Liverpool Lectures on String Theory

Problem Set 1
Thomas Mohaupt
Semester 1, 2008/2009
Problem 1 Relativistic force.
The relativistic version of Newton's second law is

$$
\frac{d \vec{p}}{d t}=\frac{d}{d t}\left(\frac{m \vec{v}}{\sqrt{1-\vec{v}^{2}}}\right)=\vec{F}
$$

Show that this can be written in manifestly covariant form as

$$
\frac{d p^{\mu}}{d \tau}=f^{\mu}
$$

and find the relation between \vec{F} and the relativistic force vector f^{μ}. Hint: use the relation between the differentials $d t$ and $d \tau$ of coordinate time and proper time and the mass shell condition $-\left(p^{0}\right)^{2}+\vec{p}^{2}=-m^{2}$.

Problem 2 Action principle for massive particle in a potential.
Show that the variation of the action

$$
\begin{equation*}
S=-m \int d \tau \sqrt{-\dot{x}^{2}}-\int V(x(\tau)) d \tau \tag{1}
\end{equation*}
$$

gives the equation of motion for a massive particle subject to a force of the form $f_{\mu}=\partial_{\mu} V$.

Problem 3 Lorentz force from action principle.
The manifestly covariant form of the Lorentz force

$$
\begin{equation*}
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \tag{2}
\end{equation*}
$$

is

$$
\begin{equation*}
f^{\mu}=q F^{\mu \nu} \dot{x}_{\nu} \tag{3}
\end{equation*}
$$

where $\tau=$ proper time, $q=$ charge, $A_{\mu}=$ (relativistic) vector potential, $F_{\mu \nu}=$ $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}=$ field strength tensor. Show that the equation of motion $m \ddot{x}^{\mu}=$ f^{μ} is obtained by variation of the action

$$
\begin{equation*}
S=-m \int d \tau \sqrt{-\dot{x}^{2}}-q \int A_{\mu} d x^{\mu} \tag{4}
\end{equation*}
$$

where the second term is the integral of the vector potential along the world line.

Problem 4 Massive particle in curved space (=gravitational field).
This assumes that you have had a first course in GR already. Then you will know that the coupling to gravity is found by replacing the Minkowski metric $\eta_{\mu \nu}$ by (pseudo-)Riemannian metric $g_{\mu \nu}(x)$. The resulting action for a massive particle is

$$
\begin{equation*}
S=-m \int d \tau \sqrt{-g_{\mu \nu}(x) \dot{x}^{\mu} \dot{x}^{\nu}} \tag{5}
\end{equation*}
$$

Show that by variation of x^{μ} one obtains the following equations of motion

$$
\begin{equation*}
\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho}=0, \tag{6}
\end{equation*}
$$

where $\Gamma_{\nu \rho}^{\mu}$ are the Christoffel symbols (of second type) of the metric $g_{\mu \nu}$. What is the geometrical meaning of this equation?

Problem 5 An action for massless and massive particles.
Consider the action

$$
\begin{equation*}
S[x, e]=\frac{1}{2} \int e d \sigma\left(\frac{1}{e^{2}}\left(\frac{d x^{\mu}}{d \sigma}\right)^{2}-m^{2}\right) \tag{7}
\end{equation*}
$$

where σ is an arbitrary curve parameter and $e d \sigma$ is the invariant line element.

1. Show that the action is invariant under reparametrisations of the wordline and under Poincaré transformation of Minkowski space.
2. Perform variations of x^{μ} and of e to obtain the equations of motion for x^{μ} and e respectively.
3. For $m^{2}>0$, eliminate e by its equation of motion, and substitute the result back into (7). Show that you obtain the action for a free massive particle.
4. Instead of eliminating e, you can set it to a constant value by a reparametrisation. This is possible for both $m^{2}>0$ and $m^{2}=0$. Go to such a parametrisation and find the equations of motion in this gauge. What is the interpretation of the resulting equations? In the case $m^{2}>0$, what is the interpretation of the curve parameter?

If you have a good background in general relativity or differential geometry, you can do this problem for a particle propagating in a general space-time with metric $g_{\mu \nu}(x)$, instead of Minkowski space.

