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1 Introduction

This project explores the interesting area of curves of constant width and centre sym-
metry sets. Initially one might think that the only curve of constant width would be
a circle, but this is in fact not the case as we shall find out. The centre symmetry
set of a curve is almost a visual representation of the nature of that curve’s symmetry.

Section 2 outlines the fundamental definitions and concepts, introducing the idea
of defining a curve in terms of its support function, which is central to this project.

In section 3, we look at some examples of curves of constant width and their centre
symmetry sets. With many graphical displays, it is hoped that this will make the
concepts outlined in section 2 seem less abstract, improving the understanding of
the reader.

In section 4, we explore the possibility that parametric examples (some of which

are taken from section 3) could also be expressed algebraically.

Section 5 fills in the gaps for some proofs taken from various literature (all of which
are listed in the Bibliography) and the main theorem prooved here is that of Barbier.

Section 6 looks at Morse’s lemma and Morse functions which can be used for finding
parallel tangents to curves (which is very useful for curves of constant width and

centre symmetry sets as we shall see).

Section 7 asks whether it would be possible to start with 2 pieces of curve (say

X and Y) and find another piece of curve Z such that both X and Z have Y as their
centre symmetry set.

Finally, section 8 features all the Maple programmes I have used in the making
of graphics and lengthly calculations for this project (with annotations).



2 Basic Ideas

My main references for this section are [CGI] and [R].

2.1 Support Function

Consider a curve v to be smooth, closed and convex such that the orgin is inside ~.
If we take an arbitrary tangent (namely the support line [(t) below) and draw a per-
pendicular line from this tangent to the origin, then the length of this perpendicular
is called the support function h(t), where ¢ is the angle between the x—axis and the

perpendicular.

(cost,sint)

h(t)

Figure 1: Curve « with support function h(t) and support line ().

If we are given the support function to 7, then we can also find the equation of
~ itself and use the fact that the curve will be, by definition, the envelope of its

tangents. We can say that the equation for [(¢) (a tangent to ) is,
xcost+ysint = h(t) (1)
and so for our family of tangents, we have that
F(t,z,y) = xcost+ ysint — h(t).

We would like to find the envelope of this family (equal to the parametrisation of
our curve ), i.e. we want to solve F' = %—f = 0 where,
OF

E(t,x,y) = —xsint + ycost — h'(t).



After some calculation, we find the parametrisation of v to be given by,
x(t) = h(t)cost — h'(t)sint (2)

y(t) = h(t)sint + h'(t) cost (3)

where ' denotes a derivative with respect to ¢ (as it will do throughout unless other-

wise stated).
Theorem 2.1 Our curve vy is singular <= h(t) + h"(t) = 0.

Proof. Well, we have in equations (2) and (3) our parametrisation for v and from
these we can derive,

2'(t) = h'(t) cost — h(t)sint — h"(t)sint — h'(t) cost
y'(t) = b/ (t)sint + h(t) cost + h" (t) cost — b’ (t) sin t.
The curve + is then singular if 2'(t) = ¢/(¢) = 0, i.e. where,
0= (h(t)+R"(t))sint

0= (h(t) + h"(t)) cost

and since sin ¢t and cost never simultaneously equal 0, we have that our condition for
~ to be singular is,

h(t) + R"(t) = 0. (4)
|

2.2 A Curve of Constant Width

The width of a closed, convex curve in a specified direction is determined by the
distance between 2 parallel tangents and if the distance between all parallel tangents
is equal, then we have a curve of constant width (CCW). An obvious example of
such a curve would be a circle, however there also exist non-circular CCW, taking
forms such as those of 20p and 50p coins.

We can see from Figure 2 that the width of our curve 7 in the direction ¢ is equal to
h(t) + h(t + 7). Therefore, our condition for v to be a CCW is that,

h(t) + ht + ) = k (5)

where k equals some constant.



(cost,sint)

h(t+m)

I(t+m)

Figure 2: A CCW # defined by support function h(t).

Theorem 2.2 The chord joining the contact points of the parallel tangents l(t) and
[(t + ) will be a common normal to both I(t) and I(t + 7).

Proof. We can use our equation for () (equation (1)) by substituting ¢ = ¢+ 7 into
I(t) to give us,

x(t 4+ m)cos(t +m) + y(t + m)sin(t + 7) = h(t + 7).

Now use the fact that sin(¢ + 7) = —sint and cos(t + 7) = — cost which give us our

equation for [(t 4 7) to be,
—x(t +m)cost —y(t + m)sint = h(t + 7).

However, we would like all the terms in this equation to be expressed in terms of t.
From equations (2) and (3) we have z(t) and y(¢) which, using our rules concerning

sines and cosines from above, imply that,

z(t+m) = —h(t+m)cost+ h'(t+m)sint (6)
y(t+m) = —h(t+7)sint —h'(t+7)cost. (7)

Well, we can then calculate,
z(t+m) —z(t) = —[h(t +7) + h(t)] cost + [W'(t + ) + I ()] sint

y(t+m) —y(t) = — [h(t + 7) + h(t)] cost — [N (t + ) + W' (t)] sint



which can then be simplified using equation (5) to,
x(t) —x(t+m) = kcost

y(t) —y(t+ m) = ksint.

Therefore the direction of our chord joining parallel tangents is,
(x(t) —x(t+m),y(t) —y(t+m)) = k(cost,sint)

and, with reference to Figure 2 we can see that this is a vector, equal in length and
direction to h(t) + h(t + m) (i.e. itself or any parallel vetor) and by definition, the
support function is orthogonal to the support line. Therefore parallel tangents to a
CCW share a common normal (the chord h(t) + h(t + ) or any parallel). 1

With this in mind, we would now like to find a parametrisation of the envelope of
parallel tangent chords to a CCW.

2.3 Centre Symmetry Set & Evolute of ~

For now, we will not assume that our curve v is a CCW (it is however smooth, closed
and convex). Let us find find the envelope of chords joining parallel tangents and,
from above, we know that these chords will join the points (z(t), y(t)) to
(x(t+m),y(t+m)) on v (see equations (2), (3), (6) and (7)). So the equation of such
a chord (not the vector direction as calculated previously) is given by,

Y —yl) _ ylt+m) -y

X —x(t) z(t+m)—a(t)

where (X,Y) are coordinates of a chord in R2. From this we can obtain our family
of chords by taking all terms over to one side,

B, X,Y) =Y —y@)][z(t +7) —2@)] = [X —2z@)]ly(t + ) —y(0)].

For the envelope of these chords, we need to substitute our known values into F' =

%—IZ = 0. From F' = 0 we obtain, after some simplification,
Y[(h + hl)s — (h+ hz)c) + X[(hr + h)s + (hl + B')c] — hhl. 4+ B'hy = 0.
Finding %—? and setting it equal to 0 gives,

Y[(h+ 1"+ he+h))s|+ X[(h+ K+ he+ hl)c] —hhl + h"h, =0



and now we can find our envelope of chords. There are some very large expressions
involved in this calculation but, with some help from Maple (see Appendix 1), we

find that,

_ —h'hgsint + h"h. sint + hhl sint — h'h sint 4 hh cost — h"hy cost

X —
h+ W'+ hy +
Y — —Whycost+ h"hl cost + hhl cost — h'hll cost + h"hysint — hh! sint

h+ B+ hy + Bl

(denominator is non-zero, by (4)) yet there is more that we can say about this, con-
sider first the centre symmetry set.

Definition
The envelope of chords joining parallel tangent points is called the centre symmetry
set (CSS).

Proposition 2.1 (X,Y) is a parametrisation of v’s CSS.

However, what if v is a CCW? Well, then we can use the afore mentioned property of
a CCW (equation (5)) and its derivatives in order to express our (X,Y’) in a simpler

form, i.e. the following results allow us to find a parametrisation for the CSS on a
CCW:

h(t+7) = k—h(t) (8)
W(t+m) = —h(t) (9)
Wi(t+m) = —h'(b). (10)

Again, these calculations are very complicated, so using Maple (see Appendix 2) we
find that the CSS for a CCW can be parametrised by,

(X*,Y*) = (—h'(t)sint — h"(t) cost, h'(t) cost — h" (t) sint)

but this is a a special case.

When ~ is a CCW, our chords are common normals to the tangents at points
(x(t),y(t)) and (z(t + 7),y(t + 7)) on v. From this we can conclude that the enve-
lope of chords joining parallel tangent points is equal to the envelope of +’s normals.
Hence (X*,Y™) is a parametrisation of 4’s evolute.

