2-jet is a curve in the
tangent plane of the form y= 1

2cx
2 + . . .. Therefore the local configurations of F, P, V, T±, C and

the asymptotic line at g are determined by the relative positions of their respective curvatures cF, cP,
cV, cT− , cT+ and cC = σ on the real line.

Theorem 5.1 Given a simple hyperbolic cusp of Gauss g of M, there are seven possible configu-
rations of the curves F, P, V, T±, C and the asymptotic tangent line at g (Figure 2). The actual
configuration depends on which of the intervals defined by the exceptional values cos 5π

6 , cos
4π
6 ,
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952 P. GIBLIN et al.

Figure 2. The seven generic configurations, at a hyperbolic cusp of Gauss, of the curves : flecnodal F (white broken),
parabolic P (boundary between white and grey domains), V-curve V (black curves which are very close together), tangent
section T± (black broken curves) and line of principal curvature C (white).

cos 3π
6 = 0, cos 2π

6 , cos
π
6 , 8/9, the invariant ρ belongs to, respectively

ρ ∈ (−∞ , cos 5π
6 ) ⇐⇒ cP < cV < cT− < σ < cT+ < cF ;

ρ ∈ (cos 5π
6 ,cos

4π
6 )) ⇐⇒ cP < cV < cT− < σ < cF < cT+ ;

ρ ∈ (cos 4π
6 ,cos

3π
6 ) ⇐⇒ cP < cV < cT− < cF < σ < cT+ ;

ρ ∈ (cos 3π
6 ,cos

2π
6 ) ⇐⇒ cP < cF < cT− < cV < σ < cT+ ;

ρ ∈ (cos 2π
6 ,cos

π
6 ) ⇐⇒ cP < cF < cT− < cV < σ < cT+ ;

ρ ∈ (cos π6 ,
8
9 ) ⇐⇒ cP < cT− < cF < cV < σ < cT+ ;

ρ ∈ ( 89 ,1) ⇐⇒ cT− < cP < cF < cV < σ < cT+ .

Proof. To determine the flecnodal curveF near gwe consider tangent lines toM at points (x,y, f(x,y))
and impose the condition that the line should have at least 4-point contact with M. It is then
straightforward to calculate the local equation:

flecnodal curve F : y= 1
2σρ(2ρ− 1)x2 + . . . . (13)

The local equation of P, y= 1
2σ(3ρ− 2)x2 + . . . , is given by the Hessian: fxx fyy− f 2xy = 0. We get

the local equations of T± from (11) by solving f(x,y) = 0: y= 1
2σ(1±

√
1− ρ)+ . . ..

If in addition we use (13), (12) and Proposition 4.1.1, we find that the 2-jets of the curves F, P,
V, T−, T+ and C on M, are curves in the tangent plane written as y= h(x), where h is given by the
following respective functions :

1
2σρ(2ρ− 1)x2, 1

2σ(3ρ− 2)x2, 1
2σρx

2, 1
2σ(1+

√
1− ρ)x2, 1

2σ(1−
√

1− ρ)x2, 1
2σx

2 .

Thus the respective curvatures are cF = σρ(2ρ− 1), cP = σ(3ρ− 2), cV = σρ, cT− = σ(1+
√
1− ρ),

cT+ = σ(1−
√
1− ρ) and cC = σ. Since all these curvatures have σ as factor, their relative positions

in the real line are determined by ρ. Thus in Figure 3 the curvatures are divided by σ.
The expressions for the curvatures determine the exceptional values of ρ. □
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 953

Figure 3. The curvatures cF (white broken), cV (black), cT± (broken) and cC (white), all divided by σ.

Note For simplicity we omit from Figure 3 the graph of cP/σ = (3ρ− 2), which is a line. It cuts
cT− at ρ= 8

9 and the ρ-axis at ρ= 2
3 (the value of ρ where P changes its convexity).

5.2. Relative positions of the flecnodal and vertex curves considering left, right branches and
minimum, maximum types

Consider a hyperbolic cusp of Gauss g ∈M with given cr-invariant ρ and separating invariant σ, and
write r1 =− 1

2σ(1+
√

1− ρ), r2 =− 1
2σ(1−

√
1− ρ).

Take M in Monge form (11).

