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S1 Supplementary methods

S1.1 Data sources

Caribbean and Great Barrier Reef data are described in detail in Appendix A of Bruno et al. (2009).
Data sources included published primary (peer-reviewed) literature, gray literature and unpublished
survey data from governmental and non-governmental organization scientists and, for one source (Reef
Check), volunteers trained and supervised by professional scientists. Quantitative survey data were
collected in situ using SCUBA on fore reef environments between 1 and 15 m depth (mean depth
∼ 7 m). Surveys measured the percentage of the substratum covered by living coral and fleshy or
calcareous macroalgae, primarily using some variant of the line-transect technique, in which a transect
(typically a 10 to 30 m measuring tape or chain) was placed on the reef. The coverage of coral and
macroalgae was then estimated either in situ by recording the number of points along each transect
that overlaid corals, macroalgae, etc. or by taking images of the reef substrate at these points, which
were then analyzed in the laboratory. All surveys differentiated macroalgae from other algal groups.
Following Steneck (1988) and others, we defined macroalgae (i.e., seaweed) as “larger (canopy heights
usually > 10 mm), more rigid and anatomically complex algal forms”. This functional group includes
erect calcifying species (e.g. Halimeda spp.) but does not include microalgae and filamentous algae
(turfs) or crustose algae (Steneck, 1988). Replicate cover measurements taken at different stations
or depths at a given location were pooled into a single mean estimate for each reef in each year.
Observations were made throughout the year, but we ignore seasonal variation for simplicity. We
retained only those observations forming sequences of at least two observations on the same reef in
successive calendar years (Caribbean: 69 reefs, median 2 observations per reef, range 2-7, covering the
years 1997-2006. Great Barrier Reef: 55 reefs, median 9 observations per reef, range 2-11, covering
the years 1996-2006).

Portions of the Kenyan data are described in McClanahan (2008). Reefs were sampled using the
line-intercept technique (9 to 12 ×10 m transect lines) following the contour of the reef between 0.5
and 2 m depth at low tide. All sites are lagoon/backreef sites in Kenya. In Kenya, two locations at
each of six reefs were sampled. At additional two reefs a single location was sampled. Surveys were
performed at roughly 12-month intervals; the earliest in 1991 and the latest in 2009, although some
reefs were not sampled for the entire period. Calendar year 1998 is skipped because samples were
taken in December up until calendar year 1997, then January from calendar year 1999. We retained
consecutive sequences of at least two observations on the same location at roughly 12-month intervals
(median 18 observations per location, two locations observed 5 times, others observed 16-18 times).

A Google Earth kml file showing the locations of study sites is available from http://www.liv.

ac.uk/~matts/coralsimplex.html.

S1.2 Assumptions

Here, we give more explanation of the assumptions outlined in the main text.

1. Reefs within a region are independent of each other. We ignore spatial autocorrelation caused
by processes that affect multiple reefs, e.g. large storms, and by dispersal (although we do
not require the assumption that each reef is a closed system). This is unlikely to be strictly
true (Ninio et al., 2000; Cheal et al., 2007), but we do not have enough data to model the
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dependencies. Furthermore, although reefs are linked by dispersal, larval recruitment may not
be limiting, at least in many parts of the Great Barrier Reef (Hughes et al., 1999; van Woesik
et al., 1999; Wooldridge et al., 2005). Additionally, many studies have noted the seemingly
independent temporal dynamics of neighbouring reefs (Edmunds and Bruno, 1996; Murdoch
and Aronson, 1999) and the highly localized effects of even large scale disturbances including
storms, disease outbreaks and bleaching events (Bythell et al., 2000; Berkelmans et al., 2004;
Bruno and Selig, 2007). Overall, we think that dependence between reefs is likely to be weak,
and it has been shown that methods similar to ours perform well under weak dependence (e.g.
Masry and Fan, 1997; Hallin et al., 2004).

Furthermore, although it is possible that spatial autocorrelation reduces our effective sample size,
this would increase rather than decrease our ability to detect alternative stable states if they
existed. We select the proportion of reefs to include in the set of neighbours of a given state using
cross-validation (Section S1.6). If the effective sample size is smaller than the nominal sample
size because of autocorrelation, we will tend to include too small a proportion of neighbours,
resulting in undersmoothed parameter estimates. This would increase the tendency for reefs
in different regions of the simplex to move in different directions, and would therefore increase
rather than decrease the chance of concluding that there were alternative stable states.

2. Each sequence of observations on a single reef at consecutive one-year intervals is a realization
of the same stochastic process. We are not able to model heterogeneity among reefs, because we
have a relatively small number of observations on any single reef.

3. The future states of reefs are conditionally independent of past states, given the current state.
This is the Markovian assumption, which we make because it greatly simplifies the statistical
modelling. In reality, it is unlikely to be precisely true. For example, the relative abundances
of coral species on a reef that has had high coral cover for a long time may differ from those on
a reef that has had high coral cover for a short time, potentially affecting dynamics (Connell,
1997). Such variation in community composition and evenness could influence the relative abun-
dance of disturbance-sensitive species (Rogers, 1993). Additionally, larger colonies and massive
boulder species are also more likely on reefs that have had high coral cover for a long time, and
vulnerability to competition, predation, and storm damage varies with colony size (Tanner et al.,
1996; Madin and Connolly, 2006).

4. The stochastic process generating the sequences of observations is homogeneous in time. Thus,
information about past dynamics tells us directly about future dynamics. Our model is stochas-
tic, so that it includes the effects of chance processes such as storms, but we assume that the
statistical properties of these chance processes have remained constant.

5. We can make predictions about the fate of a reef in a given state from the fates of reefs with
similar states. The more similar two states are, the more useful they are likely to be as predictors
of each other’s fates. We can therefore use local linear estimation to make predictions about
the underlying nonlinear time series. Related methods are reviewed by Fan and Gijbels (1996,
chapter 6).

6. The measurement error in reef state is small relative to the inherent stochasticity in fate for
a given state. Thus we treat the true state at a given time as known. In reality, it is likely
that measurement error is smaller than inherent stochasticity, but still substantial. However,
including both kinds of error would require much more complex analyses (Doucet et al., 2001).
Instead, in Sections S1.13 and S2.8, we check the robustness of our methods to measurement
error by simulation.

S1.3 Half-taxi distance

Measures of distance on the simplex should ideally take account of the geometry of the simplex space,
in which components are non-negative and sum to 1 (Aitchison, 1992; Aitchison and Egozcue, 2005).
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Figure S1: Contours of the half-taxi distance on the 2-simplex at intervals of 0.05 around the point
(0.7, 0.1, 0.2).

A commonly used distance for compositional data is Aitchison distance (Aitchison, 1992)

dA(x, z) =

√

√

√

√

3
∑

j=1

(log(xj/mg(x))− log(zj/mg(z)))
2,

where x and z are two compositions with components xj and zj and mg(x) denotes the geometric

mean, i.e., mg(x) = (x1x2x3)
1/3. However, contours of the Aitchison distance become very closely

spaced as we approach the edges of the simplex, and if any component has zero value, the Aitchison
distance is undefined (Miller, 2002). This is undesirable for our data. We have many points close to the
edges of the simplex, and intuitively, we want those with small absolute differences in all components
to be separated by a small distance.

An alternative distance measure whose properties seem more appropriate for our data is the half-

taxi distance (Miller, 2002)

dT (x, z) =
1

2
(|x1 − z1|+ |x2 − z2|+ |x3 − z3|) .

