MATH348. Revision.

Weeks 11 -12 Dec 6-17 2004 will be devoted to revision. Lecture times in Week
11 are a double session Monday 6 December, 9-11, and Wednesday 8 December at 10.
The 2 p.m. lecture on Friday 10 December is cancelled. Office hours in Week 11 are
also a bit nonstandard, in that I shall not be around on Monday 6 December after
11 . T shall have office hours 12-1 and 3-5 on Tuesday 7 December BUT I may also
have a couple of Year 1 tutees, who cannot make a rearranged time calling on me
between 3-5. I can also hold office hours 9-10 and 11-12 on Wednesday 8 December,
but shall then be absent for the rest of the week. If anyone wants to suggest any
rearrangements of lecture/office hour times in Week 12, I shall consider it. The draft
exam timetable (on 1.12.04) has MATH348 on Thursday 13th January 2005, 10-12.30

Revision done in lecture times will be demand-led so be prepared to express an
opinion on what you would like to go over. If you feel that for some sessions at least
you would prefer to work on your own elsewhere, then of course you are free to do so,
and are encouraged to do so.

The following questions are designed to help you with your revision. Although
the questions are not of uniform length and difficulty, if you are eventually able to
answer all of them well, you should do well in the exam. You should aim to achieve
several things by your revision.

a) Understand what the key concepts are in this module, and be able to give clear
definitions that you, your examiner,and hopefully anyone else who is interested, will
understand. You should know what properties hold, and what the main results are.

b) Although you should not attempt to memorize proofs, you should have sufficient
understanding and confidence to fill in short steps in arguments, with some prompting.

¢) You should have some idea what the applications of the theory are, and be practised
in standard calculations and problems. You should spend most of your revision time
practising problems.

d) Perhaps most importantly, you should aim to have a clear head, so that you
can read and digest the question in front of you, and tackle it without confusing it
with somewhat similar problems that you tackled in your revision. I shall hand out
solutions before the end of term, but try not to look at them more than you have to.
Good luck - here the work starts.
1a). Write down the formula for f(n) for a 2x-periodic function f which is integrable
over [—m, ] (or any interval of length 27 ). Now write down the formula for f(¢) for
an integrable function f on R. The formulae should look similar - but not identical.
b) Work out the Fourier f(n) for f where f :[0,27) — R is defined by f(z) = =2,
Also, sketch the 27 -periodic extension of this function, which you should also call f.

¢) Work out the Fourier transform ¢ of g where
e 2% if 0 < z < 2m,

) =
9(z) 0 otherwise .

There should be some similarity between f and ¢, but, again, they will not be
identical.

d) For all real z, give formulae for 1(f(z+)+ f(z—)) in terms of f and s(g(z+) +
g(z—)) in terms of §.



2. Determine whetherthe following functions are integrable on the stated sets.

a) f(z)+ . +1$2 on R.
b) f(x) =~ on (0,1)
Q) f(z) == on (0,0)
_ sin? y
d) f(z.y)= V01222 ™ R?.

[Hint: it might help to use Tonelli’s Theorem and

/°° dz _7r]
oo 1 +a22?2  a’

3. Determine the limits of each of the following sequences and families of functions on
the stated domains, and determine whether the convergence to the limit is uniform.

a) fn(z) =2~™ on [1,00).
b) gn(z) =27 (1 —2~1) on [1,00)
¢) Kx(z) = A"1K(z/A) for A € (0,1], and K;(z) = 7'z~ 2sin’z for x # 0 In this
case take domain (—o00,0) U (0,00) and determine limy_,o K (z)
4. Show that, if = is not an integer multiple of 27,
N sin(N + )z

§ : einT — —
ST

n=—N
Hence show that if f is a 27 -periodic function,

sin(N + 3)(@ —y)

> e = [ f i

n=—N 2

sin(N + 1)y

sin iy ay.
2

dy= [ flz—y)

In order to do this properly, you need that y — sin(N + 1)y/sin 1y is a 2r-periodic
function for any integer N - can you see why this is true? It is not true that y — sin %y
is 2w -periodic, neither is it true that y +— sin(n + %)y is 27 -periodic.

5. Let f be the 2w-periodic function of question 1, that is,
flx)=e"2®if 0 <z < 2m,
flz4+2nm)=e2*if0<z<2m, n€Z.

Now, as usual, let

Tt sin 1
@ =[ - g SN gy,

1
—r sin 5y

[The integrand is 27 -periodic, so this really is the usual definition.]

a)Let 0 < z < m. By considering the formula for f(z—y) separately for x < y < 47
and z — 1™ < y < z, or otherwise, show that
—2x

e SRR TPl g TR
x

z y
= — 2" dy + dy.
SN(f)($) 9 /x ﬂ-@ o %y Y 2 Yy

1
sin sy



Give the value of limy_, o, In(z), according to the Fourier Series Theorem.
b) Now let

e 2z Z  9gin (N + l)y e—2z—4m T+7 2SiIl(N + l)y
T = — 2774 - — 277 d
@ =5-[ v+ | v
and let xy = /(N + 3). Show that
1 t 1 t
lim Twn(f)(zn) = —11mR—>+oo/ Sl—ndt—i- _4”11mR—>oo/ sint
N—+o0 e
c¢) Using the fact that
R
lim —Smtd

and sint/t is an even function, show that

i T (7)) = .

By using the fact that
™
t
/ Sty s 1p
t
0

lim Tn(f)(zn) > 1.

N—>oo

1 1 T t
“(l4e ™M+ (1 —e) / and
0

show that

6. This is a continuation of question 5. You might want to try another question first.
a) By using 1'Hopital’s rule or otherwise, show that

ey 2
lim ( — —) =4.
y=0\singy Y

Hint. Whatever method you use, remember to write the term inside the bracket over
a common denominator, before you do anything else. Explain why

ey 2

sinfy y

extends to a continuous function on (—2,27).
b) Now let Sy(f)(z) and Tn(f)(z) be as in question 5. By using a) show that, for
any x,

lim Sn(f)(z)—Tn(f)(z) =

N—+oco

State what result (if any) you are using.