Proposition 5.2 Near g, at points of the tangential local branches V1,V2 of the V-curve the absolute
radius function has

a maximum on V1 ⇐⇒ G1 > 0;

a maximum on V2 ⇐⇒ ρG2 > 0 (G2, ρ have equal signs) ,

where G1 :=−r21b2 + r1c1 − d0 and G2 :=−r22b2 + r2c1 − d0.

Note that this is a different use of the notation G1,G2 from Section 2.2.

Proof. We use Proposition 3.3 to find the conditions for the points of these two branches to repre-
sent maximum/minimum of the absolute radius function. The function r on the two tangential local
branches V1, V2 takes the respective forms r̂1 = r1 + . . . and r̂2 = r2 + . . . .

The function ∂3H/∂x3, on V1 and V2, has the respective signs of G1 and G2.
According to Proposition 3.3 a point on V i has a maximum if and only if r̂iGi < 0, that is if and

only if riGi < 0. Clearly r1 < 0, so we get the last inequality if and only ifG1 > 0. On the other hand,
it is easy to check that r2ρ < 0; hence r2G2 < 0 if and only if ρG2 > 0. □
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954 P. GIBLIN et al.

Figure 4. The 12 generic local configurations of the flecnodal curve F and of the local branches V1, V2 (denoted 1 and 2)
counting their ‘left’ (ℓ), ‘right’ (r) half-branches, and their maximum (M), minimum (m) types at a hyperbolic cusp of Gauss.
In all cases, the parabolic curve is ‘below’ the other curves but is not drawn.

Remark 5.3 The quantities G1,G2 arise elsewhere. Consider the branches of the intersection M∩
TpM of M with its tangent plane at p, that is the plane curve f(x,y) = 0. The local equations are

y= 1
2σ
(
1+

√
1− ρ

)
x2 + 1

σ
√

1−ρG1x
3 + . . . , y= 1

2σ
(
1−

√
1− ρ

)
x2 − 1

σ
√

1−ρG2x
3 + . . . .

Proposition 5.4 Close to g the tangential local branch V1 is ‘below’ V2 for x < 0 (that is, has lower
y values: y1 < y2) if and only if G1 < G2.

Proof. The relative size of B1 and B2 determines the relative position of V1 and V2. But we have:
G1 −G2 =−σ

√
1− ρ(σb2 + c1). Thus by (12), G1 < G2 if and only if B2 < B1. □

Theorem 5.5 There are 12 generic types of hyperbolic cusps of Gauss, according to the relative
positions of the half-branches F`,Fr of the flecnodal curve and the half-branches V1

r , V
1
`, V

2
r , V

2
` of

the V-curve, counting their maximum and minimum types. These types are listed in Figure 4.

Proof. The relative position ‘below/above’ between the tangential local branches V1, V2 of the
V-curve are given by the inequalities G1 < G2 and G2 < G1 (Proposition 5.3); each one has three
realizations, for example: G1 < G2 < 0, G1 < 0< G2, 0< G1 < G2. The two relative positions
‘below/above’ between the V-curve and the flecnodal curve are given by the inequalities ρ< 0 and
ρ> 0 (Theorem 5.1). We get the type maximum or minimum for V1 and V2 from Proposition 5.2
applied to all these inequalities. Then we obtain the 12 generic types shown in Figure 4. □
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 955

In Figure 4, the half-branches (Fr, F`) of the flecnodal curve are shown only in the left-hand
diagrams. In all cases, the right and left half-branches of the two local branches of the V-curve
(denoted 1, 2) and of the flecnodal curve correspond to those indicated in the first diagram. Observe
that for every position of G1 and G2, passing from ρ< 0 to ρ> 0 only the local branch V2 changes
from maximum to minimum or vice versa. It is explained because if we pass from ρ< 0 to ρ> 0
continuously, at ρ= 0 there is a flecgodron transition (Figure 13) where only the component V2

changes its type.

6. Some codimension 1 transitions on the V-curve

In this section we shall investigate some transitions on the V-curve, and other curves, which occur
in generic 1-parameter families of surfaces, {Mt}, where t is in some open interval of real numbers
containing t= 0. We consider mainly transitions in which the parabolic curve undergoes a transition.
The results of this section are obtained by exact calculation for M0 and are largely experimental for
nearby members of the family.