Contours of the half-taxi distance remain evenly spaced as we approach the edges of the simplex
(Figure S1). We will therefore use the half-taxi distance to measure differences in reef state.

S1.4 Dirichlet transition kernel

The Dirichlet distribution is one of the simplest distributions on the 2-simplex, requiring only 3
parameters. We therefore think it is appropriate for a first attempt at modelling the transition kernel
(main text, Equation 2). The Dirichlet density at a point q = [q1, q2, q3] is

Dirichlet(q;α) =
1

Z(α)

3
∏

j=1

q
αj−1
j ,

where α = [α1, α2, α3] > 0 are the parameters,

Z(α) =

∏3
j=1 Γ(αj)

Γ(
∑3

j=1 αj)

and Γ() is the gamma function. Thus, we use the transition kernel

k(y|x) ∼ Dirichlet(α(x)), (S1)
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Figure S2: (a) The Dirichlet(2, 3, 4) distribution. (b) The Dirichlet(0.75, 0.9, 2) distribution.

where the values of the parameters α(x) depend on the state x.
To calculate the centre of a Dirichlet distribution (Aitchison, 1989), which we use as a summary of

location, we need the marginal geometric means of each component. The marginal distribution of the
ith component in a Dirichlet distribution is a Beta(ν, ω) distribution, with ν = αi and ω =

∑

j 6=i αj .
This has geometric mean ψ(ν)− ψ(ν + ω), where ψ() is the digamma function.

The Dirichlet distribution can have at most one interior mode (Figure S2a), or can have modes
on the edges of the simplex (Figure S2b). It is unable to describe patterns such as banana-shaped
groups of observations on the interior of the simplex (Aitchison, 1986, Figure 1.9 and Section 3.4).
Thus, there is scope in future for using more flexible distributions (Aitchison, 1986, chapter 6), but
we should proceed cautiously because of the extra parameters these distributions require.

S1.5 Local linear estimation

We do not have multiple observations of the fates of reefs with current state x from which to estimate
the parameters of Equation S1. However, we do have large numbers of observations, of which some
come from reefs with states that are in some sense close to x. We will use the fates of these nearby
points to estimate k(y|x).

Let p denote a point on the simplex at which we want to estimate the update distribution. We
have a set of observations X = {xi}, i = 1, 2, . . . , n, around p, and the fates Y = {yi} of these
observations one year later. The point p may or may not be in the set X . For example, p will not be
in X if it is an arbitrary point at which we do not have an observation.

We want to allow the update distribution to depend on x, but we do not want to specify the
form of this dependency in advance. Instead, we will use a local estimate of α, which allows the
parameters to change over the simplex, and gives most weight to observations close to p. In general
terms, we want functions gj() such that αj = gj(p). Since we require that αj > 0, we also need
a link function which ensures that this condition is always met. An obvious choice is the log link
function so that αj = exp(ηj(p)), where ηj() is a smooth (i.e. having continuous second derivative)
function which can take any real value. The elements of p sum to 1, hence the last element is redundant
(p3 = 1−p1−p2), and we can write αj = exp(ηj(p1, p2)). We do not assume any particular parametric
form of the function ηj . We will assume, however, that this function is smooth, so that for starting
points which are close, the parameters α are also similar.

Taylor’s theorem states that a smooth function can be approximated locally by a polynomial with
coefficients depending on the derivatives of the function. Thus, if a function g(z1, z2) has continuous
second derivatives, then it can be approximated by a linear function in the neighbourhood of a point

4



(z1, z2) by

g(z1 + δ1, z2 + δ2) = g(z1, z2) +
∂g

∂z1

∣

∣

∣

z1,z2
δ1 +

∂g

∂z2

∣

∣

∣

z1,z2
δ2 +R(z1, z2),

where the error term R(z1, z2) is proportional to a quadratic form in (δ1, δ2).
Since ηj is assumed to be a smooth function, it can be approximated locally by a linear function

ηj(xi1, xi2) ≈ ηj(p1, p2) +
∂ηj
∂xi1

∣

∣

∣

p1,p2
(xi1 − p1) +

∂ηj
∂xi2

∣

∣

∣

p1,p2
(xi2 − p2)

= β0jp + β1jp(xi1 − p1) + β2jp(xi2 − p2) = ηj(p, i). (S2)

Obviously, the closer the point (xi1, xi2) is to (p1, p2) the better is the approximation.
Then the unknown parameters βp = {β0jp, β1jp, β2jp}, j = 1, 2, 3 are the intercept and slopes with

respect to p1 and p2 of a linear approximation to log(αj) close to a point p. These parameters are
estimated by maximizing the local log-likelihood defined as follows. Denote αj(p, i) = exp(ηj(p, i)),
then for a pair (xi,yi), the log likelihood of yi conditional on xi, for parameter estimates α(p, i) =
[α1(p, i), α2(p, i), α3(p, i)] is

lip = − log(Z(α(p, i))) +
3

∑

j=1

(αj(p, i)− 1) log yij , (S3)

where yij is the jth component of yi.
Notice that if any yij = 0, then lip is undefined. In our data, there was only one such observation

and hence we used an ad hoc approach of offsetting this value by a small number (ε = 10−12) and
subtracting ε/2 from the other two elements of yi (to ensure that

∑

j yij = 1). Other values of ε were
also considered and the results were similar. If there were more observations with zeros in the data,
one should consider a more systematic approach (Bacon-Shone, 2003).

Under the assumptions that reefs are independent, the process of change in reef state is homoge-
neous and Markovian, and that the more similar two states are, the more information the fate of a
reef in one of those states gives us about the distribution of fates for a reef in the other state, we can
obtain a local estimate of the parameters βp by maximizing a weighted sum of the lip over all the
observations in Y:

lp =
n
∑

i=1

viplip (S4)

where vip > 0 is the weight associated with point xi as a source of information about the fate of point
p. Since the closer the point (xi1, xi2) is to (p1, p2), the better the approximation in Equation S2, the
weight vip > 0 is an decreasing function of the distance between these points.

The weights vip are defined as a function of the distance between points x and p

vip = v(xi,p) = K

(

dT (xi,p)

h

)

,

where K is a kernel function and h is a bandwidth. The kernel is usually a symmetric non-negative
function. It is often chosen so that it takes positive values in a finite interval, so that the bandwidth
governs the support of the kernel. It is convenient to assume that the support of the kernel is [−1, 1],
then only the points xi for which dT (xi,p) < h influence the estimates of the parameters βp at point
p. Here the Epanechnikov kernel K(x) = 0.75(1 − x2) (Figure S3) was used (Fan and Gijbels, 1996,
p. 15).

We maximized lp using a BFGS quasi-Newton algorithm (Nocedal and Wright, 1999, chapter 6)
with a cubic line search procedure, as implemented in the Matlab function fminunc (Matlab Opti-
mization Toolbox Version 4.3, The Mathworks Inc., Natick, MA).
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Figure S3: The Epanechnikov kernel v(d) with bandwidth h, as a function of distance d.

S1.6 Choice of bandwidth

The bandwidth plays a crucial role in local linear estimation. In the limit of infinite bandwidth,
all the points receive equal weights in the local log-likelihood, which then becomes equivalent to the
global log-likelihood. For a very small bandwidth, the estimate is based on very few points in the
neighbourhood of p and hence might be very variable and unstable. In particular, if h is so small that
there are no observation in the neighbourhood of p, then there is no information on which to base the
local estimate at this point.