(Note that for the CSS, we only need values of ¢ between 0 and 7 since taking
values of t between 7w and 27 will cover the common normals twice, i.e. if we observe
the envelope of chords for ¢ € [0,27), then we will see a double cover of the CSS.
Therefore the evolute of v is equal to the double cover of the CSS).



Proposition 2.2 (X*,Y™) is the parametrisation of both the CSS and the evolute
of a CCW.

It seems only appropriate that we should also find the evolute of v when it is not
necessarily a CCW. The family of normals to « can be represented by,

G(t,A,B) = (A —xz(t))sint — (B — y(t)) cost
and differentiating this with respect to t gives us,

%—f(t,A, B) = (h'sint + B — h/cost) sint + (A + h'sint + h" cost) cost.

Solving G = %—(t; = 0 gives us,
(A, B) = (—h/(t)sint — h"(t) cost, h'(t) cost — b (t) sint)

where (A, B) is a parametrisation of v’s evolute and notice that this is identical to
(X*,Y™*) above, where v was of constant width!

Proposition 2.3 The evolute of a smooth, convex curve with support function h(t)
can be parametrised by (X*,Y™).

Theorem 2.3 Points (X*,Y*) are singular <= h'(t) + h"'(t) = 0.

Proof. By defintion these points are singular if % (X™*) % (Y*) = 0 where,

d

7 (X*) = —n"(t)sint — h'(t) cost — "' (t) cost + h"(t)sint

d
pn (Y*) = —n""(t)sint — h"(t) cost — h"(t) cost — h'(t) sint

and its easy to see that by cancelling terms and taking out a common factor that,

(00 0)) = = (W0) + 270 (costsin),

Well, since sint and cost never equal 0 simultaneously, we have that the condition
for singular points on the CSS and evolute to our CCW or the evolute of any smooth,
convex curve with support function h(t) is that,

R () + h"(t) = 0.



3 Examples of Curves of Constant Width & their CSSs

3.1 Example 1

In considering an example of a curve of constant width, we said that we require
the support function A(t) to satisfy the condition h(t) + h(t + ) = k where k is a
constant, an example of which is,

t
h(t) = acos? (%) +b.
This can also be expressed in the form,

h(t) = gCOSBt-f—g-i-b

using the trigonometric identity cos2A4 = 2cos> A — 1. Substituting this into our
parametrisation of v gives us a CCW with parametric equations,

a a da . .
T = (§c0s3t+§+b> cost+781n3tsmt

3
y = (%(305315—1- g +b> sint — gsin?)tcost.

Let us now consider values of ¢ and b so that we might plot v, say a = 2,b = 8.

Notice here that the width of the curve is equal to 18 (the curve is symmetrical about
the z-axis and we can see that the intersection points on the axis are a distance of
18 apart) and this is equal to twice the sum of constants in our support function h(t)
(that is 2 (% + b) = 2(1+8) for our chosen values). We observe that it has 6 vertices.

10



Theorem 3.1 The CCW with support function of the form h(t) = (> P; cos Q;t) +
R, where P > 0 and R are constants and Q) is some odd integer, is symmetrical
about the horizontal axis.

Proof. For h(t) as defined, our CCW would have parameters,
x(t) = [(Z P; cos Qit) + R} cost — (— Z P,Q; sin Qit) sint

y(t) = [(Z P; cos Qlt) + R} sint + (— Z P,Q; sin Qlt) cost

here substituting our h(t) into equations (2) and (3) and expanding our brackets it
follows that,

x(t) = Z P;cosQ;tcost + Rcost + Z P,Q;sinQ;tsint

y(t) = Z P;cosQ;tsint + Rsint — Z P;Q; sin Q;t cost

are the points on our CCW above the horizontal axis (assume ¢ > 0). Now let t = —¢
(such that we are observing points below the horizontal axis) in these equations, then

x(—t) = Z P;cos Q;tcost + Rcost + Z P;Q;sin Q;tsint

y(—t) = — Z P;cosQ;tsint — Rsint + Z P;Q; sin Q;t cost

using cos(—t) = cost and sin(—t) = sint we can concude that xz(—t) = x(t) whereas
y(—t) = y(t) so our CCW is symmetrical about the horizontal axis. 1

The corresponding envelope of chords joining points of contact on parallel tangents
(the CSS) can be seen in Figure 3 (the CSS being the new curve which appears to
emerge). This time I have removed the axes to make the CSS as clear as possible
(see Appendix 3). We also observe that it has 3 cusps.

Theorem 3.2 The CSS to the curve with support function h(t) = cos3t + 9 is a
standard deltoid.

Proof. Consider the parmetrisation of a standard deltoid,
(C,D) = (6cost + 3cos2t,6sint — 3sin 2t)
for values of ¢ € [0,2x] and the parametrisation of our CSS,

(E,F) = (3sin3tsint 4+ 9cos 3t cost, —3sin 3t cost + 9 cos 3t sint)

11
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Figure 3: CCW & its CSS defined by h(t) = cos 3t + 9.

for 0 <t < 7 (calculated using (X*,Y™) from previously). Since we are taking t over
half the range in the case of our CSS, consider the change of variable u = 2t (such

that 0 < u < 2m). Substituting ¢t = § into (£, F) gives,

(3sin (5 ) sin (5) + 9cos (5 ) cos (3) -3 (5 ) cos () + 9005 (5 ) sn (3 ).

Now let us use the formulae,

2sinasinff = cos(a — ) — cos(a + f3) (11)
2cos acos 3 cos(a — 3) + cos(a + ) (12)
2 cos asin 3 sin(a + 3) — sin(a — ) (13)

n (E,F). Using (11) and (12) in E and (13) in F' we can simplify (E, F') down to
the following,

3 9 3 9
<§ (cosu — cos2u) + 3 (cosu + cos2u) , —3 (sin2u + sinu) + 3 (sin2u — sin u)>
and so we can see that,

(E,F) = (6cosu+ 3cos2u,3sin2u — 6sinu) .

This is the same as our deltoid parametrisation (C, D) (except that F' = —D, but this

is not a problem, since our CSS (and deltoid) are both symmetrical in the horizontal
axis.)

12



3.2 Example 2

Another example of a support function satisfying our condition for a curve of CCW
would be,

5t
h(t) = acos? <§> +b.
This can also be expressed as,

h(t):gcos5t+g+b

and so perhaps it becomes clear that any support function of the form h(t) =
Pcos@t + R where ) is an odd integer > 3 will give a non-circular CCW, but
it is natural to ask why this is the case.

Well, @ has to be odd because, if @) were even then h(t) + h(t + m) # k, where
k is a constant, i.e. we would not have a CCW. Also, Q must be > 3 (not 1) since
if @ were 1, then v would be a circle.

Substituting h(t) into our parametrisation of 7 (equations (2) and (3)), gives us
the parametric equations,

a a d5a . .
T = (5 cos 5t + 3 —i—b) cost + 781n5tsmt

b}
y = <gCOS5t+ g +b> sint — gsin5tcost.

Consider values of a and b so that we might plot ~, say for a =1 and b = 15,

13



noticing that the width is 31 and it has 10 vertices. The corresponding CSS can
be seen in Figure 4 and it has 5 cusps. So it would appear that a smooth curve ~

with support function h(t) = P cos Qt + R has width 2R, 2@Q) vertices and the CSS
has Q) cusps.

Figure 4: CCW & its CSS defined by h(t) = § cos 5t + 3.

Theorem 3.3 A CCW with support function of the form h(t) = (3> P;cos Q;t) + R,
where P > 0 and R are constants and Q is some odd integer, has width w = 2R

Proof. The width of our CCW is, by definition,
w = h(t) + h(t + )
from previously. Well substituting in our h(t) and h(t + ) this becomes,
w = (ZPicosQit> + R+ <ZBCOSQi(t+7T)) +R

but we know that cos(t + m) = — cost so in fact,

w = (ZPCOSQJ) + R — (ZBCOSQJ) + R=2R

Theorem 3.4 A smooth CCW with support function of the form h(t) = P cos Qt +
R, where P > 0 and R are constants and @ is an odd integer > 3, has 2Q) vertices.

