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Pleated surface: determination
A pleated surface is determined by a continuous map

f:S—>N

from a finite type surface S to a hyperbolic 3-manifold [V, together with a topological
lamination £ on S, the pleating locus, such that

o the (lifted) image of each leaf of ¢ is geodesic, with f lifting to a homeomorphism
on the lift of each leaf and

o the(lifted) image of each component of S\ £ is totally geodesic, with f lifting to
a homeomorphism on this component.

e If S has cusps we also require cusps to map to cusps.
Domain and Target
A pleated surface Imp(f) : S — N determines

e A hyperbolic surface S(f), together with a homeomorphism

f:8—=5(f),
which determines an element [f] of the Teichmiiller space 7 (.5)

e amap
Impi(f): S(f) = N

which is distance decreasing with respect to the hyperbolic metrics on S(f) and
N

such that

Imp(f) = Impi(f) o f.

Pleating locus restrictions

o A maximal multicurve on S is a set of isotopically distinct, disjoint closed simple
nontrivial nonperipheral loops on .S, such that S \ (UI') is a union of pairs of
pants, with some pant ends at cusps, if S has cusps.

e We shall only consider pleating loci ¢ which consist of a maximal multicurve I'
and geodesics asymptotic to loops of I' and/or cusps at both ends, so that each
component of S\ £ is a topological triangle.



Existence

e Fix a continuous map fy : S — N and a maximal multicurve I" on S. Then
any pleating locus extending I is the pleating locus of some f : S — N in
the homotopy class of fy if and only if fy(~) is homotopically nontrivial and
nonperipheral for each v € T.

o (Peripheral images are sometimes allowed.)
e For fixed fy : S — N, and any nontrivial nonperipheral loop 7y on S, we write
~. for the closed geodesic freely homotopic to fo(7).
Length

e Given f : S — S(f), and a nontrivial nonperipheral closed loop v C S, we
write | f ()| for the hyperbolic length of the (unique) geodesic on S(f) which is
freely homotopic to f(7).

e We write |7, | for the length of 7, in N.

e Then |7.| < [f(7)]
Injectivity Radius Lemma
e Fix a Margulis constant €.

e There are constants Ly and €1 depending only on €y and S such that the follow-
ing holds.

e Let f: S — N be a pleated surface. Suppose that f({) is nontrivial in N for
any nontrivial closed loop ¢ on S with | f(¢)| < Ly .

Then for any € < g,
J((S(f))<e) C Nee (D

and

f((S(f))Zso) C NZ£1 2

Proof of (2)

o If K is a component of (S(f))>e,. then its diameter is < C, where C; is a
constant depending only on .S and €.

e So f(K) has diameter < C.

e Soif
f(K)ﬂN<51 75(2)

we have
f(K) C Neg,

which is impossible.



Theorem 1

Fix a finite type surface S and a Margulis constant ¢.

The following holds for a sufficiently large L., and for a sufficiently large L3 given
Lo.

Forj =1, 2 let fj : S — N be homotopic pleated surfaces with pleating loci
including including maximal multicurves I';. Suppose that

1. |y« > eoforally € Ty Uy,
2. #(Fl N Fg) S L2,'
3. f1(¢) is nontrivial in N for any nontrivial closed loop ¢ on S with | f1({)| < Ly

Then
e d([f1],[f2]) < L3, where L3 denotes Teichmiiller distance,

e There is a homotopy in N between fi and fo with tracks of hyperbolic length
< Ls.

Theorem 2 Fix a finite type surface S and a Margulis constant €.
The following holds for a sufficiently large L1 given Lo.

o Let f : S — N be a pleated surface with pleating locus including maximal
multicurve T'.

e Let ¢ be a nontrivial loop on S such that f(() is trivial in N.
e Suppose that

1. |y« = o forally € T
2. #(I'N¢) < Loy

Then there is a nontrivial closed loop (' on S such that f((') is trivial in N and

£ < L.