If the observations were uniformly distributed on the simplex, it might be appropriate to use the
same value of the bandwidth everywhere, as then the number of observations on which parameter
estimates were based would be similar for all points. However, in our data, there are some regions
where observations are very dense and others where they are very sparse. We therefore allow the
bandwidth to vary so that the number of points used in the estimation is the same at each point p.
More precisely, if the number of points which are to be included in the local neighbourhood is n0,
then the bandwidth for this point is defined as hp,n0

= dn0
, where dn0

is the distance between the
(n0+1)th nearest neighbour and p. Notice that this means that the weight in the local log-likelihood
for the(n0 + 1)th neighbour is zero.

The optimal bandwidth yields the estimated densities closest to the true densities, but since the
true densities are unknown this cannot be found directly. Instead, several automatic selection criteria
exist for choosing the bandwidth, of which we used the cross-validated deviance (Hastie and Tibshirani,
1990),

DevCV =
2

n

n
∑

i=1

(log(Dirichlet(yi; α̂max))− log(Dirichlet(yi; α̂−i)))

where α̂−i are estimates of the parameters at xi based on the sample with ith observation excluded
and α̂max are the estimates for the maximal model (the model for which the degrees of freedom are
equal to the number of observations), that do not depend on the bandwidth h (Hastie and Tibshirani,
1990). The optimal bandwidth is the one that minimizes DevCV. In practice, it is easier to work
with the proportions of nearest neighbours that should be included in the estimation than with their
number. We optimized this proportion using a golden section search (Press et al., 1992, section 10.1)
as implemented in the Matlab function fminbnd (Matlab Optimization Toolbox Version 4.3, The
Mathworks, Inc., Natick, MA). The estimated proportion for Caribbean data was 0.664, for Kenyan
data 0.627, and for the Great Barrier Reef it was 0.288.

S1.7 The transition equation

Given a method for estimating the transition kernel between any two points on the simplex, and the
density ft over the simplex at time t, we can express the density ft+1 at any point q at time t+ 1 as
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an integral equation:

ft+1(q) =

∫

k(q|p)ft(p) dp (S5)

where the integral is over the entire simplex. Equation S5 says that at time t+ 1, the density at any
point is determined by the integral of transitions from all other points on the simplex, weighted by the
densities at those points at time t. Equation S5 is a linear homogeneous Fredholm integral equation
of the first kind (Baker, 1977, p. 3).

S1.8 Solving the transition equation

It is not usually possible to solve Equation S5 analytically. Of the numerical methods available,
quadrature methods (Baker, 1977, pp. 169-170) are among the simplest and most popular. In these
methods, we approximate the integral in Equation S5 by a weighted sum

ft+1(q) ≈ f̃t+1(q) =
N
∑

j=1

wjk(q|pj)ft(pj) (S6)

where the N Gauss points p1,p2, . . . ,pN and their corresponding weights w1, w2, . . . , wN are chosen
by Gaussian quadrature on the simplex (von Winckel, 2005).

Equation S6 lets us solve for one time step. To understand the long-term behaviour of the model,
we want to find eigenfunctions f(q) of Equation S5 such that

κf(q) =

∫

k(q|p)f(p) dp

for eigenvalues κ. In particular, because the integral of any probability density function will always
be 1, we know that the largest eigenvalue will be 1, and its associated eigenfunction will be the
equilibrium (stationary) distribution of the model. We know that the model will converge to this
stationary distribution, provided we extend by continuity to the closed simplex, because we then have
a continuous, power-positive kernel on a compact and bounded metric space (Ellner and Rees, 2006,
Appendix C).

Let K = {k(pi|pj)}, D = diag(w1, w2, . . . , wN ), and f̃ = [f̃(p1), f̃(p2), . . . , f̃(pN )]T . Then we can
find the eigenvalues κ̃ and eigenvectors f̃ of the matrix equation

KDf̃ = κ̃f̃ .

The sth eigenvector is an approximation to the corresponding eigenfunction at the points p1,p2, . . . ,pN .
We can then evaluate the approximate eigenfunctions at any other point x using Nyström’s method
(Baker, 1977, p. 170):

f̃s(x) =
1

κ̃s

N
∑

j=1

wjk(x|pj)f̃s(pj). (S7)

In particular, the solution to Equation S7 for the value of s for which κ̃s ≈ 1 approximates the
stationary distribution of the model. The approximation gets more accurate as the number of Gauss
points increases. We chose 1600 points, which gave largest approximate eigenvalues of 0.9998 for the
Caribbean, 0.9983 for Kenya, and 0.9966 for the Great Barrier Reef.

S1.9 Summary statistics

We use similar quadrature approximations to calculate summary statistics (centre and square root
of generalized variance) for the estimated stationary distribution. Standard statistics such as the
arithmetic mean and untransformed covariance matrix are difficult to interpret for compositional
data. An appropriate measure of the centre for a compositional distribution with density function
f(p) is

c = C
[{

exp

∫

f(pi) log(pi) dpi

}]

,
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(Aitchison, 1989), where C(w) = w/(
∑

iwi) (the closure operator), and f(pi) is the marginal density
of the ith part of the composition. We can approximate this by

c ≈ C











exp
N
∑

j=1

wj f̃s(pij) log(pij)









 , (S8)

where pij is the value of the ith part of the composition at the jth Gauss point.
As a measure of spread, we use the square root of the generalized variance (determinant) of

the logratio covariance matrix,
√

|Σ|. For a D-dimensional composition x, the elements of Σ are
σij = cov (log(xi/xD), log(xj/xD)) , i, j = 1 . . . D−1 (Aitchison, 1986, pp. 76-78). We use a quadrature
approximation similar to Equation S8 to obtain Σ.

It would be possible to do formal tests of hypotheses about differences in stationary distributions
between regions. We have not done so, because there is strong evidence for such differences between
the Caribbean and Great Barrier Reef from a much simpler model with discretized reef states (P.
Lowe et al., in preparation). For the model described here, the necessary parametric bootstrap tests
are very computationally intensive, and the null hypothesis of no difference in stationary distributions
seems unlikely to be true.

S1.10 Residuals

Residuals are an important tool in evaluating the assumptions of the model and its performance.
Gueorguieva et al. (2008) describe several kinds of residuals for Dirichlet-distributed data. Because the
Dirichlet distribution is multivariate, we can consider both univariate residuals (for each component
of the distribution separately) and multivariate residuals (that summarize the difference between
observed and expected values over all components).

The univariate residual we use is the standardized residual for each component j of observation i:

rij =
yij − E(Yij ; α̂(xi))
√

Var(Yij ; α̂(xi))

where α̂(xi) is a vector of estimated Dirichlet parameters for observation i, obtained as described in
Section S1.3, and Yij is the random variable distributed as the jth component of the fate of observa-
tion i. The expected value of the jth component, given the estimated parameters, is E(Yij ; α̂(xi)) =
α̂j(xi)/

∑

m α̂m(xi), and Var(Yij ; α̂(xi)) = [E(Yij ; α̂(xi))(1 − E(Yij ; α̂(xi)))]/[1 +
∑

m α̂m(xi)] is the
variance of the jth component of a Dirichlet distribution with the estimated parameters. Standard-
ization is necessary because the raw residuals yij −E(Yij ; α̂(xi)) have different variances for different
components and Dirichlet distributions, and are therefore hard to compare (Gueorguieva et al., 2008).