14



Proof. 1If our curve has 2@Q) vertices, then this is equivalent to £'(¢) having 2@Q) zeros
where, from the proof of Theorem 5.2, we have that,

p(t) = h(t) + K1)

which implies,
1
= ——
) = e e

Note that the denominator here does not equal 0, by Theorem 2.3 (so x # 0). So, we

want to find the zeros of £(t), but we observe that, dropping ¢ from our notation,

d /1y 1,
dt/i_ﬁ;QH

or equivalently,

and therefore k' has zeros <= p’ has zeros. Substituting h and its derivatives into
p=h+h" gives,
p = PcosQt + R — PQ?cos Qt

differentiating with respect to ¢ throughtout provides,

p = —PQsin Qt + PQ>sin Qt
and factorising we find that,

p'=PQQ+1)(Q — 1)sinQr.

Therefore, zeros of p' occur at PQ(Q 4+ 1)(Q — 1) =0 or sin Qt = 0, but the former
is not the case since ) # lor — 1 (since @ > 3) and P # 0 (since P > 0).

Thus, our CCW has vertices when sin Qt = 0, where 0 < ¢t < 27 (and so 0 <
Qt < 2Qm). Therefore, since sint has 2 zeros in the interval [0, 27), it follows that
sin Qt has 2Q) zeros in the interval [0,2@Q). Hence, our CCW has 2@Q) vertices. ]

15



3.3 Example 3

Our final example is particularly interesting, consider the CCW with support func-
tion,
h(t) = acos3t + bcos 5t + csin 3t + d.

Substituting A(t) into equations (2) and (3) gives us the parameters for 7 to be,
x = (acos3t + bcos bt + ¢sin 3t + d) cost — (—3asin 3t — 5bsin 5t + 3¢ cos 3t) sint

y = (acos 3t + bcosbt + csin 3t + d) sint + (—3asin 3t — 5bsin 5t + 3¢ cos 3t) cos t
whilst our CSS can be parametrised by,
X* = —(—3asin 3t — 5bsin 5t + 3¢ cos 3t) sint — (—9a cos 3t — 25b cos 5t — 9csin 3t) cos t

Y* = (—3asin 3t — 5bsin 5t + 3¢ cos 3t) cost — (—9a cos 3t — 25b cos 5t — 9csin 3t) sin t.

Now, let us consider the graph of v and its CSS for the values a = 1,b = 1,¢ = 10
and d = 110 as shown in Figure 5.

Figure 5: CCW & its CSS defined by h(t) = cos 3t + cos 5t + 10 sin 3t + 110.

Theorem 3.5 Our CCW with support function h(t) = cos 3t+cos 5t+10sin 3t+110
18 asymmetrical.

Proof. To prove this, we must first examine the curvature of our CCW (as defined
in the proof to Theorem 3.4),

1
- —8cos3t — 24 cos 5t — 80 sin 3t + 100

K

16



and, using Maple (see Appendix 4), we can draw the graph of k (vertical axis) against

t (see Figure 6).

Figure 6: Curvature of CCW defined by h(t) = % cos5t + 3.

Then we use the fact that vertices are maxima of curvature, i.e. Kk = K = 0 so our
values of ¢ for which our CCW has vertices will be the values of ¢ for which we have

peaks on our graph. Using Maple (see Appendix 4) we find these to be,

t1 = 0.3168141150, to = 2.552446218, t3 = 4.824267340

and, by substituting these into our (x,y) we find that our corresponding vertices on

our CCW are the points,

v =
Vo =

vy =

(109.6820353, 46.48287336)
(—101.6689180, 65.60666933)
(4.934800624, —119.8416015)

(14)
(15)
(16)

respectively. One of the features of an asymmetrical curve (no reflectional or rota-

tional symmetry) with 3 vertices (ordinary) is that the triangle joining them will be

scalene, that is the 3 sides will be of different length. We can calculate these lengths
using Pythagoras’ theorem and we find them to be,

l1 = 213.9051518, I3 = 196.5599505, I3 = 212.2143846

and therefore our CCW is asymmetrical.

17



4 Algebraic Expressions

In our section on support functions, we found a parametric expression for our curve
v (we called this (z(t),y(t))) and also for the CSS for v of constant width (which we
called (X*,Y™)). Now we would like to determine whether the CCW and CSS are

algebraic curves.

4.1 Example 4

Take for example the curve we constructed from the support function in Example 1.
Our parameters of v in that case were,

a a 3a . .
T = (§COS3t+§—|—b> cost+?s1n3ts1nt

3
Yy = <gcos3t+ g +b) sint — gsin?)tcost,

so in order to find an algebraic expression, we need to eliminate our parameter t
from these equations. This process quickly becomes very complicated, but it can be
done with the help of Maple (see Appendix 5). First of all, simplifying our (z,y)
above using Maple’s knowledge of trigonometrical identites gives,

3
x = —4acos*t + 6acos’t + gcost+bcost— ?a

Y= —%sint (8&0083t —a— 2b)

and we notice that here x is expressed completely in terms of cos ¢ but that we have
a sint term in y. In order to eliminate this sint (we want x,y both expressed in

terms of the same variable), we square ¥, thus creating a sin®¢ term which can be
replaced by 1 — cos?t and the result is,

2

Y- = (1 — cos? t) (64@2 cos® t — 32ab cos® t — 16a? cos® t 4+ a? + 4ab + 4b2) .

FSQrS,

So we have 2 equations both expressed in terms of the same variable cos ¢, let this
equal a new variable C', consequently,

3a

x:—4aC4+6aCz+gC+bC— 5

1
y? = il C?) (64a*C° — 32abC? — 16a*C® + a® + dab + 4b?) .

18



If we now eliminate C' from these equations (using Maple, see Appendix 5) and use
the same values of @ and b as in Example 1, we find that our algebraic equation for
our curve vy (of constant width) is,

2841627 4+1928 +4(20y% +2290) — 554425 — 162°y% — 41283 (2 +y*) — 519242 +-69 2% +
26638223 — 80z3y* + 1108823y? + 795096022 + 441x%y* + 16632y 2 — 8256622y> —
48ySx — 799146y + 7950960y> — 45y° + y® = 373248000

and we notice that this curve is of degree 8.

Using a similar approach, we find that the algebraic expression for the corresponding
CSS, previously parametrised by (X*, Y*) where,

3 9
X* = Easini%tsint—i— gcos?)tcost

Y* = _3_20, sin 3t cost + 9_2a cos 3tsint
is given by,
X = 24X 4 162X + 2X Y2 + 72XV + 162Y 7 4+ YV = 2187
and we notice that this curve is of degree 4.

In fact, through the observation of other examples, we conjecture that generally,
for any support function of the form h(t) = P cos Qt + R, where P and R are some
constants and @ is some odd integer > 3, that its curve v will have degree 25 + 2
and the corresponding CSS has degree 5 4 1 (half that of the curve).

4.2 Example 5

An interesting question might be: are there other support functions, besides those
of the form h(t) = P cos 3t + R, which produce a CCW with 6 vertices (and hence a
CSS with 3 cusps)? Well, let us consider the curve with support function,

h(t) = acos 3t + bcos 5t + ¢
where b is small and our curve can be parametrised by (x,y) such that,
x = (acos 3t + bcosbt + ¢) cost — (—3asin 3t — bbsin 5t) sin t

y = (acos3t + bcosbt + ¢)sint + (—3asin 3t — 5bsin 5t) cost

19



and the corresponding CSS can be parametrised by (X*, Y™*) such that,
X* = — (—3asin 3t — 5bsin 5t) sint — (—9a cos 3t — 25b cos 5t) cos 5t

Y* = (—3asin 3t — 5bsin 5t) cost — (—9a cos 3t — 25b cos 5t) sin bt.

Using a similar method to that of Example 4 we find that, by eliminating ¢ from
our equation and by letting a = 1,b = 0.01 and ¢ = 10 we find that our curve is
algebraic with equation,

—1173632.5092 — 0.04017680671%x + 0.0232928689y%22 4 0.02858369159x49*

+ 3.117481181z%y? — 58.3773924423y> — 0.03305188292y225 + 1.6965020922:3y*

— 0.52583503042%y% + 116.4626578y*x + 25.86689693y* 22 + 4752.134265y°x

— 1471.69913922y?% — 1.786474297y5 — 0.6566123013z" + 0.0004083423248y228
+0.000013309184y22° + 0.000411806549823% + 0.016972259982° — 78.370064612°
+51371.4111422+1411.1751662* +22533.259362% — 15.108764372° +0.00664677896y°
— 151.4573255y* + 0.0000001536% %22 + 0.000000384y*2® + 0.000000512y5 25

+ 0.000000384z*y® + 0.000237166864y52* + 0.000101015864732>

+ 0.000022987264y*2” + 0.000019245568y%2° + 0.0000076966478 2>
+0.00000114304y'2 + 0.0004329471456y 2% + 0.004011831741y>27
+0.001954836976y* x5 + 0.00000015362 %y + 0.001595414176¢/ 52>

+ 99874.04907y2 + 0.000029166984y'° + 0.0030666411752° + 0.00014083260262'°
+0.000003013888x!! 4 0.0000000256y'2 4 0.00000002562:'? = 7237792.1

and we can see that this is a curve of degree 12 whilst our CSS has equation,

130.5789041 X* — 0.0352734375X** + 0.0004X*% — 107.3467125X *
+0.02493X*° + 128.8374885Y *2 + 64.8856125 X *Y *2 + 4.445203125 X *2Y *2
+0.9272765625 X ** + 0.06705X*Y** 4 0.0963Y*2X*3 4 0.0012 Y *2 X **
+0.0004Y*6 4+ 0.0012Y*4 X*2 — 12.74613750X*> = 1772.281877

and it is clear that this has degree 6 (half that of our curve). Now consider the
graph of these algebraic curves as shown in Figure 7.

