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Abstract
We study the intersection between a smooth algebraic surface with an umbilic point
and a plane parallel and close to the tangent plane at the umbilic. The problem has its
origin in the study of isophote (equal illumination) curves in a 2-dimensional image.
In particular, we study the circles which have exceptional tangency to this intersection
curve: ordinary tangency at one point and osculating at another; ordinary tangency at
three points; and 4-point tangency at a vertex. The centres of circles having ordinary
tangency at two points trace out a curve whose closure is the symmetry set of the
intersection curve, and the exceptional circles above give respectively cusps, triple
crossings and endpoints of this set. We analyse the curves traced out by the contact
points and centres of the exceptional circles as the plane approaches the tangent plane
at the umbilic. We also briefly discuss the global structure of the symmetry set by
means of a typical example.

Keywords Symmetry set · Singularity · Blow up

Mathematics Subject Classification 53A04 · 53A05 · 14H20 · 14P99

1 Introduction: Origin of the Problem

The problemwe consider originated in computer vision, in the study of isophotes in a 2-
dimensional image, that is curves of equal brightness. These are level sets of a (smooth)
‘brightness function’ f (x, y)where x and y are Cartesian coordinates of a point in the
plane of the image. They are therefore planar sections of the surface M : z = f (x, y)
by parallel planes z = cwhere c is a constant, say close to c = 0. Isophotes are used in
medical applications of computer vision (see for example [15]), as features for object
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detection (see for example [9]) and in computer aided design for optical checking of
the smoothness of surface intersections. Our interest is chiefly geometrical, since the
symmetry set of a curve encodes so much geometrical information about the curve.

The particular object of interest is the symmetry set of the plane curve f (x, y) = c
and the manner in which it evolves as c passes through 0. This is the locus of centres
of circles which are tangent to f (x, y) = c at more than one point: ‘bitangent circles’
of the plane curve. When the plane z = 0 is not tangent to the surface M then the
level sets f (x, y) = c evolve through a family of smooth curves for small c and the
evolution of symmetry sets follows from [2]. But when z = 0 is tangent to M the level
set f (x, y) = 0 is singular and the results of [2] do not apply.

The situation which we concentrate on here is that of an umbilic point on M ,
and parallel planes close to the tangent plane at this point. We are working in a
situation of Euclidean invariance; thus M can be assumed to have Monge form z =
f (x, y) = x2 + y2+ higher order terms, scaling x, y, z by the same amount to make
the coefficients in the quadratic terms equal to 1, and if necessary reversing the sign
of z. The plane sections z = c, a constant, are therefore nonempty just for c ≥ 0, and
for c = 0 the plane section is a single point at the origin. There has been previous
work [4, 5] on the geometry of the level curves and in [6] a method is given for
successive approximation of these curves, which is useful when studying examples.
The existence of six vertices (extrema of curvature) on the curve Vc : f (x, y) = c
for small c > 0 is ‘well-known’; see for example [12, sect. 15.3]. These are points
where a circle has 4-point contact (‘A3 contact’) with Vc and the symmetry set has an
endpoint at the centre of such a circle, pointing away from the vertex for a minimum
of absolute curvature and towards the vertex for a maximum. The symmetry set has
structure which is governed by other kinds of contact: a cusp at the centre of a circle
tangent at one point of Vc and osculating at another (‘A1A2 contact’), and a triple
crossing of branches at the centre of a circle tangent in three places (‘A3

1 contact’).
See [3] or [2, Fig.7]. Figure 1 shows an example of the symmetry set of such a curve
Vc. We discuss the global structure of this example in Sect. 5.

We extend and in some cases correct the calculations of [4, 5] in the umbilic case,
which is in many ways the most interesting but also the most troublesome one.

Many examples of symmetry sets of planar sections of surfaces close to a singular
section, including the umbilic case, were studied by the first author and Ricardo Uribe-
Vargas during a visit to Liverpool in Spring 2008, using software written by Richard
Morris [11]. The report on this visit, which was funded by the Research Centre in
Mathematics and Modelling at Liverpool, was not published but is available at [7].

For applications of symmetry sets and their close relations medial axes to computer
vision, see for example [8, 13, 14].

In this paper, we analyse the local structure of the symmetry set, proving that there
are six cusps, two triple crossings and six endpoints, and determining the loci of these
points and the corresponding contact points of circles, as the surface section shrinks
to a point.

The structure of the paper is as follows: In Sect. 2, we consider in full detail the
cusps on the symmetry set, resulting from circles having ‘A1A2’ contact with Vc, that
is tangent (A1 contact) and osculating (A2 or 3-point contact) at distinct points. The
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Fig. 1 Left: the symmetry set (locus of centres of bitangent circles) of the oval drawn,slightly enlarged
compared with the oval itself. The oval is an example of a curve Vc for c small, as in the text. There are six
endpoints at the centres of circles having 4-point contact with Vc and corresponding to the six vertices of
Vc; six cusps at the centres of circles tangent at one point and osculating at another; and two triple crossings
at the centres of triply tangent circles (one circle interior and one exterior to Vc). The endpoints of branches
point away from minima of curvature and towards maxima. Right: the same but with the oval unchanged
and the central part of the symmetry set enlarged more to make the structure more evident. See also Sect.
5 for further structure of this example

results are collected in Propositions 2.7 and 2.8, the first in a plane where the origin
has been blown up and the second in the initial plane of the surface section.

In Sect. 3, we turn to the case of tri-tangent circles, which produce a triple crossing
on the symmetry set, showing there are two such circles, and calculating the trajectories
and limiting directions of the contact points and centres. The results are collected in
Propositions 3.1 and 3.2.

In Sect. 4, we cover the circles which are tangent at vertices of the plane section,
corresponding to endpoints of the symmetry set: there are six such. The results are in
Propositions 4.1 and 4.2.

