
Four points, six distances

Peter Giblin

Given four points in the plane there are six distances between pairs of points. But given six
positive numbers, can they always be the six distances between four points in the plane? Evidently
not, since if all the numbers are 1 then three points will form an equilaterial triangle and there is
no way to fit a fourth point with distance 1 from those three. However this is possible in three
dimensions, as the vertices of a regular tetrahedron. As another example, if the six numbers are
1,2,4,7,12,20 then even going into three dimensions won’t help, since no three of these can be the
sides of a triangle. Indeed it is evident that of the 20 triples chosen from the six numbers, at least
four must be the sides of real triangles for the configuration to exist. We do allow three or even all
four of the points to be collinear, in which case some triples of numbers may give degenerate, but
nonetheless real, triangles. (I use the term ‘real triangle’ for one whose longest, or equal longest,
side is ≤ the sum of the other two, and ‘degenerate triangle’ for the case of equality.)

1 Four points in a plane

Four distinct points in a euclidean plane have five ‘degrees of freedom’ in the sense that, placing
one point at the origin and another on the x-axis, there are then five numbers which determine
the positions of all points: the x-coordinate of the second point and the x, y coordinates of the
other two. Six equations in five unknowns should leave a single condition for a solution to exist.

This condition is not hard to find.1 Let A,B,C,D be given points in 3-space, and P = (x, y, z)
be a general point in 3-space. Then, for any real numbers a, b, c, d, e, the equation

a(PA)2 + b(PB)2 + c(PC)2 + d(PD)2 + e = 0 (1)

(where PA for example means the distance from P to A) is the equation of a sphere, since there
are no ‘cross terms’ involving two of x, y, z and the coefficients of x2, y2 and z2 are all equal to
a + b + c + d. What we need is for the sphere to pass through all four points A,B,C,D and,
crucially, for the sphere to be in actuality a plane which means that a+ b+ c+ d = 0. So we now
put P = A,P = B,P = C,P = D in succession in (1) and add the equation a + b + c + d = 0.
This gives five equations in five unknowns, which in matrix form is

0 (AB)2 (AC)2 (AD)2 1
(AB)2 0 (BC)2 (BD)2 1
(AC)2 (BC)2 0 (CD)2 1
(AD)2 (BD)2 (CD)2 0 1

1 1 1 1 0




a
b
c
d
e

 =


0
0
0
0
0

 . (2)

1This argument was shown to me several decades ago by John Tyrrell.
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The 5×5 matrix above will be called M in what follows. Then the equation (2) has a solution with
a, b, c, d, e not all zero if and only if the determinant of M is 0. For example, with all distances
equal to 1 the determinant is 4, but if AB = BC = AC = 1 and AD = BD = CD =

√
3/3 (an

equilateral triangle ABC and its centroid D) the determinant is 0.
Hence:

A necessary condition for six distances to be realised by four points in a plane is
det(M) = 0 where M is the 5× 5 matrix in (2).

The attractive feature about the necessary condition det(M)=0 is that it is completely sym-
metric in the six distances. An alternative approach is given in the next section, on the situation
in 3-space. Unfortunately the necessary condition is not sufficient, since any three of the four
points in the plane must form a real triangle, that is with the longest side less than or equal to
the sum of the lengths of the other two sides. For example taking AB = 1, BC = 2, AC = 4
these cannot be the sides of a real triangle, so no fourth point can be added, keeping these dis-
tances between three of the four. Yet substituting these, and AD = 4, BD = 5 the condition
det(M) = 0 comes to ((CD)2 − 84)2 = 0 which has two coincident positive solutions for CD,
namely 2

√
21. If on the other hand we choose AB = 1, AC = 2, AD = 4 (not the sides of a

triangle) then there is a consistent solution, such as BC = 3, CD = 5 and BD =
√

29
2

. In this

case, B,A,C are in a straight line since AB + AC = BC. An example with two solutions for
CD is AB = 1, AC = 2, AD = 4, BC = 2, BD =

√
13, CD =

√
15 ±

√
3 where the plus sign in

the choice of CD just squeaks through the requirement that BCD is a real (and nondegenerate)
triangle: BD +BC − CD = 0.00052 approximately.

Definition Three positive numbers such that the largest, or equal largest, is ≤ the sum of the
other two will be said to have the triangle property.

Hence:

To the above necessary condition we must add that, for the four triples of distances
obtained by omitting in succession one of the points A,B,C,D, all have the triangle
property.

In terms of the list of six numbers to be used as distances this means that they can
be divided into four sets of three numbers, each pair of these four sets having a single
number in common, and each set of three having the triangle property.

We shall in fact usually think of distances as being assigned between definite pairs of points
among A,B,C,D.

