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Pleated surface: determination
A pleated surface is determined by a continuous map

f : S → N

from a finite type surface S to a hyperbolic 3-manifold N , together with a topological
lamination ` on S, the pleating locus, such that

• the (lifted) image of each leaf of ` is geodesic, with f lifting to a homeomorphism
on the lift of each leaf and

• the(lifted) image of each component of S \ ` is totally geodesic, with f lifting to
a homeomorphism on this component.

• If S has cusps we also require cusps to map to cusps.

Domain and Target
A pleated surface Imp(f) : S → N determines

• A hyperbolic surface S(f), together with a homeomorphism

f : S → S(f),

which determines an element [f ] of the Teichmüller space T (S)

• a map
Imp1(f) : S(f)→ N

which is distance decreasing with respect to the hyperbolic metrics on S(f) and
N

such that
Imp(f) = Imp1(f) ◦ f.

Pleating locus restrictions

• A maximal multicurve on S is a set of isotopically distinct, disjoint closed simple
nontrivial nonperipheral loops on S, such that S \ (∪Γ) is a union of pairs of
pants, with some pant ends at cusps, if S has cusps.

• We shall only consider pleating loci ` which consist of a maximal multicurve Γ
and geodesics asymptotic to loops of Γ and/or cusps at both ends, so that each
component of S \ ` is a topological triangle.



Existence

• Fix a continuous map f0 : S → N and a maximal multicurve Γ on S. Then
any pleating locus extending Γ is the pleating locus of some f : S → N in
the homotopy class of f0 if and only if f0(γ) is homotopically nontrivial and
nonperipheral for each γ ∈ Γ.

• (Peripheral images are sometimes allowed.)

• For fixed f0 : S → N , and any nontrivial nonperipheral loop γ on S, we write
γ∗ for the closed geodesic freely homotopic to f0(γ).

Length

• Given f : S → S(f), and a nontrivial nonperipheral closed loop γ ⊂ S, we
write |f(γ)| for the hyperbolic length of the (unique) geodesic on S(f) which is
freely homotopic to f(γ).

• We write |γ∗| for the length of γ∗ in N .

• Then |γ∗| ≤ |f(γ)|

Injectivity Radius Lemma

• Fix a Margulis constant ε0.

• There are constants L1 and ε1 depending only on ε0 and S such that the follow-
ing holds.

• Let f : S → N be a pleated surface. Suppose that f(ζ) is nontrivial in N for
any nontrivial closed loop ζ on S with |f(ζ)| ≤ L1 .

Then for any ε ≤ ε0,
f((S(f))<ε) ⊂ N<ε (1)

and
f((S(f))≥ε0) ⊂ N≥ε1 (2)

Proof of (2)

• If K is a component of (S(f))≥ε0 , then its diameter is ≤ C1, where C1 is a
constant depending only on S and ε0.

• So f(K) has diameter ≤ C1.

• So if
f(K) ∩N<ε1 6= ∅

we have
f(K) ⊂ N<ε0

which is impossible.
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Theorem 1
Fix a finite type surface S and a Margulis constant ε0.
The following holds for a sufficiently large L1, and for a sufficiently large L3 given

L2.
For j = 1, 2, let fj : S → N be homotopic pleated surfaces with pleating loci

including including maximal multicurves Γj . Suppose that

1. |γ∗| ≥ ε0 for all γ ∈ Γ1 ∪ Γ2;

2. #(Γ1 ∩ Γ2) ≤ L2;

3. f1(ζ) is nontrivial in N for any nontrivial closed loop ζ on S with |f1(ζ)| ≤ L1

.

Then

• d([f1], [f2]) ≤ L3, where L3 denotes Teichmüller distance,

• There is a homotopy in N between f1 and f2 with tracks of hyperbolic length
≤ L3.

Theorem 2 Fix a finite type surface S and a Margulis constant ε0.
The following holds for a sufficiently large L1 given L2.

• Let f : S → N be a pleated surface with pleating locus including maximal
multicurve Γ.

• Let ζ be a nontrivial loop on S such that f(ζ) is trivial in N .

• Suppose that

1. |γ∗| ≥ ε0 for all γ ∈ Γ;
2. #(Γ ∩ ζ) ≤ L2;

Then there is a nontrivial closed loop ζ ′ on S such that f(ζ ′) is trivial in N and

|f(ζ ′)| ≤ L1.

Proof of Theorem 1.

• Concentrate on the bound on homotopy tracks.

• Bound the distance between f1(γ) ⊂ f1(S(f1)) ⊂ N and γ∗ = f2(γ) ⊂ N , for
γ ∈ Γ2.