It is striking that the limiting positions, as c → 0, of all the three types of contact
points of the above special circles are along the root directions of the ‘harmonic
representative’ of the cubic form in the function f defining our surface, or else in the
bisectors of these directions; see Remark 2.1 and Fig. 3.

There is more structure to be analysed, and we give some information on this in the
final section Sect. 5.

2 Circles Tangent at One Point and Osculating at Another

For convenience and simplicity of exposition in this paper, we consider the algebraic
case, when the defining function f (x, y) is a polynomial. We have no doubts that the
results obtained in this polynomial setting are true for real analytic and smooth cases
(see Remark 2.2 below), but leave the discussion of general setting to future work.
Thus, consider a polynomial
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�(x, y) = x2 + y2 +
d∑

i=3

qi (x, y) ∈ R[x, y]

with real coefficients, where qi (x, y) are homogeneous of degree i and d ≥ 3. The
equation �(x, y) = 0 has the only solution (0, 0) near the origin — an isolated point
of this “curve”. Now for a small ε > 0 the curve

Cε = {�(x, y) = ε} ⊂ R
2

is very close to the circle x2 + y2 = ε; in particular, it is convex, non-singular and the
radius of curvature at every point is finite. Let us consider the set of pairs T (ε)

(P1, P2) ∈ Cε × Cε \ {the diagonal}

such that the circle of curvature for Cε at P1 is tangent to Cε at P2 (in particular, it
contains P2). The set T (ε) is finite; it is defined by a number of algebraic equations
so the union

⋃

0<ε<a

T (ε)

must be a subset of an algebraic curve. Clearly, this curve contains the origin (0, 0),
and the problemwe are going to investigate is how does this curve look near the origin:
is it non-singular or singular; in the latter case, how many branches does it have at
(0, 0), are these branches non-singular or what is the type of singularity at each branch.
We also want to develop technique to produce a parametric equation for each branch
from the coefficients of the polynomial �(x, y).

The union of irreducible components of this curve containing the origin will be
denoted by T . The algebraic curve T is naturally embedded in R2 ×R

2 = R
4. Since

the definition of T involves themetric properties of the curvesCε, we have very limited
resource of transformations for the coordinates x, y that could be used to simplify the
equation�without transforming T with the loss of its properties: we can only use the
rotations around the origin and the uniform magnifications of the plane R2. It is easy
to see that, applying a suitable rotation and a magnification, we can bring q3(x, y) to
the form

x3 + αx2y + xy2 + β y3, α �= β. (1)

(If α = β then the quadratic terms x2+ y2 divide the cubic terms and this umbilic will
occur generically only in a 1-parameter family of surfaces. Porteous in [12, p.207]
calls it a pure lemon umbilic, following the ‘lemon’ nomenclature of Hannay [1].)

Remark 2.1 When the cubic terms C take this form, with α �= β, then the ‘harmonic
representative’ of the cubic formhas roots y, y±x

√
3, that is along three lines including

the x-axis and making 60◦ angles. See for example [10, p.119] or [12, p.132]. With
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quadratic part Q = x2 + y2 we seek a linear form ax +by for which ( ∂2

∂x2
+ ∂2

∂ y2
)(C +

LQ) = 0, which works out as L = −x − α+3β
4 , and then the harmonic representative

is C + LQ which has the roots as above. In our case, these root directions turn out
to be directly relevant to the limiting directions we seek, as indeed are the directions
bisecting the root directions. See Fig. 3. (When α = β the harmonic representative is
zero.)

Starting from this moment, we assume that the cubic form q3is in the form (1).
Polynomials �(x, y) now have

2 +
d∑

i=4

(i + 1) = d2 + 3d

2
− 7

unknown coefficients so are parametrized by point of the real affine spaceA
1
2 (d2+3d)−7.

Wewill consider the case of general position, that is, when the coefficients of� belong
to a certain Zariski open subset of that affine space, which will later be defined by
explicit conditions. Now we fix the notations:

qi (x, y) =
i∑

j=0

qi j x
j yi− j

for i ∈ {4, . . . , d}, where qi j ∈ R.

2.1 Blowing Up the Origin

It is more convenient to work with a modified geometric object: let us consider the
polynomial equation

z2 = �(xz, yz) = z2(x2 + y2) +
d∑

i=3

ziqi (x, y).

Obviously, the curve

1 = x2 + y2 +
d∑

i=3

(
√

ε)i zi qi (x, y)

is 1√
ε
Cε (that is, obtained from Cε by magnification by 1√

ε
), and the curve

1 = x2 + y2 +
d∑

i=3

(−√
ε)i zi qi (x, y)

123



P. Giblin, A. Pukhlikov

is
(
− 1√

ε

)
Cε (the curve above, reflected from the origin). Therefore, we set

f (x, y, z) = −1 + x2 + y2 +
d∑

i=3

zi−2qi (x, y)

and consider the surface S = { f = 0} ⊂ R
3, which is non-singular for z2 < a small

enough. Note that we allow negative values of z as well. Fixing the value of z, we
obtain a curve Sz ⊂ R

2
x,y . Now we re-formulate the original problem as follows: let

�◦ ⊂ R
2
x1,y1 × R

2
x2,y2 × Rz = R

5

be the set of triples

(Sz 	 P1 �= P2 ∈ Sz, z �= 0),

such that the circle of curvature for Sz at P1 is tangent to Sz at P2 �= P1. Denote by
� the closure of �◦. Now � is an algebraic curve in the space R

5 with coordinates
(x1, y1, x2, y2, z), and we aim to study it near the hyperplane {z = 0},that is, for |z|
small enough. In other words, we want to find the set

{Q1, . . . , Qk} = � ∩ {z = 0}

(the limiting points of �◦ as z → 0), parametrize the branches of � at each of these
points and determine the type of singularity for each of the branches. Note that if

(x1(t), y1(t), x2(t), y2(t), z(t))

is a local parametrization of one of these branches for |t | small enough and z(0) = 0,
then the pair of points

((x1(t)z(t), y1(t)z(t)), (x2(t)z(t), y2(t)z(t)))

belongs to T (z(t)2), which gives us a parametrization of the corresponding branch
of the curve T near the origin and the type of singularity of T at the origin for this
branch, that is, a complete solution of the original problem.

