Every quadratic rational map with a period 3 critical point is represented up to Möbius conjugacy by

$$
h_{a}(z)=\frac{(z-a)(z-1)}{z^{2}} .
$$

The critical points are 0 and $c_{2}(a)=\frac{2 a}{a+1}$ and 0 is of period 3. In fact:

$$
\begin{gathered}
h_{a}(0)=\infty, \quad h_{a}(\infty)=1, \quad h_{a}(1)=0, \\
h_{a}\left(c_{2}(a)\right)=-\frac{(a-1)^{2}}{4 a}=v_{2}(a), \quad h_{a}^{-1}(0)=\{1, a\}, \quad h_{a}^{-1}(1)=\left\{\infty, \frac{a}{a+1}\right\} .
\end{gathered}
$$

Write

$$
V_{3}=\left\{h_{a}: a \in \mathbb{C}, a \neq 0\right\} .
$$

A hyperbolic component is a connected (open) set in which $\lim _{n \rightarrow \infty} h_{a}^{n}\left(c_{2}(a)\right)$ is an attractive periodic orbit, which is either $\{0,1, \infty\}$ (for A hyperbolic component is a connected (open) set in which $\lim _{n \rightarrow \infty} h_{a}^{n}\left(c_{2}(a)\right.$) is an attractive periodic orbit, which is either $\{0,1, \infty\}$ (for
types II and III) or a different periodic orbit (for type IV). Each hyperbolic component H in V_{3} has a unique centre $a_{c}=a_{c}(H)$ such that the types $\left\{h_{a_{c}}^{n}\left(c_{2}\left(a_{c}\right): n>0\right\}\right.$ is finite. Thus, $c_{2}\left(a_{c}\right)$ is either periodic under h_{a} (for types II and IV) or strictly preperiodic (for type III). There are set $\left\{h_{c} c_{c}\left(a_{c}\right) \cdot n>\right\}_{\text {a }}$ is finite. Thus, $c_{2}\left(a_{c}\right.$ is either periodic under h_{a} for types II and IV or strictiy prep
only two type II hyperbolic components in V_{3}, with centres ± 1. There are infinitely many of types III and IV.
A type III hyperbolic component wiith centre a_{*} is of preperiod m if $c_{2}\left(a_{c}\right)$ is of preperiod m under h_{a}. This happens if and only if $a_{c} \neq 0$, ± 1 and a_{c} satisfies one of the equations

$$
h_{a}^{m}\left(c_{2}(a)\right)=a \text { or } \frac{a}{a+1} .
$$

This happens if and only if a_{c} is a nontrivial root $(a \neq 0, \pm 1)$ of $p_{m}(a)-a q_{m}(a)$ or $(a+1) p_{m}(a)-a q_{m}(a)$, where

$$
p_{0}(a)=2 a, \quad q_{0}(a)=a+1,
$$

$$
p_{m+1}(a)=\left(p_{m}(a)\right)^{2}-(a+1) q_{m}(a)+a\left(q_{m}(a)\right)^{2},
$$

$$
q_{m+1}(a)=\left(p_{m}(a)\right)^{2} .
$$

In both cases, the number of nontrivial roots is

$$
2^{m} \cdot \frac{23}{21}+O(1),
$$

where the $O(1)$ term is period 6 in m. \qquad ere the $O(1)$ term is period 6 in m.
All cescription of the dynamics in all type III hyperbolic components in V_{3} can be found in [?]. It is enough to describe the dynamics of the centres of the hyperbolic components. As usual (or always) in dynamics, variation of dynamics with parameter is defined in terms of dynamics in particular dynamical planes. In this case, we use the three polynomials up to Möbius conjugacy in V_{3}, the two rabbit polynomials, given up to Möbius conjgacy by $a=a_{0}, \overline{a_{0}}$ and the aeroplane polynomial given by $a=a_{1}$. Here, $a=a_{0}$, $\overline{a_{0}}, a=a_{1}$ are the roots of

$$
c_{2}(a)=v_{2}(a)
$$

A fundamental domain for V_{3} is chosen to make the description of dynamics of each hyperbolic component unique. The description of dynamics A fundamental domain for V_{3} is chosen to make the description of dynamics of each hyperbolic compo
of (the centre of each type III hyperbolic component of preperiod $\leq m$ is then given by the following
. $a_{*}=a_{0}, \overline{a_{0}}$ or a_{1}.
.a point x in $h_{a_{*}}(\{0,1, \infty\})$. In the case of the aeroplane polynomial this point has a symbolic coding by letters $L_{j}, R_{j}(j=1,2$ or 3$) B C$, $U C$ and C.

. A path from $c_{2}\left(a_{*}\right.$ to x, which, apart from endpoints, does not intersect $Y_{m}\left(a_{*}\right)=h_{a_{*}}^{-m}(\{0,1, \infty\}) \cup\left\{c_{2}\left(a_{*}\right)\right.$ up to homotopy fixing $Y_{m}\left(a_{*}\right)$.
A path is called a capture path if it intersects the Julia set of $h_{a_{*}}$ in exactly one point. A hyperbolic component is called a emcapture if it can be describe by a capture path.
Theorem The number of capture type III hyperbolic components is $\geq \lambda 2^{m}$ and $\leq \frac{22}{21} \cdot 2^{m}+O(1)$, for some $\lambda>1$.
It can be considered a folklore-result that $\lambda>\frac{6}{7}$
References
[1] Rees, Mary: A Fundamental Domain for V_{3}. Preprint, May 2006.