We can see that this curve has 6 vertices and the CSS has 3 cusps, just as in the
case of h(t) = Pcos3t + R. This despite the fact that we had a curve of degree 12

and CSS of degree 6. We conclude that there does not appear to be a consistent link
between the degree of our CCW and the number of vertices exhibited by that curve
or, the degree of our CSS and the number of associated cusps.
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Figure 7: Algebraic plots of CCW & its CSS defined by h(t) = cos 3t+0.01 cos 5¢+10.

4.3 More General Case?
Let us suppose that we have a support function of the form,
h(t) = acos3t + bsin3t + ccost + dsint + e. (17)

This would appear to be a more general case of example 1 (where effectively we had
h(t) = M cos3t + N , where M and N are constants), however we will now show
that it is not. Consider our curve 7y constructed as in our section on the support
function where we said that for the support line /(¢) we had,

xcost 4+ ysint = h(t).

What if we now translated the curve by a vector, say (u,v) as shown?

Well, our equation for I(¢) would become,

(xcost+ysint) + (ucost + vsint) = h(t)
or equivalently,

(zcost+ysint) = h(t) — (ucost + vsint).

So translating our curve 7 by a vector (u,v) has the effect of replacing any support
function h(t) by h(t) —ucost —vsint. Yet we are still looking at the same curve 7
(we've just “moved” it) and therefore it has the same CSS. Thus, we can conclude
that adding (or subtracting) sint and cost terms to our original h(t) = M cos3t+ N
(see Example 1) will not affect the curve or its CSS. Hence we can reduce our “more
general” case in equation (17) to,

h(t) = acos3t + bsin 3t + e. (18)
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(cost,sint)

********

Now let us see what happens if we rotate the curve v. We would like to show at this
point that, given a and b as follows, then there exists A > 0 and « as follows, such
that the equation below is satisfied,

acos 3t + bsin3t = Acos3(t + )

(since we are trying to show that (18) can be simplified to h(t) = M cos3t + N as
claimed at the start of this section). Well, let us expand the RHS of the previous
equation,

a cos 3t + bsin 3t = A [cos 3t sin 3w — sin 3t cos 3¢

and, by comparing the coefficients of cos 3t and sin 3t on either side of this equation,
we find that,

a = Asin3a (19)
b = —Acos3a (20)

By squaring these 2 equations and then adding them together, we can find our
expression for A,

a® 4+ b = A?

which implies that A = v/a2? + b2. If we now substiute this value for A back into our
simultaneous equations above then we have,

a = Va®+b?sin3a (21)
b = —va?+b?cos3a (22)
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and these enable us to define our angle « in terms of a and b,

a

sin3a = ————
—-b

cosda = ——
va? + b?

(we always define an angle in terms of its sine and cosine). In conclusion we have
shown that, given a and b there exists A > 0 and a such that acos3t + bsin 3t =

Acos 3(t + ) so equation (18) can be simplified to,

h(t) = Acos3t + e. (23)

for rotated axes.
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5 Barbier’s Theorem
My main reference for this section is [F].

Theorem 5.1 (Barbier) For a closed convex curve of constant width w > 0, its
perimeter is equal to Tw.

Proof. Let our curve 7 be parametrised by (z,y) = (h(t) cost—h'(t) sint, h(t) sint+
h'(t) cost) where h(t) represents our support function and ’ represents differentiation
with respect to ¢t. Consider the arc length s defined by,

= [ (E) - (2)

for our case where, from now on we shall write h in place of h(t), b’ instead of h/(t)

and so on. We can easily find the following terms,

2
(Z-‘f) = (n?+ 200" + 0"%) sin?¢

2
<%> = (h2 + 2hh" + h"2> cos®t

which when substituted into our equation for s gives,

21 21 21
5= / V(2 2hh 4 1) dt = / V(4 h)2dt = / (h+ ") .dt
0 0 0

noting that arc length must be positive. At this point we can use the fact that, if
our curve is of constant width w, then the following poperties hold;

h(t) +h(t+7) = w (24)
)+ h(t+7m) = 0 (25)
")+ h"(t+7m) = 0. (26)

In order to use these, we split the interval of our integral for s into (0, 7) and (m, 27)
as follows,

T 2
s= / (h+ h") .dt + / (h+h") .dt
0 T

and looking at our second integral, we would like to use a change of variable, letting
u =t — . Together with the corresponding change of limits this gives us,

s = /7r (h(t) + h"(t)) .dt + /Tr (h(u+m)+ A" (u+ 7)) .du
0 0
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where ’ here denotes derivatives of the respective variables ¢ and u. Now we want to
use our properties above (for variable u rather than ¢) and rearrange such that the
following conditions hold;

hu+m) = w—h(u) (27)
h'(u+m) = —h"(u). (28)

Substituting these into our integral gives us,

5= /ﬂ (h(t) + H'(1)) .t + /7r (w — h(w) - K'(w)) .du
0 0

and remember that ¢ and u are just variables so we can combine the 2 integrals,
perhaps letting ¢ = u = z for example, so we have that

s = /07r (h(2) + W'(2) + w — h(z) = h"(2)) .dz = mw.

Another interesting theorem relating to a CCW is Theorem 5.2.

Theorem 5.2 The radii of curvature at opposite points
(x(t),y(t)) and (x(t + m),y(t + 7)) have a constant sum equal to w (w as before).

Proof. As before, let our plane curve v be a CCW parametrised by,
(x(t),y(t)) = (h(t)cost — h'(t)sint, h(t)sint + h'(t) cost)

where h(t) represents our support function and ' represents differentiation with re-
spect to t. It follows that,

(x(t+7),y(t+7)) = (—h(t+m)cost+h (t+m)sint, —h(t+m)sint — b’ (t + ) cost)

and we would like to find the curvature at these points. We can define the curvature
k at a point on the v, with arc length s, by the formula,

dt

:‘i:%.

Then, since the radius of curvature p is the inverse of k we have that,
_ds |dy
P=at ~ |at|

25



So for the radius of curvature at the point (z(t), y(t)), we have

p(t) = /(W cost — hsint — h” sint — h/ cost)2 + (W' sint + hcost + h” cost — h' sint)2.

where h = h(t). We can see that terms will cancel here leaving,

p(t) = \/(—=hsint — h”sint)2 + (hcost + h" cost)?

which we can then factorise as follows,

p(t) = \/[=(h + W) (sin t)]2 + [(h + h")(cos )2

and this simplifies to,

p(t) = \/(h + W)2(sin® t + cos?t) = h + h".

Now, in a similar way, let us consider the radius of curvature at the point
(x(t +7),y(t + m)), which after cancellation is seen to be,

p(t +7) = /(h(t +7)sint + h"(t + 7)sint)2 4+ (—h(t + 7) cost — h"(t + ) cos t)2.

Gathering terms together in the same way as we did previously we find that,

p(t +7) = /[(hx + h2)sint]2 + [~ (hy + ) cost]? = hy + hL.
Therefore, the sum of the radii of curvature at opposite points have sum,
p(t)+p(t+m)=h(t)+h"(t)+h(t+7)+h"(t+7)

and using our properties for a CCW (i.e. h(t)+h(t+7) = w and b”(t)+h" (t+7) = 0),
this becomes,
p(t) + p(t+m) = w.
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6 Morse’s Lemma

My main reference for this section is [BG].