2.2 Equations of the Curve 0

Starting with the equation

0 = f (x, y, z) = −1 + x2 + y2 + z(x3 + αx2y + xy2 + β y3) +
d∑

i=4

zi−2qi (x, y),
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let us write down the algebraic equations, defining the curve �. We assume that z �= 0
(and then will take the closure).

Set (a, b) = P1 ∈ Sz .
The derivatives computed at the point (a, b, z) will be denoted as follows:

∂ f

∂x

∣∣∣∣
(a,b,z)

= fa,
∂ f

∂ y

∣∣∣∣
(a,b,z)

= fb,
∂2 f

∂x2

∣∣∣∣
(a,b,z)

= faa,

etc. The first equation is obvious: f (a, b, z) = 0. Now set, for a fixed (a, b) ∈ Sz ,

X = x − a, Y = y − b

to be the coordinates shifted to the point (a, b) as the origin. The equation of Sz in
these coordinates is

0 = Fa,b(X ,Y ) = fa X + fbY + 1

2
faa X

2 + fabXY + 1

2
fbbY

2 + . . .

and the equation of the circle of curvature at the point (a, b) ∈ Sz is

0 = Ca,b(X ,Y ) = fa X + fbY + λabX
2 + λabY

2,

where

λab =
1
2 faa f 2b − fab fa fb + 1

2 fbb f 2a
f 2a + f 2b

. (2)

Note that since fa = 2a + z(. . . ), fb = 2b + z(. . . ), where in the brackets, we have
polynomials in a, b, z, we obtain

f 2a + f 2b = 4 + z(. . . )

and λab = 1 + z(. . . ), so that λab → 1 as z → 0. Now, subtracting the equation of
the circle of curvature from that of Sz , we get

(
1

2
faa − λab

)
X2 + fabXY +

(
1

2
fbb − λab

)
Y 2 + . . . ,

where the dots mean the terms of order ≥ 3 in X ,Y . The quadratic form above factors
as

( fa X + fbY )

(
1
2 faa − λab

fa
X +

1
2 fbb − λab

fb
Y

)
.
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Therefore, the restriction of this form onto the circleCa,b = 0 is equal to the restriction
of the cubic form

−λab(X
2 + Y 2)

(
1
2 faa − λab

fa
X +

1
2 fbb − λab

fb
Y

)
.

Now elementary computations yield:

1
2 faa − λab

fa
=

1
2 faa fa + fab fb − 1

2 fbb fa
nab

,

1
2 fbb − λab

fb
= − 1

2 faa fb + fab fa + 1
2 fbb fb

nab
,

where nab = f 2a + f 2b .

Lemma 2.2 nab = 4 + 8zq3(a, b) + z2(. . . ).

Proof We compute:

nab = 4a2 + 4b2 + 4az(3a2 + 2αab + b2) + (4bz(αa2 + 2ab + 3βb2) + z2(. . . ).

Since (a, b) ∈ Sz , we have

1 = a2 + b2 + zq3(a, b) + z2(. . . ),

and replacing a2 + b2 in the first expression by 1 − zq3(a, b), we get the claim. �

It follows from the lemma that

1

nab
= 1

4
− 1

2
zq3(a, b) + z2(. . . ).

Let us set

ra = 1

2
faa fa + fab fb − 1

2
fbb fa

and

rb = −1

2
faa fb + fab fa + 1

2
fbb fb.

123



Planar Sections of a Surface Close to an Umbilic

Straightforward computations give:

ra ≡ z(4 + 6(α − β)ab) mod z2,
rb ≡ z(4αa2 + (6β − 2α)b2) mod z2,
λab ≡ 1 + z(a3 + (3β − 2α)a2b + ab2 + αb3) mod z2,
faaa ≡ 6z mod z2,
faab ≡ 2αz mod z2,
fabb ≡ 2z mod z2,
fbbb ≡ 6βz mod z2.

Since we have

f (x, y, z) ≡ −1 + x2 + y2 + zq3(x, y) mod z2,

and taking into account the computations above, we get

Fa,b(X ,Y ) − Ca,b(X ,Y ) ≡
(
1

6
faaa − λab

nab
ra

)
X3 +

(
1

2
faab − λab

nab
rb

)
X2Y

+
(
1

2
fabb − λab

nab
ra

)
XY 2 +

(
1

6
fbbb − λab

nab
rb

)
Y 3 mod z2

≡ −z

(
3

2
(α − β)abX3 − (α(1 − a2) − 1

2
(3β − α)b2)X2Y

+3

2
(α − β)abXY 2 − (β − αa2 − 1

2
(3β − α)b2)Y 3

)
mod z2.

Let (P1,l = (al , bl), P2,l , zl �= 0) ∈ �◦ be a sequence of points such that zl → 0
and

(al , bl) → (a∞, b∞) ∈ {x2 + y2 = 1}

as l → ∞ (the curve Szl converges to the unit circle). The polynomial

1

z

[
Fal ,bl (X ,Y ) − Cal .bl (X ,Y )

]
,

restricted onto the circle {Cal ,bl = 0}, has a double zero for all l, so taking the limit
as l → ∞ (all coefficients of that polynomial are bounded uniformly and the circle
{Cal ,bl = 0} converges to the unit circle), we conclude that the cubic form

3

2
(α − β)a∞b∞X3 − (α(1 − a2∞) − 1

2
(3β − α)b2∞)X2Y

+3

2
(α − β)a∞b∞XY 2 − (β − αa2∞ − 1

2
(3β − α)b2∞)Y 3,
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restricted to the unit circle, has a double zero.Asa2∞+b2∞ = 1, after easy computations
we get the following fact: the cubic form

3a∞b∞X3 − 3b2∞X2Y + 3a∞b∞XY 2 + (2 − 3b2∞)Y 3

must be divided by the square of a linear factor. Its discriminant is equal to

−64 · 27 · b2∞ ·
(
b2∞ − 3

4

)2

.