Proof of Theorem 1.

e Concentrate on the bound on homotopy tracks.

e Bound the distance between f1(v) C f1(S(f1)) C N and v, = fa(y) C N, for
v e FQ.

e We can write y as a union of < 6Ly arcs in the pleating locus of f; which map
under f; to geodesic arcs in N, and < 6L short arcs in S(f1).
Call such a short arc 7.

e Then fi(7) is a bounded distance from a geodesic if , for any homotopic image

f(1") of f(7), keeping endpoints in the pleating locus, such that the endpoints
of f1(7') are close in N, the path 7/ is bounded in S(f1).



Proof of Theorem 2.

e f(¢) can be written as a union of < 6Ly geodesic arcs in S(f), and < 6L4 short
paths in S(f).

e f(() is the boundary of a disc in IV, made up of < 12L, — 2 geodesic triangles in
N, which hence has the structure of a hyperbolic surface with piecewise geodesic
boundary.

Consider a short path 7 across the disc.

e Then |f(¢)| is bounded if, for any homotopic image of f(7') of f(7), keeping
endpoints in the pleating locus, such that the endpoints of f(7) are close in N,
the path 7/ is bounded in S(f).
Comparing hypotheses

e The first two hypotheses of Theorems 1 and 2 are rather similar

e The third hypothesis of Theorem 1 is the opposite of the conclusion of Theorem
2.

e So we can assume this hypothesis of Theorem 1 in the hypotheses of Theorem 2.

e In the notation of Theorem 2 this becomes: f (') is nontrivial in N for any non-
trivial closed loop (' on S with |f({')| < L.

BothTheorems 1 and 2 can be deduced from The Short Bridge Arc Lemma.
Short Bridge Arc Lemma The following holds for L sufficiently large given Ly and
S.

Let f : S — N be a pleated surface.

Forj =12 lett — ~;(t):[0,T] — S be continuous, such that f o ~y; is a
geodesic in S(f), not transverse to the pleating locus, with length parameter t.

Fix lifts f - H?> — H3, 4, :[0,T] — H>.

Let do and ds denote the hyperbolic metrics in H? and H>.

Suppose that:

|v<| > €0 whenever v is a closed loop in the pleating locus of f;

f(C) is nontrivial in N for any nontrivial closed loop in  on S with | f()| < Ly

s

o da(71(0),72(0)) < Lo;

o d3(foi(t), foa(t)) < Lo forallt € [0,T).

Then
d2('}71 (t), ’}72(15)) <L forallt € [0, T]



Ideas of proof

o Suppose for simplicity that v; and vz are closest at ¢ = 0, and distance at least 1
apartat ¢t = 0.

e For a constant C; the following holds. Forallt € [0,7T] and j = 1, 2, ¥;(¢t) is
distance < (' from the geodesic with endpoints 1 (7') and (7).

e The whole geodesic must project into (S(f))>e, if &¢ is sufficiently small given
Lo.

e For a constant L3 depending only on &g, and a fixed basepoint xy in H?, pro-
jecting to the component of (S(f))>¢,, any point ¥;(¢) is distance < L3 from
gt,5-To for some element g; ; of the covering group.

d3(ge,1 f(x0), gr.2-f(20)) < Lo + 2Ls.

e For a T} depending only on Lo and some ¢, s < T7, g;llgtyggs,lg;% is trivial in
7T1(N) but not in 71'1(51).

e This gives the required contradiction if L is large enough.

Removing the hypothesis |.| > .

Lemma 1. The following holds for sufficiently large L, and for sufficiently large Lo
given Ly.

o Let f : S — N be a continuous map. Let 'y be a maximal multicurve
o Let [p] € (T(S))e, with |¢(T'1)| < Lo.

e Suppose that f(() is nontrivial in N whenever  is a nontrivial closed loop in S
with |¢(C)| < Ly.pause

Then there is a maximal multicurve I's such that
|74 > o for all v € T'y
and
lp(T'2)| < Lo.
How to bound geometry of the Scott core

e These results are instrumental in obtaining biLipschitz bounds on the non-interval-
bundle part of the cusp-relative Scott core of a hyperbolic 3-manifold N with
finitely generated fundamental group.

e The biLipschitz constant is bounded in terms of the topological type of N and
and a constant ¢ which is > 0 for any set of end invariants

(This constant is not needed if all ends are incompressible.)



In fact there are constants c¢; and co which are > 0 for any set of end invariants,
where c; gives Lipschitz bounds, while the constant co gives biLipschitz bounds.

