Estimates on Pleated Surfaces

Mary Rees

Warwick Symposium July 2007

Pleated surface: determination

A pleated surface is determined by a continuous map

$$
f: S \rightarrow N
$$

from a finite type surface S to a hyperbolic 3-manifold N, together with a topological lamination ℓ on S, the pleating locus, such that

- the (lifted) image of each leaf of ℓ is geodesic, with f lifting to a homeomorphism on the lift of each leaf and
- the(lifted) image of each component of $S \backslash \ell$ is totally geodesic, with f lifting to a homeomorphism on this component.
- If S has cusps we also require cusps to map to cusps.

Domain and Target

A pleated surface $\operatorname{Imp}(f): S \rightarrow N$ determines

- A hyperbolic surface $S(f)$, together with a homeomorphism

$$
f: S \rightarrow S(f)
$$

which determines an element $[f]$ of the Teichmüller space $\mathcal{T}(S)$

- a map

$$
\operatorname{Imp}_{1}(f): S(f) \rightarrow N
$$

which is distance decreasing with respect to the hyperbolic metrics on $S(f)$ and N
such that

$$
\operatorname{Imp}(f)=\operatorname{Imp}_{1}(f) \circ f
$$

Pleating locus restrictions

- A maximal multicurve on S is a set of isotopically distinct, disjoint closed simple nontrivial nonperipheral loops on S, such that $S \backslash(\cup \Gamma)$ is a union of pairs of pants, with some pant ends at cusps, if S has cusps.
- We shall only consider pleating loci ℓ which consist of a maximal multicurve Γ and geodesics asymptotic to loops of Γ and/or cusps at both ends, so that each component of $S \backslash \ell$ is a topological triangle.

Existence

- Fix a continuous map $f_{0}: S \rightarrow N$ and a maximal multicurve Γ on S. Then any pleating locus extending Γ is the pleating locus of some $f: S \rightarrow N$ in the homotopy class of f_{0} if and only if $f_{0}(\gamma)$ is homotopically nontrivial and nonperipheral for each $\gamma \in \Gamma$.
- (Peripheral images are sometimes allowed.)
- For fixed $f_{0}: S \rightarrow N$, and any nontrivial nonperipheral loop γ on S, we write γ_{*} for the closed geodesic freely homotopic to $f_{0}(\gamma)$.

Length

- Given $f: S \rightarrow S(f)$, and a nontrivial nonperipheral closed loop $\gamma \subset S$, we write $|f(\gamma)|$ for the hyperbolic length of the (unique) geodesic on $S(f)$ which is freely homotopic to $f(\gamma)$.
- We write $\left|\gamma_{*}\right|$ for the length of γ_{*} in N.
- Then $\left|\gamma_{*}\right| \leq|f(\gamma)|$

Injectivity Radius Lemma

- Fix a Margulis constant ε_{0}.
- There are constants L_{1} and ε_{1} depending only on ε_{0} and S such that the following holds.
- Let $f: S \rightarrow N$ be a pleated surface. Suppose that $f(\zeta)$ is nontrivial in N for any nontrivial closed loop ζ on S with $|f(\zeta)| \leq L_{1}$.

Then for any $\varepsilon \leq \varepsilon_{0}$,

$$
\begin{equation*}
f\left((S(f))_{<\varepsilon}\right) \subset N_{<\varepsilon} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left((S(f))_{\geq \varepsilon_{0}}\right) \subset N_{\geq \varepsilon_{1}} \tag{2}
\end{equation*}
$$

Proof of (2)

- If K is a component of $(S(f))_{\geq \varepsilon_{0}}$, then its diameter is $\leq C_{1}$, where C_{1} is a constant depending only on S and ε_{0}.
- So $f(K)$ has diameter $\leq C_{1}$.
- So if

$$
f(K) \cap N_{<\varepsilon_{1}} \neq \emptyset
$$

we have

$$
f(K) \subset N_{<\varepsilon_{0}}
$$

which is impossible.

Theorem 1

Fix a finite type surface S and a Margulis constant ε_{0}.
The following holds for a sufficiently large L_{1}, and for a sufficiently large L_{3} given L_{2}.