Say we have a closed, non-convex curve ', then we can pick out parallel tangents
with the function,

h(t1,t2) = T(t1).N(t2)
where T'(t;) is the tangent at I'(¢;) and N(¢;) is the normal at I'(¢;) for i« = 1 or
2. We use the fact that h(t,t2) = 0 if the tangent at I'(¢1) is perpendicular to the
normal at I'(t2) (and therefore the respective tangents are parallel). Clearly, a trivial
solution would arise if ¢; = ¢ since

h(ti,t2) = T'(t1).N(t1) =0

by definition. We want to find the parameter of points on I' where the tangents are
parallel (either t; or t2).

First consider the Implicit Function Theorem (taken from MATH443) and the Ja-
cobian of h = h(t1,t2) at the origin (which means t; = t3) .

Theorem 6.1 (Implicit Function Theorem) Let R™ v — R% ¢ (m >q) be a
smooth map (defined near v € R™ such that f(v) = ¢) and suppose v is a regular
point of f (J(f) has rank q at v). There are q linearly independent columns of J(f)

at v (non-zero q X q minor).

Then, for mf=1(c) close to v, we can express the variables corresponding to the
q independent columns as smooth functions of those remaining.

Let us examine points near (¢1,t2) = (0,0) using the Jacobian matrix,

oh Oh
J(h) = (87 aT)

which gives us that,
J(0,0) = (0,0)

so J is singular, thus we cannot use the Implicit Function Theorem (IFT) and we
resort to the Morse lemma. Instead of using the Jacobian matrix, we use the Hessian
matrix for our function h(tq,t2) = T'(t1).N(t2).

Definition

A Morse function f(t1,t2) mapped by f : R? — R is one for which % = 8%% =0,
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i.e. f is singular at (¢1,t2) and the Hessian matrix,

92 f 02 f
ot? ot10t
H(f) == aglf 312£2

Ot10t2 8t%

is non-singular at (¢1,t2), i.e.

25 9%
2 ot10
H =] & T | 2o

Ot10t2 ot3

Lemma 6.1 (Morse) If f(t1,t2) is a Morse function at (t1,t2) = (0,0) then,
f710) is locally diffeomorphic to,

(M1) {(t1,t2) : 11 —t3 =0} OR
(M2) {(t1,t2) : 11 + t3 = 0}.

Since the map is f : R?,(0,0) — R, 0, then we can see that (M1) and (M2) do not
allow complex solutions. Thus (M 1) corresponds to the graph of (¢; +t2)(t1 —t2) =0
which implies that,

t1 =t Or t1 = —19

and so the graph would look like Figure 8,

t1

0 t2

Figure 8: Graph for (M1)

whilst the only real solution of (M2) is
t1=12=0

since t? and t3 must both be > 0, therefore its graph is as shown in Figure 9.
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t1

Figure 9: Graph for (M2)

At (t1,t2) = (0,0) we have that ¢; = 2, so h(t1,t2) = 0 implying parallel tangents
(from previous). So if |H(h)| # 0 and g—tf; = aaT}; = 0 at (t1,t2) then we have that
h = h(t1,t2) is a Morse function and, if h(t1,t2) is a Morse function, we can also use

Morse’s lemma to describe h=1(0).

6.1 When is h(ty,t;) a Morse function?

For this we need to make the following calculations (assume I' to be a unit speed

curve for simplicity),

oh
8_t1 = /ﬁlel.Ng (29)
oh
8_t2 = —Tl.ligTQ (30)
0’h
W = (HllNl—H%Tl).NQ (31)
1
0’h
2 = —Ty. (kT + K51N1) (32)
2
0%h
8t18t2 = —(HlNl).HQTl (33)
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where s means the derivative of k(t;) with respect to ¢; for ¢ = 1 or 2. Let us

consider the example of (t1,%2) = (0,0) so that we might use Morse’s Lemma.

Oh L (0)N(0).N(0) = (0) (34)
ot
oh
I~ 1(0).5(0)T(0) = —k(0) (35)
ts
8%h
=z = (ﬂ'(o>N(0)—ﬂ<0)2T(o>) N(0) = #(0) (36)
1
8%h
22 = —1(0). (ﬁ/(O)T(O) —i—m(O)ZN(O)) — —(0) (37)
o2
PR (s(0)N(0)) #(O)T(0) = 0 (38)
Ot10ty ’ N
and so since for a Morse function, we require g—t}i = g—t}; = 0, we can see that
k(0) = —k(0) = 0, i.e. we have an inflexion at the origin. Our corresponding

Hessian matrix would be,

oo =" i )

and we know that a Morse function requires this to be non-singular, i.e. we must
have that —«’(0)> # 0. In fact, if this is the case, then ’(0) # 0 and so we

have that —«’ (0)> < 0. This means that our condition for a Morse function when
(tl,tg) = (0, 0) is that,
k(0) =0 & k'(0) #0

i.e. an ordinary inflexion at the origin. The parallel tangents of a curve with an
ordinary inflexion at (¢1,t2) = (0,0) would not only occur for our trivial solution
(t1 = t2), but also for ¢; # t2 when near the origin (see Figure 10).

The set h~1(0) can be reprsented by Figure 11, i.e. h~!(0) has a local solution
comprising a pair of 2 intersecting curves, one of which is the diagonal t; = t9
(which is clearly smooth). We have found that h~1(0) is locally a pair of smooth
transverse curves, using the Morse lemma; hence the true parallel tangent set is the
other smooth branch of h=1(0) besides the diagonal.

Proposition 6.1 In a neighbourhood of an ordinary inflexion, the parallel tangent
set is a smooth curve.
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to

t1

Figure 10: Parallel tangents of an ordinary inflexion.

This situation is illustrated in Figure 11.

to
t1=to

t1

Figure 11: Local solutions for h (t1,%2) = 0.
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7 Reconstruction of a curve from its CSS

We would like to find out if, given a curve, say A parametrised by A(s) = (h(s), s)
and another piece of curve, say B parametrised by B(u) = (u, q + g(u)), is it possible
to find another piece of curve, say C' parametrised by C(t) = (¢,p+ f(¢)) such that
B and C have A as their CSS?

Figure 12: Curve A is the CSS to curves B and C' here.

Here the dotted lines at the top and bottom of the diagram represent parallel tan-
gents at B(u) and C(t) whilst the dashed line joining them is tangential to A. Also,
the constants p and ¢ are equal to the distances between the tangent points C(t) and
B(u) respectively (represented by black circles on C' and B) and the tangent point
on A (represented by black circle on A). We have some conditions for our problem.

Firstly, we want B(u) and C(t) to lie on the tangent to A(s) and secondly, we
want ¢'(u) = f'(s), i.e. we want the tangents to B and C to be parallel ( here
denotes differentiation with respect to the specified variable, as it will throughout).
We would expect ¢ and u to be functions of s since the points B(u) and C(t) lie on
the tangent to the curve A, parametrised by the variable s.

Using our first condition we have,

(u,q+g(u) = (h(s),s)+pn(h'(s),1) (39)
(tp+ft) = (h(s),s) +A (K (s),1) (40)

and we want all of the fuctions here (g, f and h) to be functions of s (variable of the
CSS to curve B) so that, knowing only B and its CSS A, we can find C.
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Well, we know that h is a function of s and, implicitly, we have that u is a function of
s (B(u) lies on the tangent to A(s) since A is the CSS to B) and therefore g = g(u)
is a function of s. Now we want to find ¢, the variable of curve C, as a function of
s, and thus f = f(t(s)). So, rearranging equations (39) and (40) we find,

(u,q+g(u)) — (h(s),s) = u (K'(s),1)
(t,p + f(t)) - (h(8)7 8) =A (h/(3)7 1)

and now, if we think of these in terms of (z,y) coordinates and we divide the x
coordinates by the y coordinates then we obtain the following,

u— h(s

() _ s
crow-s " “
t_h(s) _ /8
PENOEFE 2

noticing that we have eliminated p and \. If we now consider equation (41) to be a
family of chords (joining B(u) to A(s)), say G(s,u) where,

G(s,u) =u—h(s) = h'(s) (¢ +g(u) - s).

Since our model is affinely invariant, we can take an affine transformation, i.e. we can
set up our model in such a way that we can take a point on A to be the origin (such
that A(s) = (h(s),s) = (0,0)) and let the tangent to A at that point, parametrised
by (h'(s), 1), be the vertical axis (represented by the dashed line in Figure 12).

We can then let this vertical tangent intersect with curve B at the point where its
parameter u also equals 0 and such that the tangent to B at this point, parametrised

by (1, ¢'(u)), is a horizontal tangent i.e. we analyse our given curves A and B at the
points with parameter value 0.