We consider the following cases:

6.1 The parabolic set of the family Mt is undergoing a ‘Morse transition’
6.1a: the parabolic set of M0 has an isolated point;
6.1b: the parabolic set ofM0 has a self-intersection consisting of two transverse smooth branches.
These two cases are referred to as ‘non-transversal A3 transitions’ in [7, 8], the A3 referring to
contact between the tangent plane at the origin and M0. Case 6.1a is A+

3 and 6.1b is A−
3 .

6.2 The parabolic set is undergoing a ‘D4 transition’ (through a flat umbilic) as in [7, 8]. The symbol
D4 refers to the contact between the surface and its tangent plane at the origin and means that the
quadratic terms in the Monge form for M vanish identically. The cubic terms can have one real
root (D+

4 ) or three (D−
4 ).

6.3 M0 has a degenerate cusp of Gauss, that is in the notation of Definition 4.4 and (9), b0 = 0, c0 =
1
4σ

2. This means that the contact of M with its tangent plane at the origin is of type at least A4.
To ensure that the contact is no higher than A4 we require σ2b2 + 2σc1 + 4d0 6= 0. Such a point
of M is called a ‘bigodron’ in [21] and an ‘A4 transition’ in [7, Section 3.2]; it occurs when an
elliptic and a hyperbolic cusp of Gauss come into coincidence and disappear and is generic in a
1-parameter family of surfaces. The parabolic curve remains nonsingular throughout.

6.4 The V-curve is singular because both components of the vector (7) are zero; this amounts to saying
that d0 and d1 are expressible in terms of coefficients a,bi, cj in the hyperbolic case.

6.5 In Section 6.5 we describe a different kind of transition, the ‘flecgodron’ which is the coincidence
of a biflecnode and a cusp of Gauss.

The generic transitions of the parabolic set of a surface in 3-space are enumerated in [7, 8], the
second of these articles providing full mathematical details of results summarized in the first. Since
the V-curve does not intersect the parabolic set except at hyperbolic cusps of Gauss, the cases 6.1–2
are restricted to those where hyperbolic cusps of Gauss are created or destroyed. For 6.1a this means
that an ‘elliptic island’ appears in a hyperbolic region of Mt as t passes through 0, in which case
two hyperbolic cusps of Gauss are created on a newly created closed curve of the parabolic set. See
Figure 5. For 6.2 only one of the two cusps of Gauss which are created or destroyed in the transition
can intersect the V-curve.
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956 P. GIBLIN et al.

Figure 5. A diagram of local transitions on the parabolic curve P in a generic 1-parameter family of surfaces as in 6.1a,b
(from [7, Figure 2]), where H,E denote the hyperbolic and elliptic regions respectively. (left): from empty to a closed loop
of P which has two cusps of Gauss (the dots); (right): through a crossing of smooth branches in which two cusps of Gauss
are created or destroyed. These are the cases in which hyperbolic cusps of Gauss are involved, so that the V-curve is involved
too.

6.1. ‘Morse (A3) transition’ on the parabolic curve

(Figure 5.)

Theorem 6.1 Assume the parabolic set of a generic family of smooth surfaces Mt has an A3 (Morse)
transition (at t= 0) in a point p of the surface M0. Then

(a) If the parabolic set of M0 locally consists of p, then the V-curve also consists of p.
(b) If the parabolic set of M0 has two transverse smooth branches at p, then the V-curve is composed

of two singular local components each of which consists of two transverse smooth branches at p.
(c) The two local components of case (b) share a common pair of tangent lines and these two

common tangent lines are distinct from the tangents to the parabolic curve.

Proof. For a surface M0 in Monge form (9) the parabolic curve has local equation

3b0x+ b1y+(3b0b2 − b21 + 6c0)x
2 +(9b0b3 − b1b2 + 3c1)xy+(3b1b3 − b22 + c2)y

2 = 0, (14)

up to order 2 in x, y. It is singular provided b0 = b1 = 0 so that the Monge form becomes

z= y2 + b2xy
2 + b3y

3 + c0x
4 + c1x

3y+ c2x
2y2 + c3xy

3 + c4y
4 + d0x

5 + . . . .