¢) The limit is actually uniform in z for z € [0,7 — §], for any 6 > 0. So
limy 00 SN(f)(zn) > 1 by 3c). Deduce from this that the convergence of Sy (z) to
its limit cannot be uniform for z € (0, .

7. Let u : [0,27] x [0,00) — R be continuous. Let u;, ugzz, u; be defined and
continuous on (0,27) x (0,00) and extend continuously to [0,2n] x [0,00). Let u
satisfy the heat equation

Up = Ugg, (2,1) € (0,2m) % (0, 00), (1)



u(z,0) = f(z), u(0,t) = (2m,t) = uz(0,t) = uy (2w, t) = 0. (2)

Let 4(n,t) be the Fourier coefficients of u with respect to .

a) Write down (without proof) an ordinary differential equation satisfied by a(n,t)
for each integer n, and the boundary conditions, implied by (1) and (2). Solve
this differential equation. Then use a Fourier Series Theorem to write down a series
solution for u(z,t) to (1) and (2). [You will not be able to write the solution as a
convolution.]

b) Use integration by parts to prove the relation iz(n,t) = ina(n,t).

8. Let w : [0,27] x [0,00) — R be continuous. Let ug, uzqy, us, uy be defined
and continuous on (0,27) x (0,00) and extend continuously to [0,2n] x [0,00). For
a number A > 0, let u satisfy the damped wave equation

Upp = Ugy — A\Ug, 0 < T < 271, t >0, (1)
u(z,0) = f(x), u(x,0) =0, u(0,t) = u(2m,t) = uz(0,t) = uy (27, t) = 0. (2)

Let @(n,t) be the Fourier coefficients of u with respect to x.

Write down (without proof) an ordinary differential equation satisfied by 4(n,t)
for each integer n, and the boundary conditions, implied by (1) and (2). Solve this
differential equation. Hence use the Fourier Series Theorem to show that

u(z,t) = F(0) + 5 Y fln)elms(emtVImiNn 4 gminty/1=ix/m)
n#0

9. Calculate the Fourier transform of f(z) = e=3I%l.

10. Calculate the Fourier transform of
1

T0 =iy

To do the calculation for & > 0 you will probably want to use a contour integral of
1
422 + 1

round a semicircular contour in the lower half-plane. You can then avoid doing a
separate contour integral for the case & < 0 if you can show that

7€) = f(-9).

11. Calculate the Fourier transform of
1
fl@) = (22 + 2z + 2)2°
To some extent the method is the same as in question 8 - but in this example the
integrand has double poles.

12. Calculate the Fourier transform of
fz) = e
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by integrating e~2" round a rectangular contour with corners at —R, R, R+i£/4,

—R +i¢/4. You may assume that
/Oo e 2 dp = | .
- V 2

1— —4n—2miy

13. Let

e
h(y) =
() 2+ 1y

Show that
ome® if —2r<£<0
R 0if £ < —2m, or z >0,
h(§) = .
wif £ =0,

me 4" if € = —2m.

Thus, h(—z) = 2rg(z) except when z = 0 or —2x, for g as in question 1.

Hint: you will need to consider integrals of the functions e~%%/(2 + iz) and
e~H&+2m)2 /(2 1 iz) round semicircular contours. For the first function, you will need
to take a semicircular contour in the lower half plane if £ > 0 and in the upper half-
plane if £ < 0. For the second function you will need to take a semicircular contour
in the lower half-plane if £ + 27 > 0 and in the upper half-plane if £ + 27 < 0. You
may assume that if & > 0,

—ié12

lim

—dz =0,
R—o0 7' (R) 241z

(which can be applied with & =& or & = £ + 27) and that if & <0,

e—iglz

dz = 0.

lim -
R— oo ’Y;_(R) 2+ZZ

However it is good practise to check that [e=%1%| < 1 on 4’ (R) if & > 0 and
le™¢#[ <1 on + (R) if & <0.
The cases £ =0 and & + 2m = 0 have to be treated separately.

14a). State Plancherel’s equality for functions f, g € L*(R) such that f, § € L*.

b) Give the precise estimate which implies that f , g are bounded for f, g € LY(R).
Explain also why the Fourier inversion formula and f, f € L'(R) imply that that

f, f are bounded.
c¢) Show that if Ay € L' and hy is bounded then hiho € L.
d) State Tonelli’s Theorem. Apply it to prove that

/wﬂ@/mé“%ﬁm%=[:ﬂ512ﬂ@w%wﬁ

— 00 — 00

15. Let f be integrable on R. Suppose that A > 0 and h) is an integrable function

with Exbin A( )
~ e AT ifE>0
ia(6) = {( AT ife< 0) '

5



Now use the inverse Fourier formula

]_ o0 . —~
@) = 5= [ e
and interpreting this as a double integral and changing the order of integration or
otherwise, show that

e8] [e] 0
h)\(.’lf) 1 / f(t) (/0 ei(w—t)—)\£+i)\d£+/_ ei(x_t)+>‘£_i>‘d§> dt = gy * f(.TJ),

= % o
where
(1) = AcosA —tsin A
P = TR 1)
16. As in question 3, let
1 (sin(z)\”
K(z)= = (7)
7 x

a) Show that K (z) is integrable on (—o0,00).
Now you may assume that

/ K(z)dz = 1.
—00

[If you really want more practice in contour integration, look at part c¢) below.]
For A >0, let Ky(z) = A"1K(z/)).

b) Show that K, (A > 0) is an approzimate identity as follows. It is clearly a positive
function for all A. b)(i) Show that for any A > 0,

/ Kx(2)dz = 1.
b)(ii) Show that for any 6 > 0,

lim Ky (z)dz = 0.
A—=0 |z|>6

b)(iii) Show that for any § > 0,
lim K (2) = 0

A—0
uniformly on {z : |z| > d}.
c¢) L If you really want to do some more contour integration at this point, let y(R,¢)
be the contour shown.




By considering

e —1
/ ;—dz
'Y(Ras) z
or otherwise, show that

—€ R 1— eiw
Iim Re / +/ 3 dr = .
R—00,e—0 R e xT

Hence, or otherwise, show that

o0
/ K(z)dz = 1.
d) Show that, if f is any integrable function,

f@) - Ka s 1) = [ " K@) (@) — fla—y))dy.