Positive standardized univariate residuals indicate that the observed value of a given component
was larger than expected, and vice versa. If the model is appropriate, the standardized univariate
residuals should have sample means close to 0 and sample variances close to 1.

Given the standardized univariate residuals, we can then form the composite residual Ci =
∑

m r
2
im,

which measures the overall departure of the observed from the expected value, giving equal weight
to each component (Gueorguieva et al., 2008). Composite residuals are always non-negative, with
larger values indicating larger differences between observed and expected values. The other, more
complicated residuals discussed by Gueorguieva et al. (2008) were highly correlated with the ones
used here, for the data they considered.

If the model is performing well, there should be no relationship between residuals and state. We
can investigate this by plotting the standardized univariate residuals against each component of the
state at time t. To reveal any trends, we used a LOWESS (locally-weighted least squares) smoother
(Cleveland, 1979) implemented in the smooth function in the Matlab Curve-Fitting Toolbox version
2.1 (The Mathworks, Inc., Natick, MA), with a first degree polynomial model and span chosen by eye
to give sufficient smoothing.

We also use the residuals to check some of the assumptions listed in the main text:

• If each reef is a realization of the same process, there should be no systematic differences in
residuals among reefs.
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• We have not developed a direct test of the Markovian assumption that future states are condi-
tionally independent of past states, given the current state. However, examining scatter plots
of the residuals (at time t + 1) against the state of the reef at time t − 1 (the year before the
observation whose fate we are predicting), with a LOWESS smoother as above, may give us
some insights into possible dependencies on past state.

• If the process is homogeneous in time, the distribution of residuals should be the same for all
observation times.

S1.11 Estimates of uncertainty

In order to estimate the uncertainty associated with the equilibrium distribution, we performed a
leave-one-out jackknife for each region. Within each region, we used the methods described above to
obtain an estimate f(i)(p) of the equilibrium density at any point p without the ith pair of state and
fate (i = 1, 2, . . . , n, where n is the number of fate and state pairs). The jackknife standard error of
the equilibrium density at p is then

ˆs.e. [f(p)] =

{

n− 1

n

n
∑

i=1

[

f(i)(p)− f(.)(p)
]2

}1/2

,

where

f(.)(p) =
1

n

n
∑

i=1

f(i)(p).

This method is conservative in the sense that it is likely to overestimate the standard error (Efron
and Stein, 1981). The bootstrap does not perform well in this case, because the presence of exact
duplicate observations adversely affects the performance of leave-one-out cross-validation.

S1.12 Estimation from a model with alternative stable states

To investigate whether we can detect alternative stable states when we know they exist, we simulate
data under a stochastic differential equation version of the simple model described in Mumby et al.
(2007), and analyze these data using the same methods that we applied to the real data.

The basic deterministic model has three state variables, C, M , and T , the proportional cover of
corals, macroalgae, and algal turfs, respectively (C +M + T = 1). We treat C, M , and T as being
analogous to our coral, algae, and other components, respectively. The system of differential equations
studied by Mumby et al. (2007) is

dC

dt
= rTC − µC − aMC ,

dM

dt
= aMC − gM

M + T
+ γMT .

(S9)

Here, r is the recruitment rate of corals over algal turfs, µ is the natural mortality rate of corals, a
is the rate of coral overgrowth by macroalgae, g is the rate of grazing on macroalgae, and γ is the
rate at which macroalgae overgrow algal turfs. This deterministic model has alternative stable states
(Figure S4) for some parameter values (Mumby et al., 2007).

To produce an analogous model with environmental stochasticity, we first transform from a com-
position [C,M, T ] on the 2-simplex into a pair of new state variables A and B on the real plane using
the additive logratio transformation (Aitchison, 1986, p. 113):

A(t) = log
C(t)

T (t)
,

B(t) = log
M(t)

T (t)
.

Working on the real plane will allow us to introduce stochasticity in the form of standard Wiener
processes (Higham, 2001, section 2), which is simpler than trying to define a stochastic process directly
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on the simplex. The deterministic dynamics of A,B are given by

dA

dt
=
dC

dt

∂A

∂C
+
dM

dt

∂A

∂M
= fA(C,M, T ) ,

dB

dt
=
dC

dt

∂B

∂C
+
dM

dt

∂B

∂M
= fB(C,M, T ) ,

(S10)

where ∂A/∂C = (1 −M)/CT , ∂A/∂M = 1/T , ∂B/∂C = 1/T , ∂B/∂M = (1 − C)/MT . We then
define a system of stochastic differential equations analogous to Equation S10:

dA(t) = fA(C,M, T )dt+ ψAdWAt ,

dB(t) = fB(C,M, T )dt+ ψBdWBt .
(S11)

The stochastic terms WA and WB are independent standard Wiener processes. The noise coefficients
ψA and ψB determine the amount of noise in the system. We can simulate Equation S11 using
the Euler-Maruyama algorithm (Higham, 2001, section 4). Finally, we can back-transform onto the
simplex:

C(t) =
eA(t)

eA(t) + eB(t) + 1
,

M(t) =
eB(t)

eA(t) + eB(t) + 1
,

T (t) = 1− C(t)−M(t) .

Figure S5 is a stochastic analogue of Figure S4. The system has two basins of attraction, with
trajectories approaching one or the other along a diagonal band.

The model defined by Equation S11 is not the only way of producing a stochastic process on the
simplex whose deterministic skeleton has alternative stable states (Blackwood et al., 2011). However,
it is one possible way of generating suitable test data. We simulated time series from Equation S11,
using the same initial values as the real Caribbean data, and sampled at regular intervals to produce
discrete time series with the same number of observations as the real data. The noise coefficients ψA

and ψB were set to 0.4, and one year was set to five units of time, in order to generate time series
with amounts of variability and annual change that looked similar to those in the real data. Other
parameters were the same as those used to generate Figure 3a in Mumby et al. (2007)(P. Mumby,
personal communication). We ran 100 replicate simulations of the stochastic model with parameters
as in Figure S5. We then applied the methods we used for the real data to each replicate simulation.
We scored each stationary distribution as unimodal, bimodal, multimodal, or other by eye.

S1.13 Measurement error

In addition, we investigated the effects of measurement error on analyses based on the stochastic model
described above. We searched for papers containing information on sampling variability in coral cover
on electronic databases including Web of Knowledge, Google Scholar, and ReefBase. We restricted our
searches to coral cover because preliminary investigation suggested there were few data on sampling
variability in other groups such as macroalgae. We therefore assumed that measurement error in other
groups behaved in a similar way. We also concentrated on sampling methods in which the state of
the substrate is recorded at discrete points. Such methods include the Line Point Intercept (LPI)
method, photoquadrats with point sampling, and video transects with point sampling (Aronson et al.,
1994; Leujak and Ormond, 2007). Simulations suggest that the qualitative pattern of sampling error is
similar for other methods (Nadon and Stirling, 2006). A meta-analysis also showed that measurement
error in the rate of change of coral cover was fairly consistent between methods, although there was
more variability in the estimated rate of change of macroalgal cover (Côté et al., 2005).