So now, let us consider the Jacobian matrix,

0G 0G
/= <a_%>

close to (s,u) = (0,0). We have that,

O 1 W) )
and we have set up our model in such a way that h(0) = h’/(0) = 0 (and ¢'(0) = 0)
so then,

oG
5.(0,0)=1#0
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and, by the Implicit Function Theorem (see Theorem 6.1), we can write u as a
function of s and therefore g = g (u (s)). Now it only remains to prove that we can
find ¢ and therefore f(¢) in terms of s. We can rearrange equation (42) to make f(t)
the subject, the result of which is,

t—h(s)
t) = - .
JO == —rts
We want to make use of our second condition (that Z—Z = %), so let us differentiate

our equation throughout with respect to s giving,

df ,  W(s)(t'—h'(s)) = (t—h(s))h"(s)
Fri 0L 1

where ’ here denotes d% throughout. Now multiply everything by h/(s)? to get rid of

our fraction and also leads to cancellations producing,

Z—‘it’h’(s)z = ()t — (t — h(s)) R"(s). (43)

In a parallel fashion, we obtain, from equation (41),

Z—Zu/h/(s)2 =R (s)u' — (u—h(s))h'(s)

and using our second condition, this becomes

df
dt

u'h(5)? =K (s)u' — (u—h(s))h"(s). (44)
Now, dividing (43) by (44) and cross-multiplying we have,

t' [h'(s)u' — (u — h(s)) h"(s)] = [h'(s)t' — (t —h(s)) h"(s)]
then, multiplying out we see that, after cancellations,

—t'uh” (s) +t'h(s)h" (s) = —u'th"(s) + u'h(s)h"(s).

Divide through by h”(s) and take out common factors to find that,
dt , ,
(h(s) —u) s +u't =uh(s) (45)

i.e. here we have an equation for ¢, where ¢ is the only unknown (doesn’t involve
f(t)) in terms of h and u which are both functions of the variable s, so we know that
we can find ¢ (and so f = f(t)) in terms of s.

Proposition 7.1 Given a curve A and another piece of curve B, we can find another
piece of curve C, such that B and C have A as their CSS.
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7.1 Example 6

Let our function h(s) = s2, so that our CSS curve A is parametrised by,
A(s) = (% s)

and similarly, let our function g(u) = au? so that our given piece of curve B is

parametrised by,
B(u) = (u,q+ au?).

We don’t know an explicit value for ¢t but we do know that it can be expressed in
terms of s, so express t as a power series in s up to degree 5,

t =115 + tas® + t35° + t45* + t55°

and similarly, let us describe f as a power series in ¢ as follows,

f = fot? + f3t®> + fat* + f5t°

where t; and f; for 1 < i < 5 are coefficients to be found. However, we have an
equation for ¢ in (45), but for this we need explicit expressions for u and Z—Z. So, by

rearranging equation (41), we have,
u—h(s) = h'(s) (g+g(u) —s) =0

and, by substituting our values from A(s) above into this, we find that s terms
cancel to give,
u—28q—2sau2+52:0

i.e. we have a quadratic equation in u, so using the quadratic formula we have that,

_ 144/1-8s%a(2q —s)

U
4scy

and we want to choose the sign (+ or —) which gives a finite value for u(0) when we
express our square root term as a power series in s. It is clear that we must take u_,
since if we took w4 our first term in the power series for u(s) would be 51— which
would be infinite when s = 0. Now, using Maple (see Appendix 6) we find v and Z—Z
up to degree 5,

202 + 64033 &5
«

uw=2gs — s> + 8aq’s® — 8ags* +

and

d 10a? + 32003¢3
d—u =2q—2s+ 24aq252 — 32aq33 + ot @ st
S «
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which we can then substitute into g(u) in order to apply the parallel tangents con-

dition, that is fl—]; — g—z = 0. Using Maple (see Appendix 6), we can write this as a

power series,

(2fat1 — 4aq) s + (2f2t2 + 2a + 3f3t%) s? + (—160&2612 + 2 fots + 6 f3t1ts + 4f4t13) s3
+ (2fata + 1602q + 3f3 (2t1t3 + t3) + 12f415t2 + 5 fst]) s*

+ (2fats + 3f3 (2t1ts + 2tats) — 4a? — 128a3¢> + 4 f4 (t1 (2183 + 13) + t3tF + 2t381)
+ 20f5t:{’t2)85

then we wish to utilise equation (42), expressing it as a series in s. First we re-
arrange it to the form

(t—h(s)) = h'(s) (p+ f(t) —s) =0

into which we can then substitute our chosen value of h(s) and our power series
expansions of ¢t and f(¢) giving us, in ascending powers of s, the following series.

(tl — 2]9) S+ (t2 + 1) 52 =+ (—2f2t% + tg) 33 + (t4 — 4f2t1t2 _ 2f3t£13) 54 +
(ts — 2f2 (2t1ts + 13) — 2fatd — 6f3t3ty) 5°

We say that these 2 series are satisfied for any s, so we equate the coefficients
of powers of s to 0 in order to find our ¢; and f; coefficients, for 1 < ¢ < 5. These
calculations (see Appendix 6) heed results from which we can say that,

16 8
t(s) = 2ps — s? + 8agps® — (gaq + gap) s+ 2a (32paq2 +1) s0

4 16
f (t(s)) = daqps® — 3@ (2¢+p) s* + a (32pag® + 1) s* — 1—5a2q (23p 4 22¢) s°.

So now, by assigning numerical values to «, p and ¢, we can use Maple (see Appendix
7) to draw curves A, B and C and their tangents (see Figure 13).

Here we have let « = 1,p = 2 and ¢ = —2 and the “middle” curves represent A,
the “lower” curves represent B whilst the “upper”curves represent C' (very much as
depicted in Figure 12). The thinner lines here represent tangents to our curves, we
can see that the tangents to A join the parallel tangents of B and C' (and so A is
the CSS of B and (). This is emphasised in Figure 14 where we have drawn the
tangents for 3 different values of s (s = 0,s = 0.05 and s = —0.05) together.

In future work, we intend to look at surfaces of constant width, together with CSSs in
3 dimensions. Also, we would like to see just how far we can take our reconstruction
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Figure 13: Tangents for s = 0 and s = 0.05 respectively.

section, i.e. given the CSS and perhaps one or 2 points on the curve, is it possible
to reconstruct the whole curve?

Figure 14: Tangents for s = 0,s = 0.05 and s = —0.05.
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8 Maple Appendices

8.1 Appendix 1

This is the Maple programme for finding the parametrisation of the CSS of a curve,
not necessarily of constant width.

with(plots) :with(plottools):

with(linalg) :with(PDEtools):

Consider the support function defined by h(t) and h(t + 7) to be defined by hl(t).
declare(h(t) ,h1(t) ,prime=t):

dh:=diff (h(t),t);dhl:=diff(h1(t),t);d2h:=diff(dh(t),t);

Note, whenever using h or hl, we must refer to them as h(t) and hl(t) respec-
tively, otherwise Maple will not differentiate them properly. Consider our curve
parametrised by (z(t),y(t)) as follows.
x:=h(t)*cos(t)-dh*sin(t);y:=h(t)*sin(t)+dh*cos(t);

Now consider (x(t + 7),y(t + 7)) to be defined by (z1(t),y1(¢)).
x1:=-h1(t)*cos(t)+dhl*sin(t);yl:=-h1(t)*sin(t)-dhl*cos(t);

Our family of chords can be defined by F'.

F:=(Y-y)*(x1-x) - (X-x) *(y1-y) ;

For the envelope of chords we need Cg—f.

dF:=diff (F,t);

The envelope of chords is given by the solution to the equations F' = % = 0.
XY:=solve ({F=0,dF=0},{X,Y});

We can say that X is the 2nd of the 2 arguments produced (it could be the 1st).
X:=op(2,XY[2]);

and Y is the 1st of the 2 arguments produced (it could be the 2nd).
Y:=op(2,XY[1]);

Here (X,Y’) are parameters of the CSS.

8.2 Appendix 2

This picks up where Appendix 1 left off and finds the parametrisation of the CSS
when we have a CCW. If our curve is of constant width, then we should have certain
conditions satisfied;

(1) that h(t) + h(t + m) = k where k = constant,
X1:=subs(hl=k-h,X);Y1:=subs(hl=k-h,Y);

(2) that A'(t) + h/(t +7) =0,

X2:=subs(diff (h1(t),t)=-dh,X1);Y2:=subs(diff (h1(t),t)=-dh,Y1);

(3) that A”(t) + A" (t + m) = 0 and

X3:=subs(diff (diff (h1(t),t),t)=-d2h,X2);
Y3:=subs(diff (diff (h1(t),t),t)=-d2h,Y2);

(4) that since k = constant, then £'(t) = 0.