17. a) Let g(z) = f(z + a). Compute §(¢) in terms of f(£).

b) Let u : R x [0,00) — C be integrable in z for all ¢ > 0. In addition, for all x,
and t > 0, let u, u;, ug, uz, be continuous and locally uniformly integrable in x,
that is, for any a > 0. let

oo
sup / lu(z,t)|de < +00
0<t<a — 00

and
lim |u(z,t)|de =0
A—o0 lz|>A

uniformly for 0 < ¢t < a, and similarly for u;, uz, Ugzs.

ou 0%u ou

L Yt 1

ot 0x? * ox (1)
Show that 4(,t) satisfies the p.d.e.

% — —€20(E,t) + 2iE0(E, 1),

Hence show that

fe%s) 0 —(w—y)2/4t+2td
w(z, 1) = / u(y, 0)e v
oo 2V/mt

Show also, using the Dominated Convergence Theorem, that if n denotes any
integer,
li = 0.
m u(z,n) =0
18. Show that if f: R — C is integrable then f is continuous.
Comment. Make sure you know what continuous means because, of course, you need
to know what it means in order to have a chance of showing that a map is continuous.
So: f is continuous at x if, given any € > 0 there is § > 0 such that if ??? then 777
Alsao, of course, you need to know how f(z) is defined - it is in terms of an integral, of
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course. You probably want to show an integral of something over (—oo, c0) is small.
It might be a good idea to break up the integral ionto the integral over [—A, A] and
|z| > A, for a suitable A > 0.

19a) Define the Laplace transform L(f)(z) of a function f which is integrable on
(0,00). Show that the Laplace transform is defined for Re(z) > 0, and bounded.

b) As usual, let x[o,00)(t) = 1 for t > 0 and 0 for t < 0. Let f be integrable on
[0,00) and let a > 0. Let

9(t) = Xj0,00) (t — @) f(t — ).
Show that
L(g) = e L(f)(2).
c) Suppose that f and g are integrable on (—o0,00) and both are equal to 0 on
(—00,0). Write down the formula for f *g. Also, write down the formula for £(f *

9)(2).

20. For each of the following functions F' = F(z), determine whether or not F can
be the Laplace transform L(f) of a function f € L'(0,00). Give brief reasons. If
there is such an f, give it.
a) F(z)=1/z.
b) F(z) =1/(z+1)%.
c) F(z) =1/(z+1)2.

Now determine which of the following functions F' can be the Laplace transform
L(f) for a function f € L?(0,00). Again, give brief reasons, or quote a theorem if
necessary. If the answer is “yes” you need not produce f.

d) F(z) = (1_6_z)2.

z
1—e %
&) F(:) = —,
19. Find the variance of the following probability density functions:
a) le_|m| N
2 ’
1 2
b) ——e~* /2 You may assume for this that
) NeT: y
L / T e 2y — 1
e r =1;
V21 J o
C) Le—w2/2a )
2mo
d) Show that the variance of the proability density function
1
(1 + z2)
is infinite.

21a). Let p be the probability measure such that for all bounded measrable functions

) / Zg(m)du(ﬂf) - % [ stwre = 2aa,

8



so that (as you are allowed to assume)

pe =<0
Let p, be the n-fold convolution of x. Give the value of fi,,. Now let v, be the
probablity measure defined by: for all bounded measurable functions g

o0 (o]
| @) = [ gto/vmydu)
Find 7, in terms of [, . Hence show that v, = .

b) Now repeat the question with p such that, for all bounded measurable functions
g,

/ Z sa)duta) = —— [ Z g(@)e 1% ds.

c) State what the Central Limit Theorem says in general, for any probability measure
i with finite varianec and zero mean, and any bounded measurable function g, about
o0

lim g(z)dvy(z)

n—oo J_

where u, and v, are defined from p in the same way as in a).



17. Now consider the heat equation in a finite strip - as in question 5 - but with
different boundary conditions. Let u : [0, £]x[0,00) — R be continuous and integrable
intforall z. Let u, ug, gy, u : (0,£)x(0,00) be defined, continuous and uniformly
integrable in t, that is if v(x,t) is any of the functions w, ug, Uze, ut, then

o0
Supo<m<2/ vz, t)[dt < 400
0

(o.]

lim lv(z,t)dt =0
A—o00 A

uniformly in z, 0 < x < £.
Let L(u)(z,z) denote the Laplace transform of u with respect to ¢.

Now let u satisfy the heat equaltion
Up = Ugg, 0< <L, >0

and the boundary conditions

u(0,t) = h(t), u(¢,t) =0, u(z,0) = 0.

a) Write down the differential equation and boundary conditions satisfied by
L(u)(x,z). Then show that the solution to this equation is
L(R)(z)elz—2DV= s

L(u)(z,z) = TN + E(h)(z)m.

Now taking the square root so that for Re(z) > 0, Rey/z > 0, expand this out as

two infinite sums .
z

b) Now using the fact that e~°VZ is the Laplace transform of ?

e—c2/4t

7
V2rt3/2

find the general solution for u(x,t) as infinite sum of convolutions of h with functions.

10



MATH348. Revision Solutions.

1b)
. 27 ' —(2+in)z 2m 1 — e 4n
foo = [ ey < |2t
0 —(241n) ], 2+in
27 —(24+i8&)zx 2m _ o—4Am—27i€
c) §(é) :/ e~ (2+i)z 7. [g] - 1e+
0 _(2 + 7’5) 0 2 +1i€
d)
N N
fa+ i) _ 1N e 1 QA 1ot
=1 il inz _ ] o inT
2 N oo 27 R_X_:Nf (m)e™ = him o nz_: 2+in
glat) +gla—) _ L [N e
= 1
2 Mmoo | A
1 N 1— —4m—2mi§
= lim — / ST eimtge,
No+oo 2T J_ N 2+

In this formula for (g(x+)+g(z—))/2 the limit is taken over real number N, whereas,
of course, in the corresponding limit for f, the limit is taken over positive integers
N.