The parabolic curve has a Morse (that is, nondegenerate) singularity provided the discriminant
∆ := 8b22c0 − 8c0c2 + 3c21 of the quadratic terms in (14) is nonzero. So we get

a crossing for ∆> 0, an isolated point for ∆< 0 . (15)

To examine the V-curve ofM0, we use the reduced contact function H (in Definition 2.1) and find
that the values of r for 5-point contact at the origin are given by r2 + c0 = 0. Thus we require c0 < 0
for real 5-point contact circles (c0 = 0 is of higher codimension). In this case, write C0 =

√
−c0 so

that r=±C0 and ∆=−8b22C
2
0 + 8C2

0c2 + 3c21.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/3/937/6550916 by guest on 22 N
ovem

ber 2023



CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 957

Figure 6. Local (Morse) transitions on the parabolic set P and their effect on the V-curve and the flecnodal curve F in a
generic family of surfaces Mt . CoG stands for (hyperbolic) cusp of Gauss. Above centre: a crossing on the parabolic set,
case 6.1b. The figure-of-eight in the top left diagram is the flecnodal curve. Below centre: an isolated point on the parabolic
set, case 6.1a. The central oval in the lower left diagram is the parabolic curve and the other curves labelled F represent the
flecnodal curve. The family of surfaces used in the upper diagram is z= y2 − x4 + x3y+ x2y2 + tx2 for small t with t= 0 in
the middle, and z= y2 − x4 + x3y− x2y2 + tx2 for the lower diagram.

Then the V-curve has two local components which correspond to the values r=±C0, and their
respective local equations have the following common 2-jet:

8C4
0 x

2
0 − 4C2

0c1x0y0 +(4C2
0b

2
0 − 4C2

0c2 − c21)y
2
0 = 0 . (16)

Its discriminant, ∆̂ := 16C4
0 (−8b22C

2
0 + 8C2

0c2 + 3c21), is a positive multiple of the discriminant ∆
of the 2-jet of the local equation of the parabolic curve, ∆̂ = 16C4

0∆.
Thus using this last equality together with (15) we prove items a and b.

Proof of item c: The first statement follows because the pairs of tangents of the two local components
of the V-curve are defined by a common quadratic form (16). One can check that the coincidence of
these tangents with the tangents to the parabolic curve would lead to ∆= 0. □

Note that c0 < 0 is also the condition for the intersection between M0 and its tangent plane TpM0 at
p to consist of two tangential curves—a tacnode—rather than an isolated point.

The local transitions occurring on the V-curves in a generic family of surfaces Mt with M0 as
above are illustrated in Figure 6.

Remark 6.2 (Note on the Figures 6, 8, 9, 10, 11 and 12) In these diagrams the radius of the 5-
point contact circle varies continuously along each parameterized segment of the V-curve. Thus
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958 P. GIBLIN et al.

in a neighbourhood of a cusp of Gauss g, the local branches denoted by V1 and V2 in (12) and
Proposition 4.7 have cubic tangency at g, and the left-rightness changes on each side of g. Of course,
left-rightness stays constant along a parameterized segment of the V-curve away from cusps of Gauss.

6.2. D4 transition on the parabolic curve (‘flat umbilic’)

The label ‘D4’ refers to contact between M0 and its tangent plane to M0 at the origin. In this case
the quadratic terms of the Monge form of the surfaceM0 are absent. Such a point is also called a flat
umbilic in contrast to a generic umbilic which has quadratic terms of the form κ(x2 + y2),κ 6= 0.

By rotating the coordinates and scaling equally in all directions we may assume that the Monge
form of M0 is

z= x2y+ b2xy
2 + b3y

3 + c0x
4 + c1x

3y+ c2x
2y2 + c3xy

3 + c4y
4 + . . . , (17)

with one root of the cubic terms along the x-axis y= 0. The two cases are distinguished by

D+
4 (one real root) : b22 < 4b3; D−

4 (three real roots) : b22 > 4b3.

We assume from now on that b22 6= 4b3, so that the contact between M0 and the tangent plane TpM0

at p is ‘no worse’ than D4.
The parabolic curve of M0 has the form x2 + b2xy+(b22 − 3b3)y2 + h.o.t.= 0 with discriminant

of the quadratic terms equal to −3(b22 − 4b3). Thus (see [7, Fig.4, p.298], noting that the labels D±
4

on Figure 4 are the wrong way round):
D+

4 : one branch of M0 ∩TpM and the parabolic curve has a crossing of smooth branches
D−

4 : three transverse branches of M0 ∩TpM0 and the parabolic curve has an isolated point.
Looking for circles in the (x, y)-plane which have 5-point contact with M0 at the origin we find

that for each real branch of z= 0 there is a circle centred on the line perpendicular to that branch; for

the branch tangent to y= 0 the centre of this circle is at
(
0,− 1

2c0

)
(and the radius is of course 1

2|c0| ).