Example 1 (the pqr problem)

2



Let p, q, r be the distances of D from three corners of a square of side c, as shown. Given p, q, r
(all > 0) when will there exist c > 0? The condition det(M) = 0 becomes

2c4 − 2c2(p2 + r2) + (p2 − q2)2 + (q2 − r2)2 = 0,

which as a quadratic in c2 has real solutions if and only if (p2 + r2)2 > 2((p2 − q2)2 + (q2 − r2)2).
When real the solutions for c2 are always positive since (i) they have the same sign, and (ii) the
turning point of the graph of the above quadratic in c2 occurs at c2 = 1

2
(p2+r2) > 0. (Alternatively

the sum of the roots is > 0 and product of the roots is ≥ 0.)
An interesting case is p2 +2q2 = r2 (for example p = 1, q = 2, r = 3), where the condition boils

down to c2 = p2+q2±pq
√

2 (c2 = 5±2
√

2 in the numerical example). In fact some straightforward
trigonometry (cosine and sine rules) shows that sin θ + cos θ = 0 and θ = 135◦ or 45◦ respectively
for the + and − signs. In this case there is no problem with the existence of the triangles.

If p = q = r then c = p
√

2 and p2 + q2 = q2 + r2 = c2, so CDB is straight.
Taking p = 1, q = 3, r = 2 in det(M) = 0 gives 2c4 − 10c2 + 89 = 0, which has no real roots.

A trigonometrical argument also shows that cos θ + sin θ = 15
6
> 2 which is impossible.

Example 2 Let AB = x,BC = y, AC = x + y so that A,B,C are in a straight line. Then
det(M) = 0 gives, after some rearrangement, the standard formula (Stewart’s Theorem, 1746)

(BD)2 =
x(CD)2 + y(AD)2

x+ y
− xy.

When x = y so that BD is a median of triangle ACD then this reduces to Apollonius’s theorem

(2BD)2 = 2((AD)2 + (CD)2)− (AC)2.

Example 3 Let AB = BC = AC = 1 so that A,B,C are the vertices of an equilateral triangle.
Then the condition relating the distances of these points from D is

(AD)4+(BD)4+(CD)4−(AD)2(BD)2−(AD)2(CD)2−(BD)2(CD)2−(AD)2−(BD)2−(CD)2+1 = 0.

In this case it is geometrically evident that if AD and BD are chosen such that A,B,D form a
proper triangle, then there will aways exist a positive solution to this equation for CD, indeed two
solutions in general, realising this set of six numbers as distances between four points A,B,C,D.
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In fact, the condition for the equation, regarded as a quadratic equation in (CD)2, to have real
positive roots factorises as:

(AD + 1−BD)(BD + 1− AD)(AD +BD − 1)(AD +BD + 1) ≥ 0.

This certainly holds if ABD is a real triangle (recall AB = 1), and if it is not then the configuration
of four points A,B,C,D cannot exist.

2 Four points in 3-space

Again we are given six numbers a, b, c, d, e, f , all positive, which we want to be the distances
between four points, this time in 3-space. Four points in 3-space have six ‘degrees of freedom’ and
there are six distances, so this time we can expect there to be no general equation connecting the
six distances; however there will be inequalities among the distances which impose constraints.
For example, the triangle property must be respected, but there might be others.

The ‘sphere’ argument used above for the planar case does not appear to yield anything
interesting here, so here is a direct approach. It is not so symmetrical as the ‘sphere’ argument,
but has the advantage that given one real triangle, with sides a, b, c, which must exist for any hope
of realising the whole of the six lengths, there is a single necessary and sufficient condition for the
configuration to be possible.

Let us choose three numbers, say a, b, c of the six, all > 0, which satisfy the triangle property
and use those to construct a triangle ABC, where we choose A = (0, 0, 0), B = (c, 0, 0), c > 0 and
C = (u, v, 0), where v 6= 0 (else A,B,C are collinear and the figure of four points is planar). We
also write AC = b and BC = a. Thus

(i) : u2 + v2 = b2; (ii) : (u− c)2 + v2 = a2.

If no such triple exists then the six distances cannot be realised. Further let D = (x, y, z). The
remaining three distances are AD = d,BD = e and CD = f , say. See the left figure below. Then

(iii) : x2 + y2 + z2 = d2, (iv) : (x− c)2 + y2 + z2 = e2, (v) : (x− u)2 + (y − v)2 + z2 = f 2.

Using (i) to simplify (ii) allows us to solve for u in terms of a, b, c, then (i) gives us v2. Using
(iv)-(iii) we have x (introducing d and e now), and (v)-(iii), using (i), gives 2ux+ 2vy, allowing a
solution for y2. In fact

x =
c2 + d2 − e2

2c
, 2ux+ 2vy = b2 + d2 − f 2, u =

b2 + c2 − a2

2c
, v2 =

4b2c2 − (b2 + c2 − a2)2

4c2
.