%) Waite fu(w) = X{_nn)(@)f(z). Then 0 < fu(®) < fas1() < f(2) for all = and
all integers n > 1. By the Fundamental Theorem of Calculus,

/fn(a:)dac = /_1; H_%da:

= [tan~!(z)]_, ¥ n = tan"*(n) — tan"(—n).

We have lim,,_, o, frn(z) = f(x) for all . So by the Monotone Convergence Theorem,

o0 1 .
[irate= 1=t [

= lim (tan™'(n) — tan™'(—n)) = (7/2 — (=7/2)) = 7 < +o0.

n—00

So f is integrable. This is not the only possible method. One could also show
that f is bounded between 0 and the function x[_;; + x_2x(_oo7_1)u(1’oo), which
is integrable (and can be shown to be so very simply, for example by looking at the
sequence of integrable functions x[_1,; + $_2X(—n,—1)u(1,n))

—z _q
2b) We can define f(0) = lim,_o ¢ = —1, using I’Hopital’s Rule or a series
z

expansion. Then f is continous on [0,1]. Any continuous function on a closed
bounded interval is integrable. So f is integrable on [0,1] - which is the same as
saying that it is integrable on (0,1) since the definition of the funciont at just two
points (0, 1) makes no difference.

Rather than use the general fact that a continuous funciton on a closed bounded
interval is integrable on that interval, we can just use the fact that lim, ,q f(z) exists
to deduce that f is bounded on (0,1) - because |f(z)| < d~! on [4,1], for any & > 0.
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So there is M such that |f(z)| < M forall = € (0,1) - and since the constant function
M is integrable on (0,1),s0is f.
2¢) We have e_wgé for 1<z <1. So 1—e‘$>1—%:% for 1 <zx. So

R R

1 "d
= - lim X — lim (logn —logl) = +oo.
2n—o00 [; x n—o00
So f is not integrable on (0, c0).
sin?

2d) By Tonelli’s Theorem, in order to show that JY) = ———————
) By Ton rem, in order \4 fz,y) S+ 227

sin? ydzdy
< +00.
/ / Wl+a?y) =

Now the inner integral, for y # 0, is

is integrable

it suffices to show that

z=yA

lim [Sl Y tan— 1(1:3/)] =T—F
A—oo y r=—yA Yy

But sin?(y) < y? for all y # 0, and sin®y <1 for al y. So

// xy|dxdy—/oo Sii;’dys
[ (L) maee

3a) For z > 1, lim, o0 frn(z) = lim, 4oz~ =0. For 2z =1, f,(1) =1 for all n.
So if we define

sin® y

So f is integrable.

0 ifz>1
f(m):<1 ifx:l)

then lim,, o fn(z) = f(z) for all z > 1.

The convergence is not uniform. For take z,, = 21/ then z,, > 1,s0 f(zn) =0.
But f,(zn) = 2;" =27, So fu(zn) — f(zn) = 271, So taking € = 1, there is no
N such that |f,(z) — f(z)| <e for all n > N and all z > 1.

Alternatively, f is not continuous at 1 but f, is continuous on [1,00) for all
n. If the convergence of f, to f was uniform on [1,00), general theory would tell
us that f was continuous on [1,00) also.

b) For all z > 1,

lim 27" = lim z " ! =0.
n—,oo n—oo

So limy, 00 gn(x) =0 for all z > 1. But g,(1) =0 for all n. So lim, o gn(x) =0
for all z > 1. To see that the convergence is uniform, note that g,(z) > 0 for all
r > 1, because z7! < 1. The maximum of g,(z) must occur when the derivative
gh(r)=—nz ™ 1+ (n+1)z7" 2 =0, that is, when z = (n+1)/n. But

gn(n+1/n):(n+1/n)—"(1— n )g 1

n+1 n+1

12



So given € > 0 choose N so that ﬁ <e. thenif n > N, 0 < gn(z) < e for all

n > N and the convergence to 0 is uniform.
c)
1 sin®(z/A)  Asin®(z/\)
K =
A@) A (x/N)? T z?

So for all x # 0,
A
OSK)\(SL')S?—)OE%S)\—)O.

But

1
KA()\):asin21—>ooas)\—>0.

So take € = 1. Then no matter how small A\g > 0 is we can find A < g and z = A
so that K(z) > 1. So the convergence to 0 is certainly not uniform.

4. The condition that x is not an integer multiple of 27 is equivalent to the condition
that e'® # 1. The by the formula for the sum of a finite geometric series,

N 2N 2iNz i(N+(1/2))z _ ,—i(N+(1/2))z
ing _ _—iNz inz\n __ —ile_e _6( (/2 _ —iN+(1/2))
et =e (e )" =e = . ‘

1 — et elz/2 _ p—iz/2
n=—N n=0

sin (N + )z
— .

sin il'

To see that this is a 27-periodic function, of course each e* is a 2m-periodic func-
tion, so the sum from —N to —N must be also. To see it directly from the quotient
of sines, note that

sini(z + 2m) = sin(32 + ) = —sinz

and
sin(N+ ) (z+27) = sin(N+3)z+2Nn+7) = sin (N + 3)z+7) = —sin (N + 3)z.
So

1 1 1
sing(z+27)  —singz sin 5

sin(N + 1)(z + 2m) - —sin(NV + Dz ~ sin(N + Dz’

Then
N N ™
Z f (TL) eint — Z eline f (y)e—my dy
n=—N n=—N -

sinN + 3)(z —y)

sini(z — y)

T+ : 1
:/ + 1) sin (N + 2)tdt.