• We can write γ as a union of ≤ 6L2 arcs in the pleating locus of f1 which map
under f1 to geodesic arcs in N , and ≤ 6L2 short arcs in S(f1).

Call such a short arc τ .

• Then f1(γ) is a bounded distance from a geodesic if , for any homotopic image
f(τ ′) of f(τ), keeping endpoints in the pleating locus, such that the endpoints
of f1(τ ′) are close in N , the path τ ′ is bounded in S(f1).
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Proof of Theorem 2.

• f(ζ) can be written as a union of ≤ 6L2 geodesic arcs in S(f), and ≤ 6L2 short
paths in S(f).

• f(ζ) is the boundary of a disc inN , made up of≤ 12L2−2 geodesic triangles in
N , which hence has the structure of a hyperbolic surface with piecewise geodesic
boundary.

Consider a short path τ across the disc.

• Then |f(ζ)| is bounded if, for any homotopic image of f(τ ′) of f(τ), keeping
endpoints in the pleating locus, such that the endpoints of f(τ ′) are close in N ,
the path τ ′ is bounded in S(f).

Comparing hypotheses

• The first two hypotheses of Theorems 1 and 2 are rather similar

• The third hypothesis of Theorem 1 is the opposite of the conclusion of Theorem
2.

• So we can assume this hypothesis of Theorem 1 in the hypotheses of Theorem 2.

• In the notation of Theorem 2 this becomes:f(ζ ′) is nontrivial in N for any non-
trivial closed loop ζ ′ on S with |f(ζ ′)| ≤ L1.

BothTheorems 1 and 2 can be deduced from The Short Bridge Arc Lemma.
Short Bridge Arc Lemma The following holds for L1 sufficiently large given L2 and
S.

• Let f : S → N be a pleated surface.

• For j = 1, 2, let t 7→ γj(t) : [0, T ] → S be continuous, such that f ◦ γj is a
geodesic in S(f), not transverse to the pleating locus, with length parameter t.

• Fix lifts f̃ : H2 → H3, γ̃j : [0, T ]→ H2.

• Let d2 and d3 denote the hyperbolic metrics in H2 and H3.

Suppose that:

• |γ∗| ≥ ε0 whenever γ is a closed loop in the pleating locus of f ;

• f(ζ) is nontrivial inN for any nontrivial closed loop in ζ on S with |f(ζ)| ≤ L1

;

• d2(γ̃1(0), γ̃2(0)) ≤ L2;

• d3(f̃ ◦ γ̃1(t), f̃ ◦ γ̃2(t)) ≤ L2 for all t ∈ [0, T ].

Then
d2(γ̃1(t), γ̃2(t)) ≤ L1 for all t ∈ [0, T ]
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Ideas of proof

• Suppose for simplicity that γ̃1 and γ̃2 are closest at t = 0, and distance at least 1
apart at t = 0.

• For a constant C1 the following holds. For all t ∈ [0, T ] and j = 1, 2, γ̃j(t) is
distance ≤ C1 from the geodesic with endpoints γ̃1(T ) and γ̃2(T ).

• The whole geodesic must project into (S(f))≥ε0 if ε0 is sufficiently small given
L2.

• For a constant L3 depending only on ε0, and a fixed basepoint x0 in H2, pro-
jecting to the component of (S(f))≥ε0 , any point γ̃j(t) is distance ≤ L3 from
gt,j .x0 for some element gt,j of the covering group.

•
d3(gt,1f̃(x0), gt,2.f̃(x0)) ≤ L2 + 2L3.

• For a T1 depending only on L2 and some t, s ≤ T1, g−1
t,1 gt,2gs,1g

−1
s,2 is trivial in

π1(N) but not in π1(S1).

• This gives the required contradiction if L1 is large enough.

Removing the hypothesis |γ∗| ≥ ε0.

Lemma 1. The following holds for sufficiently large L1, and for sufficiently large L2

given L0.

• Let f : S → N be a continuous map. Let Γ1 be a maximal multicurve

• Let [ϕ] ∈ (T (S))ε0 with |ϕ(Γ1)| ≤ L0.

• Suppose that f(ζ) is nontrivial in N whenever ζ is a nontrivial closed loop in S
with |ϕ(ζ)| ≤ L1.pause

Then there is a maximal multicurve Γ2 such that

|γ∗| ≥ ε0 for all γ ∈ Γ2

and
|ϕ(Γ2)| ≤ L2.

How to bound geometry of the Scott core

• These results are instrumental in obtaining biLipschitz bounds on the non-interval-
bundle part of the cusp-relative Scott core of a hyperbolic 3-manifold N with
finitely generated fundamental group.