The (double) roots of the discriminant are

b∞ = 0,

√
3

2
, −

√
3

2
.

Therefore, we have 6 possible values for the limit point (a∞, b∞):

(1, 0), (−1, 0),

(
1

2
,

√
3

2

)
,

(
−1

2
,

√
3

2

)
,

(
1

2
,−

√
3

2

)
,

(
−1

2
,−

√
3

2

)
.

They are the points of intersection of the unit circle with the three lines

{Y = 0}, {Y = √
3X}, {Y = −√

3X},

dividing the plane into 6 equal angles, π
3 each. Note that the rotation by π

3 transforms
the homogeneous polynomial q3(x, y) into a form of the same type:

[
1

2
−

√
3

8
(α + 3β)

]
x3 +

[√
3

2
+ 1

8
(−5α + 9β)

]
x2y

+
[
1

2
−

√
3

8
(α + 3β)

]
xy2 +

[√
3

2
+ 1

8
(3α + β)

]
y3,

which means that the behaviour of the curve � at each of the limit points (a∞, b∞) is
the same. Therefore, from now on we will study the limit point (1, 0).

Note also that from the limiting arguments above it follows that if P1,l → (1, 0) as
l → ∞, then P2,l → (−1, 0) as the limit cubic form for b∞ = 0 takes the form 2Y 3,
so that P2,∞ = lim

l→∞ P2,l must lie on the line {Y = 0}.

2.3 Local Analysis of the Curve 0

Getting back to the curve � embedded into the space

R
5
x1,y1,x2,y2,z,
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let us describe it locally by explicit equations near the point

(1, 0,−1, 0, 0).

First, we shift the origin to this point:

x1 = 1 + u, y1 = b, x2 = −1 + v, y2 = w, z = z

and study � in R
5
u,b,v,w,z near the origin. We get the following set of equations: the

first one, (E1), is

g(u, b, z) = f (1 + u, b, z) = 0

(meaning that (x1, y1) ∈ Sz), which can be decomposed into homogeneous compo-
nents

g = g1 + g2 + g3 + . . . ,

e.g. g1 = 2u + z, g2 = u2 + b2 + 3uz + αyz + q44z2 etc., the segment g1 + · · · + gk
will be denoted by g≤k .

The second equation (E2) is

h(v,w, z) = f (−1 + v,w, z) = 0

(meaning that (x2, y2) ∈ Sz), which we write as

h = h1 + h2 + h3 + . . . ,

hi is homogeneous of degree i , e.g.

h1 = −2v − z, h2 = v2 + w2 + 3vz + αwz + q44z
2

etc., again h≤k = h1 + · · · + hk .
The third equation means that the point (−1+ v,w) lies on the circle of curvature

for the curve Sz at the point (a, b): Ca,b(−2 − u + v,w − b) = 0, where a = 1 + u,
recall that X = x−a and Y = y−b. Since the coefficients of the quadratic polynomial
Ca,b(X ,Y ) are rational functions, which is not very convenient for computations, we
introduce a new equation, multiplying by ( f 2a + f 2b ):

Ra,b(X ,Y ) = ( f 2a + f 2b )Ca,b(X ,Y ) = ( f 2a + f 2b ) fa X

+( f 2a + f 2b ) fbY +
(
1

2
faa f

2
b − fab fa fb + 1

2
fbb f

2
a

)
(X2 + Y 2)

and write the third equation (E∗3) to be

Ra,b(−2 − u + v,w − b) = 0.
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We denote the equation by the symbol (E∗3), not just (E3), because we will modify
this equation later.

The fourth equation (E∗4) means that the circle of curvature {Ra,b(X ,Y ) = 0} is
tangent to the curve Sz at the point (−1 + v,w) (in the x, y-coordinates: once again,
recall that X = x − a = x − (1 + u) and Y = y − b, so that (X ,Y )-coordinates of
this point are (−2 − u + v,w − b) and (E∗4) takes the form

∣∣∣∣∣∣∣

∂ f
∂x (−1 + v,w)

∂ f
∂ y (−1 + v,w)

∂Ra,b
∂X (−2 − u + v,w − b) ∂Ra,b

∂Y (−2 − u + v,w − b)

∣∣∣∣∣∣∣
= 0.

Obviously, these four equations for z �= 0 define the finite set of points of the branch
of � at the new origin lying in R

4
u,b,v,w with the fixed value of z. (We will see below

that � has only one branch at the new origin (1, 0,−1, 0, 0).) Unfortunately, the four
equations (E1, 2) and (E∗3, 4) define in R

5 a set which is larger than just �: when
z = 0, the curve S{z=0} is the unit circle, so coincideswith its circle of curvature at every
point and the equations (E∗3, 4) hold automatically. Thismeans that, set-theoretically,
the set of solutions of the four equations near the new origin is

� ∪ {the unit circle}×2.

We need to modify the equations (E∗3, 4), so that the new system of four equations
would give precisely � near the new origin.

2.4 Modified Equations

Let us consider first the two equations (E1, 2).

Proposition 2.3 The system of equations

g = 0, h = 0

defines near the origin a non-singular three-dimensional submanifold (a real algebraic
variety) M ⊂ R

5 whose tangent space at o = (0, . . . , 0) is

ToM = {2u + z = 2v + z = 0} ⊂ R
5.