<1
- sin 5t

s N s
[ 1w 3 éneay= [ s dy
—7 n=2IN —

This last line uses the change of variable y = z — ¢, so that t = x — y, dt = —dy,
when y =7, t =2 — 7 and when y = —m, t = x4+ 7. So the change of sign from dy
to —dt cancels if we make x — 7 the bottom limit of the new integral.
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ba)f e <y<z+m then —m<x—y<0,s0 7 < (z—y)+ 27 < 27 and since [ is
2m-periodic, f(z—y) = f(x —y+27m) = e 2@ Y+2m) — o=4m=2242y [f p g <y <z
then 0 <z —y < m and f(z —y) =e 2Y) =22+ Go

e~ 2 /5c L2y SN + 1) o—dm—2z /w+7f Loy SR (V + 3)
T T

Yy Yy
o sin L dy + 2 inl dy.
o Y s sin 5y

Sn(f)(x) =

The Fourier Series Theorem says that for all x

. r+)+ J(r—
lim Sn(f)(z) = flat) + fla—)

N—oo 2
b) Put t = (N + 3)y. Then dt = (N + 3)dy, so dt/t = dy/y. When y =zn, t = .
When y = zy 7 then ¢ = 7+ (N + 1)7 and limy_ oo m £ (N £ 3)7 = £o00. Also
limy_ 1007228 =1. So

1 T . —A4r R .
lim TN(f)(en) = ~ lim SI:tdt-l—e lim SlTntdt

N—>+oco T R—oo J_ 7w R—oo

oo

_1+1/” sintdt_i_e_‘l7T e 4 /" sintdt
_2 v 0 t 2 v 0 t )

™

4c) We have
1—e % [ sint 1 —e 4
dt > .
us o U 2
So A .
1+e™™™ 1—e*"
li T > =1
yim T (f) ) 2 2
6a)
. ey 2 . ye*¥ —2sinly
lim | —5— — - ) = lim —
y=0\sinyy Y y—0 ysmyy
oy 2y Q0220 - 2y - G602t
= lim T i3 = lim T, = 4.
y—0 y(zy — (39)3/6-+) y=0 Jys — -

In the interval (—2m,27), the denominator of the function only vanishes at y = 0,
and both numerator and denominator are continuous and we have seen that there is a
limit as y — 0. So the function extends continuously to (—2m, 27), taking the value
4 at 0.
6b) Since

ey 2

sinly ¥y

extends to a continuous function on (—27,27) and [z —m,x] C (=2, 27), [z,x+7] C
(—2m,27), by the Riemann Lebesgue Lemma,

T eZy 92
lim ( — - —) sin(N + 3)ydy = 0,
Notoo Jyp \SIN5Y Y

14



a4m /L2y 9
NHIEOO ) (sin%y — 5) sin (N + 3)ydy = 0.
This gives
NEIEOO(I(N, z) — J(N,z)) =0.
6¢) We have

lim Sy(f)(zn) = lim Tn(f)(zn) =1+ a.
N—oo N—oo0
for some a > 0. But for z € (0,2 C), f(z) = w = e 2®. So if the

fla+)+f(z—)
2

convergence of Sy(f)(z) to is uniform, there is N such that for all

n > N, and all z € (0,2m),
_2g, @
Su(F) (@) — 720 |2
Taing limits this gives

|1+a—1|:a<g,

which is nonsense.

7a) Equation (1) gives
(0/0t)iu(n,t) = —n’u(n,t), (3)

and (2) gives
(n,0) = f(n). (4)
The general solution is
a(n,t) = f(n)e ™"

Since u, extends continuously to [0,2x] X [0,00), u(x,t) is piecewise smooth in z.

Since u is continuous on [0, 27| x [0,00), and u(0,t) = u(2w,t) for all ¢, u extends

to a continuous 27 -periodic function in € R. So by the Fourier Series Theorem,
N

s 1 ~ INT
u(z,t) = ]\}gnoo o Z a(n,t)e
n=—N
1 N 2 1 > 2
- 1 - £ —n t+ine _ __ ¢ —n’t+inz
Nl—I>noo 2T Z fn)e 2T Z f(ne
n=—N n=-—oo

[It is not possible to write this as a convolution, at least, not for any standard function.]
b) By integration by parts

27 -
TAJ,:I; (n, t) = /O Uy (.’B, t)e_inﬂvdx = [’U,(.’L‘, t)e—ina:} 37" + /O z‘nu(x, t)e_i"wdx

= u(2m,t)e”"™*" — u(0,t)e” + ind(n, t) = ind(n,t).
Similarly

2m 2T
’a:z;w (’fl, t) = /O uxa;(l', t)e—ina’dx = [uw (.Z', t)e—inm]i"r + /0 znuw ($7 t)e—in:cdx

15



=0+ indy(n,t) = —n?a(n, ).

8a) The equations implied by (1), (2) are
(0?/0t*)i(n,t) = (—n? — idn)d(n,t) (3)
i(n,0) = f(n), (8/8t)hatu(n,t) = 0. (4)
The general solution to (3) is

a(n,t) = A, eintV/1=iMn | g o—inty/1=i/n

if n#0 and
@(0,t) = Ag + Bot

The boundary conditions (4) give By =0, Ay = f(O), and if n £ 0,
An =B, = 1f(n).

Then by the Fourier Series Theorem (as in question 7)

N
1 17 inz+inty/1—iA/n 17 inz—inty/1—iA/n
) = Jim 5 3 (A fene /I
9. o
£(€) :/ e lzlemi€z gy :/ e_(3+i5)wd:v—}—/ e(3-8)7 g
—o0 0 —o0
o~ (3+i6)z 748 o(3—i€)z7°
= lim |———| + lim -
WA |37 ), Tl 3o |,
. —e—(3+i)A | i 1 — e—A(3—1§)
A—lgloo( 3+ 1€ ) +A—1>I£oo< 3—1& )
_B=d)+B3+14) 6
N 9+ ¢£2 S 9+¢&%
10. Since f is real valued and hence f(z) = f(z), we have, for all real £.

/'f —WM—/ f(@)eseds = f(—¢).

Now let & > 0, and let y(R) be the anticlockwise semicircular contour in the lower

half-plane. Let +/(R) be the curved part of the contour. We have
L
12 4+1=0&2= 72

The point ¢ isinside y(R), while —1 + i is outside. So by the Residues Theorem

2
e—i&zdz —i§z —4
= 2miRes —

/7<R>4Z2+1 ( 4z = 5)(z+3) 2)

16
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Now

/ dz __/R dx +/ dz
'Y(R) 4Z2+1 - R 4$2+1 ,YI(R) 4Z2+1‘

142% 4+ 1| > 4|z]*1 > 0.