38



X4:=subs(diff (k(t),t)=0,X3);Y4:=subs(diff (k(t),t)=0,Y3);

but we can simplify these.

X5:=simplify(X4);Y5:=simplify(Y4);

Here (X5,Y5) represent our conditions for a CCW, i.e. if we have a CCW, then the
parameters of the envelope of its chords joining parallel tangents (its CSS) will take
the form (X5,Y5).

8.3 Appendix 3

We want to draw a CCW and the envelope of its chords joining points on the curve
at (x(t),y(t)) to points (z(t + ), y(t + m)).

with(plots) :with(plottools):

Define a fixed number m.

m:=3;

Define p = p(t) and its derivative with respect to ¢. This is called our support func-
tion.

p:=a*x(cos(m*t/2)) "2+b;

dp:=diff(p,t);

Define our closed, convex curve C' in terms of the following parametric equations.
x:=p*cos(t)-dp*sin(t);y:=p*sin(t)+dp*cos(t);

Define (z,y) for t = (t + ), this will be used later.

x2:=subs (t=t+Pi,x) ;y2:=subs(t=t+Pi,y);

Now consider values of (a,b) in order to plot our curve C.

a:=2;b:=8;

Define the graph of C.

C:=plot([x,y,t=0..2%Pi] ,thickness=2,scaling=constrained):

We want the envelope of chords joining points at t to points at t 4+ m, i.e. we
want to draw many chords. These chords join points the (z(t),y(t)) to points
(x(t+7),y(t+7)). We use a “for”loop.

for_i_from_0O_to_100_do

t:=(1/100)* (2*Pi) :

chord[i] :=1line([x,y], [x2,y2]):

end_do:

display(C,seq(chord[i],i=0..100),color=blue,axes=NONE) ;

Here we have a CCW (for m) and the envelope of its chords joining points at ¢ and
t + 7 (this is the CSS).

8.4 Appendix 4

We propose that our CCW as shown in Figure 5 is assymetrical. This is the Maple
programme with which we check this by considering the curvature of our CCW. First
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define the curvature.

kappa:=1/(h+d2h) ;

Then substitute the values for our specific support function.
kappal:=subs(a=al,b=bl,c=c1,d=d1,kappa) ;

Define the derviative of k with respect to ¢.

dkappa:=diff (kappal,t);

Plot the graph of curvature k against ¢

plot ([t,kappal,t=0..2%Pi]);

Let t1,t9 and t3 be our maxima of curvature.
tl:=fsolve(dkappa=0,t=0..1);

t2:=fsolve(dkappa=0,t=2..3);

t3:=fsolve(dkappa=0,t=4..5);

Now consider the corresponding points on our curve (for these values of t).
xx1l:=evalf (subs(t=t1,x1));yyl:=evalf (subs(t=t1,y1));

xx2:=evalf (subs(t=t2,x1));yy2:=evalf (subs(t=t2,y1));

xx3:=evalf (subs(t=t3,x1)) ;yy3:=evalf (subs(t=t3,y1));

Now consider the lengths of the sides of a triangle formed by joining these points.
lenl:=sqrt ((xx2-xx3) "2+(yy2-yy3) "2);

len2:=sqrt ((xx3-xx1) "2+(yy3-yyl) "2);

len3:=sqrt ((xx1-xx2) "2+(yyl-yy2) ~"2);

8.5 Appendix 5

We would like to derive algebraic equations for a CCW and its CSS.

with(linalg) :with(plots) :with(plottools):

Define our support function and its derivatives. We would like to consider h =
a (cos %)2 + b but using the formula cos2A4 = 2cos?A — 1 we can simplify this as
follows.

h:=a/2*cos(3*t)+a/2+b;dh:=diff (h,t) ;d2h:=diff (dh,t);

Use these to obtain the parameters of our curve.
x:=h*cos(t)-dh*sin(t);y:=h*sin(t)+dh*cos(t);

Use Maple’s knowledge of trigonometric identities to simplify our expressions.
x1:=simplify(x);simplify(y);

Notice that our equation for x is purely in terms of cos ¢ whilst we have an unwanted
sint in our expression for y. If we square our equation for y then we will have a sin® ¢
term which we can then replace by 1 — cos®t.

y1:=simplify(y~2);

Now we can see that for 21 and y1 (which = y?) we have 2 polynomials all in terms
of cost (once we've used sin®t = 1 — cos®t in y1).

x2:=subs(cos(t)=C,x1);
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y2:=subs(cos(t)=C, (sin(t))"2=1-C"2,y1);

So now we have 2 equations in terms of the 3 unknowns (22,42 and C) so we want
to eliminate C' (the variable we don’t want). Use Y'Y here since we are looking at
y2, not y.

eliml:=eliminate ({X=x2,YY=y2},C);

The 1st component above gives us a value of C' and the 2nd component is the remain-
ing equation, now that C' has been eliminated. So we want this 2nd component, use
the following command (note that the 1 in the brackets here gets rid of the brackets
in the output of the command above for us).

elim2:=op(1,0p(2,eliml))/a;

Now we would like to replace YY by Y?2.

elim3:=subs(YY=Y"2,elim2);

This is our algebraic equation for a CCW! We would like to study the graph of this,
so let us consider our equation for the following values of a and b.

al:=2;bl:=8;

Substitute these values into our elimination.

eql:=subs(a=al,b=bl,elim3);

Simplify it.

eq2:=(eql)/(-16);

Notice that this equation is of degree 8 (perhaps since we had 3t in our h(t) and this
is 2 x 3+ 2). Plot the algebraic graph.
implicitplot(eq1=0,X=-10..10,Y=-10..10,grid=[100,100]1);

But, is this the same as the graph defined by our parametric equations? Define
non-algebraic parameters,

x1:=subs(a=al,b=b1l,x);yl:=subs(a=al,b=bl,y);

and plot them.

plotl:=plot([x1,y1,t=0..2%Pi],scaling=constrained):

display(plotl);

The graphs are indeed the same and it would seem that squaring y has not intro-
duced any extra components! Now we would like to obtain an algebraic expression
for the corresponding CSS (we do this in a parallel fashion to the way we did it for
our CCW). Remember we know the parametrisation of the CSS for a CCW.
cx:=-dh*sin(t)-d2h*cos(t);cy:=dh*cos(t)-d2h*sin(t);

We can simplify these.

cxl:=simplify(cx);cyl:=simplify(cy~2);

cx2:=subs(cos(t)=C,cxl) ;cy2:=subs(cos(t)=C, (sin(t)) "6=(1-C"2)"3,cyl);
Notice that we have 2 equations whose RHSs are expressed completely in terms of
C?. So consider them in terms of a new variable, say CC = C?.
cxx2:=subs(C"~2=CC,C"4=CC"~2,cx2) ; cyy2:=subs(C"2=CC,cy2) ;
elimd:=eliminate ({CX=cxx2,CYY¥=cyy2},CC);

elim5:=op(1,0p(2,elimd))/a;
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elim6:=subs(CYY=CY"2,elimb) ;

This is our algebraic expression for the CSS. Notice that this equation is of degree
4 (notably half that of the curve itself). Also since the parametrisation of the CSS
did not depend on b (since parametrisation depends on dh and d2h, not h), it is
right that our equation does not either. Consider this for values of a and b (where
a = 2,b =8 as before).

eq2:=subs(a=al,b=bl,elim6);

eq3:=(eq2)/(-16);
implicitplot(eq2=0,CX=-9..9,CY=-8..8,grid=[200,200]);
cx2:=subs(a=al,b=bl,cx) ;cy2:=subs(a=al,b=bl,cy);
plot2:=plot([cx2,cy2,t=0..Pi],scaling=constrained):

display(plot2);

The graphs are indeed the same and it would seem that squaring cy has not intro-
duced any extra components!