Proof Obvious from the fact that g1, h1 are linearly independent linear forms.

�

As the three linear forms

2u + z, 2v + z, z
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are also linearly independent, we see that the intersection

Q = M ∩ {z = 0}

is a non-singular surface near o (a 2-dimensional submanifold in M , containing the
origin o) with the tangent space

ToQ = {u = v = z = 0},

so that (b, w) form a system of local coordinates on Q at o (whereas (b, w, z) form a
system of local coordinates on M at o).

Proposition 2.4 The equation (E∗4) is divisible by z.

Proof Consider the ring homomorphism

R[u, b, v, w, z] → R[u, b, v, w],

setting z = 0. It is easy to see that after this substitution Ra,b(X ,Y ) turns into ( f 2a +
f 2b )Fa,b(X ,Y )|{z=0} and Fa,b(X ,Y )|{z=0} = 2(1 + u)X + 2bY + X2 + Y 2, which
implies that (E∗4)|{z=0} = 0, as we claimed, so z | (E∗4). �

Now explicit calculations via Maple give that the linear term of (E∗4) is identically
zero and the quadratic term is

16z(αu + αv − (α − q43)z).

Set (E4) = 1
z (E

∗4). Note that the forms

2u + z, 2v + z, αu + αv − (α − q43)z

are linearly independent for q43 �= 2α as

∣∣∣∣∣∣

2 0 1
0 2 1
α α −α + q43

∣∣∣∣∣∣
= 4(−2α + q43).

Therefore, assuming that q43 �= 2α, we get that the equations (E1, 2, 4) define a
non-singular surface M124 ⊂ M near o with the tangent space at this point

ToM124 = ToQ = {u = v = z = 0}.

Finally, let us consider the equation (E∗3). Writing a for 1+u, we get the following
fact.
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Proposition 2.5 The following equality holds:

Ra,b(X ,Y )|{z=0} = 4(a2 + b2)(2aX + 2bY + X2 + Y 2).

Proof This follows from the equalities

fa |{z=0} = 2a, fab|{z=0} = 2b, faa |{z=0} = 2,

fab|{z=0} = 0, fbb|{z=0} = 2.

�

Therefore, we compute: Ra,b(−2 − u + v,w − b)|{z=0} =

= 4(1 + 2u + u2 + b2)((−2u − u2 − b2) + (−2v + v2 + w2)) =
= 4(1 + 2u + u2 + b2)

(−g|{z=0} + h|{z=0}
)
.

So we modify (E∗3), setting

(E3) = 1

z
((E∗3) + 4(1 + 2u + u2 + b2)(g − h)).

A computation via Maple gives that the linear term of (E3) is equal to

(−8)[5u + 6(α − β)b + 5v + (2α2 − 2q42 + 4q44 + 3)z],

which does not contain w, whereas the matrix

⎛

⎜⎜⎝

2 0 0 1
0 0 2 1
5 6(α − β) 5 2α2 − 2q42 + 4q44 + 3
α 0 α −α + q43

⎞

⎟⎟⎠

has the determinant

−24(α − β)(−2α + q43) �= 0

for q43 �= 2α. Therefore, the equations (E1 − 4) define a non-singular branch
parametrized by w.

Remark 2.6 One can see from the computations in the previous sections, which involve
only partial derivatives of the function f (x, y) of order up to 4, that they can be
performed without any changes in the smooth case: we present the curve � in R

5 as
the set of common zeros of four functions with linearly independent linear terms at the
origin, so the local existence and non-singularity of that curve follow from just Implicit
Function Theorem. The computation of limiting points in Sect. 2.2 is also done in the
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way that applies in the smooth case. The same is true about our computation of limiting
triples of points in Sect. 3 below. However, we restrict ourselves by the polynomial
setting here and leave the discussion of the symmetry set in the general differentiable
case to further work.

2.5 The Curves Traced Out by Contact Points and Centre of the Circle

Knowing that the other variables, b, u, v and z, can be expressed in terms of w we
can now proceed to find the initial terms in expansions of these variables in terms of
w and then, by blowing down to the initial x, y-plane, to find the loci of the contact
points and of the centres of the A1A2 circles. These calculations are routine and we
omit the details here, collecting the results in the following proposition.

Recall that we are considering the case where (1 + u, b) are the coordinates of
the point of osculating (A2) contact and (−1 + v,w) the coordinates of the point of
ordinary (A1) contact of the circle with the blown-up curve f (x, y, z) = 0 for a fixed
small z. There are five other symmetrically placed cases all of which will yield similar
loci as z → 0. Blowing-down amounts to multiplying the x and y coordinates by z;
the resulting loci of contact points then work out as follows, where we assume α �= β

and 2α �= q43 = coefficient of x3y in f .

Proposition 2.7 The following are initial terms in the expansions of the remaining
variables in terms of w:

z = 3(α − β)

2(2α − q43)
w2 + 3(α2 − q42 + 2q44 − 1)(α − β)

2(2α − q43)2
w3

b = −α2 − q42 + 2q44 − 1

2(2α − q43)
w2

− 3α4 − 6α2q42 + 12α2q44 − 2α2 − 4αq43 + 3q242 − 12q42q44 + q243 + 12q244 + 6q42 − 12q44 + 3

6(2α − q43)2
w3

u = − 3(α − β)

4(2α − q43)
w2 − 3(α2 − q42 + 2q44 − 1)(α − β)

4(2α − q43)2
w3

v = α + 3β − 2q43
4(2α − q43)

w2 + 3(α − β)(α2 − αq43 + q42 − 2q44 + 1

4(2α − q43)2
w3

Note that the expansion of z up to this order is −2 times the expansion of u; however,
this does not extend to the terms in w4.