Finally the consistency condition becomes z2 = d2− x2− y2 ≥ 0, the case of = 0 being the planar
case as above. Making the substitutions for x2 and y2 results in rather a complicated condition,
best found using software such as Maple! We find that d2−x2−y2 has an interesting denominator,
(a− b+ c)(a+ b+ c)(a− b− c)(a+ b− c), which is < 0 for a nondegenerate triangle ABC. Taking
this sign into account then some experimentation shows that it is possible to do some grouping of
terms: the condition z2 ≥ 0 is

a2d2(−a2 + b2 + c2) + b2e2(a2 − b2 + c2) + c2f 2(a2 + b2 − c2)
−a2(d2 − e2)(d2 − f 2)− b2(e2 − d2)(e2 − f 2)− c2(f 2 − d2)(f 2 − e2)− a2b2c2 ≥ 0. (3)
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As an example, if a = b = c = 1 (equilateral triangle in the plane z = 0) and d = e = f
then the condition becomes d ≥ 1

3

√
3. Equality here is realised by an equilaterial triangle with

its centroid (the planar case) but in three dimensions the other three equal lengths can be any
number > 1

3

√
3.

Example 4 (the pqr problem in 3D)
See the right figure above. Here, b = c and a = c

√
2, while f = p, d = q, e = r in the general

discussion above. Writing C for c2 the condition (3) becomes

2C2 − 2(p2 + r2)C + (p2 − q2)2 + (q2 − r2)2 ≤ 0.

This quadratic equation in C has real roots provided

|p− r| ≤ q
√

2 ≤ p+ r. (4)

The sum and product of the real roots being both positive (from the coefficient of C and the
constant term respectively), this implies that both roots are positive, hence yield real values of c.
Because the quadratic is ‘U-shaped’ the interval of real values of C = c2 will be between the real
roots, assuming these exist, that is if (4) holds.

For example, if p = 1, q = 2, r = 3 then the interval of possible values of c2 is 5− 2
√

2 ≤ c2 ≤
5 + 2

√
2, the two endpoints representing the two values for the planar situation as in Example 1.

Note that p = 1, q = 3, r = 2 fails to satisfy (4) so is not realisable in 3 dimensions.
If p = q = r then one of the solutions for C = c2 is 0, which we are not allowing; the other

solution is C = 2p2. For example if p = q = r = 1 the solutions for C are 0, 2, so that c can now
lie in the half-open interval 0 < c ≤

√
2.

3 Higher numbers of points?

Five points have 10 mutual distances, and in 3-space they have nine degrees of freedom, three
more than for four points. So there should be a single relationship between the 10 distances
which, together with some inequality requirements, determines whether a configuration of five
points exists. Indeed an argument exactly parallel to that in Section 1 gives a 6×6 determinantal
criterion which is necessary but not sufficient. This time the sphere is in 4-space and needs to
contain the five points and to have ‘infinite radius’ so that the sphere is really a ‘flat’ 3-space. The
same applies to higher dimensions, n+2 points in n-space: there will be a necessary determinantal
criterion for the 1

2
(n+ 1)(n+ 2) distances to be realisable.
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On the other hand, n+ 1 distinct points in n-dimensional space (such as 4 points in 3-space)
have between them n(n+1) coordinates. For the purpose of considering just the distances between
these points—of which there are 1

2
n(n + 1) altogether—we need to allow for distance-preserving

transformations (isometries) of n-space. The ‘special orthogonal group’ SO(n) of all isometries
in n-space preserving orientation and fixing a given point has dimension 1

2
n(n − 1), a standard

result which can be looked up on many internet sources. Including the translations, which have
dimension n, gives 1

2
n(n + 1) dimensions for all isometries. So we need to subtract this from the

number n(n+ 1) of coordinates to obtain the number of ‘degrees of freedom’ of the n+ 1 points,
leaving 1

2
n(n + 1) degrees of freedom. For example, with n = 2 this gives 3 degrees of freedom

for 3 points in the plane, and with n = 3 it gives 6 degrees of freedom for 4 points in 3-space,
as noted above. So the number of degrees of freedom for n + 1 points in n-space is always the
same as the number of mutual distances between them. The result for n = 3 outlined in Section 2
above is therefore typical: there will not be an identity to be satisfied by the 1

2
n(n+ 1) distances,

but there will be one or more inequalities to ensure that distances correspond with configurations
of points.

Acknowledgement I am very grateful to the referee for carefully reading my (initially faulty)
article.

Peter Giblin, Department of Mathematical Sciences,
The University of Liverpool, Liverpool L69 7ZL
pjgiblin@liv.ac.uk

6