8.6 Appendix 6

This is the Maple programme for the reconstruction section. Firstly, we define ¢ as
a power series in s.

ti=tlxs+t2*s " 2+t3*s 3+t4*s"4+t5*xs”5;

Then we define h(s) and its derivative, for example let,

h:=s"2;dh:=diff (h,s);

Defining g(u) (and its derivative) allows us to change it later. For example let,
g:=alpha*u~2;dg:=diff(g,u);

Define f(t) as a power series in t,

f:=f2%t " 2+£3%t"3+f4*xt "4+£5%t"5;

We know that u(s) is the solution of the following equation,
u_sol:=solve(u-h-dh*(q+(subs(s=u,g))-s)=0,u);

We need to choose the solution which is 0 at s = 0, this is u_ (as apposed to u4).
u_val:=u_sol[2];

We can now express u(s) as a power series in s.

u_val_b:=series(u_val,s,7);

Find the derivative of u(s), i.e. u/(s),

du:=diff(u_val_5,s);

We know that ¢'(0) = ¢; (this is one of our B.C.s along with ¢(0) = 0). We have 3
main conditions (of which we only need 2 for now).

Condition (1) says f'(t) = ¢’(u) i.e. our 2 pieces of curve have parallel tangents.
eql:=series (2*f2*xt+3*f3*t " 2+4xf4xt"3+5*f5*t~4-subs(u=u_val_5,dg),s,6);
Condition (2) says (t —h) — h'(p+ f — s) = 0 i.e. points on our piece of curve we
wish to derive, are points on tangent line to CSS curve.
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eq2:=series((t-h)-dh*(p+f-s),s,6);

We can see that by equating coefficients of powers of s to 0 in eq3, we can find ¢;
and to.

t1_val:=solve(coeff (eq2,s)=0,t1);t2_val:=solve(coeff(eq2,s°2)=0,t2);
Substitute these known values into eql and eq?2.
eqla:=subs(tl=t1_val,t2=t2_val,eql);
eq2a:=subs(tl=t1_val,t2=t2_val,eq2);

Now do the same to solve for other t coefficients and f coefficients too.
f2_val:=solve(coeff(eqla,s)=0,f2);

Repeat the process.

eqlb:=subs(f2=f2_val,eqla);eq2b:=subs(f2=f2_val,eq2a) ;

We can see that we can find f3 from eqlb and t3 from eq2b (since they won’t be in
terms of other, as yet, unknown coefficients.

£3_val:=solve(coeff (eqlb,s~2)=0,£3);

t3_val:=solve(coeff (eq2b,s"3)=0,t3);
eqlc:=subs(£f3=£f3_val,t3=t3_val,eqlb);
eq2c:=subs(£3=£f3_val,t3=t3_val,eq2b);

Notice that the coefficient of s? in eqlec does equal 0 (for some reason Maple doesn’t
realise)! If this had not been the case then we would have had that p,q were not
arbitrary.

f4_val:=solve(coeff(eqlc,s"3)=0,f4);

t4_val:=solve(coeff (eq2c,s"4)=0,t4);
eqld:=subs(f4=f4_val,t4=t4_val,eqlc);

eq2d:=subs (f4=f4_val,t4=t4_val,eq2c);

Again, notice that the coefficient of s* in eq2d does equal 0!
f5_val:=solve(coeff(eqld,s"4)=0,£f5);

t5_val:=solve(coeff (eq2d,s"5)=0,t5);

So now we have all of our f and t coefficients explicitly, sub these into their respec-
tive equations. Do ¢ first, since f = f(¢).
t_val:=subs(tl=t1_val,t2=t2_val,t3=t3_val,t4=t4_val,t5=t5_val,t);
f_val:=subs(f2=f2_val,f3=f3_val,f4=f4_val,f5=f5_val,t=t_val,f);

Try simplifying this.

f_val2:=simplify(f_val);

The way to get a nicer expression for f is to find the series, simplify and find the
series again.

f_val2a:=series(simplify(series(f_val2,s,6)),s,6);

8.7 Appendix 7

This is the Maple programme for constructing our 3 pieces of curve A, B and C' such
that B and C have A as their CSS. We need to use certain packages when plotting
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graphs which we have to call.

with(plots) :with(plottools):

Consider a piece of curve A, parametrised by (h(s), s), this will represent our CSS.
h:=s"2;

Define the graph of A
plotil:=plot([h,s,s=-1..1],thickness=3,scaling=constrained) :
and then to display the graph, we use the following command.
display(plotl);

Now we wish to consider a piece of curve B, parametrised by (u,q + g(u)).
g:=alpha*u~2;

From previous calculations, we have an expression for wu.
u:=2xq*s-s~2+8*alpha*q~2*s”~3-8*alpha*xq*s~4-1/4x%
(-8*alpha~2-256*alpha”3*q~3)*s~5/alpha;

For B we want ¢ + g(u) as the “y”coordinate.

By:=qtg;

Give some values to our parameters.

ql:=-2;alphal:=1;

Substitute these into our expressions for u, g and By.
ul:=subs(g=ql,alpha=alphal,u);
gl:=subs(q=ql,alpha=alphal,g);
u2:=subs(q=ql,alpha=alphal,g=gl,By) ;

Then define the graph of B.
plot2:=plot([ul,u2,s=-0.2..0.2],thickness=3,scaling=constrained):
Now we seek a 3rd piece of curve, say C, parametrised by (¢,p+ f(t)). Give a
numerical value to parameter p.

pl:=2;

We found #(s) to be as follows.
t:=2%p*s-s~2+8*alpha*xq*p*s~3-(16/3) *alpha*xq*s~4-

(8/3) *alpha*p*s~4+2*alpha*32xp*alpha*q”2*s~5+2*alpha*s”5;
And we found f (¢(s)).

f:=4xalpha*xq*p*s~2-4/3*alpha* (2*q+p) *s~3+alpha

* (32xp*alpha*q~2+1)*s~4-16/15*alpha”2*xq* (22xq+23*p) *s~5;
For curve C' we want p 4+ f(t) as the “y”coordinate.

Cy:=p+f;

Substitute our parameter values into these functions.
t1:=subs(p=pl,alpha=alphal,q=ql,t);
f1:=subs(p=pl,alpha=alphal,q=ql,f);
t2:=subs(p=pl,alpha=alphal,q=ql,f=£f1,Cy);

Define the graph of C.

plot3:=plot([t1,t2,s=-0.1..0.1] ,axes=NONE,
thickness=3,scaling=constrained) :
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Now we want to draw a line which is tangent to A. Let us begin by drawing a single
tangent to a point on A, say where s = 0, call this point sg.

s0:=0;

We can see that the tangent must pass through (As,, Aso,). This is our point of
contact on A.

A_sO_h:=subs(s=s0,h);A_sO_s:=subs(s=s0,s);

We need the derivative of the path (w.r.t. s) of (h(s),s), call these dh and ds
respectively.

dh:=diff (h,s) ;ds:=diff(s,s);

So when s = sp, the tangent vector must be (Ts,, Ts0,)-

T_sO_h:=subs(s=s0,dh) ;T_sO_s:=subs(s=s0,ds) ;

A parametrisation of the tangent line is (7'Lyo, , T'Lso, ).
TL_sO0_h:=A_s0_h+(s-s0)*T_s0_h;TL_sO_s:=A_s0_s+(s-s0)*T_s0_s;

Define the plot of the tangent to A.
tan0:=plot([TL_sO_h,TL_sO_s,s=-2..2],axes=NONE,
color=blue,thickness=1,scaling=constrained):

We want to draw the tangent to the point of contact on B. We can see that this
tangent must pass through (Bso,,, Bso,,)-
B_sO_ul:=subs(s=s0,ul);B_s0_u2:=subs(s=s0,u2);

We need the derivative of the path (w.r.t. s) of (uy,us2), call these du; and dus
respectively.

dul:=diff(ul,s);du2:=diff (u2,s);

So when s = sg, the tangent vector must be (Tso,,,T50,,)-
T_s0_ul:=subs(s=s0,dul) ;T_sO0_u2:=subs(s=s0,du2) ;

A parametrisation of the tangent line to B is (T'Lso,,, T Lso,,)-
TL_s0_ul:=B_s0_ul+(s-s0)*T_s0_ul;TL_s0_u2:=B_s0_u2+(s-s0)*T_s0_u2;
Define the tangent to B.
tanl:=plot([TL_sO_ul,TL_s0_u2,s=-0.2..0.2],color=blue,
thickness=1,scaling=constrained) :

We find the parallel tangent to this on C' by multiplying by -1 (by the way we have
set up our model).

tan2:=plot ([-1*TL_sO_ul,-1%*TL_s0_u2,s=-0.2..0.2],
color=blue,thickness=1,scaling=constrained):

To view the 3 curves and their respective tangents, we use the following command.
display(plotl,plot2,plot3,tan0,tanl,tan2);

Now consider another value of s, say s; = 0.05 and find the tangents to A, B and C
in a parallel fashion to the way we did for sg.
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