For $j=1,2$, let $f_{j}: S \rightarrow N$ be homotopic pleated surfaces with pleating loci including including maximal multicurves Γ_{j}. Suppose that

1. $\left|\gamma_{*}\right| \geq \varepsilon_{0}$ for all $\gamma \in \Gamma_{1} \cup \Gamma_{2}$;
2. $\#\left(\Gamma_{1} \cap \Gamma_{2}\right) \leq L_{2}$;
3. $f_{1}(\zeta)$ is nontrivial in N for any nontrivial closed loop ζ on S with $\left|f_{1}(\zeta)\right| \leq L_{1}$

Then

- $d\left(\left[f_{1}\right],\left[f_{2}\right]\right) \leq L_{3}$, where L_{3} denotes Teichmüller distance,
- There is a homotopy in N between f_{1} and f_{2} with tracks of hyperbolic length $\leq L_{3}$.
Theorem 2 Fix a finite type surface S and a Margulis constant ε_{0}.
The following holds for a sufficiently large L_{1} given L_{2}.
- Let $f: S \rightarrow N$ be a pleated surface with pleating locus including maximal multicurve Γ.
- Let ζ be a nontrivial loop on S such that $f(\zeta)$ is trivial in N.
- Suppose that

1. $\left|\gamma_{*}\right| \geq \varepsilon_{0}$ for all $\gamma \in \Gamma$;
2. $\#(\Gamma \cap \zeta) \leq L_{2}$;

Then there is a nontrivial closed loop ζ^{\prime} on S such that $f\left(\zeta^{\prime}\right)$ is trivial in N and

$$
\left|f\left(\zeta^{\prime}\right)\right| \leq L_{1}
$$

Proof of Theorem 1.

- Concentrate on the bound on homotopy tracks.
- Bound the distance between $f_{1}(\gamma) \subset f_{1}\left(S\left(f_{1}\right)\right) \subset N$ and $\gamma_{*}=f_{2}(\gamma) \subset N$, for $\gamma \in \Gamma_{2}$.
- We can write γ as a union of $\leq 6 L_{2}$ arcs in the pleating locus of f_{1} which map under f_{1} to geodesic arcs in N, and $\leq 6 L_{2}$ short arcs in $S\left(f_{1}\right)$.
Call such a short arc τ.
- Then $f_{1}(\gamma)$ is a bounded distance from a geodesic if , for any homotopic image $f\left(\tau^{\prime}\right)$ of $f(\tau)$, keeping endpoints in the pleating locus, such that the endpoints of $f_{1}\left(\tau^{\prime}\right)$ are close in N, the path τ^{\prime} is bounded in $S\left(f_{1}\right)$.

Proof of Theorem 2.

- $f(\zeta)$ can be written as a union of $\leq 6 L_{2}$ geodesic arcs in $S(f)$, and $\leq 6 L_{2}$ short paths in $S(f)$.
- $f(\zeta)$ is the boundary of a disc in N, made up of $\leq 12 L_{2}-2$ geodesic triangles in N, which hence has the structure of a hyperbolic surface with piecewise geodesic boundary.
Consider a short path τ across the disc.
- Then $|f(\zeta)|$ is bounded if, for any homotopic image of $f\left(\tau^{\prime}\right)$ of $f(\tau)$, keeping endpoints in the pleating locus, such that the endpoints of $f\left(\tau^{\prime}\right)$ are close in N, the path τ^{\prime} is bounded in $S(f)$.

Comparing hypotheses

- The first two hypotheses of Theorems 1 and 2 are rather similar
- The third hypothesis of Theorem 1 is the opposite of the conclusion of Theorem 2.
- So we can assume this hypothesis of Theorem 1 in the hypotheses of Theorem 2.
- In the notation of Theorem 2 this becomes: $f\left(\zeta^{\prime}\right)$ is nontrivial in N for any nontrivial closed loop ζ^{\prime} on S with $\left|f\left(\zeta^{\prime}\right)\right| \leq L_{1}$.

BothTheorems 1 and 2 can be deduced from The Short Bridge Arc Lemma.
Short Bridge Arc Lemma The following holds for L_{1} sufficiently large given L_{2} and S.

- Let $f: S \rightarrow N$ be a pleated surface.
- For $j=1,2$, let $t \mapsto \gamma_{j}(t):[0, T] \rightarrow S$ be continuous, such that $f \circ \gamma_{j}$ is a geodesic in $S(f)$, not transverse to the pleating locus, with length parameter t.
- Fix lifts $\tilde{f}: H^{2} \rightarrow H^{3}, \tilde{\gamma}_{j}:[0, T] \rightarrow H^{2}$.
- Let d_{2} and d_{3} denote the hyperbolic metrics in H^{2} and H^{3}.

Suppose that:

- $\left|\gamma_{*}\right| \geq \varepsilon_{0}$ whenever γ is a closed loop in the pleating locus of f;
- $f(\zeta)$ is nontrivial in N for any nontrivial closed loop in ζ on S with $|f(\zeta)| \leq L_{1}$;
- $d_{2}\left(\tilde{\gamma}_{1}(0), \tilde{\gamma}_{2}(0)\right) \leq L_{2}$;
- $d_{3}\left(\tilde{f} \circ \tilde{\gamma}_{1}(t), \tilde{f} \circ \tilde{\gamma_{2}}(t)\right) \leq L_{2}$ for all $t \in[0, T]$.