Blowing down to the initial plane, we have the following:

Proposition 2.8 Osculating (A2) contact: the locus is a rhamphoid cusp equivalent
by changes of local coordinates in the plane to (t2, t5).
Ordinary (A1) contact: the locus is an ordinary cusp equivalent to (t2, t3).
In each case, ‘half’ the cusp is actually formed, since z → 0 through positive values,
equivalent to t > 0 in the reduced forms above.

Proof After blowing down, the osculating contact point is ((u+1)z, bz) whose initial
terms are of the form (x1, y1) = (Aw2+Bw3,Cw4+Dw5), where A �= 0. Changing
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local coordinates by a local diffeomorphism in the plane y1 − (C/A2)x21 to remove
the term Cw4 results in

(
3(α − β)

2(2α − q43)
w2, − α − β

4(2α − q43)
w5

)
,

which then by scaling reduces to (w2, w5). This is known to be 5-determined under
smooth changes of coordinates in source and target.

The locus of A1 points (x2, y2) = ((v − 1)z, wz) has initial nonzero terms which
by scaling become (w2, w3) and therefore has an ordinary cusp. �

Similarly, using the Eq. (2) of the circle of curvature at the A2-point, that is the
A1A2 circle under consideration, we can find the locus of centres of these circles as
z → 0. The result is the following—

Proposition 2.9 The locus of centres of curvature in the initial plane (after blowing
down), that is the locus of cusp points on the symmetry set set as z → 0, reduces
under local diffeomorphism to the form (t4, t6 + at7). Using standard techniques for
determinacy, this is a 7-determined germ under local diffeomorphic changes in source
and target (‘A equivalence’) provided a �= 0. According to a Maple calculation, the
additional condition for this is 31α2 − 2αq43 − 27q42 + 54q44 − 27 �= 0. �

3 The Tritangent Circle Case

Assume that the curve Sz given by

0 = −1 + x2 + y2 + z(x3 + αx2y + xy2 + β y3) + z2(. . . )

meets the circle

0 = −1 − C + x2 + y2 − Ax − By

at three distinct points P1, P2, P3 and the two curves are tangent at P1, P2, P3. The
triple (P1, P2, P3) depends on the four parameters

z, A, B, C .

As z → 0, z �= 0, it is obvious that A, B,C must also tend to zero as the tangent circle
tends to the unit circle. Subtracting one equation from the other, we get the equation

0 = C + Ax + By + zq3(x, y) + z2(. . . ).

If as z → 0, the triple (A, B,C) → (0, 0, 0) as zλ with λ < 1, then dividing the last
equation by zλ and putting z = 0, we get that a divisor of degree 6 on the unit circle
is cut out on the circle by a line, which is impossible. Therefore, we can write

A = zA1 + . . . , B = zB1 + . . . , C = zC1 + . . . ,

123



Planar Sections of a Surface Close to an Umbilic

where the dots denote functions divisible by zλ with λ > 1. Now, dividing the equation
by z and putting z = 0, we get that the cubic polynomial

x3 + αx2y + xy2 + β y3 + A1x + B1y + C1

cuts out the divisor

2P∗
1 + 2P∗

2 + 2P∗
3 = 2(P∗

1 + P∗
2 + P∗

3 )

on the unit circle x2 + y2 = 1. Note that the cubic polynomial above can be replaced
by

(1 + A1)x + (α + B1)y + (β − α)y3 + C1.

Using the parametrization of the unit circle, given by the stereographic projection from
the “north pole” (0, 1),

x = 2t

t2 + 1
, y = t2 − 1

t2 + 1
,

we obtain: the polynomial

(β + B1 + C1)t
6 + 2(1 + A1)t

5 + (4α − 3β + B1 + 3C1)t
4 + 4(1 + A1)t

3 +
+(−4α + 3β − B1 + 3C1)t

2 + 2(1 + A1)t + (−β − B1 + C1)

is, up to a constant, a full square of a polynomial of degree 3.
Assume first that β + B1 + C1 �= 0 and divide through by β + B1 + C1: we get a

monic polynomial of degree 6, which is a square of a monic polynomial of degree 3.
Setting

a1 = a5 = 2(1 + A1)

β + B1 + C1
, a3 = 2a1, a4 = 4α − 3β + B1 + 3C1

β + B1 + C1
,

a2 = −4α + 3β − B1 + 3C1

β + B1 + C1
, a0 = −β − B1 + C1

β + B1 + C1
,

we get:

t6 + a5t
5 + · · · + a0 = (t3 + b2t

2 + b1t + b0)
2

for some real b0, b1, b2. Using the fact that a1 = 1
2a3 = a5, we obtain the following

relations:

a0 = b20, a1 = 2b2 = 2b1b0, a2 = b21 + 2b0b2,

a1 = b0 + b1b2, a4 = b22 + 2b1.
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If b0 �= 0, then b1 = b2/b0 and so, dividing through the equality 2b2 = b0 + b1b2 by
b0, we get

2b1 = 1 + b21,

which implies that b1 = 1 and b2 = b0. Setting b0 = λ, we see that

a1 = a5 = 2λ, a3 = 4λ, a0 = λ2,

a2 = 2λ2 + 1 and a4 = λ2 + 2.

In terms of our original parameters, we get the equalities

−β − B1 + C1

β + B1 + C1
= λ2,

4α − 3β + B1 + 3C1

β + B1 + C1
= λ2 + 2

and

−4α + 3β − B1 + 3C1

β + B1 + C1
= 2λ2 + 1,

which simplify, respectively, to

(λ2 + 1)B1 + (λ2 − 1)C1 = −(λ2 + 1)β,

(λ2 + 1)B1 + (λ2 − 1)C1 = 4α − (λ2 + 5)β

and

(λ2 + 1)B1 + (λ2 − 1)C1 = −2α − (λ2 − 1)β.