Now if |z| > 1,

Also, if Im(2) <0, £ >0 |e7%?| = emE) <180 if R > 3

e %2y 1
———| < length(v'(R)) 57—
/Y’(R) 422+1 4R2—1
TR
=1 _1 — 0 as R — oo.

So, if £>0
R e s} —i€x R itz
f(£)=/ AT iy / e

oo (422 +1  Rooo J_p4x2+1

/ e—i{z
= — =Te
’Y(R) 422 + 1

Then using the expression for f (=¢) in terms of f (&) we have, for all £ € R,

=
2

A

f(&) =me”
11. As in question 10, for all £ € R,

i~

]

f(e) = /_00 f(z)e ®%dy = /_00 f(2)e®®de = f(—¢).

Now let £ > 0, and let y(R) be the anticlockwise semicircular contour in the lower
half-plane. Let +/(R) be the curved part of the contour. We have

2242242=02=—1+i.

The point —1—4 is inside y(R), while —1+74 is outside. So by the Residues Theorem
we have " "
e—Z Zdz e—Z z
= 2miR ,—1—1
/Y(R) (2’2 + 2z + 2)2 TORes ((Z2 + 2z + 2)2 ’&)
=2mR 1—-4|=2m— [ —
T ((z+1+7:>2(z+1—z'>2’ ) "z ((z+1—z‘)2)z:_1_i
_ié-e—igz 2e—i§z
=27 < Ng - )
(z+1—1) (z4+1-49)3),__ |,

(e 2
= mie— T _7’6 N
e ( —4 8

17



— ge—€+z’§(_§ —1).

Now

/ dz __/R dx +/ dz
Jr (2+22+2)?% Jp@@?+20+2)? g (22+22+2)%

Now if |z| > 2,
22 42241 > |2 — 2]z =2 > 0.

Also, if Tm(2) <0, £ >0 |e~#%| = ¢I™ME) < 1.S0if R> 2

/ T eth (+/(R)) !
om (B F2z+2)2| = ST R oR o)
TR
= (2 2R —2)? — 0 as R — oo.

So, if £ >0

. o'} —ifx R —i€x
f(§)=/ e dx . lim/ e dx

oo (@24 224+2)2 RS ) g (22422 +2)2

Y (e 58
- ’Y(R) (22+22+2)2 o 2 )
Then using the expression for f (=¢) in terms of f (&) we have, for all &
A~ e é' + ]_ e_i§_|£|
flo =TT
12. We have . o
6—2:1: —izf _ e—2(w+z£/4) —£ /8.
Since e~2%" is holomorphic in the whole plane, we have

/ 6_222 dz = 0.
7(R)

Let £ > 0. Now let ;1 (R) be the horizontal path from —R to R, v2(R) the vertical
path from R to R+ i£/4, v3(R) the horizontal path from R +i£/4 to —R + i&/4
and v4(R) the vertical path from —R + i{/4 to —R. Then

R
/ e~ 2 4y = —/ e~ 2(@+ie/4)” g0 —662/8f(£).
v3(R) -R

On 742(R) we have 2 = R+1y for 0 < y < £/4. So 22 = R? + 2iRy — y%. Then
le=2"| = e 2R°+20° o

/ e 2 4z
v2(R)

Similarly if z = —R + 4y then 22 = R? — 2Ry — y? and

< length(’y2(R))e_2R2+’52/8 = %56_2R2+£2/8 — 0 as R — 0.

lim 27 dz = 0.
R— o0 va(R)

18



So if £ >0

R
F(€) = - lim 6_52/8/ e 2 dz = lim €_€2/8/ e 2% dg
’)’3(R —R

R—o0 ) R— o0

- 6—52/8/ =28 gy — o€ /8\/;

Since, as in question 8, we have f(—¢) = f (&) we have, for all ¢,

J?('f) = 6_52/8\/§.

13. Let y4(R), 7—(R) be the integrals drawn, and let 4/ (R), 7' (R) denote the
curved parts of the contours. Write z = = + 4y, and let &; be real. Then

|e—i€1 (w+iy)| = 819,

So ‘
e1#| <1 on v (R) if & >0,

le7"1%| <1 on v/ (R) if & <0.
In fact we have stronger statements. If z € 4 (R) with Im(z) < —VR then
\e_i€1z| < e~61VE,
If z € v/ (R) with Im(z) > VR then
lem%12] < VR,

We also have |2 +iz| > R —2 for |z| = R, provided that R > 2. So breaking up
the integral along v/ (R) into the pieces where |Im(z) < VR and |Im(z) > VR, we
have, if &, >0, R > 2,

—7:612’
/ c —dz
v (R) 2+1z

and if &1 <0, R > 3,

VR

< 4ﬁ +7rRe_£“/§ — 0 as R — oo,

—1:512’ R
c —dz 4L+7TR6£1\/_—>OaSR—>OO.
’y—li—(R) 2+ZZ R—
Soif & >0,
—i€12 R —it1y oo -1y
lim ¢ _dz=— lim ¢ _dy:—/ C
R—oo [\ (R) 2+12 R—ooo J_p 241y —oo 2ty
and if & <0,

—i€12 R —it1y oo ,—i€1y
lim —dz = lim —dy = —dy.
R—)oo[Y+(R)2+ZZ R—oo J_p 241y Y /_Oo2+zy Y

Now 2+1iz2 =0 < z=2i. So by Cauchy’s Theorem, for any &,

e—iglz
/ —dz =0,
v_(R) 2 + 1z

19




and by the Residues Theorem,

—i€12 —i€12 Qmie—61(21)
/ = 2miRes (‘372@) = T opek,
v (R) 2+ 2 i(z — 21) i

So

/oo e—iglydy _ 0 if 61 > 0,
oo 241y 2me®t if & < 0.
So
0if &€ >0,
dy = 2me?t if — 21 < € <0,
ome2l _ ope—Am2(6+2m) _ 0 if & < —2m.

00 o—ily _ p—4m—i(§+2m)y
/_Oo 2+y

Finally we consider

i [y [T Q@oydy T 2dy
Roe | » 244y R A+142  Roe A+ 42
-R Y —oo J_R +y Rooo J_pad+Yy

because y/(4 + y?) is an odd function. But

R
. 2dy T -1 R . .
A ) TryE A e W] g = 2= /2] =

So

So altogether we have
2me® if —2m < £<0
. 0if ¢ < —2m, or z >0,
h(§) = :
mif £ =0,
me 4™ if ¢ = —2m,

as required.