Then

$$
d_{2}\left(\tilde{\gamma}_{1}(t), \tilde{\gamma}_{2}(t)\right) \leq L_{1} \text { for all } t \in[0, T]
$$

Ideas of proof

- Suppose for simplicity that $\tilde{\gamma}_{1}$ and $\tilde{\gamma_{2}}$ are closest at $t=0$, and distance at least 1 apart at $t=0$.
- For a constant C_{1} the following holds. For all $t \in[0, T]$ and $j=1,2, \tilde{\gamma}_{j}(t)$ is distance $\leq C_{1}$ from the geodesic with endpoints $\tilde{\gamma}_{1}(T)$ and $\tilde{\gamma_{2}}(T)$.
- The whole geodesic must project into $(S(f))_{\geq \varepsilon_{0}}$ if ε_{0} is sufficiently small given L_{2}.
- For a constant L_{3} depending only on ε_{0}, and a fixed basepoint x_{0} in H^{2}, projecting to the component of $(S(f))_{\geq \varepsilon_{0}}$, any point $\tilde{\gamma}_{j}(t)$ is distance $\leq L_{3}$ from $g_{t, j} \cdot x_{0}$ for some element $g_{t, j}$ of the covering group.
-

$$
d_{3}\left(g_{t, 1} \tilde{f}\left(x_{0}\right), g_{t, 2} \cdot \tilde{f}\left(x_{0}\right)\right) \leq L_{2}+2 L_{3}
$$

- For a T_{1} depending only on L_{2} and some $t, s \leq T_{1}, g_{t, 1}^{-1} g_{t, 2} g_{s, 1} g_{s, 2}^{-1}$ is trivial in $\pi_{1}(N)$ but not in $\pi_{1}\left(S_{1}\right)$.
- This gives the required contradiction if L_{1} is large enough.

Removing the hypothesis $\left|\gamma_{*}\right| \geq \varepsilon_{0}$.

Lemma 1. The following holds for sufficiently large L_{1}, and for sufficiently large L_{2} given L_{0}.

- Let $f: S \rightarrow N$ be a continuous map. Let Γ_{1} be a maximal multicurve
- Let $[\varphi] \in(\mathcal{T}(S))_{\varepsilon_{0}}$ with $\left|\varphi\left(\Gamma_{1}\right)\right| \leq L_{0}$.
- Suppose that $f(\zeta)$ is nontrivial in N whenever ζ is a nontrivial closed loop in S with $|\varphi(\zeta)| \leq L_{1}$.pause

Then there is a maximal multicurve Γ_{2} such that

$$
\left|\gamma_{*}\right| \geq \varepsilon_{0} \text { for all } \gamma \in \Gamma_{2}
$$

and

$$
\left|\varphi\left(\Gamma_{2}\right)\right| \leq L_{2}
$$

How to bound geometry of the Scott core

- These results are instrumental in obtaining biLipschitz bounds on the non-intervalbundle part of the cusp-relative Scott core of a hyperbolic 3 -manifold N with finitely generated fundamental group.
- The biLipschitz constant is bounded in terms of the topological type of N and and a constant c which is >0 for any set of end invariants
(This constant is not needed if all ends are incompressible.)
- In fact there are constants c_{1} and c_{2} which are >0 for any set of end invariants, where c_{1} gives Lipschitz bounds, while the constant c_{2} gives biLipschitz bounds.
- In general c_{2} is much smaller than c_{1}, although the two are boundedly proportional in the case of combinatorial bounded geometry.

The idea

- The main hypothesis of Theorem 1:
$f(\zeta)$ is nontrivial in N whenever ζ is a nontrivial closed loop on S with $|f(\zeta)| \leq$ L_{1}
holds whenever $f: S \rightarrow N$ is a pleated surface sufficiently far out in an end.
- We can then apply Theorem 1 and a theory of Teichmüller geodesics to show that a suitably defined family of pleated surfaces give rise to a Lipschitz map (with bounded constants) from ends of a model manifold to ends of N,
- and use Theorem 2 and the Teichmüller geodesic theory to show that the Lipschitz map is defined on all but a bounded part (depending on c) of the model end manifolds.
- If there are compressing discs in the core with boundary in the boundary of the core manifold, we then have bounds on their geometry, using Theorem 2.
- Another theorem, similar to Theorem 2, can then be used to help bound the geometry of the Scott core.