The right-hand sides of these linear equations (in B1, C1) must be equal, which gives
α = β. By our assumption, this is not the case. This contradiction implies that our
original assumption that b0 �= 0 can not be true. Therefore, a0 = b0 = 0 and so
a1 = a3 = a5 = 0, which gives the equalities

A1 = −1 and C1 = β + B1.

So the polynomial

t2
(
t4 + 2

α + B1

β + B1
t2 + −2α + 3β + B1

β + B1

)

must be a full square. Therefore,

(
α + B1

β + B1

)2

= −2α + 3β + B1

β + B1
,
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from which we get the equalities

B1 = −α + 3β

4
, C1 = −α + β

4
,

so that our polynomial turns out to be

t2(t2 − 3)2

and the (double) roots are t = 0,±√
3. We deduce the following:

Proposition 3.1 The three limit points on the unit circle are:

P∗
1 =

(
−

√
3

2
,
1

2

)
, P∗

2 = (0,−1), P∗
3 =

(√
3

2
,
1

2

)
.

This limit triple was obtained by the assumption that β + B1 + C1 �= 0. If this is not
the case, that is, β + B1 +C1 = 0, then we use the stereographic projection from the
“south pole” (0,−1) and get the other limit triple:

Q∗
1 =

(
−

√
3

2
,−1

2

)
, Q∗

2 = (0, 1), Q∗
3 =

(√
3

2
,−1

2

)
.

It is also possible to determine the loci of contact points of the tri-tangent circles as
z → 0, firstly in the blown-up situation and then after blowing-down, that is replacing
(x, y) by (xz, yz). We find the following:

Proposition 3.2 (i) The locus of each of the six contact points of the two tri-tangent
circles is smooth, with endpoint on the unit circle before blowing down and at the
origin after, as z → 0 through positive values. The limiting tangent for the contact
points close to (0, 1) and (1, 0) has direction (2α + 6β − 2q41 − q43, −3β(α − β))

before blowing-down and (0, 1) after blowing-down.
(ii) The locus of centres of each of the tri-tangent circles forms a smooth curve with
endpoint at the origin before blowing-down,with limiting tangent direction (4, α+3β).
After blowing down, it forms (half of) an ordinary cusp, with the same limiting direction
for the tangent direction.

4 Circles with 4-Point Contact

Continuing with the same notation as Sect. 3 above, we consider here circles which
are tangent to the curve f (x, y, z) = 0 for small z at a vertex of this curve, that is at a
point of stationary curvature. There are known to be six such vertices (see for example
[12, Sect. 15.3] or [5, p.87]) and we are interested first in the limiting positions of
those six vertices, as z → 0, on the unit circle f (x, y, 0) = 0. The condition for a
vertex on a curve f (x, y) = 0 is given on [5, p.74]:
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0 = ( f 2x + f 2y )(− f 3y fxxx + 3 fx f
2
y fxxy − 3 f 2x fy fxyy + f 3x fyyy)

+3 fx fy( f
2
y f 2xx + ( f 2x − f 2y ) fxx fyy − f 2x f 2yy)

+6 fx fy f
2
xy( f

2
x − f 2y )

+3 fxy( fxx f
4
y − 3 f 2x f 2y ( fxx − fyy) − fyy f

4
x ). (3)

Applying this to our function f (x, y, z) for a fixed small z, we suppose that the vertex
lies at a point (x, y) where

x = 2t

t2 + 1
+ zX1 + z2X2 + . . . , y = t2 − 1

t2 + 1
+ zY1 + z2Y2 + . . . ,

where the X and Y depend only on the coefficients in f .
With this notation the condition (3) has no constant term, since the circle

f (x, y, 0) = 0 has a vertex at every point, and the coefficient of z is, apart from
a multiplicative constant, (3t2 − 1)(t2 − 3)(t2 + 1)4(α − β). Provided α �= β this
gives the same six values for t as were found in Sect. 3. Hence:

Proposition 4.1 The six limiting positions on the unit circle of the vertices of the curves
f (x, y, z) = 0 as z → 0 are, in terms of angles from the positive x-axis on the unit
circle, {± 1

6π,± 1
2π,± 5

6π}.
It is also possible to determine which vertices represent maxima and which minima of
curvature—strictly of the square of curvature since maxima and minima are reversed
when orientation of the curve is reversed. Of course, maxima and minima alternate
round the curve. We find the following.

Proposition 4.2 For small z > 0 the point of the curve f (x, y, z) = 0 close to
(0, 1) on the unit circle, that is with angle 1

2π in Proposition 4.1, is a maximum
of the squared curvature if and only if α > β. (Recall that we are assuming α �=
β.) Thus, in this situation, the maxima occur at angles 1

2π,− 1
6π,− 5

6π , i.e. points

(1, 0), (
√
3
2 ,− 1

2 ), (−
√
3
2 ,− 1

2 ).Whenα < β these are theminimaof squared curvature.

Two examples are illustrated in Fig. 4.
The limiting positions of the contact points of the various circles (A1A2, A3

1 and
A3) , in the blown-up form on the unit circle, are summarized in Fig. 3.

5 Further Work

In this article, we have concentrated on the local structure of the symmetry set of a
plane section of a surface with an isolated generic umbilic, establishing the number of
cusps, triple crossings and endpoints, and finding expressions for the local structure
of the curves traced out by the centres and the contact points of the corresponding
circles as the pane section shrinks to a point. There remains the global structure of the
symmetry set, and to explain this we give here what appears to be a typical example.