We extracted the mean coral cover and its coefficient of variation among sampling units (transects
or quadrats) from each paper (Table S1) by measuring histograms.
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coral

algae

others

Figure S4: Numerical solutions (red lines) of the deterministic model specified by Equation S9. Blue
circles are initial values. Redrawn from Mumby et al. (2007). Parameter values: a = 0.1, g = 0.3,
γ = 0.8, µ = 0.44, r = 1.

coral

algae

others

Figure S5: One simulated realization (red line) of the stochastic model specified by Equation S11
for each member of a grid of initial values (blue circles). Parameter values: ψA = ψB = 0.4. Other
parameters as in Figure S4.
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Table S1: Literature data on mean and coefficient of variation (CV) of coral cover, from video transects, pho-
toquadrats, and Line Point Intercept (LPI). Points per unit is the number of points at which the state of the
substrate is recorded in each sampling unit (quadrat or transect).

Study Mean CV Method Points per unit Reef

Aronson et al. (1994)1 0.03 0.58 Video 500 Discovery Bay, Jamaica
0.16 0.24 Video 500 Carrie Bow Cay, Belize

Edmunds and Bruno (1996)2 0.03 1.00 Photoquadrat 200 Mooring One, Jamaica
0.06 0.25 LPI 100 Blowing Rocks, Jamaica
0.24 0.75 Photoquadrat 200 Dairy Bull, Jamaica
0.24 0.69 Photoquadrat 200 Silver Spray, Jamaica
0.33 0.73 Photoquadrat 200 Yawzi Point, St. John
0.05 1.00 Photoquadrat 200 White Point, St. John
0.09 0.67 Photoquadrat 200 West Tektite, St. John

Harding et al. (2000)3 0.27 0.09 LPI 80 Pulau Balak, Sabah
Leujak and Ormond (2007)4 0.46 0.43 LPI 50 Ras Um Sidd, Egypt

0.38 0.49 Photoquadrat 100 Ras Um Sidd, Egypt
0.39 0.48 Video 204 Ras Um Sidd, Egypt

Murdoch and Aronson (1999)5 0.22 0.16 Video 500 Bir Key Reef, Florida
0.19 0.23 Video 500 Pulaski Shoal, Florida
0.08 0.34 Video 500 Cosgrove Shoal, Florida
0.05 0.18 Video 500 Sand Key Reef, Florida
0.07 0.38 Video 500 Western Sambo Reef, Florida
0.14 0.30 Video 500 American Shoal, Florida
0.11 0.23 Video 500 Looe Key Reef, Florida
0.10 0.26 Video 500 No Name Reef, Florida
0.02 0.70 Video 500 Sombrero Key Reef, Florida
0.11 0.32 Video 500 Love Reef, Florida
0.10 0.33 Video 500 Tennessee Reef, Florida
0.16 0.26 Video 500 Alligator Reef, Florida
0.08 0.41 Video 500 Pickles Reef, Florida
0.05 0.32 Video 500 The Elbow, Florida
0.02 0.45 Video 500 Carysfort Reef, Florida
0.09 0.36 Video 500 Ajax Reef, Florida

Nadon and Stirling (2006)6 0.01 1.30 LPI 20 North Bellairs, Barbados
0.02 0.95 LPI 20 North Bellairs, Barbados
0.10 0.45 LPI 20 North Bellairs, Barbados

1 their Figure 1, 10 points per frame
2 their Figure 2
3 their Figure 2, coefficient of variation calculated from difference between staff and volunteers in week 4
4 their Figure 2a, 95% confidence interval assumed to be 1.96 standard deviations
5 their Figure 5
6 their Figure 2
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If we assume that each sampled point is independent of all the others, and that within a survey, the
probability of being covered by each possible category is the same for all m points, then the obvious
model for measurement error is the multinomial. Denote by z(t) the number of sampled points in
each state at time t. Then

z(t) ∼ multinomial(m,x(t)), (S12)

where x(t) is the true state at time t. The maximum likelihood estimate of the true state probabilities
x(t) is

x̂(t) =
1

m
z(t), (S13)

and the coefficient of variation for the ith state is

CV
( zi
m

)

=
1√
m

√

1− xi
xi

. (S14)

Where there are multiple data points from the same LPI (m = 20) or video (m = 500) study, the
multinomial approximates the qualitative relationship between CV and mean (Figure S6). However,
the CV from photoquadrats (m = 200) is consistently well above that predicted by the multinomial
model. This may be because the points sampled within a photoquadrat are close together, and
are therefore affected by small-scale spatial aggregation. We used the multinomial as a model for
measurement error, with the caveat that the assumption of independent sampling points may result
in an underestimate of variability.

We repeated the simulations from the stochastic model with parameters as in Figure S5 , sampling
between 20 and 5000 points at each observation time under the multinomial model (Equation S12),
and using Equation S13 as an estimator of state. The lower limit of 20 points is much lower effort than
would typically be used in practice, although it has been used to investigate the effects of measurement
error (Nadon and Stirling, 2006). The Reef Check programme uses a relatively low sampling effort
of 160 points along 4 × 20 m transects (Leujak and Ormond, 2007). 5000 points is the number
recommended by Aronson et al. (1994), corresponding to 10 points on each of 50 video frames, on
each of 10 × 25 m transects. Most of our data are likely to have sampling effort corresponding to
somewhere between 160 and 5000 points.

We analyzed the simulated data in the same way as the real data, and scored each stationary
distribution as unimodal, bimodal, trimodal, or other by eye. In addition, we reanalyzed the Caribbean
and Great Barrier Reef regions without the Reef Check data, which are likely to lie at the lower end
of the sampling effort distribution. Reef Check contributed 68 out of 100 pairs of observations for the
Caribbean, but only 10 out of 374 for the Great Barrier Reef.

S1.14 Implementation

We implemented the methods described here in Matlab version 7.9 (The Mathworks, Inc., Natick,
MA), with the Matlab Curve Fitting Toolbox Version 2.1, Optimization Toolbox version 4.3, and
Statistics Toolbox version 7.2. The code is available from:

http://www.liv.ac.uk/~matts/coralsimplex.html.
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Figure S6: Relationships between coefficient of variation (CV) and mean coral cover for the data in
Table S1, sorted by number of points per unit. Blue lines: CV from multinomial model (Equation
S14). Blue circles: line point intercept. Pink triangles: photoquadrats. Green crosses: video transects.
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Figure S7: Local estimates of the Dirichlet α parameters for each of the three regions (a-c Caribbean,
d-f Kenya, g-i GBR), using proportions of neighbours (Caribbean 0.664, Kenya 0.627, GBR 0.288)
selected by cross-validation as described in Section S1.6. Colour scales are truncated at 25 to show
detail. In each row, α1 is the Dirichlet parameter associated with coral, α2 is associated with algae,
and α3 is associated with others.