We shall make the generic assumption c0 6= 0 in what follows.
But the second circle having 5-point contact and centre (0, r) shrinks to a ‘circle of radius r= 0’.

We shall see in Section 6.2.2 that indeed there is at least one branch of the V-curve through the origin
on which the radius of the 5-point contact circle tends to 0 at the origin.

To analyse this situation for the transitional surfaceM0 we shall adopt the ‘alternative’ approach to
the contact function as described in Section 2.2, using themappingH= (H1,H2) described there. The
V-curve consists of those points (x0, y0, f(x0, y0)) ∈M0 for which u,v exist such thatH isK-equivalent
to an A≥4 singularity at p= q= 0.

Osculating circle of radius 1/|2c0|
We consider here the branch of the intersection ofM0 with its tangent plane z= 0 at the origin which
is tangent to y= 0. For D+

4 this is the only real branch of the intersection while for D−
4 the same

argument applies to each of the three real branches of the intersection.

Consider the circle having 5-point contact with M0 at the origin and centre (u,v) =
(
0,− 1

2c0

)
.

We shall expand H about (x0, y0,u,v,p,q) =
(
0,0,0,− 1

2c0
,0,0

)
, substituting v= V− 1

2c0
so that V

is small. The coefficient of q in H2 then works out as 1
c0
6= 0 so that we can solve H2 = Q say for a
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 959

function q= Q(p,x0, y0,u,V). Substituting inH1 we can then putQ= 0 inH1 since we are classifying
H up to contact equivalence and terms containing Q can therefore be removed from H1. The result
is a mapping (H1,Q) say where H1 is a function of p,x0, y0,u,V. It is a straightforward matter to
check that H1 is divisible by p2, corresponding to the fact that the circle always has at least 2-point
contact with M0 at (x0, y0, f(x0, y0)). Then the second, third and fourth derivatives of H1 evaluated
at p= 0 give three equations in x0, y0,u,V the solution to which is the preimage of one branch of
the V-curve; the V-curve itself is the projection of this set to the (x0, y0) plane. In fact in this case
an argument similar to that in Section 3.1 shows that, provided c0 6= 0 as above, the solution set
in (x0, y0,u,v)-space is smooth, parameterized locally by x0, and its projection to the (x0, y0) plane
is therefore smooth. In fact the V-curve is tangent to the x-axis, with local parameterization in the
(x0, y0) plane of the form y0 =−2c0x20 + h.o.t.

Assume, in the notation of (17), that b22 6= 4b3 and c0 6= 0. Then we have the following.

Proposition 6.3 In a generic 1-parameter family of smooth surfaces Mt having a D
±
4 transition at

t= 0, each smooth branch of M0 ∩TpM0 (the local intersection ofM0 with its tangent plane at p) has
a tangent smooth branch of the V-curve.
The corresponding 5-point contact circle or circles at p have nonzero radius; for the branch of

M0 ∩TpM0 tangent to the x-axis this radius is 1/|2c0| in the notation of (17).

Degenerate osculating circle of (limiting) radius 0
The 5-point contact degenerate circle of radius zero is obtained by expanding H as power series in
x0, y0,u,v,p,q, all of which are small. We find the following:

H1 = −y0p2 − 2(x0 + b2y0)pq− (b2x0 + 3b3y0)q
2 − p2q− b2pq

2 − b3q
3 + degree≥ 4,

H2 = −2(u− x0)p− 2(v− y0)q+ p2 + q2 + degree≥ 6. (18)

The V-curve consists of those points (x0, y0, f(x0, y0)) ∈M0 for which u,v exist such that H is K-
equivalent to an A≥4 singularity at p= q= 0. It is convenient to substitute U= u− x0,V= v− y0 so
that the quadratic terms of H2 take the form p2 + q2 − 2pU− 2qV.

Evaluating H at x0 = y0 = u= v= 0 we obtain (−q(p2 + b2q+ b3q2)+ . . . ,p2 + q2 + . . .), which
in the complex K classification of [11] is equivalent to the K-simple germ B3,3 : (x,y) 7→ (xy,x3 +
y3). According to the list of specializations in [11, p.278] this singularity has A5 singularities in its
neighbourhood; however the unfolding by parameters x0, y0,u,v will not be versal; in our situation
of a generic 1-parameter family of surfaces we do not expect to find more degenerate singularities
than A4.