Theorem 3 The following holds for a sufficiently large constant L_{1} given $S_{1}, S_{2}, \varepsilon_{0}$ and L_{2}.

- Let $W \subset N$ with be compact connected and an essential submanifold of N with boundary S_{1}, with S_{1} incompressible in W, not necessarily connected.
- Let $S_{2} \subset W$ be a compact subsurface with boundary with $S_{2} \cap S_{1}=\partial S_{2}$.
- Let S_{2} be incompressible and boundary incompressible
- Let $f_{1}: S_{1} \rightarrow N$ be a pleated surface homotopic to inclusion with pleating locus including a maximal multicurve Γ_{1}.
- Suppose that $\#\left(\partial S_{2} \cap \Gamma_{1}\right) \leq L_{2}$.
- Suppose that $\left|\gamma_{*}\right| \geq \varepsilon_{0}$ for all $\gamma \in \Gamma_{1}$.

Then one of the following holds:

1. $\left|f_{1}\left(\partial S_{2}\right)\right| \leq L_{1}$.
2. There is an essential annulus $S_{3} \subset W$ with $\partial S_{3}=S_{3} \cap W$ and $\left|f_{1}\left(\partial S_{3}\right)\right| \leq L_{1}$.

Idea of proof of Theorem 3

- Triangulate S_{2} with boundary consisting of segments from the pleating locus of S_{1}, and some short arcs. This gives S_{2} the structure of a complete hyperbolic structure, covered by a subset of H^{2}. Take a thick -thin decomposition of this surface. The thin part (if nonempty) includes cylinders with short core and long thin rectangles.
- Consider long thin rectangles.

Idea continued

- The main difference from Theorem 2 is that we need to look at lifts to H^{3} of geodesics in different lifts of $f_{1}\left(S_{1}\right)$ which bound a thin rectangle in H^{3} for along a sufficiently long length.
Rectangles which lift with boundaries in the same lift of $f_{1}\left(S_{1}\right)$ are impossible by the Short Bridge Arc Lemma
- We can assume that these close geodesic segments $\tilde{\gamma_{1}}(t)$ and $\tilde{\gamma_{2}}(t)$ project to $\left(S\left(f_{1}\right)\right)_{\geq \varepsilon}$ for ε depending on L_{2}.
- We can find t_{1} and t_{2} with $t_{1}-t_{2}$ bounded in terms of L_{2}, and g_{1} and g_{2} covering group of $S\left(f_{1}\right)$ such that $d_{2}\left(\tilde{\gamma}_{j}\left(t_{2}\right), g_{j} \cdot \tilde{\gamma}_{j}\left(t_{1}\right)<\varepsilon / 10\right.$.
- Then use the Annulus Theorem to get an embedded essential annulus in $S\left(f_{1}\right)$ with boundary of bounded length.

Condition on the Masur constant to give the L_{1} condition

The condition: $f(\zeta)$ is nontrivial in N for any nontrivial closed loop in ζ on S with $|f(\zeta)| \leq L_{1}$ is satisfied for all pleated surfaces in the corresponding to an end e of N_{d}, for all pleated surfaces determined by points in the model manifold at least a certain distance from the core, with this distance depending on $c_{1}>0$, if the (geodesic lamination) ending invariant $\mu(e)$ satisfies the following condition:

- For any simple closed loop ζ on $S(e)$ sufficiently close to $\mu(e)$, any compressible simple loop γ on $S(e)$ and any normalised measured foliation μ_{1} on $S(e)$ either

$$
i\left(\zeta, \mu_{1}\right) \geq c_{1}|\zeta|
$$

or

$$
i\left(\gamma, \mu_{1}\right) \geq c_{1}|\gamma|
$$

- It is weaker than the condition for $\mu(e)$ to be in the Masur domain: for some constant $c_{2}>0$:
For any simple closed loop ζ on $S(e)$ sufficiently close to $\mu(e)$, any compressible simple loop γ on $S(e)$ and any normalised measured foliations μ_{1} and μ_{2} on $S(e)$ with $i\left(\mu_{1}, \mu_{2}\right)=0$:
either

$$
i\left(\zeta, \mu_{1}\right) \geq c_{2}|\zeta|
$$

or

$$
i\left(\gamma, \mu_{2}\right) \geq c_{2}|\gamma|
$$

- The constant c_{1} gives Lipschitz bounds in terms of c_{1}.
- The constant c_{2} gives biLipschitz bounds.
- It is possible to choose $\mu(e)$ with c_{1} bounded from 0 while c_{2} is arbitrarily close to 0 .
But this does not happen in the case of combinatorial bounded geometry.