The figure shows the global symmetry set with the branches annotated. From exper-
imental observations, it appears that the structure exhibited here holds in general. We
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Fig. 2 Left: α = 4, β = 2 and no terms of degree > 3 in f gives a maximum of squared curvature near
the point (0, 1) and Right: α = 2, β = 4 gives a minimum

Fig. 3 The circle represents the blown-up origin, as in the text. The solid dots are contact points, in the limit,
of A1A2 circles, occurring in three diametrically opposite pairs. Each pair contributes two A1A2 circles,
by reversing the roles of A1 and A2 points, so that there are six A1A2 circles. The open dots and open
squares are limit points of contact of A3 circles (vertices), three maxima and three minima of curvature
given by the triples of the same symbol, and also, in the same triples, limit points of contact of the tri-tangent
circles (A31 circles). The coordinates of these points on the unit circle are also marked, as well as (round the

outside of the circle) their t values, where x = 2t
t2+1

, y = t2−1
t2+1

, given by stereographic projection from

(0, 1). Compare Remark 2.1: the solid dots are the roots of the harmonic representative of the cubic form
x3 + αx2y + xy2 + β y3 (see (1) in Sect. 2) of our surface
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Fig. 4 The same oval and enlarged symmetry set (locus of centres of bitangent circles) as in Fig. 1. Here,
we show the three branches of the symmetry set, labelled 1, 2, 3, which start at centres of curvature of
vertices of the oval; these can be a maximum (max) or minimum (min) of curvature. The branches are
shown extended to endpoints in the left-hand figure of Fig. 1. Here, T1, T2 indicate the two triple points,
centres of tri-tangent circles. For further information, see the text

can state this in the following empirical observation, whereC stands for cusp,M (resp.
m) for an endpoint corresponding to a maximum (resp. minimum) of curvature and
T1, T2 for the triple crossing points.
The branches of the symmetry set follow the patterns (branches 1,2,3 in the figure)
(1) : MT1CCT1M; (2) : mT2CCT2m; and (3) : MT1CCT2m.
That is, two branches pass twice through a single triple crossing, and these have the
same kind of vertex, maximum or minimum, at each end. One branch passes through
both triple crossings and has a maximum at one end and a minimum at the other. The
triple crossing at the centre of a tri-tangent circle inside the oval is T1 on branch 1.
The exterior tri-tangent circle has its centre at T2. There are other examples in [7].

We hope to explain this in a further article.

Data availability This is work in progress, so no data availability can be given.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Planar Sections of a Surface Close to an Umbilic

References

1. Berry, M.V., Hannay, J.H.: Umbilic points on Gaussian random surfaces. J. Phys. A. 10, 1809–21
(1977)

2. Bruce, J.W., Giblin, P.J.: Growth, motion and one-parameter families of symmetry sets. Proc. Royal
Soc. Edinburgh 104A, 179–204 (1986)

3. Bruce, J.W., Giblin, P.J., Gibson, C.G.: Symmetry sets. Proc. Royal Soc. Edinburgh A 101, 163–186
(1985)

4. Diatta, A., Giblin, P.J.: Geometry of isophote curves. In Scale Space and PDE Methods in Computer
Vision, Eds. Ron Kimmel, Nir A. Sochen and Joachim Weickert, Springer Lecture Notes in Computer
Science 3459 (2005), 50–61

5. André, D., Peter, G.: Vertices and inflexions of sections of surfaces in R3. In: Trends in Mathemat-
ics, Real and Complex Singularities, Eds. Jean-Paul Brasselet and Maria Aparecida Soares Ruas,
Birkhauser (2006), 71–97

6. André, D.., Peter, G., Brendan, G., Wilhelm, K.: Level sets of functions and symmetry sets of surface
sections. inMathematics of Surfaces XI, Eds. RalphMartin, Helmut Bez andMalcolm Sabin, Springer
Lecture Notes in Computer Science 3604 (2005), 147–160

7. ‘Report on visit by Ricardo Uribe-Vargas, partly funded by RCMM’,https://www.liv.ac.uk/~pjgiblin/
papers/RicardoVisitSpring2008.pdf

8. Kuijper, Arjan, Olsen, O.F., Giblin, P., Neilsen, M.: Alternative 2D shape representations using the
symmetry set. J. Math. Imaging Vision 26, 127–147 (2006)

9. Lichtenauer, J., Hendriks, E., Reinders, M.: Isophote properties as features for object detection. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol.2, 649–
654

10. Montaldi, J.A.: Surfaces in 3-space and their contact with circles. J. Diff. Geometry 23, 109–126 (1986)
11. Morris, R.J.:The use of computer graphics for solving problems in singularity theory. in Visualization

in Mathematics, H.-C.Hege and K.Polthier (Eds.), Heidelberg: Springer-Verlag (1997), 173-187
12. Porteous, I.R.: Geometric Differentiation. Cambridge University Press, Cambridge (2001)
13. Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications.

Springer, Berlin (2008)
14. Saha, P.K., Borgefors, G., Sanniti di Baja, G. (eds.).: Skeletonization: Theory, Methods and Applica-

tions, Academic Press (2017)
15. Vannier, M.W.: Isophotes, Scale Space, and Invariants in Lung CT for COPD Diagnosis. Radiol. Artif.

Intell., published online 19 January 2022, https://doi.org/10.1148/ryai.210301

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.liv.ac.uk/~pjgiblin/papers/RicardoVisitSpring2008.pdf
https://www.liv.ac.uk/~pjgiblin/papers/RicardoVisitSpring2008.pdf
https://doi.org/10.1148/ryai.210301

	Planar Sections of a Surface Close to an Umbilic
	Abstract
	1 Introduction: Origin of the Problem
	2 Circles Tangent at One Point and Osculating at Another
	2.1 Blowing Up the Origin
	2.2 Equations of the Curve Γ
	2.3 Local Analysis of the Curve Γ
	2.4 Modified Equations
	2.5 The Curves Traced Out by Contact Points and Centre of the Circle

	3 The Tritangent Circle Case
	4 Circles with 4-Point Contact
	5 Further Work
	References