We shall approach this case by neglecting terms of degree ≥ 6 in H2 and solving H2 = Q say
exactly for q as a function of x0, y0,U,V,p,Q in order to reduce H2 to Q. When this is done we can
replace Q by 0 and H takes the form (H1,Q), say where H1 is a function of x0, y0,U,V,p. Both this
function and its derivative with respect to p vanish at p= 0, since the circle always has at least 2-point
contact withM0 at (x0, y0, f(x0, y0)). The conditions we want to impose are, as usual, that the second,
third and fourth derivatives vanish at p= 0.
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960 P. GIBLIN et al.

When this is done we find (after a rather tedious calculation) that x0, y0 can be expressed in terms
of U,V but that the relation between U,V has lowest terms a homogeneous quintic:

b2(2b
2
2 − 7b3)U

5 +(4b22b3 − 5b22 − 12b23 + 14b3)U
4V

−b2(2b22 − b3 − 3)U3V2 +(3b22 + 6b3 − 2)U2V3 − 5b2UV
4 + 2V5 = 0. (19)

A solution (U,V) = (k,1) of this quintic gives a branch of the V-curve with slope

k(2− b2k)
3b3k2 − 2b2k+ 1

,

in the (x0, y0)-plane. This slope cannot be zero provided b22 6= 4b3 as above, so that the V-curve
branch cannot be tangent to the x0 axis and by symmetry cannot be tangent to any of the branches of
M0 ∩TpM0.

It can be shown that if b22 > 4b3 the quintic equation has negative discriminant (that is for D−
4 ),

which indicates three real branches in the (U,V)-plane and therefore three real branches of the V-
curve in the (x0, y0)-plane, with slopes given as above by the three real roots of the quintic. But if
b22 < 4b3 (D

+
4 ) there can be one, three or five real branches of the V-curve.

We sum up this situation as follows.

Proposition 6.4 In addition to the smooth branches listed in Proposition 6.3 the V-curve has other
smooth branches, whose corresponding 5-point contact circle has radius 0:

D−
4 : one for each of the three real branches of M0 ∩TpM0, in each case not tangent to the latter

branch;
D+

4 : either 1, 3 or 5 such branches depending on the cubic terms of M0 at the origin. For more
information see below.

This situation can be better illustrated by a change of normal form; in fact we shall adopt a pro-
cedure analogous to that used to separate the ‘lemon/star/monstar’ cases of a generic umbilic point,
as explained in, for example, [20]. It is an elementary calculation to check that every real cubic form
in x,y can be transformed, by rotation and scaling in the (x, y)-plane, and then writing z= x+ iy
(i=

√
−1), into the special form

z3 + 3βz2z+ 3βzz2 + z3 (20)

where β is a complex number. The only exception is a cubic form ax3 + bx2y+ axy2 + by3, which
equals (ax+ by)(x2 + y2) and so has only one real root ax+ by= 0. So far as the case D+

4 is con-
cerned we can ignore this exception, since the cubic form ofM0 has three real roots. The conditions
for (19) to have 1, 3 or 5 real roots can then be expressed in terms of β = β1 + iβ2 and the resulting
diagram Figure 7 in the β plane has a pleasing symmetry and compactness.
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 961

Figure 7. The regions of the β-plane corresponding to different numbers 1,3,5 of real roots of the quintic form (21). The
3-cusped inner curve is the discriminant of the cubic form (20) which forms part of the discriminant of (21). The middle
diagram is an enlargement of the central area of the left-hand diagram and the details of two small areas a and b of the middle
diagram are on the right. The region inside the inner 3-cusped curve corresponds to D−

4 and all the rest of the diagram to D+
4 .

For the record, the result of expressing the quintic form (19) in terms of β1 and β2 is

3(β3
1 +β1β

2
2 − 3β2

1 + 5β2
2 + 3β1 − 1)U5 + 3β2(β

2
1 +β2

2 − 1)U4V

+6(β1 − 1)(β2
1 +β2

2 − 1)U3V2 + 2β2(3β
2
1 + 3β2

2 + 40β1 + 17)U2V3

+(3β3
1 + 3β1β

2
2 − 29β2

1 + 11β2
2 + 17β1 + 9)UV4 +β2(3β

2
1 + 3β2

2 + 16β1 + 5)V5. (21)

The discriminant of this quintic form is a product of two factors, one of which is the cube of the
discriminant of the cubic form (20) ofM0 and the other has degree 10 in β1 and β2. Both are invariant
under the rotation β 7→ β exp(2πi/3), as is clear from Figure 7. Figures 8, 9 and 10 illustrate the
V-curve itself. The central diagram in each case follows from the calculations above and the outer
diagrams, representing the evolution of the V-curve in a generic family of surfaces, are produced
from an example.