S2 Supplementary results

S2.1 Estimated Dirichlet α

The local estimates of the α parameters of the Dirichlet distribution are relatively smooth for the
Caribbean (Figure S7a-c) and Kenya (Figure S7d-f). They are somewhat more bumpy for the GBR
(Figure S7g-i). This is expected because the GBR is the largest data set, and will therefore allow us
to see finer detail of local patterns. We think it unlikely that the fine-scale bumpiness in the GBR
parameters has much impact on the pattern of trajectories. The bumpiness occurs mainly in the lower
left-hand region of the simplex (Figure S7g-i). In this region, the resulting mean trajectories (main
text Figure 2i) can be summarized qualitatively as “little movement in any direction”. Thus, once a
GBR reef has entered this region, it will tend to stay there, making this the high-density region of the
equilibrium distribution.
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S2.2 Simulated data

We show one typical set of simulated fates for each of the observed reef states (Figure S8). Note that
because these are based on one-step predictions, even when there was a long sequence of observations,
each simulated trajectory consists only of the observed state in a given year (blue circle) and a sampled
fate from the model (red dot).

coral

algae

others

a: Caribbean

coral

algae

others

b: Kenya

coral

algae

others

c: Great Barrier Reef

Figure S8: Simulated data under the models for (a) the Caribbean, (b) Kenya, and (c) the Great
Barrier Reef. Blue circles are real observations for which there is an observation on the same reef in
the next year. For each of these, the red dot connected by a black line is a single sample from the
estimated transition kernel at the observation.
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Figure S9: Predicted temporal change in the Caribbean. (a) Current distribution of reef states (red
dots: most recent observation on each reef). (b), (c) and (d). Predicted differences between the
estimated stationary distribution and the distribution for the points in part (a) after 1, 2, and 3 years
respectively. Pink values are where the probability density after a given time is greater than in the
stationary distribution, and cyan values are where the probability density is less than in the stationary
distribution. The colour scales differ between this and the following two figures, in order to show detail
for individual regions.

S2.3 Differences between current and equilibrium distributions

In the Caribbean (Figure S9) the absolute differences between current and equilibrium distributions are
relatively small, but there are currently fewer reefs with moderate algae and low coral than predicted
at equilibrium, and more with moderate coral and low algae. In Kenya (Figure S10), the absolute
differences are also relatively small, but there are currently fewer reefs with moderate coral and low
algae, and more with higher coral and/or algae than predicted at equilibrium. The Great Barrier Reef
(Figure S11) has the largest absolute difference between current and equilibrium distributions: there
are currently fewer reefs with high coral and low algae, and more with moderate coral and low algae,
than at equilibrium.
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Figure S10: Predicted temporal change in Kenya. See Figure S9 for details.
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Figure S11: Predicted temporal change in the Great Barrier Reef. See Figure S9 for details.
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Table S2: Sample means and standard deviations of standardized univariate residuals. Each entry is
mean, standard deviation of the standardized difference between the observed and predicted propor-
tion of each category (Section S1.10). Thus, although both observed and predicted proportions are
constrained to be between 0 and 1, the residuals may be either negative (if there is less of a category
than predicted) or positive (if there is more).

Dataset Coral Algae Others

Caribbean -0.11, 0.67 0.07, 1.22 0.001, 1.12
Kenya 0.03, 0.88 0.09, 1.03 -0.10, 0.88
GBR -0.07, 0.80 0.13, 1.37 -0.02, 0.93

S2.4 Residuals

Plots of residuals against time suggested that there were some unusual years. In the Caribbean (Figure
S12), 2005 had unusually high algae and low others. This could be either an unusual event, or an
unusual subset of reefs sampled. In Kenya (Figure S13), 1999 had unusually low coral, high algae,
and high others (because the sampling date changed from December to January in 1998/99, this
corresponds to events occurring during 1998). In the GBR (Figure S14), there were six reefs with
outlying large composite residuals in 1998, with high algae and/or low others. Both these patterns
may be associated with the 1998 El Niño, as discussed in the Results section of the main text.

If the model accurately described the data, we would expect the standardized residuals for each
component to have mean approximately 0 and standard deviation approximately 1. In fact (Table
S2), the mean residuals in the Caribbean and GBR tend to be negative for coral and positive for algae.
In Kenya, the mean residuals tend to be negative for others and positive for algae. These biases are
small relative to the amount of variability. However, in all regions, algal residuals are more variable
than expected, perhaps because of rapid but short-lived algal increases. The standardized residuals
for others are also more variable than expected in the Caribbean, and less variable than expected in
the GBR and Kenya.

For the Caribbean (Figure S15) and Kenya (Figure S16), there are no strong patterns in the
residuals for fate with respect to current reef state (the year of the observation whose fate we want to
predict). The only strong relationship between current reef state and residual for fate is that in the
Great Barrier Reef, residuals for all three components tend to be more variable when algal cover is low
than high (Figure S17d, e, and f). A partial explanation for this is that we have many observations
with low algal cover, spanning a wide range of coral cover. In contrast, there are few observations
with high algal cover, all having low coral cover (Main text, Figure 2c). It is possible that the reefs
with high algal cover are more homogeneous in physical conditions than those with low algal cover.

The Caribbean residuals tend to be more variable when algal cover in the year before the obser-
vation is low than when it is high (Figure S18d, e, and f). For Kenya, there are no strong patterns in
the residuals with respect to reef state the year before the observation whose fate we want to predict
(Figure S19). The pattern for the Great Barrier Reef is similar to that for the Caribbean, but stronger
(Figure S20d, e and f). The pattern in the Caribbean and Great Barrier Reef could indicate a violation
of the Markovian assumption, or it could simply mean that reef states tend to be similar in adjacent
years (because we do not have an additive time series model, taking residuals does not condition on
current state).

There was a tendency for the Caribbean reefs with the highest composite residuals to have more
algae and less others than predicted (Figure S21). Thus, when our predictions in the Caribbean are
least accurate, they show a consistent bias. However, this tendency is driven by six reefs, for each of
which we have only one state and one fate. There is relatively little evidence of patterns in residuals by
reef in Kenya (Figure S22) or the Great Barrier Reef (Figure S23). We discuss these patterns in detail
in the next section, and show that omitting possibly unusual reefs does not change our conclusions.
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Figure S12: Boxplots of composite residuals Ci (a) and univariate standardized residuals rij (b: coral,
j = 1, c: algae, j = 2, d: others, j = 3) for each observation i, grouped by time for the Caribbean.
Year is the date of the observation we are predicting. The vertical scales are different for each panel.
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Figure S13: Boxplots of composite residuals Ci (a) and univariate standardized residuals rij (b: coral,
j = 1, c: algae, j = 2, d: others, j = 3) for each observation i, grouped by time for Kenya. Year is
the date of the observation we are predicting. 1998 is omitted because even though observations were
made at roughly 12-month intervals, they were made in December up until 1997, then in January from
1999 onwards. The vertical scales are different for each panel.
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Figure S14: Boxplots of composite residuals Ci (a) and univariate standardized residuals rij (b: coral,
j = 1, c: algae, j = 2, d: others, j = 3) for each observation i, grouped by time for the GBR. Year is
the date of the observation we are predicting. The vertical scales are different for each panel.
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Figure S15: Standardized univariate residuals for Caribbean data against composition in the observa-
tion x. Points are values of standardized residuals for coral (a, d, g), algae (b, e, h) and others (c, f,
i) against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) in the observation x. The red
lines are LOWESS smoothers with span 0.4.
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Figure S16: Standardized univariate residuals for Kenyan data against composition in the observation
x. Points are values of standardized residuals for coral (a, d, g), algae (b, e, h) and others (c, f, i)
against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) in the observation x. The red
lines are LOWESS smoothers with span 0.2.
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Figure S17: Standardized univariate residuals for Great Barrier Reef data against composition in the
observation x. Points are values of standardized residuals for coral (a, d, g), algae (b, e, h) and others
(c, f, i) against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) in the observation x.
The red lines are LOWESS smoothers with span 0.1.
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Figure S18: Standardized univariate residuals for Caribbean data against composition the year before
the observation x. Points are values of standardized residuals for coral (a, d, g), algae (b, e, h) and
others (c, f, i) against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) the year before
the observation x. The red lines are LOWESS smoothers with span 0.4.
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Figure S19: Standardized univariate residuals for Kenyan data against composition the year before
the observation x. Points are values of standardized residuals for coral (a, d, g), algae (b, e, h) and
others (c, f, i) against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) the year before
the observation x. The red lines are LOWESS smoothers with span 0.2.
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Figure S20: Standardized univariate residuals for Great Barrier Reef data against composition the
year before the observation x. Points are values of standardized residuals for coral (a, d, g), algae (b,
e, h) and others (c, f, i) against the cover of coral (a, b, c), algae (d, e, f), and others (g, h, i) the year
before the observation x. The red lines are LOWESS smoothers with span 0.1.
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a: coral residuals
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Figure S21: Standardized univariate residuals for Caribbean data by reef. For each component (a:
coral, b: algae, c: others), the residuals for each reef (row) are shown as black crosses, with a red
circle at the median. Reefs are identified by numerical codes and sorted from top to bottom in
descending order of median composite residual, where the composite residual is the sum of the squared
standardized univariate residuals.
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a: coral residuals
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Figure S22: Standardized univariate residuals for Kenya data by reef. See Figure S21 for explanation.
Reefs in this region are identified by name.
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a: coral residuals
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b: algae residuals
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Figure S23: Standardized univariate residuals for Great Barrier Reef data by reef. See Figure S21 for
explanation.
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Figure S24: Estimated equilibrium distributions for (a) Caribbean (b) Kenya, and (c) GBR, omitting
reefs with potentially unusual patterns of residuals. Lighter colours are higher probability densities,
with a colour scale truncated at 25, as in the main text