In general c5 is much smaller than ¢y, although the two are boundedly propor-
tional in the case of combinatorial bounded geometry.

The idea

The main hypothesis of Theorem 1:
f(€) is nontrivial in N whenever ( is a nontrivial closed loop on S with | f ()| <
Ly

holds whenever f : S — N is a pleated surface sufficiently far out in an end.

We can then apply Theorem 1 and a theory of Teichmiiller geodesics to show that
a suitably defined family of pleated surfaces give rise to a Lipschitz map (with
bounded constants) from ends of a model manifold to ends of IV,

and use Theorem 2 and the Teichmiiller geodesic theory to show that the Lips-
chitz map is defined on all but a bounded part (depending on c¢) of the model end
manifolds.

If there are compressing discs in the core with boundary in the boundary of the
core manifold, we then have bounds on their geometry, using Theorem 2.

Another theorem, similar to Theorem 2, can then be used to help bound the
geometry of the Scott core.

Theorem 3 The following holds for a sufficiently large constant Ly given S1, So, €¢
and Lo.

Let W C N with be compact connected and an essential submanifold of N with
boundary Sy, with Sy incompressible in W, not necessarily connected.

Let So C W be a compact subsurface with boundary with So N S1 = 0.55.

Let Sy be incompressible and boundary incompressible

Let f1 : S1 — N be a pleated surface homotopic to inclusion with pleating locus
including a maximal multicurve I'y.

Suppose that #(0S2 NT'1) < Lo.

Suppose that |7y.| > eo forall v € T';.

Then one of the following holds:

1.
2.

|f1(052)] < L.
There is an essential annulus S5 C W with S35 = S3NW and | f1(0S3)] < L;.



Idea of proof of Theorem 3

e Triangulate Sy with boundary consisting of segments from the pleating locus of
S1, and some short arcs. This gives Ss the structure of a complete hyperbolic
structure, covered by a subset of H2. Take a thick -thin decomposition of this
surface. The thin part (if nonempty) includes cylinders with short core and long
thin rectangles.

e Consider long thin rectangles.

Idea continued

e The main difference from Theorem 2 is that we need to look at lifts to H3 of
geodesics in different lifts of f;(S;) which bound a thin rectangle in H? for
along a sufficiently long length.

Rectangles which lift with boundaries in the same lift of f1(.S7) are impossible
by the Short Bridge Arc Lemma

e We can assume that these close geodesic segments 7 (¢) and ~2(t) project to
(S(f1))>e for € depending on L.

e We can find ¢; and ¢, with t; —t, bounded in terms of Lo, and g; and g2 covering
group of S( f1) such that ds(7;(t2), g;.7;(t1) < €/10.

e Then use the Annulus Theorem to get an embedded essential annulus in S(f;)
with boundary of bounded length.

Condition on the Masur constant to give the L, condition

The condition: f(() is nontrivial in N for any nontrivial closed loop in ¢ on S
with |f(¢)] < Ly is satisfied for all pleated surfaces in the corresponding to an end e
of Ny, for all pleated surfaces determined by points in the model manifold at least a
certain distance from the core, with this distance depending on c; > 0, if the (geodesic
lamination) ending invariant u(e) satisfies the following condition:

e For any simple closed loop ¢ on S(e) sufficiently close to x(e), any compressible
simple loop ~y on S(e) and any normalised measured foliation z1 on S(e)either

i(¢, ) 2 (]

or
i(y, 1) > erlyl-

e It is weaker than the condition for y(e) to be in the Masur domain: for some
constant co > 0:

For any simple closed loop ¢ on S(e) sufficiently close to pi(e), any compressible
simple loop 7y on S(e) and any normalised measured foliations 11 and pi2 on S(e)
with (py, pe) = 0:



either
Z(Ca ,U/I) Z 02|<|

or
i(y, p2) > ca|yl.

e The constant c; gives Lipschitz bounds in terms of c;.
e The constant co gives biLipschitz bounds.

e It is possible to choose p(e) with ¢; bounded from 0 while ¢5 is arbitrarily close
to 0.

But this does not happen in the case of combinatorial bounded geometry.