Notation. In the following figures the thin black curve is the parabolic curve, and the arrows show
the direction of increasing absolute radius of the 5-point contact circle along the V-curve and ‘Min’
refers to a minimum of this radius. In some figures, there are also 6-point contact points (bi-vertices)
labelled B. The various thick lines are the branches of the V-curve; see Remark 6.2 for further details.

Lower diagram: an enlarged and a more enlarged picture of the curves in the broken circle in the
right-hand upper diagram.
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962 P. GIBLIN et al.

Figure 8. D−
4 case. The surface M0 in this example is z= x3 − xy2 − 4

5 x
2y+ 1

7 y
4 and the family Mt is obtained by adding

a small term tx2. ForM0 the curve labelled 1 is a branch of the V-curve along which the radius of the 5-point contact circle is
nonzero. On the curves labelled 2 near each cusp of Gauss there is a local minimum of radius and also a bi-vertex which are
not shown. The nearby flecnodal curves are also not included.

Figure 9. D+
4 case with one real root of the quintic form (21), in a family of surfacesMt where t= 0 is the middle diagram.

ForM0 the curve labelled 1 is a branch of the V-curve along which the radius of the 5-point contact circle is nonzero; the other
branch has this radius with limit 0 at the crossing. In this figure, the example surfaceM0 chosen is z= x3 + xy2 − 4

5 x
2y+ 1

7 y
4,

and the familyMt is obtained by adding a small term tx2.

Figure 10. D+
4 case with three real roots of the quintic form (21), in a family of surfaces Mt where t= 0 is the middle

diagram. For M0 the curve labelled 1 is the branch of the V-curve along which the radius of the 5-point contact circle is
nonzero; the three other branches all have this radius with limit 0 at the crossing. The surface Mt in this example is z=
x2y+ xy2 + 4y3 + 1

7 x
4 + tx2.
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CONTACT WITH CIRCLES AND EUCLIDEAN INVARIANTS OF SMOOTH SURFACES IN R3 963

Figure 11. Upper diagram: D+
4 case with five real roots of the quintic form (21), in a family of surfacesMt where t= 0 is the

middle diagram. The curve labelled 1 forM0 is again the branch of the V-curve along which the radius of the 5-point contact
circle is nonzero. The family of surfaces used in this example is z=−x2y+ 9

2 xy
2 − 51

10 y
3 + 1

7 x
4 + ty2.

6.3. Double cusp of Gauss (bigodron)

This case refers to higher (A4) contact betweenM0 and its tangent plane at the origin and the Monge
form of M0 takes the form

z= y2 −σx2y+ b2xy
2 + b3y

3 + 1
4σ

2x4 + . . . , (22)

where σ2b2 + 2σc1 + 4d0 6= 0. In this case circles in the plane z= 0 having 5-point contact withM0

at the origin must have their centres on the y-axis but there is only one solution to the position of the
centre, namely (0, 1

σ ,0). (Recall that σ > 0.) We shall see that this coincidence of solutions gives a
smooth branch of the V-curve and also a singular branch.

The parabolic curve has the form y= 1
2σx

2 + . . .; locally, the hyperbolic region is parameterized
by {(x,y) : y> 0}.

Writing down the equations for the V-curve as usual we find in this case that x0 and y0 can be
expressed in terms of u and V= v− 1

σ and that in the (u,V)-plane there is a locus whose lowest
terms take the form

0= σ3uV+
σ(6σ3b22 + 17σ2b2c1 + 40σb2d0 + 6σc21 + 20c1d0)

5(σ2b2 + 2σc1 + 4d0)
u2.
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Figure 12. A4 transition on the V-curve. The surfaceM0 is z= y2 + x2y+ 1
4 x

4 − 1
5 x

5 − x2y2 + 2x3y+ 3xy3, and the family
is given by adding a small multiple of xy. The thin black line is the parabolic curve and the thick lines are the two branches
of the V-curve. OnM0 one branch has a ‘rhamphoid cusp’ (the two close together curves on the right-hand side of the middle
diagram) and the other branch is smooth. As before the arrows indicate the direction of increasing absolute radius of the
5-point contact circle. On the left figure the filled-in circle is an elliptic cusp of Gauss and the white circle is a hyperbolic
cusp of Gauss. The flecnodal curve is not shown.