S2.5 Re-analysis without unusual reefs

A few reefs have patterns of residuals that might indicate systematic differences from the overall
pattern. In the Caribbean (Figure S21), there are relatively few reefs with more than two observations,
so it is not easy to detect reefs with consistently unusual residuals. Nevertheless, there is one reef
(12551 US Virgin Islands) with four out of five positive residuals for the others component. In addition,
the six reefs with the largest median composite residuals (10274 Havana Cuba, 10276 Havana Cuba,
11009 Dominican Republic, 11184 Barbados, 11084 US Virgin Islands, 12799 US Virgin Islands) all
show the same pattern of positive algae residuals and negative other residuals, although there is only
one residual for each.

In Kenya (Figure S22), RasIwatine1 has all but one out of 15 coral residuals negative (and has the
highest erect algal cover of all the reefs in the Kenyan dataset). In addition, although Kisite2 has only
three residuals, all are positive for coral and negative for algae. This site may be unusual in having a
number of very large Galaxea astreata colonies, which can reach up to 3m in length (T. McClanahan,
personal observation). Where a transect falls in relation to these colonies could have a large influence
on estimated coral cover. This high spatial variability could possibly account for the unusual residuals
at Kisite2.

In the GBR (Figure S23), reef 43 has seven out of 10 residuals positive for coral, nine out of 10
negative for algae, and seven out of 10 negative for others. Reef 44 has seven out of eight residuals
negative for coral, six out of eight negative for algae, and all eight positive for others. Reef 21 has all
eight residuals negative for coral, six out of eight positive for algae, and six out of eight negative for
others. Reef 15 has all seven residuals negative for coral. Reef 23 has nine out of 10 residuals negative
for coral, and seven out of 10 positive for others.

We therefore refitted the models for each region with all these reefs omitted. The estimated
equilibrium distributions (Figure S24) are little different from those based on all the data (main
paper, Figure 2j-l).
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Figure S25: Jacknife means (a, c, e) and standard errors (b, d, e) of the equilibrium distributions for
the Caribbean (a, b), Kenya (c, d) and GBR (e, f). Lighter colours are higher values. In a, c, and e,
the colour scale is truncated at 25, as in the main text. In b, d, and f, the maximum of the colour
scale is at 2 (just above the largest jacknife standard error at any grid point).

S2.6 Estimates of uncertainty

The jackknife mean estimates of the equilibrium distributions (Figure S25a, c, e) are very similar
to the estimates from the full data set (main text, Figure 2j, k, l). The jackknife standard errors
are relatively small, and roughly proportional to the jackknife means (Figure S25b, d, f: note the
maximum of the colour scale in these panels is much less than in panels a, c, e). In the Caribbean and
Kenya, all the jackknife replicates had a similar appearance to the overall mean. In the GBR, one out
of 374 jackknife replicates was bimodal, with a secondary mode on the others-algae edge, close to the
others corner. Overall, the uncertainty in our estimated equilibrium distributions is relatively small,
and there is little support for equilibrium distributions other than the one presented in the main text.
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Table S3: Effects of multinomial measurement error on the shapes of estimated stationary distribu-
tions. Sampling effort m is the number of points in the multinomial sample.
m Unimodal Bimodal Trimodal Other

20 0 0 93 7
160 1 6 41 52
1000 4 56 0 40
5000 7 79 11 2

S2.7 Estimation from a model with alternative stable states

Out of 100 replicate simulations without measurement error based on the Caribbean data, with pa-
rameters such that the true stationary distribution was bimodal, 86 of the estimated stationary distri-
butions were bimodal and 14 unimodal. The mean and standard error of these stationary distributions
are shown in Figure S26. In the unimodal cases, the single mode roughly corresponded to one of the
two true modes.

S2.8 Consequences of measurement error

The effects of multinomial measurement error on the estimated stationary distribution, in a case where
the true stationary distribution was bimodal, depended strongly on sampling effort. With a very low
effort of 20 points, the mean estimated stationary distribution was strongly trimodal (Figure S27),
with high density in the corners of the simplex. With an effort of 160 points (used by Reef Check),
the mean estimated stationary distribution still had high density in the corners, but was more diffuse
(Figure S28). The substantial decrease in the mean perturbation norm when Reef Check data were
omitted from the Caribbean (main text, Table 1) supports the idea that most of our data had higher
sampling effort than Reef Check. With higher sampling effort of 1000 points, the mean estimated
stationary distribution had a strongly bimodal appearance, although the others=1 corner also had a
small high density region (Figure S29). With the highest simulated effort of 5000 points, recommended
by Aronson et al. (1994), the mean estimated stationary distribution was bimodal (Figure S30). As
effort increased, the proportion of replicates in which the estimated stationary distribution was bimodal
also increased (Table S3). However, low effort tended to result in trimodal or other (typically high
density in the corners and at an internal mode) patterns, rather than unimodal distributions.

Estimated stationary distributions tended to be trimodal at low sampling effort because of the
relationship between measurement error and reef composition (Figure S31). For states in which the
three parts are fairly equally represented, measurement error spreads the estimated states out much
more than for states lying close to an edge or in a corner of the simplex. As a result, measurement
error tends to concentrate estimated fates in the corners of the simplex more than in the centre, and
in the long run, this leads to stationary distributions with high density in the corners.