• The biLipschitz constant is bounded in terms of the topological type of N and
and a constant c which is > 0 for any set of end invariants

(This constant is not needed if all ends are incompressible.)
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• In fact there are constants c1 and c2 which are > 0 for any set of end invariants,
where c1 gives Lipschitz bounds, while the constant c2 gives biLipschitz bounds.

• In general c2 is much smaller than c1, although the two are boundedly propor-
tional in the case of combinatorial bounded geometry.

The idea

• The main hypothesis of Theorem 1:

f(ζ) is nontrivial inN whenever ζ is a nontrivial closed loop on S with |f(ζ)| ≤
L1

holds whenever f : S → N is a pleated surface sufficiently far out in an end.

• We can then apply Theorem 1 and a theory of Teichmüller geodesics to show that
a suitably defined family of pleated surfaces give rise to a Lipschitz map (with
bounded constants) from ends of a model manifold to ends of N ,

• and use Theorem 2 and the Teichmüller geodesic theory to show that the Lips-
chitz map is defined on all but a bounded part (depending on c) of the model end
manifolds.

• If there are compressing discs in the core with boundary in the boundary of the
core manifold, we then have bounds on their geometry, using Theorem 2.

• Another theorem, similar to Theorem 2, can then be used to help bound the
geometry of the Scott core.

Theorem 3 The following holds for a sufficiently large constant L1 given S1, S2, ε0
and L2.

• Let W ⊂ N with be compact connected and an essential submanifold of N with
boundary S1, with S1 incompressible in W , not necessarily connected.

• Let S2 ⊂W be a compact subsurface with boundary with S2 ∩ S1 = ∂S2.

• Let S2 be incompressible and boundary incompressible

• Let f1 : S1 → N be a pleated surface homotopic to inclusion with pleating locus
including a maximal multicurve Γ1.

• Suppose that #(∂S2 ∩ Γ1) ≤ L2.

• Suppose that |γ∗| ≥ ε0 for all γ ∈ Γ1.

Then one of the following holds:

1. |f1(∂S2)| ≤ L1.

2. There is an essential annulus S3 ⊂W with ∂S3 = S3∩W and |f1(∂S3)| ≤ L1.
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Idea of proof of Theorem 3

• Triangulate S2 with boundary consisting of segments from the pleating locus of
S1, and some short arcs. This gives S2 the structure of a complete hyperbolic
structure, covered by a subset of H2. Take a thick -thin decomposition of this
surface. The thin part (if nonempty) includes cylinders with short core and long
thin rectangles.

• Consider long thin rectangles.

Idea continued

• The main difference from Theorem 2 is that we need to look at lifts to H3 of
geodesics in different lifts of f1(S1) which bound a thin rectangle in H3 for
along a sufficiently long length.

Rectangles which lift with boundaries in the same lift of f1(S1) are impossible
by the Short Bridge Arc Lemma

• We can assume that these close geodesic segments γ̃1(t) and γ̃2(t) project to
(S(f1))≥ε for ε depending on L2.

• We can find t1 and t2 with t1−t2 bounded in terms of L2, and g1 and g2 covering
group of S(f1) such that d2(γ̃j(t2), gj .γ̃j(t1) < ε/10.

• Then use the Annulus Theorem to get an embedded essential annulus in S(f1)
with boundary of bounded length.

Condition on the Masur constant to give the L1 condition
The condition: f(ζ) is nontrivial in N for any nontrivial closed loop in ζ on S

with |f(ζ)| ≤ L1 is satisfied for all pleated surfaces in the corresponding to an end e
of Nd, for all pleated surfaces determined by points in the model manifold at least a
certain distance from the core, with this distance depending on c1 > 0, if the (geodesic
lamination) ending invariant µ(e) satisfies the following condition:

• For any simple closed loop ζ on S(e) sufficiently close to µ(e), any compressible
simple loop γ on S(e) and any normalised measured foliation µ1 on S(e)either

i(ζ, µ1) ≥ c1|ζ|

or
i(γ, µ1) ≥ c1|γ|.

• It is weaker than the condition for µ(e) to be in the Masur domain: for some
constant c2 > 0:

For any simple closed loop ζ on S(e) sufficiently close to µ(e), any compressible
simple loop γ on S(e) and any normalised measured foliations µ1 and µ2 on S(e)
with i(µ1, µ2) = 0:
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either
i(ζ, µ1) ≥ c2|ζ|

or
i(γ, µ2) ≥ c2|γ|.

• The constant c1 gives Lipschitz bounds in terms of c1.

• The constant c2 gives biLipschitz bounds.

• It is possible to choose µ(e) with c1 bounded from 0 while c2 is arbitrarily close
to 0.

But this does not happen in the case of combinatorial bounded geometry.
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