14a)

0 00 L
/ f(£)g(&)d€ = 2m / f(z)g(z)dz.
13b) Onme of the properties of the Fourier transform is that, if f € L1,

7)) = \ [ s@esa] < [T iw

— 00

This immediately impliesAthat if felL! thenA f is bounded. TAhe Fourier Inversion
Theorem says that if f, f € L! then 2nf = (f), where f(¢) = f(=£). Soif f e L,
we have f € L*®

20



13c) If hy € L' and hs is bounded then there exists M such that |he(z)| < M for
all z. So

/°° \hi(z)he(z)|dz < M/_C>o |hi(z)|dz < +o0

— 00

and so hihy € L1.
d) Tonelli’s Theorem: Let a measurable function f be such that at least one of the

integtrals
/ / xyld:vdy,_/ |F(z,y)|dydz

is finite. Then both integrals

/ / F(z,y)dzdy, / / (z,y)dydz

are defined, and they are equal. [This automatically means that

/_ o; P, y)dz, /_ Z F(z, y)dy

are also defined.] Now apply this to the function

F(z,6) = f(§)e™g(x).

We have A S
|F(z,8)| = |f(£)e™ g(z)| = | £(&)|g(z)].

/ / O)llg(w)|dwdg = / |d£/ 2)|ds < +oo.

So Tonelli’s Theorem applies and we can change the order of integration, giving

/ O; fo [ O; o= godods = [ o; i@ [ O; F(€)e < deds.

15. We are assuming that f is integrable, which means that

‘f(§)| < /Oo |f(z)|dr < +o00.

— 00

But

So
@@me/ @),

— 00

which is integrable. So we can use the following formula for hj(z):

M) =5 [ eha©

0o 0
=5 [ e e o [ oo

/ / ei6T—EMHINGEE £ (1)t e 1 _/ / T TEA—IX I £ (1) dtdE .
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Now in both double integrals, the modulus of the integrand is e~ *¢l|f(¢)|, and

/ OO / TNl (1)) dtde < oo,
0 —00

0 [e’s)
/ / e=ME| (1) dtde < +oo.

So by Tonelli’s Theorem we can change the order of integration. So

[es) e’} 0
ha(z) = % / f(®) <e“ / @D qedt 4 e~ / eif(z—tHf*) dedt
—00 0 —00

1 [ o [eltEt-ex 1> T eib@—t)+er 0
= — oY) [ ol [ dt
21 _Oof(t) (e [z’(a:—t)—)\ 0 Te il —1)+A]_
1 o) ez)\ e—i)\
T om _oof(t) ()\—i(a:—t) * )\—i—i(a:—t)) dt

> 1) (e“(Mi(x—t))+@_M(A_i(x_t))> dt

Lo 2m A2+ (x—t)?
® f(t) Acos A — (z —t)sin A
dt
A2+ (x —t)?
=f —|—g)\(x) =gx* f(:l?),
where
(1) = Acos A —tsin A
P =TT )
16a) For all z,
|sinz| < |z|.

Also K(zx) is an even function. So

4 [*d -11% 8
/ K (z)de < = /d:v—i——/ —f:2+2[—] =~ < +oo.
T), x z |, s

So K is integrable.
16b)(i) Making the change of variable u = z/X, dz/\ = du,

/_O:O Ky (v)dz = /_O; AMK (/N dz = /_O:O K (u)du =

16b)(ii) With the same change of variable as in 16b)(i), for any § > 0, |z| > ¢ if and
only if |u| > d§/A. So

K,\(x)da::/ K(u)du — 0 as A — 0.
|z|>d [u|>86/A

16b)(iii) We have 0 < K(z) < 272 for all z # 0. So if |z| > 6 > 0,
K(a:/)\)‘ _ A

|K>\($)| = ) > |$|2

22



§;—2—>0as)\—>0.

So

lim K(z) = 0

uniformly for |z| > ¢, for any 6 > 0.
16¢) Let 7/(R) and +'(¢) be as shown.

Then [e**| <1 for z € y'(R). So

1— 1z
/ 26 dz
Y (R) *

The function (1 — e%*)/z2 is holomrphic inside and on (R,e). So by Cauchy’s

Theorem, _
1 — et®
/ 26 dz = 0.
v(Re) *

. o . ,
1 — et 1 — ei?
lim Re / + / S —dr | = lim Re / e
R—00,e—0 -R e T e—=0 v (€) z

. if . . .
T (1 — etee ) 117 T1_-1—34 10 22219
= lim Re / ( 62 2.9)266 = lim Re / vee +.98 e )2d6’
e—0 0 g4est e—0 0 ce’

= T.

2 2
xﬁ:%%OasR%oo.

< length (7'(R)

So

Now by making a change of variable t = —z we see also that

—€ R 1— e—it
lim Re / +/ dt | = .
R—00,e—0 _R . 12
oo —e R i —3
92 _ el _ 1T
27r/ K(z)dr = lim (/ —I—/ ) c 5 ©  dz=om
—o0 R—00,e—0 —-R € X

16d) We have Ky x f = f x K. Now

f@)~Knef @) = @) [ Katway—ferata) = [

— 00

oo

17a) Using the change of variable u =2z +a

i©- [ " ot a)e e = / o8 ) du

— 00

23
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= eite [ e fladu = 50 f(9)

17b). The Fourier transform of the righthand side of equation (1) is (—&2+2i€)a(&,t).
So the Fourier transform of (1) (with respect to ) is

o1l A
The solution of the differential equation
dy 2 .
where ¢ is treated as a constant, is y(t) = y(0)e=8 T2t = y(0)e2%te=€"t . So for
y(t) = (&, t) we have

(€, t) = (€, 0)eibte €ttt

From 13a), we know that e%!f(¢) is the Fourier transform of f(z +t). So e®te=¢ ¢
is the Fourier transform of (1/2v/7t)e~(@+9*/4 and so

00 —(;c—y+2t)2/4td
e y
u(zt) = / uly,0) =,

Finally for any integer n > 1 we have

e (e—y+2n)2/4n

u(y, 0) 2/rn
2/m.