Measurement error clearly has the potential to affect estimated stationary distributions at plausible
sampling effort. Nevertheless, our estimated stationary distributions (main text, Figure 2j-l) do not
show the trimodal pattern characteristic of a strong influence of measurement error. In addition,
omitting the Reef Check data, likely to have the lowest sampling effort, from the Caribbean and
Great Barrier Reef regions, made very little difference to the qualitative shapes of the estimated
stationary distributions (Figure S32). We therefore conclude that measurement error is unlikely to
have been responsible for us failing to detect bimodal stationary distributions in the real data.
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Figure S26: Mean (a) and standard error (b) of the stationary distributions of 100 replicates simulated
under the model used to produce Figures S4 and S5, without measurement error. Lighter colours are
higher probability densities. The maximum of the colour scale is set to 25, as for the real data,
although the highest mean density is 72 and the highest standard error of density is 75.
.

Figure S27: Mean (a) and standard error (b) of the stationary distributions of 100 replicates simulated
under the model used to produce Figures S4 and S5, with multinomial measurement error, m = 20
points. Lighter colours are higher probability densities. The maximum of the colour scale is set to 25,
as for the real data.

36



Figure S28: Mean (a) and standard error (b) of the stationary distributions of 100 replicates simulated
under the model used to produce Figures S4 and S5, with multinomial measurement error, m = 160
points. Lighter colours are higher probability densities. The maximum of the colour scale is set to 25,
as for the real data.

Figure S29: Mean (a) and standard error (b) of the stationary distributions of 100 replicates simulated
under the model used to produce Figures S4 and S5, with multinomial measurement error, m = 1000
points. Lighter colours are higher probability densities. The maximum of the colour scale is set to 25,
as for the real data.
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Figure S30: Mean (a) and standard error (b) of the stationary distributions of 100 replicates simulated
under the model used to produce Figures S4 and S5, with multinomial measurement error, m = 5000
points. Lighter colours are higher probability densities. The maximum of the colour scale is set to 25,
as for the real data.

coral

algae

others

Figure S31: 1000 samples (black dots) of 160 points each from multinomial distributions with true
states (red circles) x = [1/3, 1/3, 1/3] (centre), [0.01, 0.49, 0.50] (upper left), and [0.01, 0.01, 0.98] (lower
left).
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Figure S32: Estimated stationary distributions for (a) Caribbean and (b) Great Barrier Reef, with
Reef Check data omitted. Lighter colours are higher probability densities. The maximum of the colour
scale is set to 25.
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Côté, I. M., Gill, J. A., Gardner, T. A., and Watkinson, A. R. (2005). Measuring coral reef decline
through meta-analyses. Philosophical Transactions of the Royal Society Series B, 360:385–395.

Doucet, A., deFreitas, N., and Gordon, N. (2001). An introduction to sequential Monte Carlo methods.
In Doucet, A., deFreitas, N., and Gordon, N., editors, Sequential Monte Carlo methods in practice,
pages 3–14. Springer, New York.

Edmunds, P. J. and Bruno, J. F. (1996). The importance of sampling scale in ecology: kilometer-wide
variation in coral reef communities. Marine Ecology Progress Series, 143:165–171.

Efron, B. and Stein, C. (1981). The jackknife estimate of variance. Annals of Statistics, 9(3):586–596.

Ellner, S. P. and Rees, M. (2006). Integral projection models for species with complex demography.
American Naturalist, 167:410–428.

40



Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman and Hall,
London.

Gueorguieva, R., Rosenheck, R., and Zelterman, D. (2008). Dirichlet component regression and its
applications to psychiatric data. Computational Statistics and Data Analysis, 52:5344–5355.

Hallin, M., Lu, Z. D., and Tran, L. T. (2004). Local linear spatial regression. Annals of Statistics,
32:2469–2500.

Harding, S., Lowery, C., and Oakley, S. (2000). Comparison between complex and simple reef survey
techniques using volunteers: is the effort justified? In Moosa, M. K., Soemodihardjo, S., Soegiarto,
A., Romimohtarto, K., Nontji, A., Soekarno, and Suharsono, editors, Proceedings of the Ninth

International Coral Reef Symposium, Bali, 23-27 Oct. 2000, volume 2, pages 883–890.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.

Higham, D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential
equations. SIAM Review, 43:525–546.

Hughes, T. P., Baird, A. H., Dinsdale, E. A., Moltschaniwskyj, N. A., Pratchett, M. S., Tanner, J. E.,
and Willis, B. L. (1999). Patterns of recruitment and abundance of corals along the Great Barrier
Reef. Nature, 397:59–63.

Leujak, W. and Ormond, R. F. G. (2007). Comparative accuracy and efficiency of six coral community
survey methods. Journal of Experimental Marine Biology and Ecology, 351:168–187.

Madin, J. S. and Connolly, S. R. (2006). Ecological consequences of major hydrodynamic disturbances
on coral reefs. Nature, 444:477–480.

Masry, E. and Fan, J. Q. (1997). Local polynomial estimation of regression functions for mixing
processes. Scandinavian Journal of Statistics, 24:165–179.

McClanahan, T. R. (2008). Response of the coral reef benthos and herbivory to fishery closure
management and the 1998 ENSO disturbance. Oecologia, 155:169–177.

Miller, W. E. (2002). Revisiting the geometry of a ternary diagram with the half-taxi metric. Mathe-

matical Geology, 34(3):275–290.

Mumby, P. J., Hastings, A., and Edwards, H. J. (2007). Thresholds and the resilience of Caribbean
coral reefs. Nature, 450:98–101.

Murdoch, T. J. T. and Aronson, R. B. (1999). Scale-dependent spatial variability of coral assemblages
along the Florida Reef Tract. Coral Reefs, 18:341–351.

Nadon, M.-O. and Stirling, G. (2006). Field and simulation analyses of visual methods for sampling
coral cover. Coral Reefs, 25:177–185.

Ninio, R., Meekan, M., Done, T., and Sweatman, H. (2000). Temporal patterns in coral assemblages on
the Great Barrier Reef from local to large spatial scales. Marine Ecology Progress Series, 194:65–74.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer, New York.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C:

the Art of Scientific Computing. Cambridge University Press, Cambridge, England, second edition.

Rogers, C. S. (1993). Hurricanes and coral reefs: the intermediate disturbance hypothesis revisited.
Coral Reefs, 12:127–137.

41



Steneck, R. S. (1988). Herbivory on coral reefs: a synthesis. In Choat, J. H., Barnes, D., Borowitzka,
M. A., Coll, J. C., Davies, P. J., Flood, P., Hatcher, B. G., Hopley, D., Hutchings, P. A., Kinsey,
D., Orme, G. R., Pichon, M., Sale, P. F., Sammarco, P., Wallace, C. C., Wilkinson, C., Wolanski,
E., and Bellwood, O., editors, Proceedings of the 6th International Coral Reef Symposium, pages
37–49, Townsville, Australia.

Tanner, J. E., Hughes, T. P., and Connell, J. H. (1996). The role of history in community dynamics:
a modelling approach. Ecology, 77(1):108–117.

van Woesik, R., Tomascik, T., and Blake, S. (1999). Coral assemblages and physico-chemical charac-
teristics of the Whitsunday Islands: evidence of recent community changes. Marine and Freshwater

Research, 50:427–440.

von Winckel, G. (2005). n-dimensional simplex quadrature. Available from: http://www.mathworks.
com/matlabcentral/fileexchange/9435-n-dimensional-simplex-quadrature.

Wooldridge, S., Done, T., Berkelmans, R., Jones, R., and Marshall, P. (2005). Precursors for resilience
in coral communities in a warming climate: a belief network approach. Marine Ecology Progress

Series, 295:157–169.

42