The denominator of the fraction is nonzero by the assumption of exactly A4 contact of M0 with the
plane z= 0. Thus there are two branches of the locus in the (u,V)-plane. One of them has the form
u= constant×V+ . . . and the other u= constant×V3 + . . ., with in fact no term in V2. The first of
these leads to a ‘parabola’ local component of the V-curve, of the form y0 = constant× x20 + . . . but
the other gives a local component whose initial terms, parameterized by V, are

x0 = − σ4

5(σ2b2 + 2σc1 + 4d0)
V2,

y0 =
σ9

50(σ2b2 + 2σc1 + 4d0)2
V4 − 2σ10(σ2b2 + 6σc1 + 20d0)

125(σ2b2 + 2σc1 + 4d0)3
V5.

Of course, both components lie in the hyperbolic region of M0.

UsingA-equivalence, the above singularity is not in fact equivalent to the standard ‘rhamphoid cusp’
(t2, t5) but to (t2, t7). Of course this equivalence is not Euclidean invariant.

6.4. Singular V-curve

This is the special case where both components of the vector (7) are zero. In that situation generically
the V-curve will have a non-degenerate quadratic form for its 2-jet, corresponding to the component
of the intersectionM0 ∩TpM0 tangent to the x-axis in the hyperbolic case. Thus the V-curve will have
an unstable crossing or isolated point.

In the case of a crossing this can be interpreted as saying the following. Corresponding to one of
the branches of the intersection M0 ∩TpM0, having a 5-point contact circle tangent to this branch,
there are two distinct directions in which p ∈M0 can move away from the origin and still have a
5-point contact circle tangent to the intersection of M0 with its tangent plane at p.

In the case of an isolated point, which in the family Mt will open out into a closed loop, this is a
way in which the V-curve can acquire a single left or right loop, in contrast to the situation depicted
in Figure 6 where two loops appear on the V-curve.
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Figure 13. A flecgodron transition.

This is not the same situation as a V-curve crossing. There, each branch of M∩TpM contributes
a smooth branch (one left and one right) of the V-curve, whose crossing is stable under small
perturbations of M.

6.5. Flecgodrons: the coincidence of a cusp of Gauss and a biflecnode

At a simple cusp of Gauss g with ρ= 0 (c0 = 0), exactly one value of r (in Lemma 4.3) is zero. This
means that the corresponding ‘circle’ is a straight line having 5-point contact with M at g (exactly
5-point contact requires d0 6= 0). Thus g is a cusp of Gauss and is also a biflecnode.

Flecgodron. A simple cusp of Gauss at which the asymptotic tangent line and the surface M have
5-point contact is called a flecgodron.

A surface in general position has no flecgodron : under any small generic deformation of a
surface M having a flecgodron the condition ρ= 0 is destroyed. Perturbing M inside a generic
1-parameter family of surfaces (Figure 13) {Mt}, there is an isolated parameter value t0 (near 0)
whose corresponding surfaceMt0 has a simple flecgodron.

In Figure 13, a left biflecnode b` approaches g as ρ→ 0−, it coincides with g when ρ= 0 and,
as ρ is growing, this point leaves g as a right biflecnode br. By Remark 4.6 and Proposition 4.7, a
biflecnode near g is the intersection point of the flecnodal curve F with the local component V2 of
the V-curve (V2 has the same local orientation right-to-left as F near g).

7. Further investigations

In Section 6 we have formally investigated the ‘transitional moment’M0 of the families studied, and
explained the transitions by means of examples, but we reserve for further work a formal classifica-
tion of the families themselves, including the behaviour of the V-curve relative to the flecnodal curve
during these transitions. Global results about the V-curve on a compact surface are also for further
investigation. We do not know whether there are interesting affinely invariant generalizations, say
to contact of surfaces with conics in their tangent planes. There are also questions concerning the
symmetry sets or medial axes of the families of curves obtained as plane sections of a smooth surface
parallel to the tangent plane (as mentioned in Introduction); these will be investigated elsewhere.
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