< |u(y, 0)|

For fixed x, writing
e—(z—y+2n)2/4n

2/mn

we have lim, , fn(y) = 0. The function |u(y,0)| isintegrable in y. So by the
Dominated Convergence Theorem we have

fu(y) = u(y,0)

Tim u(@,n) = lm [ fa(u)dy
= /oo nlgrolo fu(y)dy = /00 0dy = 0.
18. We have ~
fo-fo) = [ (== e
So -~
f@) - Fo)l< [ e = e 1o)

A
= —ixt _ —iyt
</|t|2A+/_A> e e[| f(t)|dt
A

—ixt _ _—iyt
<2 s [ et e o
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for any A > 0. We have used, for real x, vy, ¢,
‘e—imt . e—iyt| < ‘e—iwt‘ + ‘e—iyt| —9.

Now let €1 > 0 be given. Choose A so that
2/ F(0)]dt < e1.
[t|>A

Fix z, and fix A as above. Choose y so that if |z — |y < § then e~ — =Wt < ¢
for all |t| < A. For instance, this is true if e;1 < 1 and 6 = €1/2A because then

|6—ixt _ e—z’yt| =1- ei(w—y)t| <2lt(z —y)| < e1.
Then
A . , °
/ it —e"yt||f(t)|dt<61/ | f(t)lde.

—A —o0

Now suppose that, given € > 0, ¢; is such that

€1 (1 +/°° vertf(t)|dt) <e.

Then we can choose A and ¢ as above so that if |z — y| < § then
f(z) = fy) <e
which is what continuity means.
19a)
o0
LN = [ = s
0

If Re(z) >0 and z > 0 then |e=7%| = e—oRe(®) < 1. So
e™* f(@)| < [f(=)]
and, since f is integrable, £(f)(z) is defined for Re(z) > 0, and, for all Re(z) >0,

e < | e (o) da < / | (@) de.
So L(f)(z) is bounded for Re(z) > 0.

o0

199) £(0)() = [ e xomlt = Mt —a)di = [ e tixu - @)f (- )it

a

= [T e i @) (@) = L))

0

by making the change of variable £ =t —a, so that t =z + a and dt = dx.
19¢) The usual formula for convolution is

fro@= [ 7 fa—y)gly)dy = / 7 F(Ogla— t)de

where the equality of the integrals is given by the change of variable { = z — y, so
that y = ¢ —t and dy = —dt (but the limits get changed and hence the minus sign
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cancels out). But f(zx —y) =0 if y > z and g(y) = 0 if y < 0. So the integral
becaomes

Feat@ = [ se=natidy= [ gt
The formula for the Laplace transform is
L(f xg)(z) = L(f)(zc(9)(2)-

For f and g integrable, all three Laplace transforms L(f)(z), L£(g)(z), L(f * g)(z)
are defined for Re(z) > 0.

20a) F(z) is not bounded for Re(z) > 0, in fact F(0) is not defined and
lim, ,o|F(2)] = +00. So F # L(f) for any f € L'(0,00). Alternatively, F = £(1)
where 1 denotes the constant function 1, which is not in L!(0,00). But F can pnly
be the Laplace function of at most one funciotn so there is no f € L'(0,00) with
F=L(f).
20b) i is the Laplace transform of e™®. and (14 2)~% = —(d/dz)(1+2)~*. So
this must be the Laplace transform of ze™" because
d o0
dz Jo

o0

e_“g(a:)da::/o (—zg(z))e *dx.

—Z

The function ze™® iscertainly integrable on (0,00) because (using Monotone Con-

vergence)

/ ze”? = lim [(-1 —z)e” "] = 1.
0

n—0o0

20c) (1+%)~2 is not holomorphic on Re(z) > 0, so cannot be of the form L£(f)(z) for
any f € L'(0,00). To see that this function is not holomorphic - it is the conjugate

of the holomorphic function (1 + 2)™2. The conjugate G(z) = u(z,y) — iv(z,y)of a
holomorphic funciton G(z) = u(z,y) + w(x,y) (for z =z + iy, u(z,y) = Re(G(2)),
v(z,y) = Im(G(2z))) can never be holomorphic unless it is constant. For if we have
Uy = Uy = —Vy, Uy = —Vy = Vg, then u;, = v, =0 = uy, = v, andG must be
constant.

1
20d) We have lim,_,

bounded by some constant M if |z| < 2 (compare with question 2) and also for all
Re(z) >0, |1 —e?| < 2. So |F(z)| <2|z|72 for all z. So

/ Flo + iy)2dy < 2 / y

o —oo T 4yl

o [Ty 22
I A R Ch BN TR T

if x>1.1If £ <1 we have

0 ) ) 1 -1 [e%s) 2dy
|F(xz+iy)|°dy < M dy + + F<—I—oo
—00 -1 —00 1

By the Payley-Wiener Theorem, there must exist f € L?(0,00) with £(f) = F.

— e_z

= 1 (using 'Hopital’s Rule, for example). So F(z) is
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20e) For |z| < 1 we have |(1 — e #)/z|] > C for some constant C > 0, because
1—e77

lim, _,q =1.Soif |z2| <1.

¢

N

Vv

1—e"
22

Soif 0 < z < 3,
2

dy

0o oo 1_e—$—iy
F(z +y)|%d :/ -—_°
| iy _Oo‘ ——

I o2
e
_1 |z +ayl?

T 02 02
2/ 2$22%—>+ooasa:—>0

21a) The variance is

e8] 562 S co o0
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Then by the definition of v, and the definition of 7, ,
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By the uniqueness of Fourier transforms for measures, it follows that v, = u.
20b) This time we have
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(by making the change of variable x = ¢1/0). Then
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Again

Pn(€) = fin(€/v/n) = e~ /2.

Again, by uniqueness of Fourier transforms of measures, v, = p in this case also.
21c) The Central Limit Theorem says that if p has bounded non-zero variance
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and zero mean, then
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